

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/189610

San Juan-Sebastian, P.; Rodríguez-Sánchez, R.; Igual, FD.; Alonso-Jordá, P.; Quintana-
Ortí, ES. (2021). Low precision matrix multiplication for efficient deep learning in NVIDIA
Carmel processors. The Journal of Supercomputing. 77(10):11257-11269.
https://doi.org/10.1007/s11227-021-03636-4

https://doi.org/10.1007/s11227-021-03636-4

Springer-Verlag

High Performance and Portable Convolution Operators for

ARM-based Multicore Processors

Pablo San Juan∗ Adrián Castelló† Manuel F. Dolz† Pedro Alonso-Jordá∗

Enrique S. Quintana-Ort́ı∗

May 14, 2020

Abstract

The considerable impact of Convolutional Neural Networks on many Artificial Intelligence
tasks has led to the development of various high performance algorithms for the convolution op-
erator present in this type of networks. One of these approaches leverages the im2col transform
followed by a general matrix multiplication (gemm) in order to take advantage of the highly
optimized realizations of the gemm kernel in many linear algebra libraries. The main problems
of this approach are 1) the large memory workspace required to host the intermediate matrices
generated by the im2col transform; and 2) the time to perform the im2col transform, which
is not negligible for complex neural networks. This paper presents a portable high performance
convolution algorithm based on the BLIS realization of the gemm kernel that avoids the use of
the intermediate memory by taking advantage of the BLIS structure. In addition, the proposed
algorithm eliminates the cost of the explicit im2col transform, while maintaining the portability
and performance of the underlying realization of gemm in BLIS.

1 Introduction

During the past decade and a half, the use of deep neural networks (DNNs) for machine learning
(also known as deep learning, or DL), and more specifically convolutional neural networks (CNNs),
has gained a tremendous momentum, carrying beyond conventional problems in image classification,
object dectection, speech recognition and neural machine translation [11, 24, 37], to be extended
to a myriad of unexplored applications, for example, in quantum computing, solid state lighting,
nanoelectronics and nanomechanics, high throughput screening of new materials, computer vision
in microscopy, radiography and tomography, and astrophysics simulation; see [33, 28, 6] among
many others.

Current CNN models consist of a large number of neuron layers that allow to deliver superior
accuracy on many artificial intelligence (AI) tasks, at the cost of a considerable computational
cost, both for training and inference [33]. This cost comes from the CNN being mostly composed of
convolutional layers (conv), each basically embedding a high-dimensional convolution operator [27].

The high computational cost of the conv layers can be tackled via certain compression tech-
niques (such as use of low-rank approximations, quantization/low-precision arithmetic, sparsifi-
cation, etc.), which aim to reduce the complexity of the convolution in exchange for a potential
degradation in accuracy [19]. The application of the convolution operator can also be accelerated

∗Universitat Politècnica de València, Spain. p.sanjuan@upv.es, palonso@upv.es, quintana@disca.upv.es
†Universitat Jaume I, Castellón de la Plana, Spain. {adcastel,dolzm}@icc.uji.es

1

ar
X

iv
:2

00
5.

06
41

0v
1

 [
cs

.P
F]

 1
3

M
ay

 2
02

0

via optimized implementations of this kernel that carefully exploit the architecture of modern high
performance processors, such as multicore processors and graphics processing units (GPUs). On the
one hand, when the filters involved in the convolution are of size 5×5 or larger, this kernel is usually
realized via the Fast Fourier transform (FFT). On the other hand, for smaller (yet more often en-
countered) filters, the operator is cast in terms of a general matrix multiplication (gemm) [9, 15, 1]
via the im2col transform [8]. In some cases, the gemm-based approach can be accelerated employ-
ing Winograd’s minimal filtering algorithms, possibly combined with the Strassen variant of the
matrix multiplication [25, 39]. However, this latter strategy can also result in a decay of accuracy
of the trained model.

High performance realizations of the convolution operator/gemm are available in libraries such
as Intel’s openDNN/MKL and NVIDIA’s cuDNN/cuBLAS, respectively [1, 2]. However, these
implementations target Intel/AMD x86 architectures and NVIDIA GPUs, and therefore, they are
not portable to other architectures. Moreover, except for openDNN, these libraries take a “black-
box” approach and their contents cannot be examined nor modified.

The Basic Linear Algebra Instantiation Software (BLIS) is a software framework for rapid
development of high-performance dense linear algebra libraries [34]. BLIS implements the full
functionality defined in the Basic Linear Algebra Subprograms (BLAS) application programming
interface (API) [12] featuring several appealing properties:

– BLIS is written in Standard C (mainly ISO C90 with a few C99 extensions).

– The BLIS code is mostly architecture-independent and, therefore, largely portable. Devel-
oping an efficient instance of BLIS for an specific processor architecture requires an efficient
implementation of a small piece of code, known as the micro-kernel, and the selection of a
number of cache configuration parameters that can be adjusted via an analytical model [26].

– There exist high performance realizations of the micro-kernel (and tuned selection of the cache
configuration parameters) for many different architectures, including low-power ARM-based
processors [7].

– On a variety of modern multicore processors, BLIS has been shown to deliver sustained
high performance [36, 32, 7] that rivals that of commercial libraries, such as Intel’s MKL,
as well as other open high performance instances of the BLAS, such as GotoBLAS [18, 17],
OpenBLAS [29] and ATLAS [35].

