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Rapid economic development usually leads to serious environmental pollution problems.
In order to solve the problem of pollutant emission in sustainable industrial development,
it is urgent to examine the implementation effect of emissions trading policy (ETP) and its
impact on green industrial development. This study adopts China's ETP as a case study and
selects provincial panel data from 2004 to 2018. We first use a non-radial, non-directed,
slack-based measure-directional distance function (SBM-DDF) to measure industrial green
innovation efficiency. Then we use a difference in differences (DID) model to empirically
test the emissions reduction effect of China's policy and whether it promotes industrial
green innovation. Thereafter, results show that: (1) the ETP reduces sulfur dioxide (SO2)
emissions indicating the effectiveness of the policy; (2) the policy significantly improves
industrial green innovation efficiency, meaning it promotes the sustainable development
of the economy; (3) heterogeneity analysis highlights that ETP produces greater benefits
for the most polluted regions of China which have more strict environmental regulations.
The study examines the effect of emissions trading policy implementation from a new
perspective. The study also provides a reference point for China to further refine its policy
mechanisms and for other countries to formulate suitable ETP.
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1. Introduction

Over the past few decades, the global economy has been growing rapidly, however this growth has also changed the
ecological environment of the planet. In particular, China is now facing serious environmental problems (Ning et al., 2020).
Therefore, industrial development must be transformed from the traditional high consumption production model (with its
corresponding high levels of pollution) to a more sustainable development model (Zhu et al., 2019; Chen et al., 2020). In this
context, green innovation is crucial to facilitate high-performance sustainable economic development (Beise and Rennings,
2005; Borghesi et al., 2015). Green innovation encompasses sustainable innovation, ecological innovation, and environmental
innovation. It relates to innovation activities focused on supporting environmental protection and sustainable development
(Rennings, 2000). Furthermore, green innovation efficiency (GIE) a reflection of the input and output efficiency (Li and Zeng,
2020). In order to control environmental pollution, emissions trading is widely used in countries such as the United States,
Canada, China and Japan (Calel and Dechezleprêtre, 2016; Zhang et al., 2018; Zhou et al., 2019).

As a paradigm of market-based incentive regulation, emissions trading policy (ETP) are of great significance for both
environmental protection and sustainable development (Tang et al., 2020). Indeed, US economist Dales (1968) first proposed
the theory of emissions trading, which was subsequently adopted by the US Environmental Protection Agency (EPA) to enable
protection of the environment. In this context, emissions trading generates economic incentives through market mecha-
nisms, which stimulate companies to adopt innovative technologies and processes to reduce emissions and realize sus-
tainable development (Jaraite and Maria, 2012; Bel and Joseph, 2018; Zhou et al., 2019). However, due to the influence of a
variety of factors, the issue of whether implementation of environmental regulation policies can promote economic growth
while protecting the environment has become an important matter to be addressed. Consequently, the impact of environ-
mental regulation on green innovation has become a major concern for various scholars (Jin et al., 2019; Zhang et al., 2019).

However, at present, the existing emissions trading policy research lacks the effect evaluation from the perspective of
industrial green innovation efficiency. Also, the effect evaluation that is currently available mainly focuses on the environ-
mental effect evaluationwith there being less consideration of economic effect evaluation (Jaraite and Maria, 2012; Calel and
Dechezleprêtre, 2016; Zhang et al., 2019; Xuan et al., 2020). Whereas other studies examine the impact of the emissions
trading system on innovation patents and corporate performance (Calel and Dechezleprêtre, 2016; Marin et al., 2017). In
addition, there are three contradictory viewpoints on the effect evaluation of the existing emissions trading policy, which are
as follow: promotion (Zhang et al., 2018; Zhu et al., 2020; Lv et al., 2020), inhibition (Feng et al., 2018; Tang et al., 2020) and
non-linearity (Wang and Shen, 2016; Li and Zeng, 2020). Moreover, there has been no exploratory research into the effec-
tiveness of ETP, and no evaluation framework has been developed to determine the effectiveness of ETP from the perspective
of industrial green innovation efficiency.

Therefore, the objective of this research study is to test not only the emission reduction effect of emissions trading policy
but also the impact of this policy on the industrial green innovation efficiency. In order to address the objective, this study
adopts China's emissions trading policy in 2007 and selects the inter-provincial panel data from 2004 to 2018. The study also
uses the difference in differences (DID) model to empirically test the panel data. The study expands the application of the
knowledge production function (Griliches, 1979; Jaffe, 1989) and incorporates ETP into an innovation input-output frame-
work. As a consequence of the examination of environmental and economic effects in this study, relevant research on
emissions trading theory is further enriched to verify that the emissions trading policy not only has the effect of emission
reduction but also promotes the industrial green innovation efficiency and enriches the application of emission trading
theory at the international level.

2. Literature review

2.1. Emissions trading policy

Industrial development and the resulting economic growth invariably create pollution problems (Munasinghe, 1999). In
order to address the negative externality of environmental pollution, many regions have adopted environmental regulation
(ER) (Zhao et al., 2014; Zhou et al., 2019). For example, Song et al., (2020a) tested the direct and the indirect impacts of
environmental regulations on environmental pollution. Song et al. (2020b) found that the environmental policy of expanding
prevention and control areas could effectively improve air quality. Externality refers to the external effect of an economic
entity on another economic entity. Externalities can be positive or negative. The Coase Theorem (Coase, 1960) provides one
way of solving negative externalities. According to this theorem, external economic problems are caused by unclear defi-
nitions of property rights and hence negative environmental externalities can be potentially eliminated through the effect of
market transactions � with zero transaction costs and a clear definition of property rights, the market's spontaneity will
automatically adjust resources to become Pareto optimal and optimally allocate resources.

A specific application of ER is air pollution control (Yang et al., 2016). ETP have been mainly studied from three per-
spectives: initial allocation (Woerdman, 2000; Ellerman and Buchner, 2007; Wråke et al., 2010; Betz et al., 2010), pricing
(Coggins and Swinton,1996; Fischer, 2008), and implementation (Bleischwitz et al., 2007; Jaraite andMaria, 2012; Shin, 2013;
Marin et al., 2017). The present study focuses on the latter.

Studies of the effects of ETP mainly focus on environmental and economic aspects. Martin et al. (2015), for example,
investigated the impact of the EU Emissions Trading Scheme (EU ETS) from the perspectives of emission reduction,
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innovation, competitiveness, and economic performance. The main goal of the EU ETS is to reduce emissions, with a further
long-term goal being to stimulate innovation, and many studies have evaluated the emission reduction effect of the EU ETS
(Bleischwitz et al., 2007; Sandoff and Schaad, 2009; Anderson and Maria, 2011; Jaraite and Maria, 2012; Zhang et al., 2019;
Xuan et al., 2020; Ren et al., 2020). For example, Yan et al. (2020) studied the impact of China's carbon emissions trading policy
on the environment and examined the collaborative governance effects of EST on air pollution from three aspects, namely
haze, industrial SO2 and industrial smog.

Other studies not only focus on the effects of the EU ETS on emission reduction, but also on the performance of the overall
economy. Calel and Dechezleprêtre (2016), for instance, found that the EU ETS promoted an increase in low-carbon inno-
vation patent applications. Anger and Oberndorfer (2008) studied the impact of the ETS on the performance of German
companies and found that it had no obvious impact on company incomes and employment. Whereas Marin et al. (2017)
employed propensity score matching (PSM) and DID to test the effect on the economic performance of companies, finding
that ETS could improve turnover, mark-up, investment intensity, and labor productivity. Furthermore, Zhu et al. (2020) used
the DID method to examine the impact of carbon emissions trading policy on the green development efficiency. Yang et al.
(2020) found that China's carbon emissions trading policy expands the scale of employment while reducing emissions,
achieving double dividends and the Porter effect. Zhang et al. (2020) studied the impact of emissions trading policy on the
trading market efficiency and found that this policy promoted economic growth while reducing emissions. In other work,
Tang et al. (2020) conducted an analysis of the impact of China's emissions trading system on innovation and productivity and
found that although the ETP promoted innovation, it had no impact on productivity. Moreover, Shin (2013) concluded that
China's pilot areas did not institutionalize SO2 emissions trading and that the overall policy was unsuccessful.
2.2. Green innovation efficiency

As a consequence of increasingly severe environmental problems, green innovation efficiency, which is regarded as the
embodiment of innovation factors and resource utilization efficiency (Du et al., 2019), has become a highly topical research
area. This is based on the need to take environmental factors into consideration� reflecting the efficiency of green innovation
input and output, and thereby effectivelymeasuring the green innovation process of industrial companies (Li and Zeng, 2020).

