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ABSTRACT

We show how the static dielectric function and other static characteristics of dense warm charged Fermi liquids can be obtained exclusively
from the system static structure factor. The non-perturbative self-consistent method of moments is employed to extend onto quantum fluids,
a similar reduction stemming from the fluctuation-dissipation theorem and other exact relations for classical one-component plasmas. The
results are compared to and complement the numerical data obtained recently by the path-integral Monte Carlo method. Alternative theoret-
ical approaches are discussed and employed as well.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062259

I. INTRODUCTION

Contemporary numerical methods of investigation of the proper-
ties, both static and dynamic, of strongly coupled plasmas and warm
dense matter, in particular, Ref. 1 are, certainly, very fruitful, especially,
when real experiments are rare and seldom admit simple interpreta-
tion. Such an interpretation cannot avoid using model considerations.
Indeed, to mention a few examples that are the most known and useful
for the purpose of the present work: the Kohn–Sham density func-
tional theory (KS DFT)2–4 and the faster orbital-free DFT5 are based
on the Thomas–Fermi model, while molecular dynamics (MD) and
the quantum-mechanical MD methods need a model effective poten-
tial and the DFT input. Even most advanced path-integral Monte
Carlo (PIMC) methods1,6,7 using contemporary neural-network/learn-
ing developments8 while being, in principle, exact are limited to a
wavenumber range k > 2p=L (with L being the box length) and,
therefore, have to be combined, e.g., with the STLS model,9,10 etc.

Theoretical approaches are basically model ones, but they permit
for an insight, which might be unavailable in numerical studies and
can clarify the dependence of the properties under scrutiny on the
physical andmodel parameters. This is why we present here a theoreti-
cal description of recently achieved ab initio PIMC data on the static
properties of a dense warm uniform electron gas (UEG), which is a
one-component normal quantum liquid of charged fermions.11 Our
aim is to express the static dielectric function and other static

characteristics of such a Fermi liquid in terms of the system static
structure factor (SSF). This connection is well-known for classical flu-
ids as it stems from the fluctuation-dissipation theorem. For quantum
liquids, we present two versions of this relation, without and with the
energy dissipation processes taken into account. Our analysis is based
on sum rules and other exact properties so that the above reduction
relations are effectively interconnections between two different sum
rules. The mathematical nature and the robustness of the proposed
approach permit one to show that under the warm-dense-matter con-
ditions, the obtained relations produce results that are in agreement
with the PIMC data even when instead of using the proper static struc-
ture factor, we employ two different SSF fittings formally valid for clas-
sical one-component Coulomb systems only. We deal here with a
weakly coupled quantum fluid so that it is not surprising that the stan-
dard random-phase approximation (RPA) provides consistent results
for its static characteristics as well. The systems we consider are pre-
sumed to be in thermal equilibrium.

One cannot effectively separate the static properties of a
Coulomb system from its dynamic characteristics. On the other hand,
if we wish to study the dynamic properties of a dense warm electron
gas, we think in the first place of the quasi-localized charge approxima-
tion (QLCA)12 and the memory-function model.13,14 As it is well
known,15 either not all of available sum rules are taken into account in
these approaches or to satisfy the coupling-related sum rule, some
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adjustment to the simulation data are required. This is not the case if
one applies the moment approach, specifically, its self-consistent ver-
sion complemented by physical considerations.16–18 Like the QLCA,
this approach connects the static structural correlation properties of
quantum liquids of charged fermions to their dynamic, time depen-
dent collective behavior, but unlike the QLCA, it does it with the
account of the energy dissipation effects. This is another reason for the
detailed analysis of the static properties of quantum Coulomb liquids
carried out in this work. This analysis includes several alternative
approaches, in particular, the one based on the random-phase approx-
imation and the RPA improved by a static local-field correction.

In a finite-temperature one-component charged Fermi liquid, the
density-density dynamic structure factor (DSF)

S k;xð Þ ¼
ð1
�1
hq k; tð Þq �k; 0ð Þi exp ixtð Þdt; (1)

with the expectation value h� � �i calculated with respect to the unper-
turbed Hamiltonian is the spectral density of the system longitudinal
inverse dielectric function only in the limiting case of classical statis-
tics. Otherwise, a model for the DSF is needed to determine the static
dielectric function and other static characteristics like the static
response function. Such a DSF model can be constructed in the
random-phase or the extended random-phase approximation using
an adequate local-field correction function or within some memory-
function models. These approaches are perfectly valid in the low-
density collisionless systems but begin to fail as the system density
increases and/or the system temperature is of the order of its Fermi
temperature. In the present work, we show how the self-consistent ver-
sion of the method of moments applied in Refs. 16–18 to classical one-
component plasmas can be extended to obtain a quantitative agree-
ment with the PIMC data of Refs. 1 and 7. Since in dense warm or
strongly coupled Fermi liquids, all characteristic lengths are of the
same order,1 such systems possess no small parameters, and the non-
perturbative moment approach to the description of their properties is
especially adequate. Within the moment approach, first five DSF sum
rules are satisfied automatically, and these sum rules can be calculated
from the system static structure factor independently and exactly.