In this paper, we leverage the open implementation of the gemm kernel in BLIS to design
high performance and portable convolution operators for DL inference on general-purpose multicore
processors. For this purpose, we modify one of packing routines in the BLIS gemm kernel to apply
the im2col transform on-the-fly (that is, during the execution of the matrix multiplication) on the
input tensor for the convolution operator. As a result, our approach features:

Reduced workspace. We avoid the explicit assembly of the large-scale matrix that results from
applying the im2col transform to the input tensor, requiring no extra workspace (other than
the small buffers that are used inside the BLIS gemm).

High performance. Our solution mimics the performance of the BLIS gemm, basically eliminat-
ing the overhead of the im2col transform, to reduce the execution time of the convolution
operator to that of the associated gemm kernel.

Portability. The result remains as portable as BLIS since our modification of the gemm kernel
does not affect the micro-kernel nor the cache configuration parameters.

2

As an additional contribution of this work, we assess the advantages of our integration of im2col
into the BLIS gemm by porting and evaluating the resulting convolution operator on the ARM
quad-core Cortex-A57 processor (ARMv8, 64-bits) that is integrated in the NVIDIA Jetson TX2
module.

The rest of the paper is organized as follows. After a survey of related work in the next
subsection, in Section 2 we review the BLIS approach for the implementation of gemm, briefly
discussing the portability and multi-threaded parallelization of this kernel. Special attention is
paid there to the packing performed within BLIS, in connection with the layout of the data in
memory, as these are two keys to our approach. In Section 3 we review the im2col transform and
how to leverage this function to cast a convolution in terms of the matrix multiplication. We then
open Section 4 with a discussion of the problems of such straight-forward scheme, proposing an
alternative that embeds the im2col transform within the BLIS gemm kernel, yielding a portable,
high performance, integrated convgemm operator for multicore processors. Finally, we evaluate
the performance of the new routines on an ARM Cortex-A57 processor in Section 5, and offer some
final closing remarks in Section 6.

1.1 Related work

Direct algorithms. Libraries such as NVIDIA’s cuDNN, HexagonNN [23] and Xiaomi’s MACE [3]
include optimized direct convolution operators for the most frequently encountered filter dimen-
sions and strides, falling back to default algorithms for other parameter values. In comparison,
Intel’s MKL-DNN [15] employs parameterized architecture-aware just-in-time code generators to
produce direct optimized convolution routines at runtime.

NNPACK (Neural Networks PACKage) [4] also provides direct implementations of convolutional
operators involving large filters (3×3 or 5×5) using either Winograd filters or FFT. NNPACK
supports many popular deep learning frameworks (Caffe2, PyTorch, MXNET, etc.) and includes
architecture-specific optimizations for ARMv7, ARMv8, and x86 processors.

Indirect algorithms. In contrast with the previous approach, gemm-based algorithms reformu-
late the convolution in terms of a two-stage (or indirect) im2col+gemm. This allows to leverage
highly optimized realizations of the BLAS, which exists for almost any modern computer platform.
As a result, the gemm-based approach is now used in all major deep learning frameworks [13].

Facebook’s QNNPACK (Quantized NNPACK) [14] extends NNPACK to perform computa-
tions in 8-bit fixed-point precision targeting convolution operators which cannot benefit from fast
Winograd/FFT-based schemes. Similar to our approach, QNNPACK follows an indirect approach
while aiming to eliminate the overhead of the im2col transform for matrix multiplication libraries.

A few other works have addressed the excessive memory consumption of gemm-based algorithms
by dividing the matrix multiplication into small kernels [10, 5]. However, the authors of these works
do not consider the combination of their solutions with optimized, architecture-specific realizations
of the gemm kernel.

In [13], M. Dukhan tackles both the memory and performance issues of the indirect approach.
Concretely, that work proposes to introduce an indirection structure of pointers to the convolution
input operand optimized for the so-called NHWC layout. Unfortunately, the author recognizes
that 1) the algorithm is not expected to be competitive with state-of-the-art patch-building al-
gorithms [38] due to strided memory access; and 2) his solution has limited applicability for the
backward pass of the convolution operator and the Transposed Convolution operator.

3

L1: for jc = 0, . . . , n− 1 in steps of nc

L2: for pc = 0, . . . , k − 1 in steps of kc
B(pc : pc + kc − 1, jc : jc + nc − 1) → Bc // Pack into Bc

L3: for ic = 0, . . . ,m− 1 in steps of mc

A(ic : ic + mc − 1, pc : pc + kc − 1) → Ac // Pack into Ac

L4: for jr = 0, . . . , nc − 1 in steps of nr // Macro-kernel
L5: for ir = 0, . . . ,mc − 1 in steps of mr

Cc(ir : ir + mr − 1, jr : jr + nr − 1) // Micro-kernel
+= Ac(ir : ir + mr − 1, 0 : kc − 1)
· Bc(0 : kc − 1, jr : jr + nr − 1)

Figure 1: High performance implementation of gemm in BLIS. In the code, Cc ≡ C(ic : ic + mc −
1, jc : jc + nc − 1) is just a notation artifact, introduced to ease the presentation of the algorithm,
while Ac, Bc correspond to actual buffers that are involved in data copies.

2 Portable and Multi-Threaded gemm in BLIS

General overview. Consider the gemm operation C += A · B, where the dimension of the
operands are C → m × n, A → m × k, and B → k × n. BLIS adheres to the high-performance
taxonomy in GotoBLAS [18] to implement this kernel (and any other variant, with transposed A
and/or B) as three nested loops around a macro-kernel plus two packing routines; see Loops L1–L3
in the gemm algorithm in Figure 1. In addition, the macro-kernel is implemented in terms of two
additional loops around a micro-kernel ; see Loops L4 and L5 in the same figure. The micro-kernel
is encoded as a loop around a rank–1 update (that is, and outer product; not explicitly shown in
the figure). For simplicity, we will consider hereafter that m,n, k are integer multiples of mc, nc, kc,
respectively; and mc, nc are integer multiples of mr, nr, respectively.