Current research in this area mainly focuses on the measurement of green innovation efficiency (Cheng and Yin, 2016; Du
et al., 2019; Li and Zeng, 2020) and the influencing factors involved (De Vries andWithagen, 2005; Demirel and Kesidou, 2011;
Triguero et al., 2013; Borghesi et al., 2015).

In terms of the measurement method and data selection, Li and Zeng (2020) used a super-slack-based model (SBM) to
measure the green innovation efficiency of some highly pollutant industries in China from 2011 to 2015. Du et al. (2019)
examined data from 2009 to 2016 and used a two-stage network DEA model to measure and analyze the differences in
green innovation efficiency of regional industrial companies in 30 provinces. Cheng and Yin (2016) used the data envelop-
ment analysis (DEA) model and found that although green innovation efficiency was growing in 30 provinces during
2008e2013, the growth is at significantly different interregional rates. Zhang et al. (2020) used the SBM-DDF model to
calculate green innovation efficiency for the city of Xi'an in China during 2003e2016. Whereas Zhu et al. (2020) used the
super-efficiency SBM model to measure the green development efficiency in 30 provinces in China.

Meng et al. (2016) systematically reviewed the literature on regional energy and carbon emission efficiency (EE&CE)
research from the aspects of application attribute, variable scheme, model aspect, and analyzed the differences in the
calculation results of six different DEA models. Moreover, Meng et al. (2019) studied the ranking reversal phenomenon of
China's regional energy efficiency under different DEA models (namely Radial, M-Radial, SBMT, RAM and DDF model).

In terms of variable index selection, Li and Zeng (2020) adopted R&D personnel, R&D input and industrial energy con-
sumption as input indexes, and the output index selected effective invention patents per hundred million yuan of income and
industrial solid pollution utilization rate. Zhang et al. (2020) used labor, capital and resource inputs as input indexes, and
output was GDP, green output, and non-expected output was SO2 emissions. In other work, Feng et al. (2018) primarily
included the inputs of labor, capital and energy. The expected output is the number of patents and sales revenue of new
products, while the non-expected output is the discharge of industrial waste water, waste gas and solid waste. To sum up, the
existing research is mainly aimed at investigating 30 provinces in China and the DEA model is has been widely used, where
the measurement indexes are mostly input, output and non-expected output.

For the studies on the influencing factors, Borghesi et al. (2015) investigated the link between the EU ETS and environ-
mental innovations. De Vries and Withagen (2005) studied the influence of the stringency of European SO2 emissions,
environmental policy, and innovativeness from 1970 to 2000, finding that strict environmental policy stimulated innovation.
While Demirel and Kesidou (2011) used data from UK industrial companies to investigate the effect of policy and company
factors on different types of eco-innovations. Tang et al. (2020) used both a DID model and a difference-in-difference-in-
differences (DDD) model to test the effect of command-and-control regulation on green innovation efficiency. Whereas
Huang et al. (2016) studied the impact of regulators on green innovation performance. Furthermore, many studies have
investigated the impact of environmental regulation on green innovation, which has also become a recent priority research
area (Huang et al., 2016; Chen et al., 2017; Wang et al., 2020).
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2.3. Relationship between ETP and green innovation efficiency

There has been a large number of studies into the effect of environmental regulation. Cecere and Corrocher (2016), for
instance, found that strict environmental regulations have a stronger influence on innovation. Other studies (Yabar et al.,
2013; Zhang et al., 2018L. Zhang, 2018; Y. Zhang, 2018) found that ER can improve technological innovation. Indeed, many
also believe that ER can promote green innovation (De Vries and Withagen, 2005; Zhao and Sun, 2016; Wang et al., 2020). At
present, there are mainly three viewpoints on this matter, which are inhibition, promotion and non-linearity.

The first view is that environmental regulations have an inhibitory effect. According to neoclassical economics, envi-
ronmental regulation can promote environmental protection but also leads to additional costs for companies, which will
further lead to a reduction in international competitiveness and become detrimental to economic growth (Cecere and
Corrocher, 2016; Xie et al., 2017). For example, You et al. (2019) found that, under the influence of fiscal decentralization
and political competition, environmental regulation cannot promote green innovation. Feng et al. (2018) concluded that ER
significantly inhibits green innovation efficiency in the manufacturing industry. Further, Tang et al. (2020) found that
command-control regulation can inhibit companies' green innovation efficiency. Whereas Blind (2012) argued that ER has a
negative effect on innovation performance, while Shi et al. (2018) found that China's Emissions Trading Pilot significantly
inhibits industrial innovation.

The second view is that there is a promoting effect. Although Porter and Linde (1995) put forward an alternative view, in
that legitimate and strict ER can actually inspire companies to invest more in innovative activities to enhance competi-
tiveness, thus reducing the additional environmental costs of companies and creating a win-win situation between the
environment and the economy. Scholars have found that market-based incentive regulation has a greater influence on
emission reduction and green innovation (Requate, 2005; van den Bergh et al., 2011). Zhao et al. (2014), for instance, explored
different types of environmental regulation (i.e. command-control and market-based) � proposing that market-based
incentive regulation is more conducive to the transformation to a green development strategy. Lv et al. (2020) identified
that strict environmental regulation promotes corporate innovation, whereas loose environmental regulation can reduce
company innovation and lead to an increase in the number of environmental related patents. Zhang et al. (2018) found that
ETP can promote companies' green innovation. Whereas Zhu et al. (2020) found that China's carbon emissions trading policy
promotes green development efficiency.

The third view is that some scholars believe that the relationship between ER and green innovation is not only a simple
linear relationship, but a nonlinear relationship. Li and Zeng (2020) employed regression analysis and found a U-shaped
relationship between environmental regulation and green innovation efficiency. Whereas Wang and Shen (2016) first
calculated environmental productivity through the GML index and studied the impact of environmental regulations on it. The
study found an inverted U-shaped relationship between the two. Shen et al. (2019) studied the nonlinear effects of different
types of environmental regulations on environmental total factor productivity (ETFP), and identified that in light-polluting
industries, market-incentive environmental regulations have an N-type relationship with green total factor productivity.
Zheng et al. (2020) also found that there is a U-shaped relationship between environmental regulation and economic
efficiency.
2.4. Knowledge gap

The above review of the literature reveals two clear knowledge gaps, which are summarized as follows.

(1) There is a lack of research into industrial green innovation efficiency as a policy effect.

Despite environmental factors having become the focus of research into traditional innovation efficiency, there is still
limited research into green innovation efficiency. Most research into the effects of environmental regulation are focused on
developed countries and fails to distinguish between different forms of environmental regulations. Existing research focuses
on the effects of emission reduction, including the economic effects represented by patents, but rarely examines the effects of
environmental regulation. The use of specific environmental regulations to test the effect of green innovation efficiency can
produce more accurate assessments, which are helpful for enriching environmental regulation policy theory.

(2) There is a need for further verification of the effect of specific environmental regulations.

The conclusions from research into the impact of environmental regulation are presently mixed, since promotion, inhi-
bition and non-linear relationships have all been identified. An important issue is to understand the impact of the ETP as a
typical policy of market-based incentive environmental regulation. Also, there is a need to further study the extent to which
emissions trading policy can achieve emissions reduction and promote industrial green innovation under the dual pressure of
economic growth and environmental protection. Further research into ETP can help to better evaluate the effects of these
policies and test Porter's Hypothesis (Mohr, 2002).
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3. Methodology

It is assumed that innovation input is themain explanatory variable of innovation output in our data envelopment analysis
(DEA) model. According to the production function model of the R&D input and output relationship proposed by Griliches
(1979) and Jaffe (1989), and based on the “Cobb-Douglas” function, the regional province and city innovation efficiency
function are:

innovi ¼AiðinputiÞb (1)
where innovi denotes the innovation efficiency of provinces; i is a Chinese province; A is the coefficient of input; inputi is the

input of provincial innovation, mainly the impact of innovation efficiency but including environmental regulation and specific
environmental policy; b is the output elasticity of the city's innovative input. Factors such as economic development level,
foreign direct investment (FDI), education level, industrial scale, and industrial structure are also included.
3.1. Difference in differences (DID)

According to the literature, the main method used for evaluating policy effectiveness is regression discontinuity
(Thistlethwaite and Campbell, 1960), instrumental variables (Ehrlich, 1975), propensity score matching (Rosenbaum and
Rubin, 1983), and difference in differences (Ashenfelter and Card, 1985). Ashenfelter and Card (1985) first evaluated the
policy effect using the DID method. This is now widely used to evaluate policy effectiveness (Yang et al., 2020; K. Tang et al.,
2020) by testing the effect of policy before and after the implementation of the treatment group (i.e. policy adoption areas)
and control group (i.e. where the policy is not adopted). DID allows for, and accommodates, the existence of unobservable
factors to influence whether an individual accepts an intervention decision. Relaxing the conditions of policy effectiveness,
evaluation allows the application of policy assessment to be closer to economic reality, and hencemore representative (Zhang
et al., 2019; Yang et al., 2020).