This paper is organized in the following way. In Secs. II and III,
we define the parameters and characteristics we study here, introduce
the sum rules, and provide mathematical and physical aspects of the
moment method background taking into account physical properties
like the energy dissipation. The model based on the extended random-
phase approximation is then outlined along with two alternative fitting
methods involving the hyper-netted chain approximation. All these
approaches are then applied to determine the electron gas static char-
acteristics, which are the static structure factor

S kð Þ ¼ 1
n

ð1
�1

S k;xð Þdx ¼ 1þ n
ð
g rð Þ � 1ð Þ exp �ik � rð Þdr (2)

(n being the number density of charged particles), the zero-distance
value of the radial distribution function, gð0Þ, the static dielectric func-
tion, and the screened susceptibility. The last two characteristics are
evaluated with and without accounting for the energy dissipation. Our
numerical results are further compared to available recent numerical
data obtained using the path-integral Monte Carlo method, and the
energy dissipation is shown to be necessary to obtain a qualitative

agreement with the PIMC data. It is somewhat surprising that this
level of agreement is achieved even using the classical fittings for the
SSF. This paper is concluded with a discussion of the obtained results
and the perspectives we envisage, in particular, with respect to the new
PIMC dynamic data,20,21 see also Refs. 22 and 23. Additional mathe-
matical details are given in the supplementary material.

II. PARAMETERS AND SUM RULES

As we have mentioned, the non-perturbative method of
moments is especially auspicious when there are no small parameters
in systems whose properties we wish to describe. We refer to the stan-
dard coupling and degeneracy parameters defined, respectively, as

C ¼ be2=a ; D ¼ bEF ¼ h�1 ; rs ¼ a=aB; (3)

in a strongly coupled Coulomb system they span two or even three
orders of magnitude so that all characteristic lengths in these systems are
comparable and vary around 1Å.26 Here, a; aB, EF, and n ¼ 3=4pa3 are
theWigner–Seitz and Bohr radii, the Fermi energy, and the number den-
sity of charged particles (electrons), respectively; besides, the temperature
T ¼ ðkBbÞ�1, and

rs ¼
Ch
2

9p
4

� �2
3

¼ 1:842Ch :

In warm dense matter,1 the dimensionless parameters rs, and h
vary around 1, and in the present work, we consider this the realm of
their variation. Nevertheless, the approach we suggest is non-
perturbative so that the region of parameter values can be extended as
soon as new simulation data appear. Throughout the text, we use the
dimensionless wavenumber q¼ ka.

A. The dielectric and loss functions

Modeling of the dielectric function eðq;xÞ or the inverse dielec-
tric function e�1ðq;xÞ (the genuine response function15,27,28) of
Coulomb fluids is actively discussed in the literature29 nowadays. The
loss function associated with the inverse dielectric function,

L q;xð Þ ¼ �Ime�1 q;xð Þ=x � 0; (4)

determines the polarizational stopping power of such systems,30

the reflectivity of shock-compressed plasmas,31,32 etc. By virtue of the
fluctuation-dissipation theorem, the loss function is related to the
dynamic structure factor

S q;xð Þ ¼
q2n
3pC

B b�hxð ÞL q;xð Þ : (5)

Notice that

B xð Þ ¼ x 1� exp �xð Þð Þ�1 ’
x!0

1: (6)

In addition to the requirements of the loss function non-negativity for
8x 2 R, and the analyticity of the prolongation of the inverse dielec-
tric function onto the upper half-plane of complex frequency
Imðxþ idÞ > 0. The dielectric function analyticity might breakdown
if the static dielectric function, eðq; 0Þ, becomes negative, see Ref. 27
and references therein. The models of e�1ðq;xÞ must be conditioned
by the sum rules (which are effectively additional conservation laws),
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and other exact relations.33 Only if all these conditions are satisfied,
the strongly or moderately coupled plasma dispersion relation and
other dynamic properties can be studied in a consistent way.

The long way to the current situation with the inverse dielectric
function of a liquid of charged fermions was initiated by
Lindhard.30 This collisionless (ideal) system model was generalized
by Mermin34 and later by Das35 to take the collisions into account
in the relaxation-time approximation. Mathematical properties of
the Lindhard dielectric function were further studied in a number of
elaborate publications, see, e.g., Ref. 36. The dielectric function in
the random-phase approximation and at a non-zero temperature
was found in the seminal papers by Khana and Glyde37 and by
Gouedard and Deutsch;38 Arista and Brandt39 managed to rewrite
the RPA dielectric function in a more suitable for calculations way.
The asymptotic behavior of the RPA dielectric function was studied
in Refs. 38 and 39 in detail. These and other models of the inverse
dielectric function were tested against the sum rules in Ref. 40. The
random-phase approximation for the dielectric function was
improved by taking into account static and dynamic local-field cor-
rections.41–54 The STLS model with the static local-field correc-
tion9,10 is still considered to be a useful tool, in particular, at small
wavenumbers,1 though the employment of the static local-field cor-
rection leads to the violation of the coupling-related sum rule.40

B. The frequency power moments

The sum rules can be introduced as the loss function frequency
power moments

C� qð Þ ¼
1
p

ð1
�1

x�L q;xð Þdx; � ¼ 0; 2; 4: (7)

Notice that the odd-order moments vanish due to the symmetry of the
loss function. It is also easy to observe15,27 that by virtue of the
fluctuation-dissipation theorem (5) and the detailed balance condition

S q;�xð Þ ¼ exp �b�hxð ÞS q;xð Þ;

we have a direct relation between the moments (7) and the often
employed power moments of the dynamic structure factor

C� qð Þ ¼
3e2

aq2�h
1þ �1ð Þ�
� �

hx��1i; � ¼ 0; 1; 2; 3; 4;

where

hx‘i ¼ 1
n

ð1
�1

x‘S q;xð Þdx; ‘ ¼ �1; 0; 1; 3:

The sum rules or the moments C0ðqÞ, C2; C4ðqÞ and the characteristic
frequencies,

x1 qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2=C0 qð Þ

q
(8)

and

x2 qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C4 qð Þ=C2

q
; (9)

are known independently, they are determined by the system compo-
sition, degeneracy, and thermodynamics in terms of the moment

hx0i ¼ 1
n

ð1
�1

S q;xð Þdx ¼ S qð Þ (10)

and do not depend on the dielectric function model involved. Indeed,
it immediately stems from the Kramers–Kronig relations for the
inverse dielectric function that

C0 qð Þ ¼ 1� e�1 q; 0ð Þ; (11)

while the moment

C2 ¼ x2
p (12)

(xp being the plasma frequency) is the f-sum rule; the loss function
fourth power moment for the electron gas, which is a particular case
of one-component plasmas (OCPs), was found by Kugler55 and
Pathak and Vashishta,56 and earlier in Ref. 57, see also Refs. 58 and 59,

C4 qð Þ ¼ x4
p 1þ K qð Þ þ U qð Þ
� �

; (13)

K qð Þ ¼
q2

C
h3=2F3=2 gð Þ þ

q4

12rs
; (14)

U qð Þ ¼
1
3p

ð1
0

S pð Þ � 1
� �

f p; qð Þp2dp; (15)

where

f p; qð Þ ¼
5
6
� p2

2q2
þ p2 � q2
� �2

4q3p
ln

				 qþ p
q� p

				: (16)

Here,

FlðgÞ ¼
ð1
0

xl

exp x � gð Þ þ 1
dx

is the order-l Fermi integral, and g is the system dimensionless chemi-
cal potential determined by the normalization condition F1=2ðgÞ
¼ 2=ð3h3=2Þ. For multicomponent plasmas, these moments were
obtained in Refs. 60 and 61.

As it was said, in the present work, we obtain a direct relation
between the characteristic frequencies (8) and, thus, relate the zero
moment C0ðqÞ and the static dielectric function eðq; 0Þ to the system
static structure factor. The latter also defines the fourth frequency
moment, and it is much easier to calculate; there is a number of corre-
sponding methods, e.g., the hyper-netted chain approach and its mod-
ern modifications, see Refs. 62 and 63, and the molecular dynamics
and Monte Carlo simulations including their quantum-mechanical
versions.7

III. CANONICAL AND NON-CANONICAL SOLUTIONS
OF THE TRUNCATED HAMBURGER MOMENT
PROBLEM

The truncated classical Hamburger problem of moments64,65

consists in the reconstruction of a non-negative function MðxÞ
defined on the whole real axis by the values of a finite number of its
power moments

l‘ ¼
ð1
�1

x‘M xð Þdx; ‘ ¼ 0; 1; 2;…2t; t ¼ 0; 1; 2;…: (17)
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This problem is solvable if and only if the sequence of the moments
l0;l1;…;l2tf g is positive-definite, i.e., if

l0 > 0; det
l0 l1

l1 l2

 !
� 0;…;

det

l0 l1 � � � lt

l1 l2 � � � ltþ1

..

. ..
. . .

. ..
.

lt � � � � � � l2t

0
BBBBBB@

1
CCCCCCA
� 0:

(18)

It is obvious that a solvable truncated moment problem can possess
only an infinite number of solutions. Unique solutions occur only in
some specific cases65 hardly corresponding to real physical systems,
except for the Gauss distribution density possessing unique
properties.66

A. Canonical solutions

To satisfy the moment conditions (17), one can consider a singu-
lar density

MðxÞ ¼
X2t
‘¼0

q‘d x� n‘ð Þ; (19)

which actually consists of 2tþ 1 point “masses” located at some dis-
tinct points of the real axis, n‘f g2t‘¼0: These are the canonical solutions
of the problem. The solution presentation (19) can be substituted into
the conditions (17), and the “masses” q‘f g2t‘¼0 can be obtained directly
from the linear algebraic system with the determinant, which is the
non-zero Van der Monde determinant of an arbitrary set of distinct
numbers n‘f g2t‘¼0

1 1 � � � 1

n0 n1 � � � n2t

..

. ..
. . .

. ..
.

n2t0 n2t1 � � � n2t2t

0
BBBBBB@

1
CCCCCCA

q0

q1

..

.

q2t

0
BBBBBB@

1
CCCCCCA
¼

l0

l1

..

.

l2t

0
BBBBBB@

1
CCCCCCA
: (20)

In other words, we obtain an infinite number of canonical solutions
parametrized by the latter set of points of the real axis.

In our context, the density we consider is

MðxÞ ¼ 1
p
L q;xð Þ; (21)

so that the moments

l� ¼ C� qð Þ; � ¼ 0; 1; 2; 3; 4;

and in this five-moment approximation (t ¼ 2), one can choose five
location points as n‘f g4‘¼0¼ 0;6x1ðqÞ;6x2ðqÞ


 �
and then the solu-

tion of Eq. (20) implies that67

Lcan
2 q;xð Þ ¼ pC0 qð Þ 1�

x2
1 qð Þ

x2
2 qð Þ

 !
d xð Þ þ

x2
1 qð Þ

x2
2 qð Þ

d x2 �x2
2 qð Þ

� " #
;

(22)

i.e., there is no contribution related to the frequency x1ðqÞ. The corre-
sponding dynamic structure factor model,

