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The influence of autofocus lenses in the 
camera calibration process 

Carlos Ricolfe-Viala, Alicia Esparza 

Abstract—— Camera calibration is a crucial step in robotics and computer vision. Accurate camera parameters are 
necessary to achieve robust applications. Nowadays, camera calibration process consists of adjusting a set of data to a 
pin-hole model, assuming that with a reprojection error close to zero, camera parameters are correct. Since all camera 
parameters are unknown, computed results are considered true. However, the pin-hole model does not represent the 
camera behavior accurately if the autofocus is considered. Real cameras with autofocus lenses change the focal length 
slightly to obtain sharp objects in the image and this feature skews the calibration result if a unique pin-hole model is 
computed with a constant focal length.  

In this paper, a deep analysis of the camera calibration process is done to detect and strengthen its weaknesses when 
autofocus lenses is used. To demonstrate that significant errors exist in computed extrinsic parameters, the camera is 
mounted in a robot arm to know true extrinsic camera parameters with an accuracy under 1mm. It is demonstrated also 
that errors in extrinsic camera parameters are compensated with bias in intrinsic camera parameters. Since significant 
errors exist with autofocus lenses, a modification of the widely accepted camera calibration method using images of a 
planar template is presented. A pin-hole model with distance dependent focal length is proposed to improve the 
calibration process substantially. 

Index Terms— camera calibration, autofocus lenses, camera parameters coupling, 2D calibration template  

——————————      —————————— 

1 INTRODUCTION
AMERA calibration is an essential issue in ro-

botics and computer vision because it establishes 
the geometric relation between 2D image coordinates 
and 3D world coordinates [1, 2, 3, 4]. Many published 
papers explain how to obtain the correct mapping be-
tween 3D space and the 2D camera plane. Most of the 
work is based on the pin-hole camera model using 3D 
[5, 6], 2D [7, 8] or 1D [9, 10, 11, 12] templates or doing 
self-calibration [13,14]. Photogrammetric methods use 
precise coordinates of calibration points in 3D space, ar-
ranged in a predesigned 3D, 2D or 1D template.  Self-
calibration methods assume that several images of a 
rigid scene with fixed camera parameters is enough to 
compute them. 

Most existing methods propose a nonlinear minimi-
zation step that computes the correct camera parame-
ters by iteratively minimizing the difference between 
the detected control points in images and their com-
puted projections in the image plane. This difference is 
called the reprojection error [15]. A closed-form linear 
transformation solution initializes the nonlinear mini-
mization step. The closed-form solution obtains an ap-
proximation of all linear camera parameters and the 
nonlinear minimization improves this approximation, 
together with nonlinear camera parameters such as lens 
distortion. The nonlinear minimization process ends 

when the reprojection error is close to zero. If the repro-
jection error is zero, the difference between the detected 
points in the image and the control points projected by 
the computed model is also zero. In consequence, it is 
assumed that the computed model is correct. 

The problem arises when the distance from the cam-
era to the calibration template vary in each image and 
the camera focus changes the lens position to obtain a 
focused image. In this case, images with different focal 
length are used to compute a unique model with a con-
stant focal length. The reprojection error verifies that 
the computed model is satisfied with the input data, 
but it does not confirm that the computed model repre-
sents the real camera and the true camera location 
when the calibration images were taken.  

If the camera-template distance varies in each image 
and a unique model with a constant focal lenght is com-
puted, defocused images should be used. Several au-
thors propose different methods to detect template con-
trol points in defocused images accurately [16 - 22]. 
This is out of the scope of this paper.  

This aim of this paper is to analyse the influence of 
the camera focus in the results of the camera calibration 
process and to define a set of rules that will help to im-
prove the outcomes when a camera is calibrated using 
an autofocus lens. The camera is a system in which in-
trinsic and extrinsic camera parameters are tightly cou-
pled. When parameters are interdependent, a nonlinear 
minimization process that simultaneously computes all 
parameters together may not be the best choice. It is as-
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sumed that randomly acquired images reduce com-
puted camera parameters bias but this is not always 
true as pointed out by Hu and Kantor [16].  Ryusuke 
and Y. Yasushi [17] proposed a separate calibration 
method for intrinsic camera parameters, but special 
equipment and a controlled environment are required. 
Alturki [18] and Lu [19] compute the principal point 
singularly by finding orthogonal projections of the 
camera optical axis on the image plane. 

This paper proposes a calibration process of a cam-
era with autofocus lenses modifiying a well-known 
camera calibration process with a set of rules that help 
to improve the method. Section 2 analyses the camera 
calibration process using a two-dimensional template 
proposed by Zhang [4]. This analysis demonstrates that 
the interdependence of camera parameters means that 
the computed model cannot accurately represent the 
real camera in some cases. This inaccuracy arises in 
some conditions when if the final nonlinear minimiza-
tion process computes all camera parameters at the 
same time. To demonstrate the inaccuracy of the cam-
era calibration process, the camera is assembled on a 
robot arm in order to be able to accurately measure the 
extrinsic camera parameters. Computed camera pa-
rameters with a reprojection error close to zero are com-
pared to the real ones so as to note the any discrepancy 
between them. Section 3 proposes a set of tests to cali-
brate cameras with guaranties of accurate results. First, 
intrinsic camera parameters are computed depending 
on the distance of camera to the calibration template 
and second, extrinsic parameters are computed alone 
to avoid the coupling between intrinsic and extrinsic 
camera parameters. Section 4 shows results that 
demonstrate the efficiency of the proposed method. 
Upon testing the proposed method, more accurate re-
sults are obtained because intrinsic camera parameters 
are isolated and they are constant in the iterative non-
linear minimization process. Paper ends with conclu-
sions. 

2 ANALYSIS OF THE EXISTING CAMERA 
CALIBRATION PROCESS USING A 2D TEMPLATE 

Many current methods compute both camera parame-
ters and lens distortion models. The most widely im-
plemented is the method proposed by Zhang in his 

2000 paper on camera calibration [4]. This method uses 
several images of a 2D chessboard template to compute 
the camera pin-hole model represented as: 

ptRAps wc ]··[· =  (1) 
where cp = [pu, pv, 1]T is the 2D coordinates in the camera 
frame of the 3D point in the scene represented as wp = 
[px, py, pz, 1]T . As the camera model works with projec-
tive geometry, s is an arbitrary scale factor. Rotation 
matrix R and translation vector t are extrinsic parame-
ters that relate to the camera and world frames. Extrin-
sic camera parameters represent the location of the 
camera in the world. Matrix A contains intrinsic param-
eters as follows: 
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α and β are the scale factors in the u and v camera axis. 
Both scale factors are defined with the focal length f of 
the camera and the size of the camera sensor along the 
u and v axis. 𝛾𝛾 is the skewness of axis u and v in the case 
they are not orthogonal. u0 and v0 are the coordinates of 
the principal point in the image plane. Figure 1 shows 
a diagram of the pin-hole camera model parameters. 