DID mainly considers two dummy variables: the time variable, dt, and the policy variable, du. dt ¼ 0 when the time is
before policy adoption and dt ¼ 1 when the time is after. du ¼ 0 denotes the area where the policy is not adopted (i.e. the
control group) and du ¼ 1 denotes the pilot area of the policy (i.e. treatment group). The DID model is (Abadie and Cattaneo,
2018; Zhou et al., 2019):

Yit ¼b0 þ b1duþ b2dt þ b3du*dt þ εit (2)

where du� dt is the time and policy interaction term, and its coefficient b3 reflects the effect of the policy. As shown in Table 1,
substituting values into (1) and (2) enables the result of the two differences, b3, to be obtained � the measure of the effect of
the policy.

For example, DID is used here to evaluate the effectiveness of China's ETP in 2007. Therefore, the pilot provinces of the
policy are deemed “treatment groups”, and the provinces that have not adopted the ETP are considered “control groups”. In
order to solve the endogeneity problem caused by missing variables, control variables based on (2) are included to give

Yit ¼b0 þ b1Di*Tt þ b2Zit þ lt þ mi þ εit (3)

where the subscripts i and t denote the province and year respectively, and the independent variable Y is the natural loga-
rithm of the industrial SO2 emissions and industrial green innovation efficiency respectively. D is the policy dummy, being 1
for the provinces that adopt the ETP, and 0 otherwise. T is a time dummy, being 1 for the time after policy adoption (2007), and
0 otherwise. D� T is the interaction of the policy variable and time variable. The purpose of coefficient b1 is to evaluate policy
effectiveness. An estimated result of b1> 0 indicates that the ETP has a positive effect on the dependent variable Y, otherwise it
has a negative effect on Y. ε is the random disturbance term of the model. Z is the control variable. lt is the time-fixed effect,
and mi is the regional fixed effect.
Table 1
Parameter meaning of each variable in DID model.

The year before the control period (dt ¼ 0) The year after the control period (dt ¼ 1) Difference

Pilot areas (Treatment group, du ¼ 1) b0þb1 b0þb1þb2þb3 b2þb3
Non-pilot areas (Control group, du ¼ 0) b0 b0þb2 b2
Difference b1 b1þb3 DDd ¼ b3 (DID)
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3.2. Slack-based measure-directional distance function (SBM-DDF)

Data envelopment analysis (DEA) can be used to calculate the efficiency of multiple inputs and multiple outputs (Zhang
et al., 2020; Zhang et al., 2020; Meng et al., 2016). The earliest CCR model was used to determine efficiency by analyzing input
and output data (Charnes et al., 1978). Thereafter Banker et al. (1984) proposed the classic BCC model. Radial models, such as
CCR and BCC, which are widely used (Meng et al., 2019).

Initially, the environment and resources are taken as inputs (Reinhard et al., 1999). With the intensification of economic
and resource conflicts, Chung et al. (1997) proposed the directional distance function (DDF) model with environmental
pollution as an unexpected output. However, the traditional directional distance function has radial and directivity of input
and output, when there is excessive input or insufficient output which leads to deviations from the true efficiency value.

In order to solve the problem of slack variables, Tone (2001) proposed a non-radial, non-oriented Slacks Based Measure
(SBM) model to solve the problem of increasing or decreasing the proportion of input and output and it can be observed that
SBM and DDF models have gradually become popular with researchers (Meng et al., 2016). Therefore, Fukuyama and Weber
(2009) combined SBM and DDF to obtain a non-radial, non-directed Slack-basedmeasure-directional distance function (SBM-
DDF), which not only avoided calculation distortion but also overestimated the efficiency when the DDF model had slack
variables. This approach also treats environmental pollution as an undesired output. which can measure efficiency more
realistically. Consequently, the SBM-DDF methodology has been employed to measure industrial green innovation efficiency
(Zhang et al., 2020).

In this research study, each province and city in China is a decision-making unit (DMU). x is the N inputs of the decision-
making unit, x¼(x1, … ¼ xN) 2R* N; y is the M expected outputs, y¼(y1, … ¼ yM) 2R* M; b is K unexpected outputs, b¼(b1,
…¼ bK)2 R* K; (xt i, yt i, bt i) is the input-output data of the ith region in period t, (gx, gy, gb) is the direction vector, (Sxn; S

y
m; Sbk)

is the slack vector of input and output. Hence, the model is defined as
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In order to solve expression (4) with linear programmingmethods, we obtain the efficiency index, measured as the inverse
of green innovation efficiency � the larger the value, the lower the green innovation efficiency. When the direction
vector gxn ¼ xmax

n � xmin
n , cn and gym ¼ ymax

m � ymin
m , cm, the green innovation efficiency (GIE) is
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n n n m m k k k

!

Since the inefficiency value St remains between 0 and 1, the GIE value also remains between 0 and 1. Therefore, the larger

the value is, the larger will be green innovation efficiency.

3.3. Variables and data

The effect of the ETP adoption in the year 2007 is evaluated from two perspectives. The first is to test ETP effectiveness (i.e.
its emissions reduction effect). The second is throughmeasuring the effect on industrial green innovation efficiency. Since the
ETP mostly targets industrial companies, industrial SO2 emissions is adopted as the control variable.

The variables involved in this research include dependent variables, an independent variable, and the specified control
variables. The dependent variables are industrial SO2 emissions and industrial green innovation efficiency. The independent
variable is the dummy time and policy interaction term. The control variables are economic development level, foreign direct
investment, education level, industrial scale, and industrial structure. The selection andmeaning of each variable is explained
below.

One of the dependent variables is green innovation efficiency. As mentioned earlier, SBM-DDF is used to measure in-
dustrial green innovation efficiency and input and output indicators are selected with reference to common practices. The
382



Table 2
Variables definition table.

Variables name Variables
symbol

Variables definition References

Input
indicators

Human input L Full-time equivalent of R&D personnel Cheng and Yin (2016), Du et al. (2019), Zhu et al. (2019), Li and Zeng (2020)
Capital investment K Expenditure on R&D Cheng and Yin (2016), Du et al. (2019), Zhu et al. (2019), Li and Zeng (2020)

Output
indicators

Expected output G Sales revenue of new products Cheng and Yin (2016), Du et al. (2019), Wang and Shao (2019), Zhu et al. (2019)
P Number of patent applications Cheng and Yin (2016), Du et al. (2019), Zhu et al. (2019)

Unexpected output E Industrial SO2 emissions Cheng and Yin (2016), Du et al. (2019), Jin et al. (2019), Xie et al. (2017), Zhu et al.
(2019)

Control
variables

Economic development
level

GDP Natural logarithm of GDP per capita Wang and Shao (2019)

Foreign direct investment FDI Ratio of the amount of foreign investment to GDP Wang and Shao (2019), Zhu et al. (2019)
Education level EDU The proportion spend on education in national budget

expenditure
Jin et al. (2019)

Industrial scale SIZE Ratio of the gross output value to the number of industrial
companies

Xie et al. (2017)

Industrial structure IS The proportion of the output value of the secondary industry to
the GDP

Jin et al. (2019), Yang et al. (2020)
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data are from designated industrial companies.1 The input indicators are divided into human input and capital investment.
Here human input (L) is represented by the full-time equivalent of R&D personnel, and capital investment (K) is represented
by expenditure on R&D. The output indicators are divided into expected output and unexpected output. Expected output is
represented by the number of patent applications (P) and the sales revenue of new products (G). The unexpected output is
industrial SO2 emissions.

The specific control variables are as follows:

(1) Economic Development Level e Gross Domestic Product (GDP). GDP affects green innovation efficiency, and areas with
high economic development are expected to attach importance to innovation. Thus, the value is represented by the
natural logarithm of GDP per capita.

(2) Foreign Direct Investment (FDI). FDI provides improved innovative technologies and resources, and the competitive
effect also leads to companies paying more attention to innovation. Therefore, FDI is represented by the ratio of the
amount of foreign investment to GDP.

(3) Education Level (EDU). New Economic Growth theory holds that human capital is the main driving force behind
economic growth. As a consequence of improving the education level, it is easier to absorb new knowledge and
technology, which is conducive to industrial green innovation. Therefore, EDU is represented by the proportion spent
on education in national budget expenditure.

(4) Industrial Scale (IS). Green innovation efficiency can vary according to different industrial scales. For example, large
companies are more willing to invest more resources into promoting industrial green innovation efficiency. Therefore,
the value is represented by the ratio of industrial gross output value to the number of industrial companies.