S2 q;xð Þ ¼
q2n
3pC

B b�hxð ÞLcan
2 q;xð Þ; (23)

is a physically plausible result: the dynamic structure factor has
at most three extrema at the frequencies x ¼ 0 and x ¼ 6x2ðqÞ.
By integration of this last expression, we immediately obtain
that

q2C0 qð Þ 1� x2
1

x2
2

1� b�hx2

2
coth

b�hx2

2

� �� � !
¼ 3CS qð Þ;

and that

x2
1 qð Þ ¼

x2
2 qð Þ

1þ
3Cx2

2 qð Þ
q2x2

p
S qð Þ �

b�hx2 qð Þ
2

coth
b�hx2 qð Þ

2

: (24)

Certainly, the classical limiting form of Eq. (24),

x2
1 ’

�h!0

x2
pq

2

3CS qð Þ
þ

b�hx2
pq

2

6
ffiffiffi
3
p

CS qð Þ

" #2
þ O �h4ð Þ; (25)

follows also from the classical version of the fluctuation-
dissipation theorem (5). In classical systems like the classical
one-component plasmas, it connects the static dielectric func-
tion to the static structure factor. Now, by virtue of Eqs. (11) and
(8), we obtain from Eq. (24) an expression for the (inverse) static
dielectric function valid in both one-and multi-component
quantum systems

e�1ðq; 0Þ ¼ 1� 3C
q2

S qð Þ �
x2

p

x2
2
þ

b�hx2
p

2x2
coth

b�hx2

2
; (26)

where the fourth moment [(9) and (13)] plays an important role. In a
classical weakly coupled system (26) satisfies the Debye model

eðq; 0Þ ’
�h!0

q2

q2 � q2DS qð Þ
; q2D ¼ 3C;

like in the three-moment case, see Ref. 18. A detailed comparative
study of Eq. (26), in particular, at very low temperatures, is to be car-
ried out elsewhere.

We can also observe that due to the ideal screening condition11

limq!0 e�1ðqÞ ¼ 0 and the definitions [(11) and (8)] x1ðq! 0Þ
’ xp. By virtue of the definitions [(9) and (13)] in a quantum liquid,
we have also that x2ðq! 0Þ ’ xp. Thus, we recover a well-known
long-wavelength limiting form of the static structure factor valid at
any temperature48

S q! 0ð Þ ’
�hq2

2a2mxp
coth

b�hxp

2
:

We can rewrite (23) as
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S2 q;xð Þ
nS qð Þ

¼
1�

x2
1 qð Þ

x2
2 qð Þ

 !
d xð Þ þ

b�hx2
1 qð Þ

2x2 qð Þ
d x� x2 qð Þð Þ

1� exp �b�hx2 qð Þ
� �� d xþ x2 qð Þð Þ

1� exp b�hx2 qð Þ
� �

 !

1� x2
1

x2
2

1� b�hx2

2
coth

b�hx2

2

� �� � (27)

and observe that when b!1, we return to the Feynman classical
asymptotic form68

S2 q;xð Þ ¼ nS qð Þd x� x2 qð Þð Þ

and notice that at zero temperature, the system may only absorb
energy.

B. Non-canonical solutions

On the other hand, and if we look for at least continuous solu-
tions of the Hamburger moment problem, we can employ
Nevanlinna’s linear fractional transformation (theorem)64,69,70ð1

�1

M xð Þdx
z � x

¼ Etþ1 zð Þ þ Rt zð ÞEt zð Þ
Dtþ1 zð Þ þ Rt zð ÞDt zð Þ ; (28)

which provides a bijection between the non-canonical solutions of the
Hamburger problem and the Nevanlinna parameter functions (NPFs),
Rtðz ¼ xþ idÞ. Any NPF, exactly like any response (Nevanlinna)
function, must be analytic and possess a non-negative imaginary part
in the upper half-plane d > 0, being at least continuous on its closure
d ¼ 0. In addition, the NPF must (uniformly within any angle
# � argðzÞ � p� #; 0 < # < p) satisfy the following limiting
condition:

lim
z!1

Rt zð Þ
z
¼ 0: (29)

This important property of the NPF guarantees the automatic satisfac-
tion, by the density MðxÞ, of the involved sum rules. The coefficients
of the one-to-one transformation MðxÞ $ RtðzÞ, Eq. (28), are real
orthogonal polynomials with the weight MðxÞ,40,64,70 which possess
only real alternating zeros.64 Precisely, for an even density (21),

D0 ¼ 1; D1 zð Þ ¼ z; D2 zð Þ ¼ z2 � x2
1;

D3 zð Þ ¼ z z2 � x2
2

� �
;…;

E0 ¼ 0; E1 ¼ C0; E2 zð Þ ¼ C0z;

E3 zð Þ ¼ C0 z2 � x2
2 � x2

1

� �� �
;…;

(30)

with the characteristic frequencies [(8) and (9)] so that

x2
2 � x2

1 ¼
1

C0C2
2

det
C0 0 C2

0 C2 0
C2 0 C4

0
@

1
A

2
4

3
5 � 0: (31)

This last inequality stems from the H€older or Cauchy–
Bunyakovsky–Schwarz inequality40,60 with the equality taking place
when q ¼ 0. For more details, see Refs. 65 and 70. The positivity of
the difference (31) was employed in Refs. 16, 17, and 63 to control the
quality of different numerical methods of calculation of OCP static
structural characteristics.

