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individual IP flow analysis.
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A GRU Deep Learning System against Attacks in Software Defined
Networks

Marcos V. O. Assis, Luiz F. Carvalho, Jaime Lloret, Mario L. Proenca Jr.

e This paper introduces a system for SDN’s defense against intrusion and
DDoS attacks;

e We propose an anomaly detection scheme based on isolated flow anal-
ysis using GRU;

e We present an efficiency evaluation of distinct detection techniques ap-
plied to SDNs;

e We used public datasets for performance analysis, which enable results’
replication.
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Abstract

The management of modern network environments is becoming more and
more complex due to new requirements of devices’ heterogeneity regarding
the popularization of the Internet of Things (IoT), as well as the dynamic
traffic required by next-generation applications and services. To address
this problem, Software-defined Networking (SDN) emerges as a management
paradigm able to handle these problems through a centralized high-level net-
work approach. However, this centralized characteristic also creates a critical
failure spot since the central controller may be targeted by malicious users
aiming to impair the network operation. This paper proposes an SDN de-
fense system based on the analysis of single IP flow records, which uses the
Gated Recurrent Units (GRU) deep learning method to detect DDoS and
intrusion attacks. This direct flow inspection enables faster mitigation re-
sponses, minimizing the attack’s impact over the SDN. The proposed model
is tested against several different machine learning approaches over two pub-
lic datasets, the CICDDoS 2019 and the CICIDS 2018. Furthermore, a
lightweight mitigation approach is presented and evaluated through perfor-
mance tests regarding each detection method. Finally, a feasibility test is
performed regarding the throughput of flows per second that each detection
method can analyze. This test is accomplished through the use of real IP
Flow data collected at a large-scale network. The results point out promising
detection rates and an elevated amount of analyzed flows per second, which
makes GRU a feasible approach for the proposed system.
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1. Introduction

The amount of data traveling on the Internet is rapidly increasing due to
the growth in popularity and complexity of connected devices and software
solutions. The usage of network resources by end users is rising through the
popularization of social networks, web banking applications, and e-commerce,
for instance. Thus, new cloud-based services are becoming essential to the op-
eration of this new network environment, which brings specific requirements,
such as dynamic traffic allocation (Maenhaut et al., 2017). Furthermore,
the increasing popularity of Internet of Things (IoT) devices is gradually
changing the Internet scenario by increasing the heterogeneously of commu-
nication, since each device (thing) has specific network requirements and
processing capability (Yoon and Kim, 2017; Bera et al., 2018). In the face
of these changes, management and security are becoming impracticable in
traditional static network environments (da Costa et al., 2019; Hajiheidari
et al., 2019).

A networking paradigm that is gaining space on several recent pieces of
research and applications is the Software-defined Networking (SDN) (Zehra
and Shah, 2017; Farris et al., 2019). This network paradigm operates by
centralizing the network management into a single programmable controller,
able to communicate and control network devices such as switches and routers
regardless of their manufacturers, as “white-boxes”. The SDN separates the
control and data planes so that the central controller is responsible for send-
ing, for instance, management and packet forwarding policies to the con-
trolled devices in a scalable and coordinated manner. This characteristic
is a valuable feature able to provide next-generation networks with the dy-
namic architecture they require (Zhang et al., 2019), in which changes can
be performed in a fast, programmable, and on-demand way.

However, while bringing essential improvements to the current network
architecture, the SDN, as any centralized service, has as a critical failure spot
its central controller. Malicious users may target this controller aiming to im-
pair the whole network operation through the usage of different approaches,
such as intrusions (Lopez-Martin et al., 2017) and denial of service (DoS)
attacks (Daneshgadeh Cakmakg et al., 2020; Wang et al., 2020; Xu et al.,



2020; Zhang et al., 2020). Thus, efficient protection mechanisms are needed
in SDNs to guarantee the availability of the network and the quality of the
provided services (Correa Chica et al., 2020).

The occurrence of these attacks can be generically described as an anomaly,
a situation when the network behavior differs from its normal state (Proenga
et al., 2005). The anomaly detection is a widely approached area, with sev-
eral different methods proposed in the past years (Fernandes et al., 2019).
However, it is still an open research field, since no consensus has been reached
due to the enormous amount of different network scenarios and architectures
available. In SDN environments, security is a central concern, arousing great
interest from the scientific community due to the importance of this paradigm
to present and future networks (Maziku et al., 2019).

Among all the anomaly detection methods, the IP flow-based ones are
proving to be efficient approaches in SDN environments. It is mainly due
to the amount of information these systems can provide, which can be used
to characterize the regular network operation with high precision. However,
most of the research in this area operates through sampling processes, an-
alyzing the data in intervals of five minutes (Cortez et al., 2006; Bereziriski
et al., 2015; Shuying Chang et al., 2010), one minute (Pena et al., 2014;
Sun et al., 2016), or even in smaller time intervals, such as thirty seconds
(Carvalho et al., 2018), and five-seconds (De Assis et al., 2018). While the
sampling process helps in scaling the defense system, this process may hide
stealthier attacks, such as port scans. Thus, the data analysis performed
on each flow separately may provide a more precise detection approach, in
which the detection method can find anomalies in specific communications
and even identify who is participating in it.

In this paper, we propose a defense system against intrusions and denial-
of-service attacks for SDNs based on the analysis of single IP flow records.
This individual flow inspection enables faster mitigation responses, ensuring
the quality of the services provided by the SDN. The system is divided into
two main modules, Detection, and Mitigation.

The Detection Module is responsible for analyzing individual IP flows
aiming to identify the occurrence of an anomaly. In this module, we used
a recurrent deep learning algorithm called Gated Recurrent Units (GRU)
(Cho et al., 2014) as a classifier. Deep learning approaches use multiple lay-
ers to learn data representation with various levels of abstraction and is in-
creasingly gaining space among researchers for network applications (Lopez-
Martin et al., 2018) (Aldweesh et al., 2020). GRU is widely applied in prob-
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lems in which historical information is essential to the performance of clas-
sification tasks. In the proposed system, this method inspects individual IP
flows through a multidimensional analysis, operating as a binary flow classi-
fier, i.e., classifying them as normal or abnormal.