(5) Industrial Structure (IS). The emission intensity of the secondary industry is higher than other industries and therefore
the proportion of different (secondary or primary/tertiary) industries may have different effects. The proportion of the
output value of the secondary industry to GDP is used to represent the value.

More details relating to all the variables are provided in Table 2.
3.4. Data selection

As early as 1987, there was emissions trading taking place between companies in Shanghai. In 2002, the former State
Environmental Protection Administration of China selected seven provinces (namely Shanxi, Shandong, Jiangsu, Shanghai,
Henan, Liuzhou, and Tianjin) and China Huaneng to conduct pilot scale projects for SO2 emissions trading. In 2007, 11
provinces (namely Tianjin, Jiangsu, Hubei, Zhejiang, Inner Mongolia, Hunan, Chongqing, Shanxi, Shaanxi, Henan, and Hebei)
also adopted pilot scale emissions trading (Shin, 2013).

As the ETP adopted in 2007wasmore comprehensive than the 2002 version of the policy, the scale and scope of emissions
trading have also been expanded and trading activity has become more active. The 2007 ETP is therefore selected to
empirically evaluate ETP effectiveness. Due to data collection restrictions, panel data is selected from a total of 30 provinces
(see Table 3).

All the data are from the China Statistical Yearbook (2005e2019) (China, 2005a-2019a) and China Statistical Yearbook on
Science and Technology (2005e2019) (China, 2005b-2019b). The selected timeframe is 2004e2018. In order to eliminate
price fluctuations, the producer price indices for industrial products provided in the China Statistical Yearbook are used to
rebase the gross output value of industry to the 2003 level (Zhou et al., 2019). Similarly, the per capita gross regional product
indices are used to adjust per capita gross regional product values. Based on the exchange rate provided in the China Sta-
tistical Yearbook, USD values are converted into the CNY equivalent.

Table 4 provides descriptive statistics of the variables, including their arithmetic means and standard deviations (SD).
Table 3
Specific grouping situation.

Group Treatment group (policy implementation) Control group (policy not implemented)

Provinces Jiangsu, Zhejiang, Tianjin, Hubei, Hunan, Inner
Mongolia, Shanxi, Chongqing, Shaanxi, Hebei, Henan

Liaoning, Jilin, Heilongjiang, Anhui, Jiangxi, Fujian, Shandong, Guangdong, Guangxi,
Sichuan, Yunnan, Beijing, Shanghai, Hainan, Qinghai, Guizhou, Xinjiang, Gansu,
Ningxia

1 According to the China Statistical Yearbook, the scope of industrial enterprises above a designated size are: all state-owned industrial enterprises and
the non-state-owned industrial enterprises with revenue from their principal business over CNY 5 million from 2004 to 2006; all industrial enterprises
with revenue from their principal business over CNY 5 million from 2007 to 2010; and all industrial enterprises with revenue from their principal business
above CNY 20 million since 2011.
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Table 4
Descriptive statistics of specific variables.

All the samples

Variables Obs. Mean Std. dev. Min Max

GIE 450 0.81141 0.12435 0.52646 1
LN SO2 450 3.71414 0.94875 0.18232 5.1504
D � T 450 0.29333 0.4558 0 1
GDP 450 9.50382 0.5045 8.24748 10.8894
FDI 450 0.02629 0.01893 0.0001 0.10413
EDU 450 0.16192 0.026 0.09895 0.22217
SIZE 450 1.85657 1.07022 0.4313 5.9972
IS 450 0.44579 0.1093 0.00366 0.67232
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4. Results

The effect of the ETP is evaluated through the following steps: (1) Plotting the time trend of the industrial green innovation
efficiency of the treatment and control group, and observation of the changing trends of the two groups; (2) Empirical testing
using the DID model; (3) Robustness checks; and (4) Heterogeneity analysis.
4.1. Time trend graph of industrial green innovation efficiency

The difference between the two groups regarding industrial green innovation efficiency (Winsorized to eliminate the
influence of outliers on the estimation results) is presented visually in Fig. 1. This shows that, before 2007, the industrial green
innovation efficiency trends of the treatment and control groups were parallel. However, after 2007, green innovation effi-
ciency (GIE) improved for both groups of provinces, but more for the treatment group, thereby suggesting a potential causal
relationship with the ETP adopted in 2007. However, statistical analysis is needed to determine the specific effects involved.
4.2. Regression analysis

(1) ETP effectiveness

A two-way fixed effects model, comprising the time effect and individual effect, is used to conduct the empirical tests
(Zhang et al., 2019). The prerequisite for studying the relationship between the ETP and industrial green innovation efficiency
is the ETP's effectiveness. Firstly, according to model (3), the natural logarithm of industrial SO2 emissions (LN SO2) is selected
as the dependent variable.

The emissions reduction effect is examined by gradually incorporating other control variables into themodel (namely GDP,
FDI, EDU, SIZE, IS). Table 5 summarizes the results, showing that the significance of the coefficients and symbols of the
variables do not change with the addition of the control variables, thereby indicating that the results are quite robust. With
the gradual addition of control variables (GDP, FDI, EDU, SIZE, IS), the coefficient of the interaction term becomes significantly
negative and is stable near �0.17.
Fig. 1. Time trend graph.
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Table 5
Examination of the effectiveness of emissions trading policy.

(1) (2) (3) (4) (5) (6)

VARIABLES LN SO2 LN SO2 LN SO2 LN SO2 LN SO2 LN SO2

D � T �0.1741*** �0.1668*** �0.1662*** �0.1757*** �0.1739*** �0.1722***
(0.0638) (0.0636) (0.0637) (0.0640) (0.0616) (0.0617)

GDP 0.4802** 0.4954** 0.5259** 0.5845** 0.6576**
(0.2345) (0.2359) (0.2368) (0.2280) (0.2547)

FDI �0.7614 �0.7238 �2.1414* �2.0571*
(1.1648) (1.1642) (1.1459) (1.1541)

EDU 1.6049 1.8154 1.8596
(1.2383) (1.1914) (1.1942)

SIZE �0.1550*** �0.1553***
(0.0267) (0.0267)

IS �0.1822
(0.2825)

Constant 3.8859*** �0.5717 �0.6882 �1.2137 �1.6270 �2.2348
(0.0476) (2.1779) (2.1867) (2.2222) (2.1382) (2.3381)

Provinces fixed effect YES YES YES YES YES YES
Time fixed effect YES YES YES YES YES YES
Observations 450 450 450 450 450 450
R-squared 0.7833 0.7855 0.7857 0.7866 0.8031 0.8033
Number of provinces 30 30 30 30 30 30

Note: Standard errors in parentheses; ***, **, * indicates statistical significance at 1%, 5% and 10% level, respectively; Year indicates time fixed effect, and
Province indicates individual fixed effect.

Table 6
Effect of emissions trading policy on industrial green innovation efficiency.

(1) (2) (3) (4) (5) (6)

VARIABLES GIE GIE GIE GIE GIE GIE

D � T 0.0284* 0.0286* 0.0278* 0.0306* 0.0312** 0.0306**
(0.0160) (0.0160) (0.0158) (0.0159) (0.0150) (0.0150)

GDP 0.0110 �0.0101 �0.0193 �0.0024 �0.0276
(0.0591) (0.0585) (0.0586) (0.0556) (0.0621)

FDI 1.0591*** 1.0477*** 0.6384** 0.6093**
(0.2887) (0.2883) (0.2794) (0.2813)

EDU �0.4848 �0.4240 �0.4393
(0.3066) (0.2905) (0.2910)

SIZE �0.0448*** �0.0447***
(0.0065) (0.0065)

IS 0.0629
(0.0688)

Constant 0.7146*** 0.6123 0.7744 0.9331* 0.8137 1.0235*
(0.0119) (0.5485) (0.5420) (0.5502) (0.5214) (0.5698)

Provinces fixed effect YES YES YES YES YES YES
Time fixed effect YES YES YES YES YES YES
Observations 450 450 450 450 450 450
R-squared 0.4806 0.4806 0.4974 0.5005 0.5531 0.5541
Number of provinces 30 30 30 30 30 30

Note: Standard errors in parentheses; ***, **, * indicates statistical significance at 1%, 5% and 10% level, respectively; Year indicates time fixed effect, and
Province indicates individual fixed effect.
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(2) The ETP's impact on industrial green innovation efficiency

Table 6 shows the results for the impact of the ETP on the industrial green innovation efficiencymodel by gradually adding
the control variables GDP, FDI, EDU, SIZE, and IS. Again, the significance of the coefficients and symbol of the variables do not
change with the addition of the control variables, indicating that the results are still robust. However, the interaction term is
always significantly positive and basically stable near 0.03.
4.3. Robustness checks

In order to ensure the robustness of the results, robustness checks have been conducted according to the following three
perspectives.
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Table 7
Robustness checks.