The calibration process proposed by Zhang ends 
with an iterative nonlinear minimization process to im-
prove the computed intrinsic and extrinsic parameters, 
minimizing the reprojection error given by: 
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where n is the number of images, m is the number of 
points in the chessboard template and p^(A,Ri,ti,wpj) is 
the projection with the estimated camera parameters A, 
Ri, ti, of calibration template point wpj in the image i ac-
cording with equation (1). The aim is to reduce the dis-
tance that exists between detected points in images and 

 
Fig. 1. Pin-hole camera model parameters.  

 
Fig. 2. Robot arm ABB IRB 140 with an EoSens® 12CXP+ cam-
era of 4,096 × 3,072 pixels and sensor size of 23.04 × 23.04 mm 
active area with 18 mm lens with autofocus.  
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projected points in images using the computed model. 

2.1 Empirical test of the calibration process 
Normally, intrinsic and extrinsic camera parameters 
are unknown and the result of the calibration process is 
considered valid because the reprojection error is close 
to zero. To verify the accuracy of computed camera pa-
rameters, an empirical experiment is performed. Figure 
2 shows the setup of this experiment. It uses an 
EoSens® 12CXP+ camera of 4,096×3,072 pixels, sensor 
size of 23.04×23.04 mm active area and an 18mm auto-
focus lens. This camera is assembled on a robot arm 
ABB IRB 140 with positioning accuracy within 1 mm 
(average 0,35 mm, maximum 0.75 mm). The robot’s 
camera location coordinate point is calculated using 
positive kinematics. The robot control unit gives the lo-
cation of the end of the robot. The camera is attached to 
the end of the robot using a piece with known lengths. 
Using the location of the end of the robot and the piece 
dimensions, camera location is computed with and ac-
curacy under 1mm. The true camera locations are those 
computed with the robot arm location. As the camera 
is on a robot arm, extrinsic camera parameters can be 
accurately known when an image is taken to calibrate 
it. This allows a comparison of the calibration algo-
rithm results with the true values given by the location 
of the robot arm. Calibrating the camera with the 
widely accepted method, proposed by Zhang, which 
uses a 2D template, gives a valid solution because the 

reprojection error is close to zero. However, when com-
puted extrinsic camera parameters are compared with 
the true real ones, they are consistently revealed to be 
incorrect. 

The error in computed parameters is depicted in 
figures 3 and 4. The reprojection error defined in equa-
tion (3) has a mean value of 1,2092×e-09 with a standard 
deviation of 2,3201 pixels. The computed model pro-
jects all the template points in the images using equa-
tion (1) and 98% of distances between the projected and 
detected points in images is in a range of ±4,64 pixels. 
Since the image has a resolution of 4.096×3.072, 4,64 
pixels represent an error of 0.1%, which is small enough 
to validate the computed model. In this case, since the 
camera location is known for each image, computed ex-
trinsic parameters are compared with the true ones to 
validate the calibration result. Figure 3 shows the cali-
bration stage, including the location of cameras and 
template points, both in the capturing stage and after 
the calibration process. Locations with an asterisk de-
note the true locations when images were captured 
with the camera on the robot arm. Locations without an 
asterisk show the location of the camera given by the 
calibration process. All computed camera locations are 
100mm closer to the calibration template than the true 
location. Figure 4 shows the resulting calibration errors 
in location for coordinates x, y and z. Errors are com-
puted using the true camera location as the reference 
frame. Errors in the x and y-axis are positive and nega-
tive in a range from -75mm to 75 mm. However, errors 

 
Fig. 3. Camera locations for 10 images. True camera locations have an asterisk. They are known because the camera is assembled 
on the robot arm. Computed camera locations are denoted with the number only. Computed camera locations are all closer to the 
template by about 100 mm.  
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in Z coordinates show that the computed camera loca-
tion is always closer to the calibration template than the 
true real location by a mean value of 100mm, within a 
range from 60 mm to 160 mm. This means that, in all 
cases, the computed camera location is closer to the cal-
ibration template than the true location. Consequently, 
values for scale factors α and β are biased. 

To summarize, the calibrated model is considered 
valid because the reprojection error is close to zero, but 
empirical experiments show that there are consistent 
bias in camera location. Bias in camera location means 
bias in intrinsic camera parameters if reprojection error 
is close to zero. If the camera is calibrated using the cur-
rently well-established method, it is possible to arrive 
at a seemingly valid solution, but it does not represent 
the real camera. 

2.2 Why are the camera parameters biased? 
Calibrating a pin-hole model of a camera with focus 

lenses is liable to failure. This is because the pin-hole 
model does not represent the focus camera behaviour ac-
curately. A focus camera system adjusts lenses to focus on 
the chessboard template with every image. In conse-
quence, focal length f (expressed with the scale factors α 
and β in the camera model) is not constant and a system-
atic error arises if the pin-hole model with a constant focal 
length is adjusted for different camera-chessboard dis-
tances.  

To perform a precise camera calibration process, the 
computed model is only valid for a range of distances 
from the camera to the calibration object. Given a fixed 
focal length, the range of distances in front of and behind 
the focal plane within which objects appear sharp is called 
the depth of field. Assuming that applications need sharp 
images for a given circle of confusion, objects appear ac-
ceptably sharp in images when they are in the depth of 
field zone. If an object is out of focus, the focal length 
should change to obtain a sharp image of the object. In 
consequence, for a specific application, it is necessary to 
know the required range of distances between the camera 
and the object to perform a precise calibration. Out of this 
zone, the sharpness of objects will be poor and focal 
length will have to be changed to improve it.  

The depth of field is controlled using the camera dia-
phragm aperture and the focal length. Given a constant di-
aphragm aperture, the rule is that the closer the object is, 
the smaller the depth of field is; conversely, the further the 
object is, the greater the depth of field is until it is infinite. 
The hyperfocal distance is considered when the object is 
far away from the camera and the depth of field is infinite. 
Therefore, if the calibration is performed with the tem-
plate located at different distances from the camera, it 
could obtain biased results, as the focal length varies in 
each image to obtain sharp objects. Figure 5 illustrates this 
effect.  

2.3 Where is the hyperfocal distance? 
In figure 6 an analysis of rays that form the image pass-
ing through the camera lens is performed. The ideal 
projective ray that represents the pin-hole model is the 
projection of point p in the scene passing through the 
pin-hole of the camera. It is denoted in red. The ray go-
ing through the edge of the lens is deviated according 
with the curvature of the lens and it is denoted in green. 
The ratio between the angle of the incoming ray φ and 
the angle of outcoming ray ω is constant for a distance 
to the centre of the lens. As the distance of the object to 
the lens varies, so do the angles φ and ω, as is shown in 
figure 6 for two distances. The sharpest image arises 
when the intersection of the projective ray with the ray 
coming from the edge of the lens coincides with the 
sensor plane, as is shown in figure 6. This point is rep-
resented as point q in that figure. 