The Mitigation Module generates efficient counter-measures against the
detected attacks. Since the system proposed in this paper individually ana-
lyzes IP flows, it can directly identify the attacking node address. Thus, a
directed mitigation approach is proposed, which aims to bring the SDN back
to its regular operation through a light and straightforward process.

To evaluate the efficiency of GRU as a detection method, we tested it
against seven other shallow and deep learning detection approaches over two
different scenarios using public datasets. On the first one, named CICDDoS
2019 (Sharafaldin et al., 2019), we tested the methods over several differ-
ent kinds of Distributed DoS (DDoS) attacks. The second scenario, called
CICIDS 2018 (Sharafaldin et al., 2018), was used to test the efficiency of
the detection methods against different intrusion techniques. Furthermore,
these two datasets are used to measure the proposed mitigation approach’s
efficiency regarding each one of the evaluated detection methods. The choice
of these databases was motivated by their variety of attacks and the number
of available IP flow features, an essential characteristic for the application of
Deep Learning methods. Finally, we tested the number of flows per second
the tested anomaly detection approaches can process to prove the proposed
system’s feasibility.

We can highlight the following as main contributions of this paper:

e A system for SDN defense against intrusion and DDoS attacks;

e A precise anomaly detection scheme based on isolated IP flow analy-
sis, enabling near real-time detection. This approach allows for faster
mitigation responses, minimizing the impact suffered by the SDN;

e The efficiency evaluation and comparison of distinct shallow and deep
learning anomaly detection techniques applied in public datasets and
the efficiency measurement of the proposed mitigation process.

The remainder of this paper is organized as follows: Section 2 presents
state of the art through related work; Section 3 describes the organization of
the proposed system; Section 4 details the GRU method used for anomaly
detection at the Detection Module; Section 5 discusses the performance out-
comes achieved by GRU in comparison with seven other methods and the
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performance evaluation of the mitigation approach; Finally, section 6 presents
the conclusions and future works.

2. Related Works

Software-defined Networking (SDN) is an emerging paradigm that sig-
nificantly improves the management procedures, providing the network ad-
ministrator with the flexibility of dynamic traffic allocation, as well as an
online, softwarized, and centralized configuration. Several authors have been
developing solutions through the usage of SDNs, such as Theodorou and
Mamatas (2017) that demonstrated the operation of CORAL-SDN, an SDN
based solution for the Internet of Things. The authors highlighted several
benefits from the usage of this paradigm in Wireless Sensor Networks (WSN),
such as the centralized control and the elasticity support regarding WSNs
requirements.

Although centralized management is one of the main advantages of SDNs,
it also represents a weak spot, since the operation impairment of the con-
troller may lead to critical network issues. Thus, the security of this controller
is an essential matter to SDN implementation. In Tatang et al. (2017) the
authors proposed the SDN-GUARD, a system for detecting and mitigating
rootkits in SDN controllers. Their system performs a dual-view comparison
to detect malicious programming attempts, and the authors highlighted the
achievement of reasonable detection rates with a relatively small performance
overhead. In Nam and Kim (2018), the authors addressed the security en-
hancement of SDNs through the usage of open-source IDS software called
Suricata. The authors also described the usage of OpenFlow to implement
SDN security mechanisms. In Gkountis et al. (2017), the authors proposed
a lightweight DDoS defense algorithm, based on a simple set of rules, in the
protection of SDN environments. The authors highlighted that the proposed
approach achieved better results in comparison to other legacy protection
schemes regarding an SDN ecosystem of mobile users. In Sidki et al. (2016),
the authors proposed fault protection for SDN controllers, enabling the net-
work to maintain its regular operation through a redundancy-based approach
using a synchronized slave controller.

One of the main approaches for detecting attacks in SDN environments
is to characterize the network’s normal behavior. Thus, when an abnormal
situation is detected, the system may take countermeasures to mitigate the
problem. This approach is called anomaly detection, and several different



techniques may perform this task (Pena et al., 2014; Lei, 2017; Qin et al.,
2018). On the past years, machine learning (ML) methods have been widely
applied as classification systems on the detection of network anomalies. In
Nanda et al. (2016), the authors proposed the usage of machine learning algo-
rithms trained over historical data to detect network attacks. They compared
the efficiency of four different ML algorithms, the C4.5, Bayesian Network,
Decision Table, and Naive-Bayes, achieving around 91% of prediction accu-
racy through the use of Bayesian Network. In Kornycky et al. (2017), the
authors investigated the use of low-cost WLAN dongles to monitor a network,
and passively perform traffic classification, improving service monitoring by
focusing on enforcing network security policies. To reach this objective, the
authors applied different machine learning methods, such as kNN, WKNN,
GMM, GMM-UBM, BCT, PTSVQ, and TRAP-VQ. The results point out
that TRAP-VQ, a technique proposed by the authors, achieved the highest
f-measure among all tested approaches, proving to be efficient for WLAN
traffic characterization regarding prior knowledge requirements and compu-
tational complexity. In Fukuda et al. (2017), the authors proposed the usage
of the Domain Name System (DNS) backscatter as an additional source of in-
formation regarding network activity. The authors applied different machine-
learning algorithms to classify originator activity of malicious traffic based
on the retrieved data, which are classification and regression tree (CART),
random forest (RF), and support vector machine (SVM). The proposed algo-
rithm achieved reasonable accuracy and precision outcomes of around 75%,
which demonstrates both that DNS backscatter is a good source of network
information and that the tested machine learning approaches are efficient for
malicious activity detection.

Moreover, several network anomaly detection approaches operate through
sampling, analyzing data in time intervals, such as Cortez et al. (2006) and
Berezinski et al. (2015), which operates in five-minute ranges. Smaller time
intervals implicate on faster anomaly detection, as well as an increase in
processing usage for data analysis. In Sun et al. (2016), the authors proposed
an anomaly detection method based on Streaming Performance Metrics and
Logs operating in one-minute intervals.