Observe that the inequality (31) also implies the solvability condi-
tion of the Hamburger truncated moment problem so that by virtue of
Eq. (28) for t ¼ 2, using the Sochocki–Plemelj–Dirac formula

1
x0 � x� i0þ

¼ P

x0 � x
þ pid x0 � xð Þ (32)

(P standing for the Cauchy principal value), and the polynomials (30)
we immediately obtain the loss function

L2 q;xð Þ
C0 qð Þ

¼ Im
x2

2 � x2
1 � x xþ R2ð Þ

x x2 � x2
2

� �
þ R2 x2 � x2

1

� �
¼

x2
1 x2

2 � x2
1

� �
ImR2

jx x2 � x2
2

� �
þ R2 x2 � x2

1

� �
j2
; x ¼ Re z þ i0þð Þ:

(33)

This expression involves the Nevanlinna parameter function, which
acquires now the dependence on the dimensionless wavenumber q,
and which we model here by its static value

R2 0; qð Þ ¼ ih0 qð Þ; h0 qð Þ > 0: (34)

The latter was determined in Ref. 16 on the basis of a physical observa-
tion (the loss function possesses an extremum at x ¼ 0) in terms of
the characteristic frequencies x1ðqÞ and x2ðqÞ

h0 qð Þ ¼
x2

2 qð Þffiffiffi
2
p

x1 qð Þ
; (35)

so that

L2 q;xð Þ
C0 qð Þ

¼
x2

1 x2
2 � x2

1

� �
h0

x2 x2 � x2
2

� �2 þ h20 x2 � x2
1

� �2 : (36)

Hence, due to the Kramers–Kronig relations, we obtain the following
model for the inverse dielectric function:

e�1 q;xð Þ ¼ 1þ
x2

p xþ ih0 qð Þ
� �

x x2 � x2
2 qð Þ

� �
þ ih0 qð Þ x2 � x2

1 qð Þ
� �

¼ 1þ
x2

p

ffiffiffi
2
p

xx1 qð Þ þ ix2
2 qð Þ

� 
ffiffiffi
2
p

xx1 qð Þ x2 � x2
2 qð Þ

� �
þ ix2

2 qð Þ x2 � x2
1 qð Þ

� � :
(37)

Notice that, in general, this (inverse) dielectric function satisfies the
sum rules for any Nevanlinna parameter function from a certain
(Nevanlinna64) mathematical class. It is shown in Sec. 2.1 of the
supplementary material how solution (36) converts into (22) if we
neglect the energy dissipation, i.e., consider the limiting form of
Eq. (36) when ImR2ðx; qÞ ! 0.
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In what follows, we present various methods of calculation of the
system static structure factor, the frequency x1ðqÞ, the static dielectric
function, and the screened susceptibility compared to the available
numerical data.

C. Taking the energy dissipation into account

The dynamic properties of the quantum Coulomb systems we try
to describe here include not only the dynamic structure factor stem-
ming from Eqs. (5) and (33) or (36) but also the complex frequencies
of the collective modes existing in the system: the unshifted (diffusion)
and shifted ones,

xus qð Þ ¼ �ia qð Þ ; x6sh qð Þ ¼ 6W qð Þ � ib qð Þ: (38)

These parameters are to be obtained by resolving the dispersion equa-
tion eðq; zÞ ¼ 0 orffiffiffi

2
p

zx1 qð Þ z2 � x2
2 qð Þ

� 
þ ix2

2 qð Þ z2 � x2
1 qð Þ

� 
¼ 0; (39)

exactly, using the Cardano formulas (see Refs. 16 and 71)

xus qð Þ ¼ �ia qð Þ ¼ �w2X � wY � ih0=3;

x�sh qð Þ ¼ �W qð Þ � ib qð Þ ¼ �X � Y � ih0=3;

xsh qð Þ ¼W qð Þ � ib qð Þ ¼ �wX � w2Y � ih0=3:

(40)

Here, w ¼ exp ð2pi=3Þ and

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0V2=2iþ Z33

p
; Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0V2=2i� Z33

p
;

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� x2

2=3� h20=9
� �3 � h0V2=2ð Þ2

q
;

V2 ¼ �x2
2=3þ x2

1 þ 2h20=27;

(41)

the intrinsically positive decay parameters aðqÞ and bðqÞ in Eq. (38)
being the decrements of the corresponding collective modes. If these
decrements are relatively small, the above canonical solutions are
applicable and relation (24) is valid. The energy dissipation processes
can be accounted for to specify relation (24). To this end, one can inte-
grate the t ¼ 2 expression for the dynamic structure factor

S q;xð Þ ¼
q2n
3pC

x2
p x2

2 � x2
1

� �
h0B b�hxð Þ

x2 x2 � x2
2

� �2 þ h20 x2 � x2
1

� �2 (42)

analytically. Thus, an equation relating the characteristic frequency
x1ðqÞ to x2ðqÞ and the measurable SSF SðqÞ can be obtained, see Sec.
1 in the supplementary material. This allows for the incorporation of
additional information not related to the sum rules or the moments
and taking the energy dissipation into account. In Sec. V, we provide a
numerical solution for the characteristic frequency x1ðqÞ compared to
the similar results obtained by other methods described there.