An analysis of the variation of the point q with the 
distance of the object to the camera will give the hyper-
focal distance. The variation of point q gives different 
values of the focal length f depending on the distance 
of the object to the camera. Two cases are shown in fig-
ure 6. Figure 6(a) shows the point q when the object is 
far away from the camera. In figure 6(b) the object is 
close to the camera. Depending on the distance of the 
object to the camera the angle of the incoming ray φ 
varies until a point that this variation is insignificant for 
a circle of confusion. This point is where the hyperfocal 
distance is defined. 

From a mathematical point of view, considering a co-
ordinate system XY with the origin in the intersection of 

 
Fig. 4.  Bias in computed camera locations. The reference frame is the true camera location obtained with the robot arm. Bias in X and 
Y-axis are positives and negatives, ranging from -75mm to 75 mm. However, bias in Z coordinates show that the computed camera 
location is always closer to the calibration template than the real location in 100mm as mean value within a range from 60 mm to 160 
mm.  
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the optical axis with the lens plane, coordinates of point p 
in figure 6 are (d, a) where d is the distance of point p to 
the lens, and a is its distance to the optical axis. The equa-
tion of the ideal projective ray that represents the projec-
tion of point p in the scene going through the pin-hole of 
the camera is: 

x
d
ay ·−=  (4) 

The equation of the projective ray of point p that goes 
through the edge of the lens is: 

Dx
d

aDy +
−

= ·  (5) 

where D represents the radius of the lens. The angle of the 
incoming ray to the lens φ is defined as: 









−
= −

aD
d1tanϕ  (6) 

The angle of the outcoming ray ω is proportional to 
the angle of the incoming ray φ as ω = k·φ where k de-
pends on the lens. The equation of the outcoming ray of 
the lens is: 

Dxy +





 −−= ·

2
tan ϖπ  (7) 

The intersection of line defined in (4) and line defined 
in (7) gives the point q where the sensor plane must be 
positioned to obtain the sharpest image. Coordinates of 
point q are (f, b), where b represents the projection of the 
point p in the image plane and f is the distance of the sen-
sor to the lens defined as the focal length. Lines (4) and 
(7) intersection is given by: 

Dxx
d
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2
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The value of x which solves (8) represents the focal 
length f. Therefore, the focal length that gives the sharpest 
image is computed as: 
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Expression (9) demonstrates that the focal length varies 
to obtain sharp images when the distance of the object 
to the camera changes. Moreover, the focal length de-
pends on the sensor size. The size of the sensor is rep-
resented by the radius of the lens D that illuminates it. 
The bigger the sensor is, the larger the value of D. Fig-
ure 7 represents how focal length varies with the dis-
tance of the object to the camera defined in equation (9). 
When the object is far away from the camera, variations 
of f to obtain a sharp image are insignificant. Consider-
ing that the sharpness of the image is defined up to a 
circle of confusion, objects that are far away from the 
hyperfocal distance of the camera will be focused. 

2.4 Why is the reprojection error close to zero 
and parameters are biased? 

It’s widely accepted that the result of the calibration 
process is valid if the reprojection error defined in 
equation (3), gives an error close to zero. However, an 
exhaustive analysis of the pin-hole camera model re-
veals that this assumption is not definitive. 

A camera is a tightly coupled system in which errors 
of intrinsic parameters are compensated with incorrect 
values in the extrinsic parameters, and vice versa, to 
keep the reprojection error close to zero. 

On the one hand, the camera focal length parameter 
f is tightly coupled with the distance between the cam-
era and the calibration template, as can be observed in 
figure 8. According to figure 8 the focal length and the 
distance of the object to the camera pz, are related as: 

zy p
f

p
v
=  (10) 

Using coordinates v and py to compute camera pa-

 
Fig. 5.  Camera optics system adjusts lenses to focus the object 
in the scene. In consequence, focal length f and scale factors α 
and β are not constant and depend on the distance of the camera 
to the object. Assuming that applications need sharp images for a 
given circle of confusion, objects appear acceptably sharp in im-
ages when they are in the depth of field zone. Given a fixed focal 
length, the range of distances in front of and behind the focal 
plane is called depth of field, and objects in this zone appear sharp 
with no variation of focal length. If an object is out of focus, focal 
length should be changed so as to obtain a sharp image of the 
object.  

(a) 

 

(b) 
 
 
 
 
 
 
 
 

 
Fig. 6.  The sharpest image appears when the intersection of the 
ideal pin-hole ray and the ray coming from the edge of the lens is 
in the camera sensor plane. The angle of the incoming ray φ and 
the outcoming ray ω varies with the distance of the object to the 
lens. Camera optics system adjusts lenses to focus the object in 
the scene.  
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rameters f and pz, the results are infinitely varied be-
cause the parameters are interdependent. According to 
equation (10) any pair f and pz, that satisfy the ratio v/py 
is valid. In figure 8(a) and (b), given fixed v and cpx, both 
different solutions of f and cpz are correct according to 
the criteria of the reprojection error, because both solu-
tions satisfy it properly. 

On the other hand, the camera location, the focal 
length and the principal point of the camera are also 
tightly coupled. Figure 9 shows this coupling. Both im-
ages show valid solutions for the calibration problem 
using the same coordinate points in the template p (px, 
py) and the image q (u, v) as the input data of the cali-
bration process. In both cases, camera parameters and 
the calibrating data give a reprojection error equal to 
zero. Errors in the principal point are compensated by 
incorrect values in the camera location and vice versa. 
Moreover, biased values in the principal point and 
camera location have a direct effect on the camera focal 
length. 

According to figure 9, given an optical axis perpendic-
ular to the image plane, all camera parameters are repre-
sented by this optical axis. In this figure, two different fo-
cal lengths, which use the same calibration data, are con-
sidered valid because other camera parameters compen-
sated this variation. Both solutions arise changing the op-
tical axis, which is perpendicular to the image plane. 
There is a plane that represents all candidates to camera 
optical axis given a pair of points p and q to calibrate the 
camera. This plane is called the Sophia plane and it is rep-
resented in figure 9(b). This plane contains the ray that 
goes through the point p(px, py) to the point q(u, v) and all 
optical axis that represent different camera parameters. 
Depending on the chosen optical axis, camera parameters 
vary.  