Furthermore, a subclass of machine learning algorithms named Deep
Learning is increasingly gaining space among researchers in the area (Chowd-
hury et al., 2019). This subclass describes algorithms that use multiple layers
to learn data representation with various abstraction levels, usually when a
large dataset is available for training. Deep Learning methods are being
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widely applied to detect anomalies in different network environments, such
as IoT systems for Smart Cities (Guo et al., 2020) and Industrial control
systems (Khan et al., 2020). In Kao and Jiang (2019), the authors proposed
an anomaly detection framework for univariate time series. To achieve this
goal, they first divide data into three classes, which are stationary, periodic,
and non-stationary time series. Then, different statistical and Deep Learn-
ing methods, such as GRU, STL, SARIMA, LSTM, LSTM with STL, and
ADSaS, are applied over these separated data for performing anomaly detec-
tion. The results pointed out that the proposed framework obtained better
performance outcomes in comparison to related methods regarding precision,
recall, and f-measures. Similarly, in Qin et al. (2018), the authors proposed
the usage of Long Short Term Memory (LSTM) networks on the detection of
anomalies in IP networks. The outcomes achieved shows promising precision
and recall rates, demonstrating the efficiency of the method in classifica-
tion problems. In Xie et al. (2020), the authors present a network model
to predict sensor/controller parameters in industrial control systems using
1D-CNN and GRU. The proposed model was validated through the Secure
Water Treatment (SWaT) dataset and achieved promising results regarding
precision, recall, and fl-measure metrics. In Qu et al. (2018), the authors
proposed a modification of the traditional GRU applied to the identifica-
tion of user anomalies by analyzing web Logs. The authors’ unsupervised
approach presented better identification outcomes compared to conventional
LSTM and SVM models for anomaly detection. In Liu et al. (2019), the au-
thors present an anomaly detection approach in network logs, using GRU and
Support Vector Domain Description (SVDD). Initially, the authors apply the
Principal Component Analysis (PCA) method to reduce the databases’ di-
mensionality and extract significant attributes. Subsequently, the processed
databases are trained using the GRU-SVDD classification model. The exper-
iments in classical KDD Cup 99 databases showed that the proposed method
was more efficient than the classical GRU-MLP and LSTM algorithms.

In this paper, we propose an SDN defense system against DDoS and
intrusion attacks. This system, unlike several different approaches described
in this section, operates without sampling, acting directly into individual IP
flow data, which provides faster detection and, consequently, decreases the
impact caused by the attack through a mitigation process. The proposed
system performs a multidimensional (multiple flow feature) analysis using
GRU deep learning method for detecting attacks on the SDN controller.



3. SDN Defense system

In this section, we describe the operation of the proposed SDN defense
system. The management centralization provides many advantages in this
paradigm. Still, it is necessary to give the controller security resources to
guarantee its operation and, consequently, the quality of the services pro-
vided. Thus, in this paper, we propose an SDN security defense system able
to detect the occurrence of different intrusion and DDoS attacks on central
controllers through an analysis of multi-dimensional IP flows.

Unlike other techniques that analyze traffic data through different time
windows (from seconds to minutes), the proposed defense system aims to an-
alyze and identify attacks in individual flows, providing a higher accuracy on
the detection and improving the response time for mitigation actions. The
main disadvantage of this approach is the amount of data analyzed by the
system, which needs to be able to provide fast and accurate classification out-
comes. However, it brings the advantages of rapid detection, decreasing the
impact caused by the attacks over end users, and users’ identification, since
IP flow records stores qualitative information, such as source and destination
IP addresses and ports used on the communication.

Two different parts compose our SDN defense system, the Detection, and
Mitigation modules, which communicate with each other through the central
system logic, as observed in Fig. 1. Each module is composed of two other
sub-modules, and the SDN system operates within the SDN controller. All
data analysis is performed automatically, and the network administrator only
receives notifications about detected attack events.

The Detection module is responsible for detecting the occurrence of in-
trusion and DDoS attacks, as well as generating an alarm that invokes the
operation of the mitigation module. In this module, we applied a recurrent
Deep Learning approach called Gated Recurrent Units (GRU), which will be
detailed in the next section. Since GRU is a supervised learning method,
the sub-module called “Training” is responsible for calibrating the classifi-
cation outcomes through the usage of historical labeled data. The second
sub-module is accountable for analyzing flow records and generate a binary
result, classifying them as normal or abnormal traffic.

It is essential to highlight that the investigation of different IP flow fea-
tures (or dimensions) enriches traffic analysis by providing relevant infor-
mation about the communication and who is participating in it (Shuying
Chang et al., 2010). Several different approaches use this characteristic to
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Figure 1: Modular organization of the proposed SDN security system.

improve the performance of anomaly detection (Shuying Chang et al., 2010;
Bereziniski et al., 2015; Carvalho et al., 2018). Still, most of them use a
set of a few features manually selected, such as bits/s and packets/s rates.
However, IP flows can provide a much more comprehensive range of informa-
tion often unused by traditional methods. Unlike most conventional machine
learning methods, Deep Learning approaches, such as GRU, can analyze sev-
eral flow features and automatically give more weight (importance) to those
dimensions that most impact the classification outcomes. This feature is
indispensable since some patterns may not be obvious, which significantly
improves the anomaly detection process.

The Mitigation module is responsible for defining and taking the optimal
countermeasures to minimize the attack’s impact over the SDN. As its name
suggests, the first sub-module determines the optimal countermeasure against
the detected anomaly. In contrast, the second one sends the optimal drop
policy to the SDN controller for implementation.

Different techniques may be used on the “Define optimal countermeasure”
sub-module to define the better mitigation action against the detected attack.
Since the proposed defense system analyzes single IP flows, it is possible
to directly identify the attacker node, individually discarding related flows
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communication. Thus, there is no need for a probabilistic drop estimation,
which could increase the system’s operation’s overall computational cost.

Therefore, we propose a directed mitigation approach, which represents
a straightforward and light drop schema. Using the information provided by
the detection module, such as source IP address, protocol, and destination
IP address and port, the system generates an individual drop policy against
the attacker IP. This policy is implemented by the SDN controller as soon as
the first abnormal flow is detected. Hence, this mitigation schema’s efficiency
is directly related to the efficiency of the attack detection (method).

