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On totally permutable products of finite
groups

A. Ballester-Bolinches∗ John Cossey†

R. Esteban-Romero‡

Abstract

The behaviour of totally permutable products of finite groups with
respect to certain classes of groups is studied in the paper. The results
are applied to obtain information about totally permutable products
of T , PT , and PST -groups.

1 Introduction

If a group G can be written as a product of two subgroups A and B, then
somehow the structure of G is restricted by that of A and B. Can one trans-
form this general statement into concrete results at least in special situations?
In this paper we are concerned with finite groups G which are factorised by
their subgroups A and B in such way that every subgroup of A permutes
with every subgroup of B. In this case we say that G is a totally permutable
product of A and B. This sort of products arises when finite products of
supersoluble groups are considered and they have been extensively studied
even in the non-finite case. More precisely, Asaad and Shaalan [2] first intro-
duced these products and proved that totally permutable products of finite
supersoluble groups are supersoluble (Theorem 3.1). Maier [11] generalised
Asaad and Shaalan’s result to saturated formations containing all supersol-
uble groups, and the first author and Pérez-Ramos [4] were able to remove
the restriction “saturated” from Maier’s theorem and proved its converse.
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We also refer to Beidleman and Heineken [6] for other interesting facts on
totally permutable products of infinite groups.

A key point behind the results about finite totally permutable products
is a theorem of Huppert stating that the product of two cyclic groups is
supersoluble. It also holds in the general non-finite case ([1; 7.4.6]). This
theorem shows, in particular, that totally permutable products of nilpotent
groups are not in general nilpotent. Therefore a natural question arises:

Suppose that G = AB is a totally permutable product of two nil-
potent groups A and B. What can we say about G?

Applying Asaad and Shaalan’s result, if G is finite, then G is supersoluble.
We prove in the paper that in this case G is abelian-by-nilpotent, that is, its
nilpotent residual is abelian. Therefore

in the sequel, all groups considered are finite and soluble.

Theorem 1. Let G be the totally permutable product of the nilpotent groups
A and B. Then G is abelian-by-nilpotent.

This result allows us to think that the nilpotent residual of a group which
is a totally permutable product of nilpotent groups plays an important role.

Recall that if H is a formation, the H-residual GH of a group G is the
smallest normal subgroup of G such that G/GH ∈ H ([7; II, 2.3]). For each
normal subgroup N of G, we have (G/N)H = GHN/N ([7; II, 2.4]). Our next
result describes completely the Sylow subgroups of the nilpotent residual of
a group G which is a totally permutable product of the nilpotent subgroups
A and B.

Theorem 2. Let G be as in Theorem 1 and let K be its nilpotent residual. If
p divides |K|, then a Sylow p-subgroup of K is either Ap, or Bp, or Ap×Bp,
where Ap and Bp are the Sylow p-subgroups of A and B, respectively.

We apply these results to obtain some information of the behaviour of
finite totally permutable products with respect to formations F of the form
F = X ◦ N, where X is a formation of finite groups containing all abelian
groups and N is the class of all nilpotent groups. It is clear that F is composed
of all finite groups whose nilpotent residual is in X. More precisely, we have:

Theorem 3. Let X be a formation containing all abelian groups. Let G =
AB be a totally permutable product of groups in X ◦N. Then G ∈ X ◦N.

As the symmetric group of degree 3 shows, Theorem 3 is not true if X
does not contain the formation of all abelian groups. In fact, if p is an odd
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prime and Cp does not belong to X, the dihedral group of order 2p is a totally
permutable product of its Sylow subgroups, both in X ◦N, but the group is
not in X ◦N.

For the converse, we do not require that X contains all abelian groups.

Theorem 4. Let X be a formation. Let G = AB be a totally permutable
product of the subgroups A and B such that G belongs to X ◦N. Then A and
B belong to X ◦N.

Theorem 4 is not true for non-soluble groups (see for instance [7; X,
Exercise 1.12]).

Theorem 5. If F = X ◦ N, where X is a formation containing all abelian
groups, and G is a finite totally permutable product of A and B, then:

1. [AF, B] = [A,BF] = 1; in particular, AF and BF are normal subgroups
of G, and

2. GF = AFBF.

The methods applied in the proofs of the above results allow us to prove
the following general theorem about totally permutable products of groups.