We observe that the above relations between the characteristic
frequencies x1ðqÞ and x2ðqÞ and the SSF close our algorithm of calcu-
lation of the static properties, which permits one to express the latter
in terms of the SSF data determined independently. The interconnec-
tions between the frequencies x1ðqÞ andx2ðqÞ are effectively relations
between the moments (or sum rules) C0ðqÞ and C4ðqÞ since the
moment C2 ¼ x2

p is the f-sum rule, which is the density conservation
law. The frequency x1ðqÞ is directly related to the system static dielec-
tric function, see Eqs. (8) and (11), while x2ðqÞ is determined by the

static structure factor [the moment (10)], via Eqs. (9), (13), and (15).
Thus, the established relations between the frequencies x1ðqÞ and
x2ðqÞ provide connections between the static dielectric function and
the static structure factor, and they are extensions of the classical rela-
tion, which follows from Eq. (25)

e�1classical q; 0ð Þ ¼ 1�
3CS qð Þ
q2

:

The first of these extensions is Eq. (26); we can observe that

b�hx2
p

2x2
coth

b�hx2

2
�

x2
p

x2
2
’

�h!0

bxp�h
� �2

12
þ O �h4ð Þ:

The energy dissipation processes are not included in the derivation of
Eq. (26). The second one is obtained implicitly by the frequency inte-
gration of Eq. (42); it is demonstrated in the supplementary material
[Eq. (12)] that if the static NPF imaginary part h0ðqÞ responsible in
our model for the energy dissipation decreases, the second relation
between the static dielectric function and the static structure factor of
a quantum liquid of charged fermions reduces to Eq. (26). In addition,
we show in Sec. V that even if we use instead of a proper SSF some fit-
ting (see Sec. IV) formally valid in classical one-component plasmas
only, the results for the static characteristics are still in agreement with
the PIMC data.

IV. ADDITIONAL THEORETICAL ALGORITHMS
A. The local-field corrected RPA

Here, we want to update the extended-RPA approach to the cal-
culation of the quantum Fermi liquid SSF and the radial distribution
function (RDF), particularly, the zero-separation value of the latter,
gð0Þ, introduced in Ref. 72 and applied in Ref. 73. The dynamic local-
field correction (DLFC) function and its relation to the Nevanlinna
parameter function are discussed in Ref. 18. Contemporary simulation
data on the DLFC can be found in Ref. 20. Here, like in Ref. 9, we
employ the static local-field correction function approximation. Then,
the electron liquid static structure factor is defined as in Ref. 10,

S qð Þ ¼
1
bn

X1
l¼�1

P0 q; zlð Þ
1þ / qð Þ 1� G qð Þ

� �
P0 q; zlð Þ

; (43)

where /ðqÞ ¼ 4pe2a2=q2; GðqÞ is the static local-field correction
function and P0ðq; zlÞ is the polarization function in the random-
phase approximation39,40 at the Matsubara frequencies zl ¼ 2pil=b�h.
As to GðqÞ, here we use the model suggested back in Ref. 72,

G qð Þ ¼
q2

aq2s þ bq2
; (44)

where

b ¼ 1� g 0ð Þ
� ��1

; (45)

g 0ð Þ ¼ 1þ 2
3p

ð1
0

S pð Þ � 1
� �

p2dp; (46)

which is the zero-distance value of the radial distribution function

q2s ¼
ffiffiffiffiffi
18
p2

3

r ffiffiffi
h
p

F�1=2 gð Þrs;
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and the parameter a is determined from the compressibility sum rule

lim
q!0

q2

q2D

 !�1
q2

aq2s þ bq2

 !
¼ 1� b

@P
@n

� �
b
:

Notice that

q2D
q2s
¼ 4

3
h�

3
2F�1�1=2 gð Þ;

where q2D ¼ 3C is the Debye dimensionless wavenumber squared, and
that in the present work, we make use of the equation of state of the
paramagnetic UEG

P ¼ n
b
þ n
3b

2f rs; hð Þ þ rs
@f rs; hð Þ
@rs

� �
;

found in Ref. 19 by the PIMC simulation method. In addition, to avoid
inconsistencies related to gð0Þ, we carried out the reiteration proce-
dure via Eqs. (43)–(46). This procedure turned out to be rapidly con-
vergent, and the results for the parameter gð0Þ are presented in Sec.
VC in comparison with alternative relevant data. Comparison of these
results to the recent PIMC data on gð0Þ23 is beyond the scope of the
present work.

B. Static structure factor fitting models

In our calculations, we were also employing two different fittings
of the modified hypernetted-chain (MHNC) results. The first fitting
was obtained by Bretonnet and Derouiche.74 The authors of that work
used the direct correlation function cðr=aÞ in a form consistent with
features of the one-component plasma and derived a simple analytic
expression for the OCP SSF S(q)

S qð Þ¼ 1� 3C
q4a22

cos qa1ð Þþ2cos qa2ð Þ�3
sin qa1ð Þ
qa1

� �� ��1
: (47)

This relation (47), which satisfies the perfect screening condition,

S q! 0ð Þ ’
q2

3C
;

was then fitted to the modified hyper-netted-chain data of the classi-
cal one-component plasma SSF, tabulated by Rogers et al.75 for
0:1 � q � 25:0 and 0:1 � C � 180. Some 8 years later, Young
et al.76 used a nonlinear least squares fitting program to find an ana-
lytic fit to the classical one-component plasma SSF S(q) over the
ranges 0 � q � 21:75 and 1 � C � 225. The S(q) function was
generated in that work as a table stemming from the solution of the
modified hypernetted chain integral equation, and the table was
fitted with polynomials in q and C, using a total of 175 coefficients.
Though these fittings were designed for classical OCPs, overall agree-
ment with alternative results is quite satisfactory.