Fig. 2 summarizes the operation of the proposed SDN defense system.
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As observed, the SDN controller export single IP flow records composed of
I features or dimensions. Most of these features are quantitative dimensions
that can be directly analyzed by the detection method. However, if the record
contains qualitative dimensions, such as the “protocol” element, this data
is submitted to an MD5 hashing process to convert them into quantitative
values. An essential part of this treatment is to not include the features source
IP address and port, and destination IP address on the anomaly detection
step. Their usage could compel the detection method to learn patterns that
decrease its generalization capacity, stating that, for instance, DDoS attacks
always aim at a specific IP address.

After this step, the IP flow record is submitted to the Detection module,
in which it will be presented to a binary classification performed by the
GRU method. If no anomaly is detected, then the analysis starts all over
again with the evaluation of the next flow record. Otherwise, an alarm is
triggered, and the Mitigation module is invoked to generate the optimal drop
policy against the detected attack. This policy is transmitted to the SDN
controller for logic implementation, which forwards the mitigation messages
to the network’s routers and switches, securing the SDN environment. Fig.
3 summarizes the drop policy generation through the mitigation approach
proposed in this paper.

As presented by Fig. 3, the Mitigation Module receives the flow record in
which the attack was detected (1). After, it extracts relevant information to
generate the drop policy. Since this paper introduces individual flow records
analysis, it is possible to identify the attacker node’s IP address directly.
Thus, this IP address is extracted (2), and a drop policy is generated. Finally,
this drop policy is sent to the SDN controller (3) for implementation.

It is essential to highlight that the defense system, unlike traditional ap-
proaches, operates autonomously, from the flow extraction to the attack’s
detection and mitigation. This characteristic is a crucial feature to guaran-
tee a fast response regarding the mitigation process, aiming to minimize the
impact caused by the attack. When an attack is detected, an alarm is trig-
gered and automatically invokes the mitigation module. This alarm is also
received by the network administrator, but only as a warning notification, as
described in Fig. 1.
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4. Gated Recurrent Units to detect network attacks

Deep learning methods are becoming increasingly popular among re-
searchers through its usage in various applications aiming to detect computer
network attacks and anomalies. Deep learning is a class of machine learning
that can retrieve patterns in complex data and, therefore, is widely applied
to problems of image recognition, pattern classification, and time series pre-
diction (McDermott et al., 2018). Deep learning stands for the concept of
successive layers of representations, as its depth is known as the number of
layers representing a model. Deep learning approaches typically use three
or more layers of representation, whereas “shallow” learning models, such as
Multi-Layered Perceptron (MLP), operates through only one or two layers
of learning.

One of the most significant benefits of deep learning methods is the ab-
sence of manual feature engineering (McDermott et al., 2018). Therefore,
there is no need for prior feature selection, as these methods can automati-
cally find patterns among massive datasets during the training step. These
patterns are identified, for instance, by weight matrices, which are used to
give more “importance” to features that most impact the classification pro-
cess. Since IP flow protocols provide a wide range of different dimensions
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to describe network communications, some elaborate attack patterns, some-
times less evident to human eyes, can be extracted from the dataset, which
significantly improves the classification outcomes.
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Among the different deep learning approaches, the recurrent ones are
promising on the detection of network anomalies and attacks. Unlike the so-
called feedforward networks, such as densely connected and convolutional
networks, Recurrent Neural Networks (RNN) have memory, i.e., consid-
ers past information on prediction/classification process (McDermott et al.,
2018). This memory is an essential feature to detecting anomalies, since the
state of the network before the occurrence of an attack (previously analyzed
[P flows) may be used as well as the current analyzed flow behavior itself
to generate alarms. In short, RNNs handle sequences by iterating through
the elements of the series and maintaining a state that contains information
about what it has seen so far Cho et al. (2014).

However, RNNs have an issue known as vanishing gradient problem. Al-
though this network should theoretically be able to retain information about
inputs seen many timesteps before, in practice, RNN are unable to learn
long-term dependencies (He and Droppo, 2016). In short, this occurs be-
cause successive operations in long-term data gradually reduce their signif-
icance and, thus, the more in-depth the analysis, the less meaningful these
data are to influence the network outcome (Bengio et al., 1994).

Different approaches have been proposed to address this problem, while
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the most commonly used in literature is the Long-Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997). This method implements a series of
mechanisms called gates, which can regulate learning and forgetfulness rates,
guaranteeing that long-term data maintains its influence over recent predic-
tions. Recently, Cho et al. (2014) proposed a modified version of the LSTM
called Gated Recurrent Units (GRU), which summarizes the operation of
LSTMs by reducing the number of gates while maintaining the relevance of
long-term memories (Cho et al., 2014). The efficiency of LSTM and GRU
differs regarding the application they are being applied to, as both were not
significantly different in classification accuracy (Zhang et al., 2018). How-
ever, GRU has fewer tensor operations in comparison to LSTM, which makes
its training process faster.

In this paper, we propose the usage of the GRU method for detecting
DDoS and intrusion attacks over SDN environments. This method, as well
as LSTM, operates through the utilization of gates that are different neu-
ral networks that decide which information should be forgotten or retained.
GRUs works using two gates, the Update and Reset ones. The first one
is responsible for defining what information regarding a new entry will be
forgotten and what new information will be added. In contrast, the second
one describes how much long-term or past data will be forgotten. Fig. 4
represents the operation of a GRU cell and its gates.

As presented by Fig. 4, h;_; stands for the hidden state of time interval
t — 1, while z; and h, represents input data and output hidden state on the
current interval ¢, respectively.

As previously stated, gates are different neural networks used to define
which information to forget or retain. As shown in Fig. 4, both gates operate
through a sigmoidal activation function, which is applied to simplify this
process since it normalizes its output in values between 0 and 1. Thus, any
value multiplied by 0 will be forgotten, while values multiplied by 1 will be
kept.