(1) (2) (3) (4) (5) (6)

VARIABLES GIE GIE GIE GIE GIE GIE

D � T1 �0.0169 �0.0148
(0.0258) (0.0241)

D � T2 �0.0262 �0.0289
(0.0258) (0.0241)

D � T3 �0.0422 �0.0484**
(0.0258) (0.0243)

D � T �0.0100 �0.0157 0.0052 0.0164
(0.0169) (0.0168) (0.0160) (0.0153)

Constant 0.7208*** 1.0326* 0.7146*** 1.6569 0.7146*** 1.0426*
(0.0152) (0.5707) (0.0089) (1.5338) (0.0120) (0.5723)

Control variables NO YES NO YES NO YES
Provinces fixed effect YES YES YES YES YES YES
Time fixed effect YES YES YES YES YES YES
Observations 450 450 150 150 450 450
R-squared 0.4812 0.5553 0.2640 0.3237 0.4766 0.5508
Number of provinces 30 30 30 30 30 30

Note: Standard errors in parentheses; ***, **, * indicates statistical significance at 1%, 5% and 10% level, respectively.
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(1) “Parallel paths” assumption

The DIDmethod can solve the endogeneity problem caused by the factors that do not change with time, and eliminate the
influence of unobserved confounding factors. However, DID requires that the GIE of the two groupsmaintain basically parallel
paths before implementation of the policy, that is, the most essential condition for using DID is the “parallel paths”
assumption (Zhang et al., 2019). Before 2007, the two groups in Fig. 1 were basically parallel, and the parallel paths were
initially verified. On this basis, the study introduces the parallel paths test of the interaction items (D � T1, D � T2, D � T3) of
the time dummy variables in the years before 2007 and the policy dummy variable. If the interaction term is not significant, it
indicates that the two groups are not significantly different before the policy implementation. Model (1) and model (2) in
Table 7 are without control variables and with control variables added, respectively. The results show that although the
interaction termD� T3 is significant, the three interaction items are still not significant. Therefore, it can be observed that the
empirical result conforms to the “parallel paths” assumption. That is, before the implementation of emissions trading policy
there is not a significantly difference in the level of green innovation efficiency between the two groups.

(2) Counterfactual test by changing the year of the treatment

It can be observed that other policies or influencing factors may potentially impact the results of this research study.
Therefore, the counterfactual test was carried out by changing the policy implementation time (Jim�enez and Perdiguero,
2017; Yang et al., 2020). It is assumed that the policy implementation year is 2006, and the sample period selected is
2004e2008. In this regard, if the result of the interaction term coefficient is not significantly positive, then it is assumed that
the improvement of industrial green innovation efficiency is due to the emissions trading policy implemented in 2007.
Otherwise, it may be caused by other policies or factors. The results are shown in Table 7. Model (3) assumes that the policy
implementation time is 2006 and does not add control variables; model (4) adds control variables based on model (3). The
interaction term coefficient in Table 7 is not significant, indicating that the empirical result of this research is robust. That is to
Table 8
Heterogeneity analysis.

(1)
High pollution regions

(2)
Low pollution regions

(3)
Strict environmental regulation

(4)
Tolerant environmental regulation

VARIABLES GIE GIE GIE GIE

D � T 0.0402** �0.0073 0.0332* 0.0345
(0.0185) (0.0272) (0.0196) (0.0230)

Constant 0.5992 �0.4797 0.8278*** 0.7849***
(0.7173) (0.9678) (0.0548) (0.0794)

Control YES YES YES YES
Provinces fixed effect YES YES YES YES
Time fixed effect YES YES YES YES
Observations 225 225 225 225
R-squared 0.6317 0.5771 0.5657 0.6173
Number of provinces 15 15 15 15

Note: Standard errors in parentheses; ***, **, * indicates statistical significance at 1%, 5% and 10% level, respectively.

387



J. Zhang, X. Sun, H. Li et al. Journal of Management Science and Engineering 6 (2021) 377e392
say, the improvement of the green innovation efficiency is caused by implementation of the emissions trading policy, not by
other factors.

(3) Randomly select pilot provinces

In order to test whether the policy effect is caused by some unobservable factors, this study adopts a random selection of
pilot provinces for the robustness test (Yang et al., 2020). If the test result is not significant, it means that the main results are
reliable; otherwise, it indicates that there is a deviation in the regression results of the study. In this research, random
sampling is used to select 11 provinces among 30 provinces as the treatment group and the rest of the provinces as the control
group. Model (5) and model (6) in Table 7 are without control variables and with control variables added, respectively. The
analysis highlights that the interaction term coefficient is not significant, indicating that the empirical result of this research is
robust.
4.4. Heterogeneity analysis

Due to the differences in economic development of different Chinese provinces, there is more serious environmental
pollution in the more industrialized regions. It is expected, therefore, that environmental regulation may have a more
intensive effect in heavily polluted regions. Accordingly, the provinces are further divided into high and low pollution regions
in relation to the median pollution emissions. Models (1) and (2) in Table 8 contain the results for the high and low pollution
regions respectively, indicating that the ETP's effect is indeed better in high pollution regions. This is obviously because local
governments in high pollution regions usually pay more attention to environmental treatment and are expected to adopt
stricter environmental regulations. Additionally, high pollution regions are comparatively more developed and have higher
levels of technological development, as it is also easier to promote R&D activities as well as green innovation efficiency.

The ETP's influence will also be related to institutional factors. This is because its effective adoption requires strict
environmental supervision and implementation (Ren et al., 2020). The different environmental regulation intensities also
lead to different ETP effects, the value of which is represented by the proportion of investment in the treatment of industrial
pollution to GDP. The median of the data is used to divide the provinces into strict and tolerant environmental regulation
regions. Models (3) and (4) in Table 8 show the results, which indicate that, as expected, the ETP in strict environmental
regulation regions significantly improves industrial green innovation efficiency.
5. Discussion and policy implications

This study has generated a number of policy implications. Firstly, this research indicates that the ETP reduces industrial
SO2 emissions. Hence, China's emissions trading policy is effective and achieves the desired emissions reduction effect. This
result is consistent with Zhang et al. (2019) and Zhou et al. (2019), where both studies found the emissions reduction effect to
be associated with the ETP. This is because the emissions trading policy implements total quantity control, which limits the
emission of pollution to a certain extent so as to achieve corporate emission reduction. However, Shin (2013) found that
emission reductions had not been achieved. This is because the emissions trading policy is still at the initial stage of intro-
duction, resulting in inactive secondary market transactions and low enthusiasm for corporate participation. Therefore, ETP it
cannot effectively play the role of policy. Moreover, this study investigates industrial enterprises above a designated size,
which are the main targets of the implementation of the policy and the main goal of emissions reduction. Consequently, it is
easier to conclude that the implementation of emissions trading policy can reduce pollution emissions. This study provides
direction for the government to deal with environmental pollution problems and help solve the current serious environ-
mental pollution.

This study adopts the new perspective of green innovation efficiency to measure the economic effects of China's emissions
trading policy, and enriches the application research of emissions trading theory at the international level. Multiple indicators
are used to measure industrial green innovation efficiency more effectively. The results indicate that the ETP can improve
industrial green innovation efficiency, which is similar to the findings of Zhu et al. (2020) and Zhang et al. (2018).

Companies with lower levels of pollution can obtain economic benefits by selling spare emissions capacity, which allows
them to promote green innovation strategies. Conversely, companies with higher levels of pollution need to purchase spare
emission capacity to meet their production emission needs. Therefore, although the emissions trading policy will increase the
pollution cost of enterprises in the short term, in the long term, the economic compensation brought by the sale of excess
emission rights will stimulate enterprises to improve pollution control technologies and increase the green innovation ef-
ficiency thereby offsetting the environmental costs of enterprises (Ren et al., 2020). Unlike the results of Tang et al. (2020), this
is because themarket-based ETP provide companies with greater flexibility in reducing emissions (Tang et al., 2020; Ren et al.,
2020) and the ETP's environmental costs are lower than other forms of command-control environmental regulation. The
research highlights that policy is not only conducive to promoting the transformation and upgrading of enterprises but also
helps achieve high-quality economic development. It also reveals intuitively how the emissions trading policy plays a long-
term role in China's pollution control and economic development, and provides an important reference for the Chinese
government to establish environmental regulations that achieve a win-win situation for the environment and the economy.
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This study further examines the heterogeneity in different polluted regions and different environmental regulation in-
tensities and finds that the implementation of emissions trading policy is improved in areas with high pollution and strict
environmental regulations. This result is consistent with the findings of Cecere and Corrocher (2016). On the one hand, the
stronger the implementation of environmental regulations and the higher the cost of violations of the law, the lower the
possibility of violations of the law, and themore effective the implementation of policy, as well as the realization of awin-win
situation for the economy and the environment. On the other hand, this is because companies that operate under more strict
environmental regulations tend to invest more capital in pollution-control technologies (De Vries and Withagen, 2005).