Camera parameters coupling has been demon-
strated using just one pair of points p and q in the scene 
and in the image. When several points are used to cali-
brate the camera, several Sophia planes arise and the 
camera parameters are defined with the best optical 
axis that satisfy all Sophia planes. It is considered, that 
using several images of a calibration template with sev-

 
Fig. 8.  Coupling between the camera focal length parameter f and 
the distance of the camera to the calibration template. Using coor-
dinates v and cpy to compute camera parameters f and cpz has 
infinite solutions because both parameters are tightly coupled. In 
this figure, starting with the same value of v and cpy both f and cpz 
solutions (a) and (b) are valid.  

 
Fig. 9.  Coupling between the principal point (u0,v0), focal length f  
and the extrinsic camera parameters tx and ty. Changes in intrinsic 
camera parameters (u0,v0) are compensated with changes in the 
location of the camera tx and ty and focal length f. Figure (a) shows 
a solution for camera parameters and figure (b) shows another so-
lution for camera parameters using the same data to compute cam-
era parameters (coordinates points in the template (px, py) and co-
ordinate points in the image (u, v))  Any optical axis that belongs to 
the Sophia plane gives a valid solution for the camera parameters. 
This is shown in figure (b). Using reprojection error as the tool to 
determine true camera parameters, all optical axis that belongs to 
the Sophia plane will be a valid solution.  

 
Fig. 7.  Variation of the focal length with the distance of the object 
to the camera according with expression (9).  
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eral calibration points, the true solution of camera pa-
rameters will be obtain. However, this assumption fails 
if the empirical experiment described in subsection 2.1 
is performed. Results showed in figures 3 and 4 are bi-
ased. This empirical experiment demonstrates that us-
ing several calibration points in several images do not 
guarantee unbiased camera parameters. Moreover, this 
bias is not detected if camera parameters are validated 
using the reprojection error tool. 

3 PROPOSED CAMERA CALIBRATION PROCESS 
USING A 2D TEMPLATE 

Existing camera calibration methods perform two 
steps. First, an approximation of camera parameters is 
computed based on an algebraic solution. Second, an 
iterative nonlinear minimization problem improves the 
algebraic solution according to the criterion of the 
reprojection error, with the aim of computing the cor-
rect parameter values. Intrinsic and extrinsic parame-
ters are updated in every iteration. It is assumed that 
using several images taken from different locations will 
condition the nonlinear minimization algorithm to 
achieve the right solution [4, 10].  

However, when a camera is calibrated using images 
from several locations, this assumption fails, as it was 
shown in the empirical experiment described in the 
previous section. As was shown in subsection 2.2.1, dif-
ferent distances from the camera to the calibration ob-
ject produce changes in the focal length parameter to 
obtain sharp images. These variations in the focal 
length depend on the camera sensor size also, as was 
demonstrated in equation (9). Using the method pro-
posed by Zhang, since the camera calibration process 
computes only one camera model with a fixed focal 
length, the interdependence between the camera pa-
rameters leads the nonlinear minimization process to 
get zero reprojection error that camouflages a biased re-
sult. 

To improve the solution of the camera calibration 
process, it is necessary to define previously the range of 

distances from the camera to the calibration object 
where the focal length parameter will remain constant 
when getting a sharp image. This analysis will give the 
limits of the distances where the focal length varies in 
each image and the distance where the focal length 
keeps constant (i. e., where the hyperfocal distance 
starts).  

Figure 7 represents these limits. The hyperfocal dis-
tance is the starting point from where focal length is 
constant although the distance between the object and 
the camera varies. If the distance between the object 
and the camera is smaller than the hyperfocal distance, 
the focal length is adjusted in each image to obtain 
sharp images. 

Using the method proposed by Zhang in [4], if the 
calibration is done with images where the focal length 
varies (below the hyperfocal distance), all calibration 
images should be taken with similar distance between 
the calibration template and the camera in order to 
guarantee that the computed parameters are correct. If 
images taken at several distances in the range where 
the focal length varies are used, computed result using 
the method proposed by Zhang in [4] will be biased alt-
hough the reprojection error is zero. In this case, since 
images are taken at several distances in the range where 
the focal length varies, several focal lengths should be 
computed depending on the distance of the camera to 
the calibration template. From the point of view of the 
application that uses the calibration results, calibration 
will be valid only for images that are taken in the same 
range of distances defined in the calibration process. 

The aim of the proposed method is to identify this 
hyperfocal distance to ensure that the calibration pro-
cess is correct. In the case where the calibration images 
are taken in a distance shorter than the hyperfocal dis-
tance, a method to compute several focal lengths that 
depends on the distance of the camera to the calibration 
template is proposed. 

 

3.1 Identifying the hyperfocal distance and 
computing the scale factors α and β 

The hyperfocal distance starts when the scale factors α 
and β are constant. As it was described in equation (2) 
scale factors α and β are defined with the focal length f 
of the camera and the size of the camera sensor along 
the u and v axis. Using the projective geometry prop-
erty described in figure 8 the coordinate v of a point in 
the image is:  

β·
z

y

p
p

v =  (11) 

where β corresponds to the scale factor in the v axis 
denoted with f in figure 8. Two points in a template 
plane in the scene that is parallel to the image plane 
have the same pz and py1, py2, respectively. These two 
points will project the image in coordinates v1 and v2. 
The increment between the two coordinates in the v 
axis is: 

 
Fig. 10.  Example of the image for the proposed method for cali-
brating the scale factors α and β. Resulting image and values Δu 
and Δv.  
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pz is equal at both points because the template scene 
plane is parallel to the image plane. Several images of 
the same two points in the calibration template at dif-
ferent distances will result in different increments in 
the image and different scale factors.  

i

i
i d

tv β·∆
=∆  (13) 

where the camera distance pz is denoted with di, and 
Δvi=(v1-v2), i=1...n where n is the number of images. βi 
corresponds to the scale factor in each distance of the 
camera to the calibration template. Δt is the constant in-
crement between adjacent points in a scene. Arranging 
the data in a matrix form, the following expression 
arises: 
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In the case that α corresponds to the u axis, the de-
duction is similar and the equation (14) becomes: 
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If elements of vector αi or βi are plotted, a figure sim-
ilar to the figure 7 appears that is very useful to decide 
where is the hyperfocal distance. 

To compute the scale factors αi or βi of the camera 
axis u and v using expressions (14) and (15), we propose 
a simple empirical experiment. Several images of a pla-
nar chessboard template are taken, in which the image 
plane is as parallel as possible to the chessboard plane. 
It is important to know the distance from the camera to 
the chessboard plane when the image is captured.  

Figure 10 shows an example of the resulting image. 
Here, Δu and Δv are defined. The increment between 
adjacent points of the chessboard calibration template 
is Δt and di is the distance from the camera to the chess-
board. The corners of the black and white boxes in the 
images are detected and the increments between the 
adjacent points are computed. The increments along 
the horizontal axis u are denoted with Δui,j and the ones 
in the vertical axis v are denoted with Δvi,j., where i,j 
represent the increment j of adjacent points in the im-
age i. If the image has no distortion, the values of Δui,j 
will be similar and their mean values will be repre-
sented with Δui. Likewise, in the v axis, Δvi denotes the 
value of the increment along the v axis in image i. Fur-
ther, if the pixels are square, Δui will be equal to Δvi and 
the scale factors αi or βi will be equal.  