In BLIS, the loop ordering, together with the packing routines and an appropriate selection of
the loop strides nc, kc, mc, nr and mr (which match the processor cache configuration), orchestrate
a regular pattern of data transfers through the memory hierarchy [34, 26]. In rough detail, given
a processor architecture, the goal is that a kc × nr micro-panel of the buffer Bc, say Br, and an
mc × kc macro-panel of the buffer Ac, say Ar, are streamed into the floating-point units (FPUs)
from the L1 and L2 caches, respectively; while the kc × nc macro-panel Bc resides in the L3 cache
(if present).

Portability. An appealing property of BLIS is that all routines are encoded in C except, possibly,
for the rank–1 update inside the micro-kernel, which may be vectorized using either assembly or
vector intrinsics [34]. Furthermore, following the convention for BLAS [12], the routines for (almost)
all other Level-3 BLAS are built on top of gemm. This enhances portability as, given a “generic”
(architecture-oblivious) instance of the BLIS gemm, porting all the BLIS library to a particular
processor architecture then only needs to develop an efficient realization of the rank–1 update for
the target processor, and selecting the proper values for nc, kc, mc, nr and mr to the processor
cache/memory configuration.

Multi-threaded parallelization. BLIS allows to choose, at execution time, which of the five
loops of the gemm kernel are parallelized. The multi-threaded parallelization of the BLIS gemm
kernel has been previously analyzed for conventional multicore processors [36], modern many-
threaded architectures [32], and low-power (asymmetric) ARM-based processors in [7]. The insights

4

A Bc c

rm

nr

Ar

Br

Figure 2: Packing in the BLIS and GotoBLAS implementations of gemm. The arrows indicate the
linear layout of the elements in the memory: column-major for Ar and row-major for Br.

gained from these experimental studies show that Loop L1 is usually a good candidate for multi-
socket platforms with on-chip L3 caches; Loop L3 should be parallelized when each core has its
own L2 cache; and Loops L4 and L5 are convenient choices if the cores share the L2 cache.

Data storage. Hereafter, unless otherwise explicitly stated, we adhere to the Fortran convention
that dictates the column-major order storage for matrices. This implies that, for example, the
entries of the 2D array (i.e., matrix) C → m× n, are arranged in consecutive positions in memory
as

C[0][0], C[1][0], . . . , C[m− 1][0]︸ ︷︷ ︸
1st column of C

, C[0][1], C[1][1], . . . , C[m− 1][1]︸ ︷︷ ︸
2nd column of C

, . . . ,

C[0][n− 1], C[1][n− 1], . . . , C[m− 1][n− 1]︸ ︷︷ ︸
Last column of C

.

Note that BLAS follows the Fortran matrix storage convention and, therefore, this is necessary to
be able to invoke the gemm kernel.

The packing routines. The purpose of these routines is to arrange the elements of A and B
into Ac and Bc, respectively, so that the elements of the Ac and Bc buffers will be accessed with
unit stride when executing the micro-kernel [21]. (An additional benefit of packing is that Ac and
Bc are preloaded into certain cache levels of the memory hierarchy, reducing the time to access the
elements of these buffers when using them to update a micro-tile of C.)

The packing routines proceed to copy and compact the data of the input operands as follows.
In the packing routine for Ac, each mc×kc block of A is packed into the Ac buffer with its elements
organized as micro-panels of size mr×kc; furthermore, within each micro-panel of Ac, the elements
are stored in column-major order. Also, each kc × nc block of B is packed into Bc, with its the
elements arranged into micro-panels of size kc × nr; and each micro-panel stored into row-major
order; see Figure 2 and the algorithm in Figure 3.

Let us consider the overhead introduced by the data copies necessary to perform the packing.
Consider, for example, the packing for Bc. In principle, packing this buffer requires kc ·nc memory
accesses, to read the elements of matrix B (from the memory) and write them into the appropriate
positions of the buffer (in principle, in the L3 cache, if there is one). Each buffer is then re-utilized
for the (floating-point) operations embraced by Loop L3 of the gemm kernel (see Figure 1), which

5

L1: for jr = 0, . . . , nc − 1 in steps of nr

i = 0
L2: for ps = 0, . . . , kc − 1
L3: for js = 0, . . . , nr − 1

Bc[i][jr] = B[pc + ps][jc + jr + js]
i = i + 1

Figure 3: Algorithm for packing B into Bc. The indices pc and jc correspond to the coordinates of
the top-left entry for the block of matrix B that is packed; see Figure 1. Matrix B is maintained in
column-major order. Each micro-panel Br within the buffer Bc is arranged in row-major order, as
expected by the BLIS micro-kernel; see Figure 2. This is attained by viewing Bc as an (kc · nr)×
(nc/nr) buffer, where each column contains an entire micro-panel in row-major order.

L1: for ib = 0, . . . , b− 1
L2: for ic = 0, . . . , ci − 1
L3: for iw = 0, . . . , wo − 1
L4: for ih = 0, . . . , ho − 1
L5: for ikw = 0, . . . , kw − 1
L6: for ikh = 0, . . . , kh − 1
L7: for ik = 0, . . . , kn − 1

O[ik][ih][iw][ib] + = F [ik][ikh][ikw][ic] · I[s · ih + ikh][iw · s + ikw][ic][ib]

Figure 4: Direct algorithm for the application of the convolution operator O = conv(F, I).

amount to m
mc
· nc
nr
· mc
mr
· 2(mrnrkc) = 2mnckc flops. Thus, provided m is large enough, the cost of

the packing for Bc is negligible compared with the amount of flops performed inside Loop L3. A
similar reasoning applies to the overhead due to the packing for Ac.