The following policy implications can be drawn from the aforementioned findings.

(1) Acknowledge the full role of the effects of market-based policies. It can be observed from this study that emissions
trading policy reduces pollution emissions and improves the green innovation efficiency, thereby indicating that this
policy can not only achieve the goal of reducing emissions but also promote the green development of the Chinese
economy. Therefore, all government departments should pay appropriate attention to the implementation of this
policy and acknowledge the effective role of the market in environmental governance as well as continue to promote
China's market-oriented mechanism reform. On the one hand, it is necessary to continuously adjust the policy ac-
cording to the implementation effect and the actual situation of the enterprise, and establish a standardized and
effective trading market. On the other hand, there is also a concomitant need for cooperation between different areas,
thereby actively promoting the development of cross-regional transactions, expanding the scope and scale of the
adoption of emissions trading policy, reducing administrative interventions in the market, and allowing the flexibility
and effectiveness of transactions (Zhou et al., 2019).

(2) Formulate different policies based on regional characteristics. This study finds that the implementation effect of the
policy is different in the different regions of China, and the implementation effect is higher in high-polluting areas,
thereby indicating that the market cannot take into account regional differences. Therefore, when formulating policies,
it is necessary for the government to combine regional characteristics to achieve differentiated market governance.

(3) Establish perfect supervision. This study finds that the policy effect is higher in areas with strict environmental
regulation, indicating that the effective implementation of environmental regulations requires strict supervision.
Therefore, the government must strengthen project supervision to ensure the effective implementation of emissions
trading policy. First, the amount of pollutant emissions of enterprises is the focus of this policy, and the government
should increase the monitoring of pollutant emissions by enterprises to ensure the accuracy of pollution emissions
monitoring. Second, the government can establish a corporate credit platform to expose companies that have violated
regulations, and effectively supervise the behavior of companies through social forces such as themedia and the public.
6. Conclusions

In this study, the difference in differences (DID) method is used to test the ETP's effectiveness. Firstly, a slack-based model
with directional distance function (SBM-DDF) is used to measure industrial green innovation efficiency. Secondly, the DID
model is used to evaluate the effectiveness of the policy effects and its impact on green innovation efficiency. Finally, a
heterogeneity analysis is performed to analyze different policy scenarios in regions with different levels of pollution and
different intensities of environmental regulation.

Further results from this research study indicate that:

(1) The industrial green innovation efficiency of each province in China is generally increasing year by year, and the
development of the industry is gradually changing to incorporate both green and sustainable development;

(2) In the evaluation of the emission reduction effect, the interaction term coefficient is significantly negative, thereby
indicating that the ETP significantly reduces industrial SO2 emissions, therefore, the policy is effective;

(3) In evaluating the impact on industrial green innovation efficiency, the interaction term coefficient is significantly
positive, which indicates that the ETP also significantly improves industrial green innovation efficiency;

(4) According to the heterogeneity analysis, it is also observed that the ETP significantly improves industrial green
innovation efficiency in high pollution regions and strict environmental regulation regions.

Overall, this study identifies that ETP can promote pollution reduction and green innovation in developing countries, and
is conducive to achieving sustainable economic development. This has enabled the aim of the policy to be clarified and
suggestions to be provided for implementation enhancement of future policies on emissions trading policy in other countries.

A limitation of this study is that the data involved is regional. Further research is needed at the national or company levels
in order to obtainmore detailed results and formulate more targeted policy recommendations. Another limitation is that only
industrial companies are involved. Further consideration should therefore be given to obtaining data from other industries
and/or other types of organizations (such as service companies as well as government organizations) to determine the
consistency of the results of this study.
389



J. Zhang, X. Sun, H. Li et al. Journal of Management Science and Engineering 6 (2021) 377e392
Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the National Social Science Fund projects [No. 20BJY010]; National Social Science Fund Post-
financing projects [No. 19FJYB017]; Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund [No.
71942006]; Qinghai Natural Science Foundation [grant numbers 2020-JY-736]; List of Key Science and Technology Projects in
China's Transportation Industry in the International Science and Technology Cooperation Project [No. 2018-GH-006 and grant
numbers 2019-MS5-100]; Shaanxi Social Science Fund [No. 2017S004]; Xi’an Construction Science and Technology Planning
Project [No. SZJJ201915 and No. SZJJ201916]; Fundamental Research for Funds for the Central Universities (Humanities and
Social Sciences), Chang’an University [No. 300102231641, 300102230612, 300102281669, 300102230503].

References

Abadie, A., & Cattaneo, M. D. (2018). Econometric methods for program evaluation. Ann. Rev. Econ., 10(1), 465e503.
Anderson, B., & Maria, C. D. (2011). Abatement and allocation in the pilot phase of the EU ETS. Environ. Resour. Econ., 48(1), 83e103.
Anger, N., & Oberndorfer, U. (2008). Firm performance and employment in the EU emissions trading scheme: an empirical assessment for Germany. Energy

Pol., 36(1), 12e22. https://doi.org/10.1016/j.enpol.2007.09.007
Ashenfelter, O., & Card, D. (1985). Using the longitudinal structure of earnings to estimate the effect of training programs. Rev. Econ. Stat., 67(4), 648e660.
Banker, R. D., et al. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci., 30(9), 1078e1092.

https://doi.org/10.1287/mnsc.30.9.1078
Beise, M., & Rennings, K. (2005). Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations. Ecol.

Econ., 52(1), 5e17.
Bel, G., & Joseph, S. (2018). Policy stringency under the European Union Emission trading system and its impact on technological change in the energy

sector. Energy Pol., 117, 434e444. https://doi.org/10.1016/j.enpol.2018.03.041
Betz, R., et al. (2010). Auctioning greenhouse gas emissions permits in Australia. Aust. J. Agric. Resour. Econ., 54(2), 219e238. https://doi.org/10.1111/j.1467-

8489.2010.00490.x
Bleischwitz, R., et al. (2007). The sustainability impact of the EU emissions trading system on the European industry. Bruges Eur. Econ. Policy Brief., 194(10),

319e339.
Blind, K. (2012). The influence of regulations on innovation: a quantitative assessment for OECD countries. Res. Pol., 41(2), 391e400. https://doi.org/10.1016/

j.respol.2011.08.008
Borghesi, S., et al. (2015). Linking emission trading to environmental innovation: evidence from the Italian manufacturing industry. Res. Pol., 44(3),

669e683.
Calel, R., & Dechezleprêtre, A. (2016). Environmental policy and directed technological change: evidence from the European carbon market. Rev. Econ. Stat.,

98(1), 173e191.
Cecere, G., & Corrocher, N. (2016). Stringency of regulation and innovation in waste management: an empirical analysis on EU countries. Ind. Innovat., 23(7),

625e646.
Charnes, A., et al. (1978). Measuring the efficiency of decision making units. Eur. J. Oper. Res., 2(6), 429e444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, J., et al. (2017). Regional eco-innovation in China: an analysis of eco-innovation levels and influencing factors. J. Clean. Prod., 153, 1e14. https://doi.org/

10.1016/j.jclepro.2017.03.141
Chen, J., et al. (2020). Net primary productivity-based factors of China's carbon intensity: a regional perspective. Growth Change, 51(4), 1727e1748. https://

doi.org/10.1111/grow.12423
Cheng, Y., & Yin, Q. (2016). Study on the regional difference of green innovation efficiency in Chinadan empirical analysis based on the panel data. Paper

presented at the. In Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation (Paris).
China, N. B. o. S. o (2005ae2019a). China Statistical Yearbook 2005-2019. in Chinese. from PRESS C S.
China, N. B. o. S. o (2005be2019b). China Statistical Yearbook on Science and Technology 2005-2019. in Chinese. from PRESS C S.
Chung, Y. H., et al. (1997). Productivity and undesirable outputs: a directional distance function approach. J. Environ. Manag., 51(3), 229e240. https://doi.org/

10.1006/jema.1997.0146
Coase, R. H. (1960). The problem of social cost. J. Law Econ., 3, 1e44.
Coggins, J. S., & Swinton, J. R. (1996). The price of pollution: a dual approach to valuing SO2Allowances. J. Environ. Econ. Manag., 30(1), 58e72. https://doi.

org/10.1006/jeem.1996.0005
Dales, J. H. (1968). Pollution, Property and Prices. Toronto: Toronto University Press.
De Vries, F. P., & Withagen, C. A. M. (2005). Innovation and environmental stringency: the case of sulfur dioxide abatement. Ssrn electronic journal.
Demirel, P., & Kesidou, E. (2011). Stimulating different types of eco-innovation in the UK: government policies and firm motivations. Ecol. Econ., 70(8),

1546e1557.
Du, J., et al. (2019). Assessing regional differences in green innovation efficiency of industrial enterprises in China. Int. J. Environ. Res. Publ. Health, 16(6),

940e962.
Ehrlich, I. (1975). The deterrent effect of capital punishment: a question of life and death. Am. Econ. Rev., 65(3), 397e417.
Ellerman, A. D., & Buchner, B. K. (2007). The European union emissions trading scheme: origins, allocation, and early results. Rev. Environ. Econ. Pol., 1(1),

66e87.
Feng, Z., et al. (2018). Environmental regulation, two-way foreign direct investment, and green innovation efficiency in China's manufacturing industry. Int.