In the case of distorted images, Δui and Δvi is com-
puted using the detected points in the centre of the im-
age only, instead of using points all over the image. In 
images with radial distortion, points close to the centre 
of the image have an insignificant deviation from the 

undistorted position. If all points in the image are used, 
distortion could be corrected before computing the in-
crements of Δui and Δvi using the methods proposed by 
Ricolfe-Viala, [20, 21] or Zhu [22]. However, improve-
ment on the results when distortion is corrected is neg-
ligible and therefore unnecessary. 
 

3.2 Computing camera model with several scale 
factors 

Once the experiment described in previous subsec-
tion is performed, it is possible to define the hyperpho-
cal distance that establishes the limit where the focal 
length varies or it is constant. If calibration is done with 
images taken at distances where the scale factors are 
constant, the method proposed by Zhang in [4] could 
work properly. In case that the calibration process is 
done with images taken at distances where the scale 
factors vary, it is necessary to compute extrinsic param-
eters considering that the scale factors are different in 
each image.  

This section describes a variation of the method pro-
posed by Zhang in [4] to compute the extrinsic camera 
parameters using images taken at distances where the 
scale factors vary. The process consists of a nonlinear 
minimization process to adjust camera parameters to a 
set of data but in this case, computing only the principal 
point (u0, v0), the skewness and the extrinsic camera pa-
rameters and considering the scale factors as constant 
valued computed with the method described in previ-
ous subsection.  

To perform a nonlinear minimization process, an in-
itial guess is necessary. The scale factors αi and βi for 
several distances di are computed with the specific trial 
described in previous subsection. The image principal 
point parameters (u0, v0) is initialized to the centre of 
the image. This initialization does not disturb the final 
result because the nonlinear minimization process will 
obtain the right solution taking into account that the fo-
cal length is constant. It will find out the correct optical 
axis that satisfy the focal length in each image accord-
ing with the figure 9. As it was said before, a set of cam-
era parameters are defined with and optical axis and in 
this case, the constant value of the focal length will 
force the nonlinear minimization to compute the best 
optical axis for the given focal length. The skewness γ 
is initialized to zero and the extrinsic camera parame-
ters are obtained as follows. 

Using initial values of intrinsic camera parameters, 
the matrix A defined in (2) has a specific value for each 
camera distance di. Moreover, coordinates of calibra-
tion template points have z=0 and the relation between 
the camera plane and the calibration template plane is 
defined with an homography H. Equation (1) is rewrit-
ten as: 

ptRAp w
iii

c ]··[=  (16) 
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To compute the homography Hi, a technique based 
on nonlinear least squares proposed in [4] is used. Let 
c=[h1 h2 h3 ]T, the equation (18) can be rewritten as: 

0·
·0
·0
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c
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TwTwT

TwTTw
 (19) 

With n points, n equation (19) arise which can be 
written in matrix equation as L·c=0 where L is a 2·n×12 
matrix. The solution is the right singular vector of L as-
sociated with the smallest singular value, or the eigen-
vector, of LT·L associated with the smallest eigenvalue. 
Matrix L is poorly conditioned because some elements 
are a constant 1, others are in pixels and others are in 
millimetres. Better results are obtained by performing 
a simple data normalization process, as proposed in 
Hartley [24].  

Once the homography Hi is computed and using 
the intrinsic camera parameters arranged in a matrix Ai, 
extrinsic camera parameters are computed as: 
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Because of the noise, computed elements of R will 
not satisfy the properties of a rotation matrix. To ap-
proximate the computed 3×3 matrix Q to the best rota-
tion matrix R, the singular value decomposition of Q is 
necessary. Given the singular value decomposition 

Q=U·S·V, the best rotation matrix is R=U·VT. For fur-
ther reference to matrix computation, see Golub and 
Loan [25]. 

The maximum likelihood estimation is the nonlin-
ear minimization process that improves computed re-
sults, reducing the geometric error between detected 
point coordinates in images cpij and projected points 
with the computed camera model defined as cpij^(Ai, 
Ri, ti, wpj). The maximum likelihood estimation is com-
puted by minimizing the following function: 

( )
2

1 1
,,,^∑∑

= =

−
n

i

m

j
j

w
iiiij

c ptRApp  (21) 

Rotation matrix Ri is expressed with three parame-
ters using the Rodrigues formula [26]. This nonlinear 
minimization problem is solved with the Levenberg-
Marquardt algorithm using the values of Ai, Ri and ti 
computed previously as the searching starting point. 
Notice that several matrices Ai of intrinsic camera pa-
rameters exist that depend on the distance di. In this 
case, searching parameters are extrinsic camera param-
eters Ri and ti, the principal point (u0, v0) and the skew-
ness γ. Scale factors αi and βi in matrices Ai remain con-
stant to avoid the intrinsic and extrinsic camera param-
eters influencing each other which result in a biased so-
lution at the end of the minimization process. Moreo-
ver, constant values of scale factors αi and βi force the 
searching process to find out the finest optical axis in 
the Sophia plane that best represents the camera model 
according to figure 9. When the minimization process 
is finished, reprojection error will be close to zero but 
in this case, it has been computed with a constant value 
of the focal length or scale factors αi and βi. 

3.3 Camera lens distortion 
Most of the authors of papers about camera lens dis-

tortion report that distortion function is dominated by 
radial components if the image distortion is small [21, 
22, 26]. A second order radial distortion model between 

 
Fig. 11.  Robot arm ABB IRB 140 with the measuring tool defining 3D coordinates of template control points. Robotiq wrist camera 
mounted in collaborative robot Universal Robot UR3.  
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the distorted point in the image cp* and the correct one 
cp is defined as 

δ+= *pp cc  (22) 
such as 
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where r2 is the distance between the distorted point co-
ordinate and the principal point. Δud=ud-u0, Δvd=vd-u0. r 
is computed as r2=Δud2+Δvd2. 

Similar to the method proposed by Zhang in [4], the 
camera lens distortion model defined in (23) is included 
in the maximum likelihood estimation and equation 
(21) is extended taking into account radial distortion 
parameters: 
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As before, scale factors αi and βi of matrices Ai re-
main constant to avoid the intrinsic and extrinsic cam-
era parameters influencing each other. Maximum like-
lihood estimation computes extrinsic camera parame-
ters Ri and ti, and the principal point (u0, v0), the skew-
ness γ and the distortion parameters k1, k2 as intrinsic 
camera parameters. k1, k2 are initialized to zero. 