As we will expose in the next section, the packing routines are particularly important for our
implementation of the convolution operator.

3 Indirect Convolution via Explicit im2col+gemm

Convolution operator. Consider a conv layer, appearing during inference with a DNN model,
that comprises a convolution operator consisting of kn filters (or kernels) of dimension kh× kw × ci
each. Assume the layer receives b tensor inputs of dimension hi×wi×ci each; and produces b tensor
outputs of size ho × wo × kn each. (The parameter b is also often referred to as the batch size.)
Then, each of the kn individual filters in this layer combines a (sub)tensor of the inputs, with the
same dimension as the filter, to produce a single scalar value (entry) in one of the kn outputs. By
repeatedly applying the filter to the whole input, in a sliding window manner (with a certain stride
s), the convolution operator produces the complete entries of this single output; see [33]. Assuming
a padding p along dimensions hi and wi, the output dimensions become ho = b(hi−kh + 2p)/s+ 1c
and wo = b(wi − kw + 2p)/s + 1c.

The algorithm in Figure 4 provides a direct realization of a convolution operator O = conv(F, I),
where I → hi × wi × ci × b corresponds to the input tensor, F → kn × kh × kw × ci denotes the
filters, and O → kn × ho × wo × b is the output tensor.

6

L1: for ib = 0, . . . , b− 1
L2: for ic = 0, . . . , ci − 1
L3: for iw = 0, . . . , wo − 1
L4: for ih = 0, . . . , ho − 1

c = ih + iw · hi + ib · wi · hi

L5: for ikw = 0, . . . , kw − 1
L6: for ikh = 0, . . . , wh − 1

r = ikh + ikw · kh + ic · kw · kh
B̂[r][c] = I[ih · s + ikh][iw · s + ikw][ic][ib]

Figure 5: Algorithm for the im2col transformation. The actual implementation moves some of the
loop invariants inside Loops L4 and L6 to reduce the indexing arithmetic overhead. For simplicity,
this is not shown in the algorithm.

Tensor data storage. A tensor generalizes the concept of a matrix to that of a multidimensional
array. Note though that, from the physical point of view, the tensor entries are still arranged as
a linear array in memory. Here, we generalize the Fortran convention of column-major order to
consider that, unless explicitly stated otherwise, the entries of the tensors are stored in consecutive
positions in memory starting from the leftmost indices. This implies that, for example, if the tensor
O → kn × ho ×wo × b is stored into an 4D array O[kn][ho][wo][b], then its entries are consecutively
arranged in memory as

O[0][0][0][0], O[1][0][0][0], . . . , O[kn − 1][0][0][0],

O[0][1][0][0], O[1][1][0][0], . . . , O[kn − 1][1][0][0],

. . .

O[0][ho − 1][0][0], O[1][ho − 1][0][0], . . . , O[kn − 1][ho − 1][0][0],

O[0][0][1][0], O[1][0][1][0], . . . , O[kn − 1][0][1][0], . . . ,

O[kn − 1][ho − 1][wo − 1][b− 1].

Indirect convolution and the im2col transform. On modern computer architectures, the
performance of the direct realization of the convolution operator given in Figure 4 is limited by
the memory bandwidth and, therefore, delivers only a fraction of the processor peak floating-point
throughput. In practice, higher performance can be attained via an indirect (or gemm-based)
approach that casts this operator in terms of a matrix multiplication via the im2col transform [8].
Concretely, the algorithm in Figure 5 shows how to transform the input tensor I into an augmented
matrix B̂. With this transform, the output of the application of the convolution can be simply
obtained from the gemm Ĉ = Â · B̂, where Ĉ ≡ O → kn × (ho ·wo · b) is the output tensor (viewed
as an m × n matrix, with m = kn and n = (ho · wo · b)); Â ≡ F → kn × (kh · kw · ci) contains the
kernels; and B̂ → (kh · kw · ci) × (ho · wo · b) is the result from applying the im2col transform to
the input tensor I.

7

4 Optimized Indirect Convolutions via Integration of im2col into
gemm

There are two problems with the indirect (two-stage) procedure described in Section 3 that performs
the convolution as a sequence of an explicit im2col transform followed by a call to the gemm kernel:

P1. Starting from an input tensor I of dimension hi×wi×ci×b, the im2col transforms creates an
augmented matrix B̂ of size (kh ·kw ·ci)×(ho ·wo ·b). Assuming hi, wi ≈ ho, wo, this requires a
workspace that is kh · kw times larger than the original input tensor. For current CNNs, with
many layers, even when using small 3× 3 filters, this can easily exceed the memory capacity
of the system.

P2. On modern high performance processors, when using a realization of the gemm kernel that
is highly optimized, the overhead due to the copy and replication required by the im2col
transform in general becomes “visible” and reduces the performance of the global (explicit)
im2col +BLIS gemm process.

To tackle both problems, we propose a solution that integrates the im2col transform into
the packing of B̂ onto the buffer Bc. In other words, during the execution of the gemm kernel,
the buffer Bc is directly assembled from the contents of the input tensor I (instead of using the
augmented matrix B̂, which is never created). In the following, we will refer to our solution as an
indirect convolution via a convgemm operator. We can now justify the contributions listed in the
introduction of this work (see Section 1):

Reduced workspace. We avoid the use of the large workspace present in the two-step procedure
(problem P1), as the only “additional” storage that is needed is the buffer for Bc, which is
already necessary in the BLIS gemm kernel.