Theorem 6. If G = AB is a totally permutable product of the subgroups A
and B, and ap (respectively, bp) is the number of non-isomorphic non-central
p-chief factors in A (respectively, B) for a prime p, then the number cp of
non-central non-isomorphic p-chief factors in G is bounded by a0p+b0p, where
a0p = max{1, ap} and b0p = max{1, bp}.

The above theorems allow us to derive information about totally permut-
able products of finite groups which have some group theoretical properties
different from those described by formations. They are the ones described
by the classes of T , PT , PST , and PSTc-groups. These classes are defined
through permutability properties of subnormal subgroups. Let us give a short
description of these classes before stating the corresponding results.

A subgroup of a group G is called permutable if it permutes with every
subgroup of G. A result of Ore [12] shows that permutable subgroups of a
finite group are subnormal in the group, but the converse need not hold. A
group is called a PT -group (T -group) if permutability (normality) is a trans-
itive relation. By Ore’s result, PT -groups are exactly those groups whose
subnormal subgroups are permutable. In particular, every T -group is a PT -
group. PST -groups are defined in terms of Sylow permutability. A subgroup
of a group G is called S-permutable if it permutes with all the Sylow sub-
groups of G. A result of Kegel [10] shows that every S-permutable subgroup
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is subnormal and hence PST -groups are exactly those groups in which all
subnormal subgroups are S-permutable. In particular, PT -groups are PST -
groups. Another class containing the beforementioned ones is the class of
PSTc-groups, introduced and studied by Robinson in [13], and composed by
all groups in which every cyclic subnormal subgroup is S-permutable.

One notable fact of the class of all soluble PST -groups is that it is
subgroup-closed. Moreover it is closed under taking totally permutable products
in which the factors have coprime indices [3] (see also [5] for other res-
ults in this direction). The following example shows, in particular, that
the subgroup-closed character is absent from PSTc-groups, even if they are
factors of coprime indices of a totally permutable product.

Example 7. Let W , X, Y , and Z be, respectively, non-abelian groups of
orders 6, 21, 55, and 253. Let G = W × X × Y × Z. For a group H
and a prime p, Hp denotes a Sylow p-subgroup of H. Then G is a totally
permutable product of A = W × X3 × Z23 and B = X7 × Y × Z11, but
none of them is a PSTc-group, because neither all cyclic subgroups of the
Sylow 3-subgroup of A permute with all Sylow 2-subgroups of A, nor all
cyclic subgroups of the Sylow 11-subgroup of B permute with all Sylow 5-
subgroups of B. Nevertheless, the group G is clearly a PSTc-group.

However, the extension of the “only if” part of [3; Theorem C] holds.

Theorem 8. Assume that the group G = AB is a totally permutable product
of the soluble PSTc-groups A and B and that gcd(|G : A|, |G : B|) = 1. Then
G is a soluble PSTc-group.

Corollary 9 ([3]). Assume that G = AB is a totally permutable product of
the soluble PST -groups A and B such that gcd(|G : A|, |G : B|) = 1. Then
G is a soluble PST -group.

The classes of PT c-groups and Tc-groups are defined in a similar fashion,
by requiring the cyclic subnormals to be permutable or normal, respectively.
Theorem 8 also holds for these classes.

2 Proofs

Proof of Theorem 1. Assume that the theorem is false, and let G = AB be
a counterexample of minimal order. Then, since the class of all abelian-by-
nilpotent groups is a formation, G has a unique minimal normal subgroup M .
Since G is supersoluble by [2], M is a p-group for some prime p, the Fitting
subgroup P = F(G) is a Sylow p-subgroup G, p is the largest prime dividing
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|G|, and G/F(G) is abelian of exponent dividing p−1. Moreover P = ApBp,
where Ap is the Sylow p-subgroup of A and Bp is the Sylow p-subgroup of B
by [1; 1.3.3]. If A and B were abelian, we would have G metabelian by Itô’s
theorem ([1; 2.1.1]), a contradiction. Therefore we may assume that A is
not abelian. As Ap′ , the Hall p′-subgroup of A, is abelian, Ap is non-abelian.
Let T be a subgroup of Ap. Then the product TBp′ , where Bp′ is a Hall
p′-subgroup of B, is a supersoluble subgroup of G. Therefore Bp′ normalises
T , that is, p′-elements of B induce power automorphisms in Ap. As Ap is
non-abelian, all p′-power automorphisms are trivial ([8; Hilfssatz 5]), and
hence Bp′ centralises Ap. Therefore Bp′ centralises P and so Bp′ = 1. This
means that B is a p-group.