3.4 The proposed algorithm 
The proposed calibration algorithm for cameras 

with autofocus lenses is summarized as follows: 
A. Identify the hyperfocal distance and compu-

ting the scale factors α and β for different cam-
era-object distances i, using the method pro-
posed in subsection 3.1. 

B. Initialize the image principal point parameters 
(u0, v0) to the centre of the image. 

C. Comnpute the extrinsic camera parameters Ri 
and ti using equtions of (20) for different cam-
era-object distances i. 

D. Readjust the camera extrinsic parameters Ri 
and ti and the image principal point (u0, v0) 
minimizing expression given in (21) and con-
sidering the scale factors α and β for different 
camera-object distances i, constant values. 

E. In case of computing the lens distortion param-
eters, repeat step D, but minimizong expres-
sion (24) intead of (21). Lens distortion param-
eters are initialized to zero.  

4 EXPERIMENTAL RESULTS 
To demonstrate the influence of the focus in the camera 
calibration process, two set of images are captured us-
ing two cameras with different features assembled on 
two robot arms. The main difference between both 
cameras is the sensor size to verify that in bigger sen-
sors, the hyperfocal distance is further away from the 
camera than in smaller ones as was defined in (9). 
Therefore, the risk of capturing images with different 
focal lengths for calibration purposes increases in cam-
eras with bigger sensors. In consequence, if only one fo-
cal length is computed in the calibration process, biased 
parameters will be computed. In these cases, several 
camera models with different focal lengths are neces-
sary to represent the focusing process of the camera 
when the distance of the camera to the calibration tem-
plate varies under the hyperfocal distance. 

In our experiment, one camera is a Robotiq wrist cam-
era, 1279×724 pixels with electrically actuated focus, as-
sembled on a collaborative industrial robot UR3. The 
other one is an EoSens® 12CXP+ of 4,096 × 3,072 pixels, 
23.04 × 23.04 mm active area with an 18 mm lens with 
autofocus, mounted on an ABB IRB 140. Both cameras 
are assembled on robot arms so as to establish the extrinsic 
camera parameters and to compare the computed values 
with the known true ones. It is assumed that better extrin-
sic parameters will result in more accurate intrinsic pa-
rameters with similar reprojection errors. The reprojection 
error is also computed to check if model is correct from a 
geometric point of view. 

Camera location is obtained by using the location of 
the end of the robot arm that is provided by its control 
unit. With this location, it is possible to compute a 
transformation matrix that transforms the location of 
the robot arm into the location of the camera image 
frame or the measuring tool. Figure 11 shows an image 
of the robot arm ABB IRB 140 with the measuring tool, 
obtaining 3D coordinates of the calibration template 
points. The same operation is performed with the col-
laborative industrial robot UR3. Camera and template 
locations are in the robot base coordinate frame. No 
simulated data is used because it does not represent the 
real world. With computer simulations, data is gener-
ated with models that have a constant focal length with 
independence of the distance of the camera to the cali-

 
Fig. 12.  Images to calibrate the scale factors and principal point with the proposed method with the Robotiq wrist camera, 100mm, 
700mm, 1300mm, distance between camera and calibration template.  
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bration template. Under the simulation umbrella, eve-
rything fits perfectly (even with Gaussian noise), be-
cause real camera behaviours such as focus features, 
are not considered in the theoretical model. In this case, 
only real data is used to demonstrate the influence of 
the camera focus in the calibration process. 

4.1 Computing the scale factors αi and βi. 
To compute the scale factors αi and βi using the 

method proposed in subsection 3.1., several images of 
the calibration chessboard template are captured, tak-
ing into account that the image plane should be as par-
allel as possible to the template plane. In addition, the 
distance of the camera to the chessboard template is 
known for each image. Figure 12 shows selected images 
that were captured to compute the scale factors αi and 
βi of both cameras. Chessboard corners were detected 
using the Harris corner detection algorithm imple-
mented in openCV. Increments Δui and Δvi were com-
puted as described in subsection 3.1. 

Scale factors αi and βi for each camera-template dis-
tance are computed with equations (14) and (15). As it 
was assumed, the focal length is not constant in all dis-
tances as it is shown in figure 13. Black crosses repre-
sent the values of the elements of the vector αi in (15). 
With a real camera, focal length is adjusted when the 
distance of the camera to the template changes to cap-
ture sharp objects. In consequence, scale factors αi or βi 
do not have a constant value, except when the focus is 
set in the hyperfocal distance. When the focus is in the 
hyperfocal distance, the depth of field is at its maxi-
mum and the focal length does not change to capture 
sharp images. This effect is illustrated with the real val-
ues computed with the cameras. Figures 13(a) and 13(b) 
use crosses to show the elements of vector αi for both 
the Robotiq wrist camera and the EoSens® 12CXP+ 
camera respectively. Analysing the results, three zones 

appear when the scale factor is plotted versus the dis-
tance of the camera to the template. Zone 1 is defined 
by a variation of the focal length with each image to ob-
tain sharp images. Zone 2 is defined by the constant 
value of the focal length: the focus is set in the hyperfo-
cal distance and without changing the focal length, im-
ages are sharp in the image although the distance of the 
camera to the object changes. Zone 3 is defined by var-
iations in the scale factor because the template is far 
away from the camera and the poor quality of the cali-
bration template in the image does not allow accurate 
detection of the image’s control points. 

With this experiment, it is possible to obtain the 
range of distances at which the camera will work 
properly with a constant focal length defined using 
Zone 2. In addition, if the camera is closer to the object 
and it is working in Zone 1, different values of the focal 
length will help to obtain accurate camera parameters. 
Moreover, Zone 3 will give the distance of the camera 
to objects in which the accuracy is reduced because the 
image resolution is not enough to detect object details 
with precision. Zone 3 will be conditioned by the size 
of the chessboard calibration template. The details of 
the objects than can be detected will be defined by the 
size of the squares in the chessboard template (in this 
experiment, one size measures 25 mm). 

Zone 1 of the Robotiq wrist camera is between 0 and 
150 mm. Zone 2, where the focal length is constant, is 
when objects are between 150 mm to 1200 mm away 
from the camera. If objects of 25 mm are more than 1200 
mm away from the camera, the detection of their details 
is noisy, meaning that the measurements are not accu-
rate. On the other side, with the EoSens® 12CXP+ cam-
era, zone 1 is from 0 mm to 700 mm and zone 2 is from 
700 mm to 2700mm, approximately. 