High performance. Furthermore, as argued during the discussion of the packing in Section 2,
the memory access costs introduced by the packing of Bc is well amortized with the flops
that are performed in the innermost loops and, therefore, the overhead can be considered
negligible (problem P2).

Portability. The approach has the additional advantage that the only change that is needed to
the BLIS gemm is to replace the original packing routine with a procedure that reads (and
packs) the second input operand to the matrix multiplication directly from the input tensor.
There is no need to modify the routine that performs the packing with Â. More importantly,
there is no need to change the micro-kernel, which enhances the portability of our solution:
the only part that is different is written in C and depends on a small number of architecture-
dependent parameters that are adjusted during the process of porting BLIS. The parameters
that define the filter dimensions are “embedded” within the dimensions of the resulting matrix
and, therefore, require no specific optimization.

The algorithm in Figure 6 illustrates how to pack the corresponding entries of the input tensor I
into the buffer Bc during the execution of the BLIS gemm kernel in Figure 1 while, simultaneously,
performing the implicit im2col transform. The algorithm packs the kc × nc block of matrix B̂
starting at row pc and column kc into the buffer Bc, reading the corresponding entries directly from
the input tensor I. As a result, the output matrix comprises the sought-after convolution:

O = conv(F, I) ≡ Ĉ = Â · B̂ ≡ Ĉ = Â · im2col(I),

8

L1: for jr = 0, . . . , nc − 1 in steps of nr

i = 0
L2: for ps = 0, . . . , kc − 1

ic = (pc + ps)/(kh · kw)
ikw = ((pc + ps) mod (kh · kw))/kh
ikh = ((pc + ps) mod (kh · kw)) mod kh

L3: for js = 0, . . . , nr − 1
ib = (jc + jr + js)/(ho · wo)
iw = ((jc + jr + js) mod (ho · wo))/ho

ih = ((jc + jr + js) mod (ho · wo)) mod ho

Bc[i][jr] = I[ikh + ih · s][ikw + iw · s][ic][ib]
i = i + 1

Figure 6: Algorithm for packing I into Bc. The indices pc and jc correspond to the coordinates of
the top-left entry for the block of matrix B̂ that is packed; see Figure 1.

where Ĉ ≡ O and Â ≡ F . The actual implementation of this algorithm eliminates some of the
loop invariants and integer arithmetic to reduce the overhead. Concretely, the computation of
the indices ic, ikw, ikh, ib, iw, ih is performed outside the loops and then properly updated during
the iterations to avoid the high cost of the integer divisions and modulo operations (that is, the
remainder of the integer division, abbreviated in the presentation as mod). The algorithm is shown
in this basic form to improve readability.

5 Performance Evaluation

In this section, we assess the performance of our convgemm approach (that is, im2col integrated
into the BLIS gemm) against the baseline counterpart that explicitly assembles the extended input
activation matrix and then performs the augmented gemm. As described next, for this evaluation
we target a high performance ARM processor present in a low-power embedded system, and per-
form the analysis by simulating the inference stage of three representative state-of-the-art CNNs.
The source of all codes employed for the evaluation, including the convgemm implementation, is
publicly available in a git repository [16].

5.1 Configuration

The evaluation presented in this paper was executed on an NVIDIA Jetson TX2 [22] platform,
which integrates an ARM quad-core Cortex-A57, an NVIDIA dual-core Denver, an NVIDIA 256-
CUDA core Pascal GPU, and 8 GiB of main memory. The results reported next were obtained
in the ARM Cortex-A57 only, due to the wide spread of this architecture and the availability of
optimized high performance linear algebra libraries for this processor. On the software side, the
experiments were conducted using the Linux distribution Ubuntu 18.04.4, the GNU compiler gcc
7.5.0, and BLIS 0.6.0.

As the evaluation targets inference with CNNs, all the experiments employed (IEEE) simple
precision arithmetic. In general, the inference process does not benefit from the use of double
precision arithmetic, and a reduced precision format (floating point single or half, or even fixed
point) is often preferred in order to improve performance and/or reduce energy consumption. BLIS
provides a single-precision instance of the BLAS optimized for the ARM Cortex-A57 which features
an optimized micro-kernel with mr×nr = 8×12, and sets the following cache configuration values:

9

Model fc conv Pool Total Memory consumption for im2col (MiB)

AlexNet 3 5 3 11 15.87 b
ResNet50 1 53 1 55 13.05 b
VGG16 3 13 5 21 110.25 b

Table 1: Number and type of layers in the target CNN models and memory required by the explicit
im2col transform as a function of the batch size b.

nc = 3072, kc = 640, and mc = 120. The algorithm paralellizes loop L4 of Figure 1 and the
outermost loop of the packing of A using OpenMP [30]. For the convgemm, we also parallelize
loop L1 of Figure 6. The counterpart with an explicit im2col parallelizes loop L2 of Figure 5.

5.2 Inference simulator

In order to tackle the complex software stack required for executing CNNs, we have employed
an inference simulator that performs the major computational stages of the convolutional layers
encountered during the inference of CNN models. For the baseline case, we emulate this behavior by
executing a sequence of explicit im2col+gemm pairs, of the dimensions appearing in consecutive
layers of the neural network. Our optimized alternative instead executes the specialized convgemm
kernel (of the dimensions dictated by the CNN model). In both cases, the simulator reads the CNN
configuration parameters for a certain model from an input file, accepting the batch size (number
of input samples simultaneously processed per inference process) as an additional parameter. The
simulator then allocates memory buffers for all required matrices using the maximum size of each
matrix from among the matrix sizes required by each layer in the model, and performs a full model
evaluation for each batch size in the specified range. During inference, the output of a certain
layer is basically the input data of the next layer. Our code mimics this behaviour by using buffer
swapping. In this way, we simulate more accurately the real data movements that take place across
the cache hierarchy during the inference stage.