J. Environ. Res. Publ. Health, 15(10), 2292.
Fischer, C. (2008). Emissions pricing, spillovers, and public investment in environmentally friendly technologies. Energy Econ., 30(2), 487e502.
Fukuyama, H., & Weber, W. L. (2009). A directional slacks-based measure of technical inefficiency. Soc. Econ. Plann. Sci., 43(4), 274e287. https://doi.org/10.

1016/j.seps.2008.12.001
Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity growth. Bell J. Econ., 10(1), 92e116.
Huang, X. X., et al. (2016). The relationships between regulatory and customer pressure, green organizational responses, and green innovation performance.

J. Clean. Prod., 112(JAN.20PT.4), 3423e3433.
Jaffe, A. B. (1989). Real effects of academic research. Am. Econ. Rev., 79(5), 957e970.
Jaraite, J., & Maria, C. D. (2012). Efficiency, productivity and environmental policy: a case study of power generation in the EU. Energy Econ., 34(5),

1557e1568.
Jim�enez, J. L., & Perdiguero, J. (2017). Difference-in-difference. In A. Marciano, & G. B. Ramello (Eds.), Encyclopedia of Law and Economics (pp. 1e4). New York,

NY: Springer New York.
390

http://refhub.elsevier.com/S2096-2320(21)00053-6/sref1
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref1
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref2
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref2
https://doi.org/10.1016/j.enpol.2007.09.007
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref4
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref4
https://doi.org/10.1287/mnsc.30.9.1078
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref6
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref6
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref6
https://doi.org/10.1016/j.enpol.2018.03.041
https://doi.org/10.1111/j.1467-8489.2010.00490.x
https://doi.org/10.1111/j.1467-8489.2010.00490.x
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref9
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref9
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref9
https://doi.org/10.1016/j.respol.2011.08.008
https://doi.org/10.1016/j.respol.2011.08.008
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref11
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref11
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref11
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref12
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref12
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref12
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref12
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref13
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref13
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref13
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/j.jclepro.2017.03.141
https://doi.org/10.1016/j.jclepro.2017.03.141
https://doi.org/10.1111/grow.12423
https://doi.org/10.1111/grow.12423
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref17
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref17
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref17
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref18
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref18
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref19
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref19
https://doi.org/10.1006/jema.1997.0146
https://doi.org/10.1006/jema.1997.0146
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref21
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref21
https://doi.org/10.1006/jeem.1996.0005
https://doi.org/10.1006/jeem.1996.0005
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref23
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref24
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref25
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref25
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref25
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref26
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref26
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref26
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref27
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref27
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref28
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref28
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref28
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref29
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref29
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref30
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref30
https://doi.org/10.1016/j.seps.2008.12.001
https://doi.org/10.1016/j.seps.2008.12.001
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref32
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref32
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref33
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref33
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref33
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref34
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref34
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref35
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref35
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref35
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref36
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref36
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref36
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref36


J. Zhang, X. Sun, H. Li et al. Journal of Management Science and Engineering 6 (2021) 377e392
Jin, W., et al. (2019). Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod., 211,
61e69.

Li, D., & Zeng, T. (2020). Are China's intensive pollution industries greening? An analysis based on green innovation efficiency. J. Clean. Prod., 259, 120901.
Lv, X., et al. (2020). Dynamics of environmental policy and firm innovation: asymmetric effects in Canada's oil and gas industries. Sci. Total Environ., 712,

136371. https://doi.org/10.1016/j.scitotenv.2019.136371
Marin, G., et al. (2017). The impact of the European emission trading scheme on multiple measures of economic performance. Environ. Resour. Econ., 71(2),

551e582. https://doi.org/10.1007/s10640-017-0173-0
Martin, R., et al. (2015). The impact of the European union emissions trading scheme on regulated firms: what is the evidence after ten years? Rev. Environ.

Econ. Pol., 10(1), 129e148. https://doi.org/10.1093/reep/rev016
Meng, F., et al. (2019). Rank reversal issues in DEA models for China's regional energy efficiency assessment. Energy Efficiency, 12(4), 993e1006. https://doi.

org/10.1007/s12053-018-9737-2
Meng, F., et al. (2016). Measuring China's regional energy and carbon emission efficiency with DEA models: a survey. Appl. Energy, 183, 1e21. https://doi.org/

10.1016/j.apenergy.2016.08.158
Mohr, R. D. (2002). Technical change, external economies, and the porter Hypothesis. J. Environ. Econ. Manag., 43(1), 158e168. https://doi.org/10.1006/jeem.

2000.1166
Munasinghe, M. (1999). Is environmental degradation an inevitable consequence of economic growth: tunneling through the environmental Kuznets curve.

Ecol. Econ., 29(1), 89e109. https://doi.org/10.1016/S0921-8009(98)00062-7
Ning, Y., et al. (2020). Energy conservation and emission reduction path selection in China: a simulation based on Bi-Level multi-objective optimization

model. Energy Pol., 137, 111116. https://doi.org/10.1016/j.enpol.2019.111116
Porter, M. E., & Linde, C. V. D. (1995). Towards a new conception of the environment-competitiveness relationship. J. Econ. Perspect., 4(4), 97e118.
Reinhard, S., et al. (1999). Econometric estimation of technical and environmental efficiency: an application to Dutch dairy farms. Am. J. Agric. Econ., 81(1),

44e60. https://doi.org/10.2307/1244449
Ren, S., et al. (2020). Emissions trading and firm innovation: evidence from a natural experiment in China. Technol. Forecast. Soc. Change, 155, 119989.
Rennings, K. (2000). Redefining innovation d eco-innovation research and the contribution from ecological economics. Ecol. Econ., 32(2), 319e332.
Requate, T. (2005). Dynamic incentives by environmental policy instrumentsda survey. Ecol. Econ., 54(2), 175e195.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41e55.
Sandoff, A., & Schaad, G. (2009). Does EU ETS lead to emission reductions through trade? The case of the Swedish emissions trading sector participants.

Energy Pol., 37(10), 3967e3977. https://doi.org/10.1016/j.enpol.2009.04.043
Shen, N., et al. (2019). Different types of environmental regulations and the heterogeneous influence on the environmental total factor productivity:

empirical analysis of China's industry. J. Clean. Prod., 211, 171e184.
Shi, B., et al. (2018). Innovation suppression and migration effect: the unintentional consequences of environmental regulation. China Econ. Rev., 49, 1e23.

https://doi.org/10.1016/j.chieco.2017.12.007
Shin, S. (2013). China's failure of policy innovation: the case of sulphur dioxide emission trading. Environ. Polit., 22(6), 918e934. https://doi.org/10.1080/

09644016.2012.712792
Song, Y., et al. (2020a). Does the expansion of the joint prevention and control area improve the air quality?devidence from China's Jing-Jin-Ji region and

surrounding areas. Sci. Total Environ., 706, 136034. https://doi.org/10.1016/j.scitotenv.2019.136034
Song, Y., et al. (2020b). Research on the direct and indirect effects of environmental regulation on environmental pollution: empirical evidence from 253

prefecture-level cities in China. J. Clean. Prod., 269, 122425. https://doi.org/10.1016/j.jclepro.2020.122425
Tang, H. L., et al. (2020). The effects of emission trading system on corporate innovation and productivity-empirical evidence from China's SO2 emission

trading system. Environ. Sci. Pollut. Res., 27(1), 1e17. https://doi.org/10.1007/s11356-020-08566-x
Tang, K., et al. (2020). Does command-and-control regulation promote green innovation performance? Evidence from China's industrial enterprises. Sci.