Figures 13(a) and 13(b) show the computed values 
of the scale factor αi using different methods. As men-
tioned before, black crosses represent the values of the 

 
Fig. 13.  (a). Results for the Robotiq wrist camera assembled on a collaborative industrial robot UR3. (b) Results for the EoSens® 
12CXP+ camera assembled on an industrial robot arm ABB IRB 140. Black crosses represent the result of equation (15). Each black 
cross is the scale factor αi computed with the increments of each image Δui and the distance di from which it was taken. The black line 
represents the mean value of all values in zone 2 (equations (14) and (15)). The red line shows the computed value using Zhang’s 
method when the maximum likelihood estimation (MLE) ends. The blue line shows the computed value of the algebraic solution of the 
Zhang method before it is improved with the maximum likelihood estimation.  
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elements of the vector αi in (15). The black line is the 
mean value of the elements of the vector αi in zone 2, 
which corresponds to the scale factor α computed with 
no variation of focal length because the lens is focusing 
in the hypefocal distance. The red line shows the com-
puted value using the method based on the 2D calibra-
tion template proposed by Zhang[4] when the maxi-
mum likelihood estimation (MLE) ends. The blue line 
shows the value computed with the algebraic solution 
from the Zhang method before it is improved with the 
maximum likelihood estimation. Calibration with 
Zhang method is performed with 15 images taken from 
several locations. Similar results are computed for the 
scale factor β. Values calculated using each method are 
shown in table 2.  

If a continuous camera model were necessary to 
compute the focal length of the camera according with 
its distance to the object, a function can be empirically 
adjusted to data in figure 13 as follows:  

02 αα +−=
d
k f  (25) 

where α is the scale factor for a distance camera-object 
defined with d and α0 is the scale factor when the focus 
is set to the hyperphocal distance. Parameters kf and α0 
can be adjusted using the least squares technique. Fig-
ure 14 shows the results of adjusting scale factor data of 
both cameras to the function defined in (25). Similar ex-
pression is computed for β. 

4.2 Computing the complete camera model. 
Using the scale factors αi or βi computed in previous 
subsection, it is possible to compute a complete set of 
camera models with several scale factors using the 
method described in subsection 4.1. An algebraic solu-
tion is computed with equation (20) that is improved 
with a nonlinear minimization problem defined in (21) 
or in (24) that includes the camera lens distortion pa-
rameters. 

The aim is to minimize the reprojection error that 
represents the distance between the detected points in 
the image and the chessboard template points projected 
with the computed model. The Zhang method tries to 
minimize this index by modifying all camera parame-
ters at the same time. With the proposed method, the 
scale factors α and β of the matrix A remain constant to 
avoid the coupling between intrinsic and extrinsic cam-
era parameters. The searched parameters are the extrin-
sic (Ri and ti) and the intrinsic ones (the principal point 
(u0, v0), skewness γ and distortion, represented by k1, 
k2). 

The mean values and the standard deviation of the 
reprojection error, with different solutions, are summa-
rised in table 1. Table 2 shows the computed camera pa-
rameters with the proposed method and the Zhang 
method, including the algebraic and the MLE results.  

Figure 15 compares several solutions of the position 
vector ti computed with both methods and both cam-
eras. Since camera true location is given by the robot 

 
Fig. 14. Adjusting the camera scale factor to the function defined in (25) (a). Results for the Robotiq wrist camera. (b) Results for the 
EoSens® 12CXP+ camera.  

 
TABLE 1 

MEAN VALUES AND STANDARD DEVIATION OF THE REPROJECTION 
ERROR WITH DIFFERENT SOLUTIONS 

 
Method Median 

Stand-
ard de-
viation 

Robotiq 
wrist cam-
era 

Proposed method 0.3362 2.1709 
MLE Proposed method 9.0165× e-11 1.5626 

Zhang algebraic solution 0.0472 1.8667 
Zhang MLE solution 1.8347× e-10 1.0487 

EoSens® 
12CXP+ 

Proposed method -2.4143 14.4151 
MLE Proposed method -1.5807×e-10 3.1542 
Zhang algebraic solution 0.4644 9.0036 

Zhang MLE solution 1.2092×e-09 2.3201 

The reprojection error with MLE is smaller because parameters are adjusted to 
the data accurately. However, the differences between reprojection error vary-
ing all parameters and varying extrinsic parameters, distortion and skewness 
only is not significant.  
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arm, bias errors are obtained using the true camera lo-
cation as the point of reference. The blue line corre-
sponds to the bias with the algebraic solution com-
puted with the method proposed in subsection 3.2. The 
green line corresponds to the MLE solution, computing 
only the subset of parameters proposed in this paper 
and assuming a constant focal length. The red line cor-
responds to the algebraic solution proposed by Zhang, 
and the black line corresponds to Zhang’s MLE solu-
tion. Figure 15(a) corresponds to the errors in the loca-
tion computed with the Robotiq wrist camera and fig-
ure 15(b) shows errors in location with the the EoSens® 
12CXP+ camera. 

4.3 Discussion 
Bias in the position vector ti will give the accuracy of 
the computed camera parameters with each method. 
Analysing position vector ti bias in figure 15, with both 
cameras, the camera positions computed with the pro-
posed method are closer to the true positions than the 
positions computed by Zhang method. With the pro-
posed method, MLE adjusts the computed model to the 
input data, changing only the extrinsic camera param-
eters, distortion, skewness and principal point, and as-
suming that scale factors are accurate as they have been 
computed by specific trials. Proposed MLE does not 
significantly modify the result solution because the 
computing of the scale factors αi and βi is done with spe-
cific experiements and they are constant in the MLE 
step. However, in the case of Zhang’s result solution, 
the difference between the algebraic solution and MLE 
is significant. Analysis of the Zhang solution shows 
that the algebraic result is closer to the true location 
than the MLE. MLE obtains worse results than the al-
gebraic solution because camera parameters coupling 
makes that solution is biased although the reprojection 
error is smaller. Even though the reprojection error is 
bigger with algebraic methods, estimated locations are 

closer to the real ones. This is explained with the cou-
pling between all camera parameters. The algebraic so-
lution computes the camera parameters separately and 
the MLE solution tries to find out the best solution for 
all camera parameters at the same time. Solving the 
nonlinear minimization problem based on reprojection 
error by computing all the camera parameters is not a 
very good practice. 

Analysing table 1, reprojection error values with 
MLE are smaller because the parameters are accurately 
adjusted to the data. However, the differences between 
the reprojection error computing all the parameters at 
the same time and computing all parameters assuming 
a constant focal length are not significant. This is be-
cause the parameters are adjusted to data but in one 
case all parameters change in every iteration of the op-
timization process and in the other case the focal length 
remains constant during the optimization process. A 
constant focal length sets a reference in the nonlinear 
optimization process that helps to reach an unbiased 
solution. Since all the parameters are tightly coupled, 
MLE is able to finish with a solution where the param-
eters satisfy the model for the given data but different 
of the true one. Indeed, the computed solution is repre-
sented by an optical axis in the Sophia plane which 
does not correspond to the true one. With the proposed 
method, intrinsic parameters, such as scale factors are 
estimated with specific tests, and MLE is used to com-
pute extrinsic parameters, distortion, skewness and the 
principal point. Camera parameters are divided into 
two groups to avoid incorrect solutions due to the cou-
pling between them. The constant focal length sets the 
reference to compute the unbiased optical axis in the 
Sophia plane. 