The simulator repeatedly executes the computational operations till a certain time threshold is
attained, and then divides the total wall-time by the number of repetitions to avoid system load
variability in the measurements.

5.3 DNN Models

We have applied the simulator to study the benefits of the optimized indirect convgemm algorithm
using three representative CNN models: AlexNet [24], VGG16 [31], and ResNet50 [20].1 The
former model was selected because of its simplicity, which facilitates an easier interpretation of
the results. The remaining two models were chosen because of their more complex structures
and notable computational requirements. Table 1 summarizes the number and type of layers for
each model as well as the extra memory consumption required by the explicit im2col transform.
This later parameter represents the maximum memory needed to hold the largest intermediate
matrix assembled by the explicit im2col transform when executing each model. This is a key
parameter because it may constrain the use of the explicit im2col+gemm approach for many CNN
model+platform pairs due to insufficient memory capacity. Remember that our optimized algorithm
with convgemm saves this extra space by avoiding the explicit creation of the intermediate matrices.

1The models adhere to the specifications defined in Google’s TensorFlow benchmarks suite.

10

Layer Type Neurons Kernels gemm dimensions
(hi × wi × ci × b) (kn × kh × kw × ci) (m× n× k)

2 conv 224× 224× 3× b 64× 11× 11× 3 64× 2916 b× 363
4 conv 55× 55× 64× b 192× 5× 5× 64 192× 2601 b× 1600
6 conv 27× 27× 192× b 384× 3× 3× 192 384× 625 b× 1728
7 conv 13× 13× 384× b 384× 3× 3× 384 384× 121 b× 3456
8 conv 13× 13× 384× b 384× 3× 3× 384 256× 121 b× 3456

Table 2: Specification for the conv layers appearing in the AlexNet CNN model as a function of
the batch size b.

Table 2 details the configuration of the conv layers for the AlexNet model. Concretely, the
table displays the number of neurons (represented by the dimensions of the input data); the kernel
specifications (number of kernels, their height and width, and their number input channels); and
the dimensions of the gemm product, when applying the indirect convolution, for each layer of that
type.

5.4 Experimental results

In this subsection we report the results obtained with the simulator applied to simulate the inference
process for the three selected CNN models. In these experiments, we compare the execution time
of the models with either 1) an im2col operation followed by the gemm on the augmented matrix
(explicit im2col+gemm); or 2) an im2col performed on-the-fly with the gemm (referred to as
convgemm). To better understand the source of the observed differences, in the comparison we
also include 3) the cost of the gemm operations without (the overhead caused by) the im2col
transforms; and 4) the separate cost of the latter. Note that, as our ultimate goal is to hide
completely the cost of the im2col transform inside the gemm operation, the performance reference
for our convgemm routine is to match the execution time/performance rate of the standalone
gemm kernel.

Figures 7 and 8 show the time and performance (in GFLOPS, or billions of floating-point
operations per second) obtained for the evaluated models executed using a single core and the
full 4-core processor, respectively. The plots display the execution time/performance attained
for a range of batch sizes, for the optimized convgemm algorithm against the baseline approach
(explicit) im2col+gemm. In addition, all plots include the execution time/performance attained
by the gemm kernels involved in the model simulation, and the plots in the left-hand side include
the time overhead required to perform the im2col transforms.

For the AlexNet and ResNet50 models, the experiments are run up to a batch size b = 80, while
for VGG16 the largest value for this parameter is only b = 72. This is due to the large amount of
memory required for the intermediate matrices assembled by the im2col transform, which exceeds
the memory capacity of the device (8 GiB) for the VGG16 model when b = 80.

The results in Figures 7 and 8 demonstrate that our technique with an integrated im2col
fully hides cost of this transform for the AlexNet network, delivering the same execution time
and GFLOPS rate observed when executing only the gemm operations. When we tackle the two
remaining (more complex) CNN models, the cost and performance of the optimized algorithm still
remain close to those of the standalone gemm operation while clearly outperforming the explicit
im2col+gemm counterpart.

11

 0

 5

 10

 15

 20

 25

 8 16 24 32 40 48 56 64 72 80

ti
m

e
 (

se
c
o

n
d

s)

batch size

IM2COL + GEMM

Standalone GEMM

CONVGEMM

Standalone IM2COL

(a) Execution time, AlexNet, 1 core

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8 16 24 32 40 48 56 64 72 80

G
F

L
O

P
S

batch size

CONVGEMM

Standalone GEMM

IM2COL + GEMM

(b) GFLOPS, AlexNet, 1 core

 0

 20

 40

 60

 80

 100

 120

 140

 8 16 24 32 40 48 56 64 72 80

ti
m

e
 (

se
c
o

n
d

s)

batch size

IM2COL + GEMM

Standalone GEMM

CONVGEMM

Standalone IM2COL

(c) Execution time, ResNet50, 1 core

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8 16 24 32 40 48 56 64 72 80

G
F

L
O

P
S

batch size

CONVGEMM

Standalone GEMM

IM2COL + GEMM

(d) GFLOPS, ResNet50, 1 core

 0

 50

 100

 150

 200

 250

 300

 8 16 24 32 40 48 56 64 72

ti
m

e
 (

se
c
o

n
d

s)

batch size

IM2COL + GEMM

Standalone GEMM

CONVGEMM

Standalone IM2COL

(e) Execution time, VGG16, 1 core

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8 16 24 32 40 48 56 64 72

G
F

L
O

P
S

batch size

CONVGEMM

Standalone GEMM

IM2COL + GEMM

(f) GFLOPS, VGG16, 1 core

Figure 7: Execution time (left column) and performance (right column) obtained by the indirect
convolution algorithms for AlexNet (top row), ResNet50 (middle row) and VGG16 (bottom row)
on a single ARM Cortex-A57 core.