V. NUMERICAL RESULTS

We have constructed two different approaches to the determina-
tion of the characteristic frequency

x1 qð Þ ¼
xpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�1 qð Þ
q

and, hence, of the static dielectric function eðqÞ and the static screened
response function

v qð Þ ¼
q2

3C
1� e�1 qð Þ
� 

: (48)

The first approach is obtained from a specific, physically motivated
canonical solution (22) of the Hamburger truncated moment problem,
and it does not take the energy dissipation in the system into account.
The second one is based on the non-canonical solution of this moment
problem and does account for the energy dissipation processes in the
system, and this approach is described in Sec. III C. Its idea is to inte-
grate Nevanlinna’s five-moment expression for the dynamic structure
factor specified by the static model for the Nevanlinna parameter func-
tion [(34) and (35)] analytically and to equalize the integral which
depends only on the frequencies x1ðqÞ and x2ðqÞ to a model SSF.
The latter can be precalculated using the same SSF, Eqs. (9) and
(13)–(15). Thus, an equation is obtained with a unique unknown vari-
able, the frequency x1ðqÞ, and this procedure is described in detail in
Sec. IIIC. We have solved this equation numerically by the program
Mathematica and have determined other static characteristics. Then
we have compared these results to the PIMC data for a uniform warm
dense electron gas. To this end, we had to employ some models of the
Fermi liquid static structure factor SðqÞ. In these calculations, S(q) was
evaluated by four different algorithms discussed above: (i) using the
SSF found by the PIMC method itself, the corresponding results are
labeled in Figs. 1–8 “Groth model,” see Ref. 19; (ii) with the proper
SSF evaluated in the extended temperature-dependent random-phase
approximation72 using the data on the correlation free energy of Ref. 6
by the procedure described in Sec. IVA, in these cases the label
“Adamjan model” was used. The labels “Bretonnet model” and
“Young model” correspond to the same procedure but using (iii) the
SSF data of Ref. 74 and (iv) the SSF data of Ref. 76, respectively. In
addition, we have also used the standard random-phase SSF so that in
what follows in each figure, there appear six types of symbols, since all
these theoretical results are compared in Figs. 1–8 to the data we had
calculated for each static characteristic from the corresponding “PIMC
2020” in Ref. 7.

Thus, we present in what follows six different sets of data. To
avoid confusion, we have separated the “canonical” and “non-
canonical” sets.

A. Without energy dissipation

This approach is based on relation (24)

x1 qð Þ ¼
x2 qð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
3Cx2

2 qð Þ
q2x2

p
S qð Þ �

b�hx2 qð Þ
2

coth
b�hx2 qð Þ

2

s : (49)

We observe in Figs. 1–4 that up to q¼ 6 and at higher values of the
coupling parameter C, there are no discrepancies in the values of the
frequency x1ðqÞ obtained using the static structure factor of different
models; at higher wavenumbers, only the RPA SSF leads to the values
of this frequency very close to the PIMC data. All these differences do
not manifest themselves in the results for the dielectric function, but
the response function proves to be sensitive to the SSF employed
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at higher C, except for the RPA prediction. The inequality
x2ðqÞ � x1ðqÞ � 0 (31), which is equivalent to the H€older or
Cauchy–Bunyakovsky–Schwarz inequalities in L2, and is also the con-
dition of solvability of the five-moment Hamburger moment problem
(18), see Fig. 1, is satisfied in all cases we have considered. We notice

that the energy dissipation neglected in all non-RPAmodels affects the
results quite significantly at higher coupling and wavenumbers. It is
curious that intrinsically classical fitting models from Refs. 74 and 76
seem to produce relatively reliable results for the UEG static
characteristics.

FIG. 1. The values of the difference x2ðqÞ � x1ðqÞ at different values of rs and h. Here and in the rest of the figures, the data marked “Groth model,” “Bretonnet model,” and
“Young model” correspond to the results of Refs. 19, 74, and 76, respectively, as it is explained in the text; the results labeled “Adamjan model” were obtained within the
extended random-phase approximation,72 “PIMC 2020” were obtained from Ref. 7, and results marked “RPA” correspond to the SSF in the standard random-phase approxima-
tion. All calculations were carried out within the “canonical” approximation using relation (49) without taking into account the energy dissipation in the system.
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B. With energy dissipation

This approach presented in Sec. III C is described in detail in the
supplementary material, Sec. I. The results obtained within this
method of evaluation of static characteristics of quantum liquids of
charged fermions, at least in the case of a warm dense UEG, prove to

be in quantitative agreement with the PIMC and RPA data, and slight
deviations in the values of the response function are within the calcula-
tion precision. It is interesting that the results of theoretical calculation
of eðqÞ effectively coincide even if we employ the classical SSF fittings,
like in the dissipationless “canonical” case. This implies that we are in
a position to predict the static dielectric function of a warm dense

FIG. 2. The values of the frequency x1ðqÞ at different values of rs and h. Notations are as in Fig. 1. In all calculations, dissipationless relation (49) was used.
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quantum uniform electron gas without carrying out the PIMC simula-
tions. Once more we observe that in all cases considered inequality
(31) holds.

The numerical PIMC simulations have been carried out with a
limited number of particles (N¼ 54 particles in Ref. 23), and due to
the fermion sign problem, these simulations were restricted to small
coupling parameters, rs�0:7. To extend the range of parameters, the

authors of the simulations have to perform simulations with an even
smaller number of particles. They claim6,77 that the data on the static
structure factor only weakly depend on the particle number, but we
believe that the N-dependence and the limited range of variation of
the coupling parameter rs are intrinsic difficulties of the ab initio
PIMC simulation method. Thus, the possibility to complement the
PIMC simulations with the method-of-moments data, especially, for

FIG. 3. The values of the static dielectric function eðqÞ ¼ eðq; 0Þ at different values of rs and h. Notations are as in Fig. 1. In all calculations, dissipationless relation (49) was
used.
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moderately and strongly coupled Fermi liquids, acquires an additional
importance.