Total Environ., 712, 136362.
Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: an alternative to the ex post facto experiment. J. Educ. Psychol., 51(6),

309e317.
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res., 130(3), 498e509. https://doi.org/10.1016/S0377-

2217(99)00407-5
Triguero, A., et al. (2013). Drivers of different types of eco-innovation in European SMEs. Ecol. Econ., 92(92), 25e33.
van den Bergh, J. C. J. M., et al. (2011). Environmental innovation and societal transitions: introduction and overview. Environ. Innov. Soc. Transit., 1(1), 1e23.

https://doi.org/10.1016/j.eist.2011.04.010
Wang, W., et al. (2020). Does increasing carbon emissions lead to accelerated eco-innovation? Empirical evidence from China. J. Clean. Prod., 251, 119690.
Wang, X., & Shao, Q. (2019). Non-linear effects of heterogeneous environmental regulations on green growth in G20 countries: evidence from panel

threshold regression. Sci. Total Environ., 660, 1346e1354.
Wang, Y., & Shen, N. (2016). Environmental regulation and environmental productivity: the case of China. Renew. Sustain. Energy Rev., 62, 758e766. https://

doi.org/10.1016/j.rser.2016.05.048
Woerdman, E. (2000). Organizing emissions trading: the barrier of domestic permit allocation. Energy Pol., 28(9), 613e623.
Wråke, M., et al. (2010). Opportunity cost for free allocations of emissions permits: an experimental analysis. Environ. Resour. Econ., 46(3), 331e336.
Xie, R., et al. (2017). Different types of environmental regulations and heterogeneous influence on “green” productivity: evidence from China. Ecol. Econ.,

132, 104e112.
Xuan, D., et al. (2020). Can China's policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod., 270, 122383. https://doi.org/10.

1016/j.jclepro.2020.122383
Yabar, H., et al. (2013). Tracking environmental innovations and policy regulations in Japan: case studies on dioxin emissions and electric home appliances

recycling. J. Clean. Prod., 44, 152e158.
Yan, Y., et al. (2020). Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: the China story. Energy Pol.,

138, 111282. https://doi.org/10.1016/j.enpol.2020.111282
Yang, L., et al. (2016). Chinese companies' awareness and perceptions of the Emissions Trading Scheme (ETS): evidence from a national survey in China.

Energy Pol., 98, 254e265.
Yang, X., et al. (2020). Does China's carbon emission trading policy have an employment double dividend and a Porter effect? Energy Pol., 142, 111492.

https://doi.org/10.1016/j.enpol.2020.111492
You, D., et al. (2019). Environmental regulation and firm eco-innovation: evidence of moderating effects of fiscal decentralization and political competition

from listed Chinese industrial companies. J. Clean. Prod., 207, 1072e1083.
Zhang, H., et al. (2019). Have China's pilot emissions trading schemes promoted carbon emission reductions?e the evidence from industrial sub-sectors at

the provincial level. J. Clean. Prod., 234, 912e924.
Zhang, J., et al. (2020). The impact of environmental regulations on urban Green innovation efficiency: the case of Xi'an. Sustainable Cities and Society, 57,

102123. https://doi.org/10.1016/j.scs.2020.102123
Zhang, L., et al. (2018). Does China's emissions trading system foster corporate green innovation? Evidence from regulating listed companies. Technol. Anal.

Strat. Manag., 31(2), 199e212. https://doi.org/10.1080/09537325.2018.1493189
Zhang, W., et al. (2020). Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy, 196, 117117. https://doi.

org/10.1016/j.energy.2020.117117
391

http://refhub.elsevier.com/S2096-2320(21)00053-6/sref37
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref37
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref37
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref38
https://doi.org/10.1016/j.scitotenv.2019.136371
https://doi.org/10.1007/s10640-017-0173-0
https://doi.org/10.1093/reep/rev016
https://doi.org/10.1007/s12053-018-9737-2
https://doi.org/10.1007/s12053-018-9737-2
https://doi.org/10.1016/j.apenergy.2016.08.158
https://doi.org/10.1016/j.apenergy.2016.08.158
https://doi.org/10.1006/jeem.2000.1166
https://doi.org/10.1006/jeem.2000.1166
https://doi.org/10.1016/S0921-8009(98)00062-7
https://doi.org/10.1016/j.enpol.2019.111116
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref47
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref47
https://doi.org/10.2307/1244449
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref49
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref50
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref50
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref50
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref51
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref51
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref51
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref52
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref52
https://doi.org/10.1016/j.enpol.2009.04.043
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref54
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref54
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref54
https://doi.org/10.1016/j.chieco.2017.12.007
https://doi.org/10.1080/09644016.2012.712792
https://doi.org/10.1080/09644016.2012.712792
https://doi.org/10.1016/j.scitotenv.2019.136034
https://doi.org/10.1016/j.jclepro.2020.122425
https://doi.org/10.1007/s11356-020-08566-x
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref60
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref60
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref61
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref61
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref61
https://doi.org/10.1016/S0377-2217(99)00407-5
https://doi.org/10.1016/S0377-2217(99)00407-5
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref63
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref63
https://doi.org/10.1016/j.eist.2011.04.010
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref65
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref66
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref66
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref66
https://doi.org/10.1016/j.rser.2016.05.048
https://doi.org/10.1016/j.rser.2016.05.048
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref68
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref68
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref69
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref69
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref70
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref70
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref70
https://doi.org/10.1016/j.jclepro.2020.122383
https://doi.org/10.1016/j.jclepro.2020.122383
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref72
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref72
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref72
https://doi.org/10.1016/j.enpol.2020.111282
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref74
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref74
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref74
https://doi.org/10.1016/j.enpol.2020.111492
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref76
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref76
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref76
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref77
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref77
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref77
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref77
https://doi.org/10.1016/j.scs.2020.102123
https://doi.org/10.1080/09537325.2018.1493189
https://doi.org/10.1016/j.energy.2020.117117
https://doi.org/10.1016/j.energy.2020.117117


J. Zhang, X. Sun, H. Li et al. Journal of Management Science and Engineering 6 (2021) 377e392
Zhang, Y., et al. (2018). Impact of environmental regulations on green technological innovative behavior: an empirical study in China. J. Clean. Prod., 188,
763e773. https://doi.org/10.1016/j.jclepro.2018.04.013

Zhao, X., & Sun, B. (2016). The influence of Chinese environmental regulation on corporation innovation and competitiveness. J. Clean. Prod., 112, 1528e1536.
Zhao, X., et al. (2014). Corporate behavior and competitiveness: impact of environmental regulation on Chinese firms. J. Clean. Prod., 86, 311e322.
Zheng, H., et al. (2020). Exploring the affecting mechanism between environmental regulation and economic efficiency: new evidence from China's coastal

areas. Ocean Coast Manag., 189, 105148.
Zhou, B., et al. (2019). How does emission trading reduce China's carbon intensity? An exploration using a decomposition and difference-in-differences

approach. Sci. Total Environ., 676, 514e523.
Zhu, B., et al. (2020). Exploring the effect of carbon trading mechanism on China's green development efficiency: a novel integrated approach. Energy Econ.,

85, 104601. https://doi.org/10.1016/j.eneco.2019.104601
Zhu, Y., et al. (2019). Effects of environmental regulations on technological innovation efficiency in China's industrial enterprises: a spatial analysis. Sustain.

Times, 11(7), 1e19.
392

https://doi.org/10.1016/j.jclepro.2018.04.013
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref82
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref82
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref83
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref83
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref84
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref84
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref85
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref85
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref85
https://doi.org/10.1016/j.eneco.2019.104601
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref87
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref87
http://refhub.elsevier.com/S2096-2320(21)00053-6/sref87

	Investigating the role of emissions trading policy to reduce emissions and improve the efficiency of industrial green innov ...
	1. Introduction
	2. Literature review
	2.1. Emissions trading policy
	2.2. Green innovation efficiency
	2.3. Relationship between ETP and green innovation efficiency
	2.4. Knowledge gap

	3. Methodology
	3.1. Difference in differences (DID)
	3.2. Slack-based measure-directional distance function (SBM-DDF)
	3.3. Variables and data
	3.4. Data selection

	4. Results
	4.1. Time trend graph of industrial green innovation efficiency
	4.2. Regression analysis
	4.3. Robustness checks
	4.4. Heterogeneity analysis

	5. Discussion and policy implications
	6. Conclusions
	Declaration of competing interest
	Acknowledgements
	References