To compute the value of h;, the cell starts by concatenating h; ; and
x¢, and then submitting the resulting vector to the Reset and Update gates,
obtaining their output 7, and u; through Eq. (1) and (2), respectively.

ry = O'(WT . [htfl,‘ft] -+ br> (1>
up = o(Wy - [hee1, 2] + by), (2)
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where W, and W,, stand for the weight matrices of the neural networks, while
b. and b, are the neural networks’ bias vector. Then, a pointwise multiply
is performed between r, and h;_;, and the result is concatenated with x;
and submitted to a third neural network, with a Hyperbolic Tangent (tanh)
activation function this time. The use of tanh normalize data between —1
and 1, regulating the output of the neural network and preventing data from
being over or undersized between iterations. The output h; of this neural
network is computed through Eq. (3).

Fully-Connected
GRU Layer Dropout Layer Layer Dense layer

Input Layer

Dropout

(a) (b)

Figure 5: GRU architecture through a high-level representation (a), and through a tradi-
tional neural network representation (b).

he = tanh(W, - [ry % hy_1, 2] + b), (3)

where W, and b, stand for the weight matrix and bias vector of the neural
network, respectively. The outcome of the Update gate u; is used for two
situations. On the first one, it decides which part of the new information
to add by multiplying its outcome with h.. In the second one, it determines
which data to throw away by pointwise multiplying h;_; with 1 —u,. Finally,
a pointwise addition is performed between these two outputs, generating the
GRU cell’s result, the hidden state h;. Eq. (4) describes this situation.

ht = (1 — Ut) * ht_l + Uy * };t (4)
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As this process describes the operation of a single GRU cell, the depth of
this network is represented by the number of cells C' used to fit the classifi-
cation regarding the stated problem.

The configuration of the GRU implemented in this paper is described in
Fig. 5.

The architecture of the network is composed of a GRU layer (C' = 32),
followed by a Dropout layer (drop rate of 0.5), added to save the system from
overfitting, and a Fully-Connected layer (h = 10 neurons) that performs a
global model classification. The output is given by a single neuron (Dense
layer) with a sigmoid activation function for binary classification, i.e., clas-
sifying the flow as legitimate or malicious. The parameter estimation of the
referred values was defined through extensive empirical testing.

Figs. 6 and 7 present the result of the tests that supported the choice of
GRU network parameters, which are the number of GRU cells and the num-
ber of neurons on the fully-connected layer. Fig. 6 tests different quantities
of GRU cells regarding the accuracy and number of analyzed flows per sec-
ond. This test was performed through the use of the CICDDoS 2019 dataset.
As observed, the more cells are added to the GRU layer, the better are the
classification results. However, it is essential to consider the number of flows
per second the model can classify since the proposed system aims to ana-
lyze individual records. As shown by this figure, GRU achieves a balanced
tradeoff between accuracy and flow throughput with 32 cells, presenting an
efficient and feasible outcome.

Fig. 7 compares the usage of different amounts of neurons at the fully
connected layer, also examining the efficiency of GRU regarding accuracy
and IP flow throughput. This test was performed using the CICIDS 2018
dataset, as the results achieved using the CICDDoS 2019 dataset are similar
to each other. This graph shows that this layer does not considerably influ-
ence the number of analyzed flows/s that the neural network can analyze.
Furthermore, the lowest accuracy rate was achieved with 0 neurons, i.e.,
without adding the fully-connected layer before the output one. Since the
accuracy levels seem to achieve similar outcomes with 10 or more neurons,
we set A = 10 neurons to reduce computational cost.

The drop rate at the Dropout layer was chosen based on Srivastava et al.
(2014), in which the authors state that 0.5 appears to be near to optimal for
most networks and tasks.
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Figure 6: Comparison of different numbers of GRU cells regarding accuracy and amount
of analyzed flows per second through the CICDDoS 2019 dataset.

5. Tests and results

This section analyzes the performance results relating to the detection
and mitigation modules for the security system. We have applied the GRU
method together with the directed mitigation approach. Aiming this ob-
jective, we compared the proposed method with the following detection ap-
proaches: Deep Neural Network (DNN) (Abdulhammed et al., 2019), Con-
volutional Neural Network (CNN) (Kwon et al., 2018), Long-Short Term
Memory (LSTM) (Qin et al., 2018), Support Vector Machine (SVM) (Lei,
2017), Logistic Regression (LR) (Yadav and Selvakumar, 2015), k-Nearest
Neighbors (kNN) (Divyatmika and Sreeckesh, 2016) and Gradient Descent
(GD) (Wijnhoven and de With, 2010). These methods were selected based
on related works, as they represent efficient and feasible approaches for ap-
plication environments similar to the one proposed in this work.

All methods were implemented using Python, Keras (GRU, LSTM, CNN,
and DNN), and Sklearn (SVM, LR, kNN, and GD), on a computer using
Windows 10 64bit, Intel Core i7 2.8GHz, and 8GB of RAM. DNN was im-
plemented using 3 hidden layers, composed of 100, 40, and 10 neurons. CNN
was implemented using 3 layers, with 64, 32, and 16 filters with kernel size
of 16, 8, and 3, respectively. LSTM was configurated with 32 units, similarly
to our GRU implementation. The SVM method was configured with a linear
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Figure 7: Comparison of different numbers of neurons at the fully-connected layer regard-
ing accuracy and amount of analyzed flows per second through the CICIDS 2018 dataset.

kernel. kNN method, in turn, was defined with the number of neighbors
equals 3. Finally, LR and GD were configurated with Sklearn default values.
All methods were tested through 100 epochs, as many methods converge with
fewer iterations.

To compare the efficiency of the tested methods, we applied traditional
classification metrics, such as accuracy, precision, recall, and f-measure. The
accuracy presents the percentage of correctly classified flow records. Precision
is used to measure the ratio of IP flows correctly recognized as abnormal
among all the samples classified as unusual. The recall metric estimates
the percentage of correctness for anomalous flows. F-measure represents
the harmonic mean between true-positive rate (malicious flows classified as
anomalous) and precision.

Two different test scenarios were used in this performance analysis, both
of them using public datasets. Furthermore, we tested the number of flows
per second the anomaly detection approaches can process since it is a vital
feature for the system’s operation. In the next sections, we describe each test
scenario and present the results achieved by the tested methods on them.