12

 0

 5

 10

 15

 20

 25

 8 16 24 32 40 48 56 64 72 80

ti
m

e
 (

se
c
o

n
d

s)

batch size

IM2COL + GEMM

Standalone GEMM

CONVGEMM

Standalone IM2COL

(a) Execution time, AlexNet, 4 cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 8 16 24 32 40 48 56 64 72 80

G
F

L
O

P
S

batch size

CONVGEMM

Standalone GEMM

IM2COL + GEMM

(b) GFLOPS, AlexNet, 4 cores

 0

 20

 40

 60

 80

 100

 120

 140

 8 16 24 32 40 48 56 64 72 80

ti
m

e
 (

se
c
o

n
d

s)

batch size

IM2COL + GEMM

Standalone GEMM

CONVGEMM

Standalone IM2COL

(c) Execution time, ResNet50, 4 cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 8 16 24 32 40 48 56 64 72 80

G
F

L
O

P
S

batch size

CONVGEMM

Standalone GEMM

IM2COL + GEMM

(d) GFLOPS, ResNet50, 4 cores

 0

 50

 100

 150

 200

 250

 300

 8 16 24 32 40 48 56 64 72

ti
m

e
 (

se
c
o

n
d

s)

batch size

IM2COL + GEMM

Standalone GEMM

CONVGEMM

Standalone IM2COL

(e) Execution time, VGG16, 4 cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 8 16 24 32 40 48 56 64 72

G
F

L
O

P
S

batch size

CONVGEMM

Standalone GEMM

IM2COL + GEMM

(f) GFLOPS, VGG16, 4 cores

Figure 8: Execution time (left column) and performance (right column) obtained by the indirect
convolution algorithms for AlexNet (top row), ResNet50 (middle row) and VGG16 (bottom row)
using all four ARM Cortex-A57 cores.

13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 6 7 8

ti
m

e
(s

ec
o

n
d

s)

layers

Standalone IM2COL

Standalone GEMM

IM2COL + GEMM

CONVGEMM

 0

 1

 2

 3

 4

 5

 6

2 3 5 6 8 9 10 12 13 14 16 17 18

ti
m

e
(s

ec
o

n
d

s)

layers

Standalone IM2COL

Standalone GEMM

IM2COL + GEMM

CONVGEMM

Figure 9: Execution time per layer obtained by the indirect convolution algorithms for AlexNet
(left) and VGG16 (right) using all four ARM Cortex-A57 cores and a batch size b = 32.

There is a particular case worth of being discussed in some detail. Concretely, for the explicit
im2col+gemm approach, Figures 7f and 8f both show a notorious decrease in performance for the
VGG16 when b > 48. This decline is caused by the large size of the intermediate matrices, which
results in I/O swapping to disk. The negative effect in the performance is more notorious in the
multicore experiment, as in this case the memory access patterns performed during the explicit
im2col transform are more spread, increasing the effect of the swapping to disk.

The observed negative effect in performance for large batch sizes and complex network mod-
els demonstrates that the optimized convgemm algorithm, with an embedded im2col, not only
allows to perform the inference process for network models that cannot be tackled by the explicit
im2col+gemm, but also avoids the efficiency pitfalls due to the earlier use of disk I/O in that
approach.

To close the experimental analysis, Figure 9 reports the execution time to compute the convo-
lutions required at each CNN layer in the AlexNet and VGG16 models. The plots there illustrate
that the time required per layer significantly varies between different layers.

6 Closing Remarks

This work introduces a new convolution algorithm that outperforms the straight-forward im2col+gemm
approach in several aspects. First, the new convgemm algorithm removes the need of the addi-
tional memory work space utilized by the im2col+gemm approach, enabling inference with large
CNN models in memory bound systems. In addition, the realization of the new scheme in com-
bination with the BLIS kernel for gemm yields an efficient and portable implementation that can
be migrated to other low-power architectures for which an optimized implementation of the BLIS
micro-kernel exists (or can be developed).

The results in the experimental evaluation performed in this work show the remarkable per-
formance advantage of the new convgemm scheme on a representative low-power ARM-based
multicore processor, which completely eliminates the workspace and performance overheads due to
the utilization of an explicit im2col transform.

14

Acknowledgements

This research was partially sponsored by projects TIN2017-82972-R of Ministerio de Ciencia, In-
novación y Universidades and Prometeo/2019/109 of the Generalitat Valenciana.

References

[1] oneAPI deep neural network library (oneDNN): Performance library for deep learning, 2018.
Formerly known as Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)
and Deep Neural Network Library (DNNL). Available from https://oneapi-src.github.

io/oneDNN/.

[2] Deep learning SDK documentation: cuDNN developer guide, 2020. Available from https:

//docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html.

[3] Mobile AI Compute Engine documentation, 2020. Available from https://mace.

readthedocs.io/en/latest/.

[4] NNPACK: Acceleration package for neural networks on multi-core CPUs, 2020. Available from
https://github.com/Maratyszcza/NNPACK.

[5] Andrew Anderson et al. Low-memory GEMM-based convolution algorithms for deep neural
networks. CoRR, abs/1709.03395, 2017.

[6] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys, 52(4):65:1–65:43, August 2019.