As can be seen in table 2, with the Robotiq wrist 
camera, the algebraic solution that results from the 
Zhang method is closer to the one computed with the 
lens focusing in the hypefocal distance. However, the 
MLE solution is notably different. Analysing the results 
from the EoSens® 12CXP+ camera, the algebraic solu-
tion is different from that of the lens focusing in the 
hypefocal distance, and the MLE solution even more so. 
To explain these results, it is necessary to observe the 
range of distances that cover zones 1, 2 and 3, respec-
tively, with each camera. Zone 2 of the Robotiq wrist 
camera, in which focal length does not change, is de-
limited by distances of 150mm and 1200mm. Capturing 
images of the chessboard closer to 150mm to the cam-
era is not possible if the chessboard is printed in an A4 
sheet. Consequently, since all images are taken in Zone 
2, the focal length is constant and the algebraic solution 
of the Zhang method is similar to that of the lens focus-
ing in the hypefocal distance, supposed as unbiased. 
However, when the algebraic solution is improved 
with the maximum likelihoold estimation, the tightly 
coupling between intrinsic and extrinsic parameters 
means that, although the final solution has a very small 
reprojection error, the computed parameters are bi-
ased. 

Going deeper, if the chessboard were smaller than 

TABLE 2 
CAMERA PARAMETERS COMPUTED USING THE PROPOSED 

METHOD IN ZONE 2 AND USING THE ZHANG METHOD  

 
Param. Proposed 

method 
Zhang alge-

braic solution 
Zhang MLE 

solution 
Robotiq 
wrist 
camera 

α 1370,8 1362,8 1319,7 
β 1373,8  1369,9 1329,7 
u0 645,8 651,7 711,2 
v0 359,3 370,5 375,9 
γ 0,0001 -0,002 0,0008 
k1 0.0087 0.0048    -0.016 
k2 -0.072 -0.056 -0.003 

EoSens® 
12CXP+ 

α 4755,8 4487,0 4289,8 
β 4789,1 4442,8 4295,1 
u0 2052,3 2046,8 2127,5 
v0 1548,5 1448,1 1566,7 
γ 0,0012 0,0239 0,0280 
k1 0.0022 0.0421 -0.1703 

 k2 0.0570 -0.134 0.1389 
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an A4 sheet because the application needs images 
closer to the camera, most of the calibration images 
would be in the zone 1 and camera parameters would 
be different to the ones computed with the lens focus-
ing in the hypefocal distance. Moreover, if camera pa-
rameters computed with the Zhang method were used 
in a camera-object distance closer than 150 mm, results 
would be biased. 

Analysing distances in Zones 1, 2 and 3 for the 
EoSens® 12CXP+ camera, Zone 2 (where the focal 
length is constant), starts at 700 mm and ends at ap-
proximately 2700 mm. With this camera, it is possible 
to put the A4 sheet calibration template in the image 
completely when the camera is 300 mm away from the 
calibration template. In consequence, images that are 
taken within a range of 300 mm and 700 mm are in 
Zone 1, where the focal length varies in order to obtain 
a sharp image. Therefore, using these images with the 
Zhang method disrupts the results because they were 
taken with a different focal length. The algebraic solu-
tion from the Zhang method does not compute good 
parameters similar to the ones computed when the lens 
is focusing in the hypefocal distance. Similar to the 
computed results with the Robotiq wrist camera, the 
MLE obtains an even more biased solution. When start-
ing the MLE with biased parameters, the MLE will end 
producing more biased results due to the coupling be-
tween intrinsic and extrinsic camera parameters. 

As the experiments show, the proposed method 
gives a stable solution to obtain an accurate camera cal-
ibration. The method proposed by Zhang could lead to 

incorrect results because of the camera parameters cou-
pling and as images are taken at any distance and it 
does not define which set of images obtain the best so-
lution. In most camera calibration papers an analysis of 
the number of images is performed, but the camera lo-
cation is not defined. 

5 CONCLUSION 
In this paper, the influence of the focus in the calibra-
tion process has been analysed in depth. To obtain the 
sharpest objects in the image, lenses are adjusted de-
pending on the distance of the camera to the object var-
ying the focal length in each image. Since the pin-hole 
model does not consider this variation, computing the 
camera model using images captured from different 
distances to the calibration template could obtain incor-
rect results. Moreover, an exhaustive study of the inter-
dependence between intrinsic and extrinsic parameters 
has demonstrated that they are tightly coupled. The fo-
cal length of the camera is linked to the distance of the 
camera to the object and the principal point is linked to 
the location X and Y of the camera in the scene. In con-
sequence, computing all the camera parameters to-
gether in an iterative nonlinear minimization problem 
cannot be considered a good practice in general. It gives 
a valid result based on the reprojection error but the re-
sult does not represent the real camera. 

The camera calibration process has been improved 
in three aspects. First, a camera model is proposed 
where several values of scale factors are used depend-
ing on the distance of the camera to the object in the 

 

(a)

(b)

 
Fig. 15. (a). Error in locations for the Robotiq wrist camera. (b) Error in locations for the EoSens® 12CXP+ camera. In both cameras, the 
proposed method computes camera locations closer to the real one than the method proposed by Zhang. Analysis of the Zhang solution 
shows that, although the reprojection error is bigger, the algebraic result is closer to the real location than the MLE.  
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scene. Secondly, the scale factors are computed with a 
specific, separate experiment, to avoid incorrect results 
due to the interference between intrinsic and extrinsic 
camera parameters. Thirdly, a nonlinear minimization 
problem is solved by computing only extrinsic param-
eters, the principal point, skewness and lens distortion 
instead of computing all camera parameters at the same 
time.  

The proposed improved method accounts for the 
existence of several set points of the camera lens to ob-
tain sharp images. In consequence, it is necessary a 
camera model with several values of scale factors to 
represent camera behaviour accurately. If a model with 
a constant value of scale factor is used, it is necessary to 
know the range of distances between the camera and 
the objects where these scale factors camera parameters 
are valid or conversely, to capture images of the cali-
bration template in a range of distances valid for the 
application. In addition, to avoid the coupling effects 
between intrinsic and extrinsic camera parameters, it is 
advisable to conduct a specific test to separately com-
pute each camera parameter instead of trying to solve 
the nonlinear minimization problem by computing all 
parameters at the same time. Computing all camera pa-
rameters at the same time in a nonlinear minimization 
process computes biased results. An improved method 
to compute the camera principal point with more accu-
racy, could be considered in a future work. At present, 
the proposed method is a step forward in the field of 
camera calibration that will help in any application 
where the camera parameters represent a crucial step. 
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