5.1. Scenario 1 - CICDDoS 2019 Dataset

We applied simulated IP flows collected from the public dataset CICDDoS
2019 (Sharafaldin et al., 2019). The authors generate realistic background
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traffic profiled through B-Profile System (Sharafaldin et al., 2017) to abstract
the behavior of human communications for legitimate traffic through different
protocols, such as HT'TP, FTP, and SSH. In this dataset, the authors simulate
the behavior of 25 users.

The CICDDoS 2019 dataset separates the data into two days. The first
one is a training day, containing 12 types of different DDoS attacks, including
DNS, MSSQL, Syn, NetBIOS, LDAP, SNMP, NTP, UDP-Lag, SSDP, Web-
DDoS, TETP and UDP. The second is a testing day, containing 6 different
types of DDoS attacks, which are Syn, UDP, NetBIOS, LDAP, UDP-Lag,
and MSSQL.

This dataset provides data with F' = 87 extracted IP Flow features,
such as source and destination IP addresses and ports, protocols, several
flags, counters, and flow identification features. However, we used only 83
features since the dimensions “source and destination IP address,” “source
port” and “Flow ID” was not used for training to avoid data bias. The
“destination port” feature was maintained since several network applications
operate through a default port, which could help the detection of attacks at
specific servers. The remaining data was submitted to a formatting process

to convert qualitative features into quantitative ones like described in section
3.

@ Accuracy [ Precision Recall [ F-Measure
100
97.5
< 95
92.5 ‘
90 I
GRU DNN CNN LSTM SVM LR kNN GD

Figure 8: Individual results for each tested method regarding accuracy, precision, recall
and f-measure rates - first test scenario.
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Fig. 8 presents the results achieved by each method, in which, for each
one, we analyze the accuracy, precision, recall, and f-measure separately.

As observed, most tested methods achieved excellent outcomes, with met-
rics’ results near 100%. Even DNN, which fared worse than the other tested
methods, achieved an accuracy rate of around 91%. CNN method produced
better results compared to DNN but is also visually worse than the differ-
ent tested approaches. The results’ similarity achieved by the remaining
techniques is mainly due to the characteristics of the attacks used in this
scenario. Although there are some differences regarding DDoS types, they
are primarily flooding attacks, a behavioral pattern that the tested methods
seem to identify efficiently. Fig. 9 shows the average of the metrics’ outcomes
achieved by each technique. These results summarize the tested approaches’
performance outcomes into a single metric, facilitating the visualization of
which one fared better.

GRU

DNN 93.66%

onN

LSTM 99.84%

SVM 99.86%
LR 99.84%

kNN 99.89%

GD 99.86%

90.0 925 95.0 97.5 100.0

Average (%)

Figure 9: Average results for each tested method regarding accuracy, precision, recall and
f-measure rates - first test scenario.

Through the analysis of this figure, it is possible to infer that the outcomes
achieved by GRU, LSTM, SVM, LR, kNN, and GD are equally efficient in
this test scenario since the difference between them is minimal. The GRU
method fared slightly better than the other approaches, achieving one of the
most balanced outcomes between the four tested metrics.
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Aiming to measure the differences between the tested methods further,
we performed a separate analysis of the data, measuring their effectiveness on
classifying normal (specificity) and attack flows (recall or sensitivity). The
results are presented in Fig. 10.

B Normal W Attacks

90.0 92.5 95.0 97.5 100.0

%

Figure 10: Proportion of correctly identified normal (specificity) and attack (recall) IP
flows of each tested method - first test scenario.

As observed in Fig. 10, most of the methods achieved similar results
on classifying attack flows, differing mostly on the classification of the nor-
mal ones. In this test scenario, kNN and GRU achieved the best outcomes
on legitimate flow classification, with rates of 99.7% and 99.6%, respectively.
They are followed by SVM, GD, LR, LSTM, CNN, and DNN, which achieved
specificity rates of 99.1%, 99.1%, 99.0%, 98.6%, 96.1%, and 93.6%, respec-
tively. Although these results appear to have a small difference between each
other, this difference becomes more significant as the analyzed network size
increases, which directly influences the mitigation efficiency.
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5.2. Scenario 2 - CICIDS 2018 Dataset

In this test scenario, we applied simulated IP flows collected from the
public dataset CICIDS 2018 Sharafaldin et al. (2018). As described in the
previous test scenario, the authors also generate realistic background traf-
fic profiled through B-Profile System (Sharafaldin et al., 2017) to describe
human communications for legitimate traffic. In this dataset, the authors
simulate the behavior of 500 machines, 420 legitimate users, 30 server nodes,
and 50 attacking nodes. The authors used a system called M-Profile to gen-
erate different attack scenarios in which the devices operate specific tasks
accordingly to the attack’s type. They are:

e Infiltration of the network from inside;

e HTTP denial of service;

Collection of web application attacks;

e Brute force attacks;

Last updated attacks.

Unlike the previously addressed dataset, the CICIDS 2018 does not divide
the data into training and test groups. Thus, we randomly selected 66% of
the dataset for training and used the remaining 34% for testing.

This dataset provides data in two different extensions: “.pcap”, the stan-
dard extension for flow export, and “.csv”, in which the authors present data
ready for training on machine learning methods, i.e., without qualitative di-
mensions such as source and destination IP addresses and Flow ID. We used
the “.csv” files and, thus, in this scenario, the methods operate through the
usage of ' =79 features provided.

This test scenario has a more significant amount of computers performing
legitimate communications. Furthermore, intrusion attacks need to cause
minimal impact on the network’s behavior to avoid detection, unlike flooding
attacks that aim to impair network operations. These characteristics make
this test scenario a challenge for the anomaly detection approaches.

Fig. 11 presents the individual results achieved by the tested methods.

As observed, for this scenario, the methods’ results for the test metrics
are more heterogeneous. However, except for DNN, all approaches achieved
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Figure 11: Individual results for each tested method regarding accuracy, precision, recall
and f-measure rates - second test scenario.

accuracy rates higher than 90%, with GRU (97.1%), CNN (96.5%), LSTM
(96.4%) and SVM (96.6%) achieving similar results.