Finally, and these are the main results of the present work, we
compared the calculated values of the frequency x1ðqÞ (Fig. 2), the
static values of the dielectric function eðqÞ ¼ eðq; 0Þ (Fig. 3), and of
the screened response function (Fig. 4) widely used in Refs. 1 and 7 to
those obtained in these papers within the ab initio path-integral

quantum Monte Carlo approach and in the temperature-dependent
random-phase approximation.

The symbols used in these figures to distinguish the data
(Fig. 4) are those of Figs. 1 and 5, respectively. We observe that
there is almost no discrepancy between the PIMC data and the
results obtained within all theoretical models with energy
dissipation.

FIG. 4. The values of the screened susceptibility (48) at different values of rs and h. Notations are as in Fig. 1. In all calculations, dissipationless relation (49) was used.
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C. On the radial distribution function zero
separation value

The algorithm outlined in Sec. IVA permits us to evaluate the
zero-distance value of the radial distribution function gð0Þ, whose val-
ues are compared in Table I to those of the well-known expression by

Yasuhara78 (see also Refs. 34, 72, and 73) obtained by resummation of
electron–electron ladder diagrams

gY 0ð Þ ¼ 1
8

y
I1 yð Þ

� �2
; y ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs
p

ffiffiffiffiffiffiffiffiffi
4
9p

3

rs
; (50)

FIG. 5. The values of the difference x2ðqÞ � x1ðqÞ at different values of rs and h. Notations are as in Fig. 1. The energy dissipation was taken into account in all
calculations.
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where

I1 yð Þ ¼
1
p

ðp

0
exp yað Þcos ada

is the first-order first-kind modified Bessel function.
From Table I, we observe that under the above conditions, the

values obtained within the extended approach of Sec. IVA are very

close to the PIMC data of Ref. 19, and both are quite close to the
ground state prediction of Eq. (50), label gYð0Þ. The classical fittings of
Refs. 74 and 76, which depend only on C, lead to the “classical” values
that are closer to 1.0, though a more precise fitting of Ref. 76 does it to
a lesser extent. Nevertheless, the results presented in Table I are collat-
eral, and they are to be compared to the new results of Ref. 23 in a sep-
arate paper.

FIG. 6. The values of the frequency x1ðqÞ at different values of rs and h. Notations are as in Fig. 1. In all calculations, the energy-dissipation processes in the system were
accounted for.
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VI. CONCLUSIONS

Two versions of direct relations between the minus first and third
frequency power moments of the dynamic structure factor of a quantal
normal liquid of charged fermions or sum rules are found. These rela-
tions effectively connect the system static dielectric funtion and the
zeroth moment or the static structure factor. These connections in the

case of a warm dense electron gas are checked against the recent
numerical data obtained within the path-integral Monte Carlo
method. The quantitative agreement achieved in the present work
implies the possibility to evaluate the static characteristics of an elec-
tron gas under the conditions inaccessible for the simulations as soon
as the corresponding static structure factor is available. Numerical
agreement is attained even if the employed static structure factor is

FIG. 7. The values of the static dielectric function eðqÞ ¼ eðq; 0Þ at different values of rs and h. Notations are as in Fig. 1. In all calculations, the energy-dissipation processes
in the system were accounted for.
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obtained by a version of the intrinsically classical hyper-netted-chain
approach. This also confirms the applicability and robustness of the
employed version of the moment method. An alternative self-
consistent model,72 see Sec. IVA, using a specific form for the static
local-field correction involving the path-integral Monte Carlo data for
the uniform electron gas compressibility and the traditional
Matsubara-frequency summation, proved to be insufficient to describe

the gas static characteristics. A close agreement with the RPA results is
not astonishing since the warm-dense matter conditions are within the
realm of applicability of the random-phase approximation. Perhaps,
the local-field corrections suggested in Refs. 20–22 (see also references
therein) could provide a similar level of quantitative agreement, but
this is a topic of a subsequent publication. The model we employed for
the dynamic structure factor can be further compared to the PIMC

FIG. 8. The values of the screened susceptibility (48) at different values of rs and h. Notations are as in Fig. 1. In all calculations, the energy-dissipation processes in the
system were accounted for.
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data on the UEG dynamic properties;20,21 it also determines the static
screening effects in the electron gas. On the other hand, further devel-
opment of the present results might consist in incorporating higher-
order power moments related to the multipoint static structure factors
Sðk1; k2Þ; Sðk1; k2; k3Þ, etc., scarcely known at the moment. This task
is also beyond the scope of the present work.

Finally, our approach is valid for zero-temperature, magnetized,
and/or multi-component Coulomb systems as well. In the latter two
cases, the matrix version of the method of moments developed ear-
lier79 can be applied. An extension of the present method to the deter-
mination of the dynamic structure factor and other dynamic
characteristics of Fermi liquids of charged particles has been recently
reported at the International Conference on the Physics of Non-Ideal
Plasmas (PNP 17) in Dresden, Germany. Corresponding detailed pub-
lications including comparison with alternative approaches based on
Green’s functions80–83 or the local-field corrected random-phase
approximation84 are due.

SUPPLEMENTARY MATERIAL

See the supplementary material for some mathematical details of
procedures described in the main text. It also includes some results
from Refs. 24 and 25.
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