[7] Sandra Catalán, Francisco D. Igual, Rafael Mayo, Rafael Rodŕıguez-Sánchez, and Enrique S.
Quintana-Ort́ı. Architecture-aware configuration and scheduling of matrix multiplication on
asymmetric multicore processors. Cluster Computing, 19(3):1037–1051, 2016.

[8] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural
networks for document processing. In International Workshop on Frontiers in Handwriting
Recognition, 2006. Available as INRIA report inria-00112631 from https://hal.inria.fr/

inria-00112631.

[9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep learning, 2014. arXiv
preprint 1410.0759. Available from https://arxiv.org/abs/1410.0759.

[10] Minsik Cho and Daniel Brand. MEC: Memory-efficient convolution for deep neural network. In
Proceedings of 34th Int. Conference on Machine Learning – PMLR, volume 70, pages 815–824,
2017.

[11] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Mike Seltzer, Geoff
Zweig, Xiaodong He, Jason Williams, Yifan Gong, and Alex Acero. Recent advances in deep
learning for speech research at Microsoft. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 8604–8608, May 2013.

[12] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic
linear algebra subprograms. ACM Trans. on Mathematical Software, 16(1):1–17, March 1990.

15

https://oneapi-src.github.io/oneDNN/
https://oneapi-src.github.io/oneDNN/
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://mace.readthedocs.io/en/latest/
https://mace.readthedocs.io/en/latest/
https://github.com/Maratyszcza/NNPACK
https://hal.inria.fr/inria-00112631
https://hal.inria.fr/inria-00112631
https://arxiv.org/abs/1410.0759

[13] Marat Dukhan. The indirect convolution algorithm. CoRR, abs/1907.02129, 2019. arXiv
preprint 1907.02129. Available from https://arxiv.org/abs/1907.02129.

[14] Marat Dukhan, Yiming Wu, and Hao Lu. QNNPACK: open source library for optimized mobile
deep learning, 2020. Available from https://code.fb.com/ml-applications/qnnpack/.

[15] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar, Greg Henry,
Hans Pabst, and Alexander Heinecke. Anatomy of high-performance deep learning convolutions
on simd architectures. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 18, pages 66:1–66:12. IEEE Press, 2018.

[16] Source code repository. https://gitlab.com/comtacts/convgemm, 2020.

[17] Kazushige Goto and Robert van de Geijn. High performance implementation of the level-3
BLAS. ACM Transactions on Mathematical Software, 35(1):4:1–4:14, July 2008.

[18] Kazushige Goto and Robert A. van de Geijn. Anatomy of a high-performance matrix multi-
plication. ACM Trans. on Mathematical Software, 34(3):12:1–12:25, May 2008.

[19] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and Huffman coding, 2015. arXiv preprint
1510.00149. Available from https://arxiv.org/abs/1510.00149.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Greg Henry. BLAS based on block data structures. Theory Center Technical Report
CTC92TR89, Advanced Computing Research Institute. Cornell University, 1992.

[22] NVIDIA Jetson TX2. https://www.nvidia.com/es-es/autonomous-machines/

embedded-systems/jetson-tx2/, 2020.

[23] Jintao Ke, Hai Yang, Hongyu Zheng, Xiqun Chen, Yitian Jia, Pinghua Gong, and Jieping Ye.
Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing
services. IEEE Trans. on Intelligent Transportation Systems, 20(11):4160–4173, 2019.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran
Associates Inc.

[25] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4013–4021,
2016.

[26] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Ort́ı. Analyt-
ical modeling is enough for high-performance BLIS. ACM Trans. on Mathematical Software,
43(2):12:1–12:18, August 2016.

16

https://arxiv.org/abs/1907.02129
https://code.fb.com/ml-applications/qnnpack/
https://gitlab.com/comtacts/convgemm
https://arxiv.org/abs/1510.00149
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-tx2/

[27] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical guide-
lines for efficient CNN architecture design. In Proceedings European Conference on Computer
Vision - ECCV 2018. Lecture Notes in Computer Science, volume 11218, pages 122–138, 2018.

[28] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Randall
Wald, and Edin Muharemagic. Deep learning applications and challenges in big data analytics.
Journal of Big Data, 2(1):1, Feb 2015.

[29] OpenBLAS. http://www.openblas.net, 2015.

[30] OpenMP Architecture Review Board. OpenMP application program interface version 3.0, May
2008.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[32] Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G.
Van Zee. Anatomy of high-performance many-threaded matrix multiplication. In Proc. IEEE
28th Int. Parallel and Distributed Processing Symp., IPDPS’14, pages 1049–1059, 2014.

[33] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, Dec
2017.

[34] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework for rapidly instantiating
BLAS functionality. ACM Trans. on Mathematical Software, 41(3):14:1–14:33, 2015.

[35] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC 98, page 127, USA,
1998. IEEE Computer Society.

[36] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low, Robert A. Van De Geijn,
Francisco D. Igual, Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon Austel,
John A. Gunnels, and Lee Killough. The BLIS framework: Experiments in portability. ACM
Trans. on Mathematical Software, 42(2):12:1–12:19, June 2016.

[37] Jiajun Zhang and Chengqing Zong. Deep neural networks in machine translation: An overview.
IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

[38] Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. High performance zero-memory overhead
direct convolutions. In Proceedings of the 35th International Conference on Machine Learning
– PMLR, volume 80, 2018.

[39] Yulin Zhao, Donghui Wang, Leiou Wang, and Peng Liu. A faster algorithm for reducing the
computational complexity of convolutional neural networks. Algorithms, 11(10):159, Oct 2018.

17

http://www.openblas.net