For the precision metric, the CNN method fared better than the other
methods, with a rate of 99.9%, followed by GRU, with a 99.4% rate. LSTM
and SVM methods achieved the similar precision rates of 98.3% and 98.2%,
respectively, followed by kNN (91.7%), GD (90.3%), LR (89.8%) and DNN
(78.6%).

For the recall metric the SVM method achieved the best outcomes with
a 95.1% rate, closely followed by LR and kNN, with rates of 95% and 94.9%,
respectively. GD and GRU achieved similar results of 94.8% and 94.7%,
respectively, and LSTM fared slightly worse than the already cited methods
in this metric, with a 94.4% rate. CNN and DNN fared worse, reaching recall
rates of 93% and 90.4%, respectively.

Finally, for the f-measure, GRU achieved better outcomes, with a 97%
rate, being closely followed by SVM (96.6%), CNN (96.4%), and LSTM
(96.3%). kNN, GD, and LR methods achieved similar results for this metric,
with rates of 93.3%, 92.5%, and 92.3%, respectively, while DNN fared worse
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Figure 12: Average results for each tested method regarding accuracy, precision, recall
and f-measure rates - second test scenario.

with a value of 84%.

Similarly to the first scenario, Fig. 12 presents the average results regard-
ing the four tested metrics, performing an overall analysis on which method
fared better.

As observed, GRU achieved better overall results, being the most bal-
anced approach regarding the accuracy, precision, recall, and f-measure re-
sults. It is followed by SVM, CNN, LSTM, which achieved similarly reason-
able overall rates. Finally, kNN, GD, LR, and DNN fared worse in compari-
son to the other tested approaches.

Similarly to the previously analyzed test scenario, we evaluate the ef-
fectiveness of the methods’ classification regarding normal (specificity) and
attack (recall or sensitivity) flows separately. The results are presented in
Fig. 13.

As shown in Fig. 13, once again, most of the methods presented similar
outcomes regarding the detection of attack flows, while the results differ
regarding the correct classification of legitimate flows. In this test scenario,
GRU and LSTM achieved the best classification results of normal flows, with
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Figure 13: Proportion of correctly identified normal (specificity) and attack (recall) IP
flows of each tested method - second test scenario.

rates of 99.7% and 98.3%, respectively. They are followed by SVM, CNN,
kNN, GD, LR, and DNN, which achieved specificity rates of 98.2%, 97.7%,
91.4%, 89.8%, 89.2%, and 75.3%, respectively.

We believe GRU fared better than the other tested methods because of
its ability to learn long-term dependencies. This characteristic improves the
classification of both normal and abnormal flows, generating more balanced
outcomes regarding precision and recall rates, unlike the other tested ap-
proaches. However, this ability is also present on the LSTM method, which
achieved inferior results in comparison to GRU in both scenarios. Accord-
ingly to Jozefowicz et al. (2015), which performed empirical evaluations to
compare both approaches, it is not clear which one present the best results.
Although both methods tend to generate similar results, one of them can be
more efficient than the other depending on the application scenario (which in-
cludes dataset size, number of analyzed features, and so on). GRU is a more
straightforward method, which enables a faster training process in compar-
ison to LSTM, which has a more complex structure to learn and describe
traffic behaviors. Even though LSTM should achieve better results in more
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massive datasets due to this characteristic, we can conclude that for these
test scenarios, the usage of GRU is more efficient in detecting DDoS and
intrusion attacks.

B Legitimate Flows Dropped W Malicious Flows Not Dropped
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Figure 14: Number of legitimate flows dropped and malicious flows not dropped for each
tested method, regarding the dataset CICDDoS 2019

5.3. Mitigation outcomes

As this paper proposes the analysis of individual IP flows for attack de-
tection, it is possible to directly identify which hosts are participating in
the communication process and determine the attacker node. Therefore, a
simple, straightforward mitigation approach is presented, which drops the
identified target packets as soon as the detection occurs.

Thus, the efficiency of the mitigation is directly influenced by the de-
tection approach. To evaluate the mitigation outcomes for each detection
method tested, we analyze two metrics: i) the absolute number of normal
(legitimate) flows dropped, and ii) the absolute number of attack (malicious)
flows not dropped. These values are stacked to summarize the mitigation ap-
proach’s efficiency in each tested detection method. Fig. 14 and 15 present
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the mitigation results relating the datasets CICDDoS 2019 and CICIDS 2018,
respectively.

As observed in Fig. 14, although the kNN method dropped a lesser
amount of legitimate flows in this test scenario, it could not detect as many
DDoS intervals than GRU. Thus, GRU achieved the most balanced outcome,
guaranteeing both the detection of malicious flows and preserving legitimate
ones. Although the LSTM method achieved an outstanding mitigation rate
regarding attack flows, it was less efficient than GRU on detecting normal
ones.
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Figure 15: Number of legitimate flows dropped and malicious flows not dropped for each
tested method, regarding the dataset CICIDS 2018.

As shown in Fig. 15, GRU once more achieved the most balanced out-
comes in this test scenario. Although the amount of malicious flows not
dropped by this method is more significant than the ones conducted by SVM,
LR, kNN, and GD, it correctly identified most of the legitimate flows, reduc-
ing the impact caused to regular users.

The difference between the values presented by Fig. 14 and 15 occurs due
to the size of the test datasets, which are summarized by Table 1.
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Table 1: Amount of flows available for testing regarding both datasets CICDDoS 2019
and CICIDS 2018.

Legitimate flows | Attack flows | Total
CICDDoS 2019 (testing day) 49,763 248,815 298,578
CICIDS 2018 (33%) 906,094 907,742 1,813,836

As observed, this difference occurs due to the number of flows available
for testing, since the CICIDS 2018 testing set was six times bigger than the
CICDDoS 2019 one. Furthermore, intrusion attacks tend to be stealthier
than flooding ones, which elevates the complexity of detection. These values
were presented in an absolute form to illustrate how the network’s size influ-
ences the mitigation outcomes, especially regarding the impact on legitimate
users. Therefore, the larger the SDN network (regarding the throughput of
[P flows), the more evident is the difference in detection of the evaluated
methods.

Since this mitigation approach directly depends on the detection method’s
efficiency, it represents a low cost, fast mitigation process. Although this
approach proved to be efficient, it may replicate misclassifications through
time. The generation of a drop time window may improve the mitigation
outcomes, which should be implemented in future works.

5.4. Feasibility of implementation

Since the proposed SDN defense system aims to inspect the traffic data
through individual flow analysis, the detection method should be both lightweight
and efficient. These characteristics are essential, since delays on the detec-
tion may impair the operation of the mitigation approach, as well as cause
more damage to the SDN.

To measure the efficiency of the presented approach, we calculate the
average number of flows per second the tested anomaly detection methods
can analyze and classify. The rates were collected through 10 different ex-
ecutions, and the results are shown in Table 2. The standard deviation of
the calculated average was added to illustrate that, in the ten executions,
the results achieved showed little variation. Thus, it can be noted that there
was no bias in the results due to external interference, such as running other
programs, for example.

As observed, the LR and GD methods are by far the fastest, in comparison
to the other methods. However, their results regarding the classification
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Table 2: Average amount of flows/s each method is able to process.

Average of Flows/s | Standard Deviation
GRU 6,469 0.044
DNN 87,561 0.008
CNN 18,318 0.408
LSTM 9,298 0.272
SVM 1,470 0.661
LR 7,344,471 0.002
kNN 1,597 1.013
GD 7,307,621 0.002

performance were among the worst tested in this paper. They are followed
by DNN, which can classify 87561 flow records per second, CNN, GRU,
LSTM, kNN, and SVM.
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Figure 16: Flow/s rates of GRU, CNN, LSTM, SVM, and kNN methods in comparison to
real data rates collected form a real-world, large-scale network.

To verify if the tested methods’ results are feasible in real-world scenarios,
we collected real IP flow data from the State University of Londrina (Brazil)
(Orion, 2020), a large-scale network composed of about 7000 different active
hosts. The data was collected for a whole week through intervals of one
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second, and, for each day, we measured the average flow/s rate. On regular
days, around 500 flows/s pass through the collector, while on heavy traffic
days, they achieved peaks of a maximum of 1681 flows/s. Fig. 16 presents the
average flow /s rates reached by the tested methods compared to the average
and worst-case rates observed through the real-world environment data. For
ease of data visualization, we removed the results of DNN, LR, and GD
from the graph. Although these methods achieved a much higher flow /s rate
compared to the others, they presented inferior outcomes regarding attack
detection. Thus, Fig. 16 shows the comparison of the most efficient detection
methods.

By comparing the achieved results with the real collected data, we con-
clude that GRU is a feasible method for real-world anomaly detection. In this
case study, it was able to analyze around two times the amount of flows/s re-
quired in dense traffic situations, operating within the limited CPU and mem-
ory resources of a personal computer. Furthermore, it presented the most
balanced results regarding the accuracy, precision, recall, and f-measure for
both test scenarios. Thus, it is possible to conclude that GRU is a promising
method to operate within the Detection module of the proposed SDN defense
System.

6. Conclusions and Future Work

In this paper, we proposed an SDN defense system against intrusion and
DDoS attacks. This approach can protect the SDN central controller against
situations that may compromise it, consequently impairing the network op-
eration. The proposed system is composed of two main parts, the Detection
and Mitigation modules. The Detection module is responsible for detecting
the occurrence of attacks, while the Mitigation module takes the required
countermeasures to reduce its impact over the network and, consequently, its
users. The proposed approach individually analyzes and classifies IP flows
into normal or abnormal, which enables a faster detection process that con-
tributes to minimizing the attack’s influence over the SDN controller. Fur-
thermore, this individualized analysis of IP flows can easily identify attackers
and their targets through feature extraction.

We also propose the usage of the Gated Recurrent Units (GRU) method
on the system’s Detection module. GRU is a recurrent deep learning ap-
proach that simplifies the operation of the Long-Short Term Memory (LSTM)
method while maintaining similar performance outcomes. To test the ef-
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ficiency of the proposed method, we compare it with seven different ap-
proaches. They are Dense Neural Network (DNN), Convolutional Neural
Network (CNN), Long-Short Term Memory (LSTM), Support Vector Ma-
chine (SVM), Logistic Regression (LR), k-Nearest Neighbors (kNN), and
Gradient Descent (GD).

All methods were tested over two different scenarios, both of them using
public datasets. The first test scenario uses the CICDDoS 2019 dataset and
measures the methods over various types of DDoS attacks, where most of
the tested methods achieved similarly good results. The second one uses the
CICIDS 2018 dataset, providing different kinds of intrusion attacks for the
methods’ testing. In this scenario, the results are more heterogeneous since
the emulated network is composed of more devices, and these attacks tend
to be stealthier than flooding ones. GRU achieved the best overall results
in both scenarios, presenting the most balanced outcomes regarding the ac-
curacy, precision, recall, and f-measure. We believe GRU fared better than
the other tested methods because of its ability to learn long-term dependen-
cies. Since GRU outperformed all other evaluated methods on classifying
legitimate flows, we conclude that this characteristic represents a significant
advantage of the GRU compared to them.

Furthermore, we measured the number of flows per second each method
can analyze and classify since speed is an essential feature for the proposed
system. We compared the outcomes with real data collected from a large-
scale network and, added to the results obtained through both test scenarios,
concluded that GRU is a promising and feasible approach for anomaly de-
tection in real-world SDN environments.

Finally, we proposed a directed mitigation schema, a straightforward ap-
proach based on using the individualized flow information provided by the
Detection Module. By identifying the attacker IP, the system can gener-
ate an individual drop policy against it. Therefore, although this mitigation
schema proved to be efficient in the evaluated test scenarios, it is directly
influenced by the detection method’s performance.

For future work, we intend to use the GRU method as a multi-label
classifier, able not only to detect the occurrence of anomalies but also to
identify them. Moreover, we want to estimate and evaluate a drop time
window usage on the Mitigation Module, calculating the optimal time to
minimize the computational cost and improve the mitigation outcomes. We
believe that these modifications can significantly improve the performance of
the proposed system. Finally, we intend to compare the presented method
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with other learning approaches, such as the ensembles algorithms and Deep
Reinforcement Learning.
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