On the other hand, all p′-elements of A induce power p′-automorphisms
in B. Since A cannot be a p-group, it follows that Ap′ 6= 1 and Ap′ cannot
centralise B. By [8; Hilfssatz 5], B is abelian. Then CB(Ap′) = 1 and B =
[B,Ap′ ]. By the minimality of the order of G, G/M is abelian-by-nilpotent.
Therefore the nilpotent residual L/M of G/M is abelian. This implies that
L/M is complemented in G/M and L/M contains no central chief factors of
G/M by [7; IV, 5.18, V, 4.2, and V, 3.2]. Note that Ap′L/L centralises BL/L.
In particular, B is contained in L. Suppose that T/M = L/M ∩ AM/M is
non-trivial. Then T/M is a normal subgroup of G/M and contains a central
minimal normal subgroup of G/M , a contradiction. Consequently, L ∩ A is
contained in M and L = BM . Then L is a p-group and Z(L) is a non-trivial
normal subgroup of G. As M is the unique minimal normal subgroup of G, it
follows that M is contained in Z(L) and either L = B or L = B×M . In both
cases L is abelian and so G is abelian-by-nilpotent, final contradiction.

The following lemma turns out to be crucial in the proof of our results.

Lemma 10. Let G = AB be a totally permutable product of the nilpotent
subgroups A and B. Let K be the nilpotent residual of G. For a prime
p, denote Ap and Bp the Sylow p-subgroup of A and B, respectively. The
following statements hold:

1. If p is a prime dividing the order of K, then either Ap ∩ K 6= 1 or
Bp ∩K 6= 1.

2. If Ap ∩K 6= 1, then Ap is contained in K and the Hall p′-subgroup of
B does not centralise Ap.

3. If Bp ∩K 6= 1, then Bp is contained in K and the Hall p′-subgroup of
A does not centralise Bp.
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Proof. By Theorem 1, K is abelian and, by Asaad and Shaalan’s result [2],
G is supersoluble. We prove the statements by induction on |G|. Let p be a
prime dividing |K| and let q be the largest prime dividing |G|. Then a Sylow
q-subgroup Q of G is normal in G. Suppose p 6= q. By induction, G/Q
satisfies 1 and either 2 or 3 because G/Q is a totally permutable product
of the nilpotent subgroups ApQ/Q and BpQ/Q. Moreover KQ/Q is the
nilpotent residual of G/Q. Assume that ApQ/Q ∩ KQ/Q 6= 1, then it is
clear that Ap ∩ K 6= 1 because p 6= q. Moreover ApQ/Q is contained in
KQ/Q and then Ap is contained in a Sylow p-subgroup of K. The same
argument applies in the case BpQ/Q ∩ KQ/Q 6= 1. Consequently we may
assume that p is the largest prime dividing |G|. Then P = ApBp is a normal
Sylow p-subgroup of G and a Hall p′-subgroup of G is abelian of exponent
dividing p− 1. As K does not contain central p-chief factors by [7; IV, 5.18,
V, 4.2, and V, 3.2], K is not centralised by any Hall p′-subgroup of G. Hence
there exist an element z ∈ K of p-power order and a p′-element z1 of G in
Ap′Bp′ , where Ap′ is the Hall p′-subgroup of A and Bp′ is the Hall p′-subgroup
of B, such that zz1 6= z. Since z ∈ ApBp, we can find an element a ∈ A and
an element b ∈ B such that z = ab. Moreover z1 = a1b1 for a1 ∈ Ap′ and
b1 ∈ Bp′ . Suppose that b1 does not centralise z. Then (ab)b1 = ab1b ∈ K,
and so k = ab1b(ab)−1 = ab1a−1 is a non-trivial element of K. Since 〈a〉〈b1〉
is a supersoluble subgroup of G, it follows that 〈a〉 is normal in 〈a〉〈b1〉 and
so k ∈ Ap. Consequently Ap ∩K 6= 1. If a1 does not centralise z, the above
argument shows that Bp ∩K 6= 1. Hence 1 holds.

Assume now that Ap ∩ K 6= 1. Then K ∩ P is a non-trivial normal
subgroup of G. Let M be a minimal normal subgroup of G contained in K∩P .
By induction, the lemma holds in G/M because G/M is a totally permutable
product of the nilpotent subgroups AM/M and BM/M . Moreover K/M is
the nilpotent residual of G/M . Assume that p divides |K/M |. If ApM/M ∩
K/M 6= 1, then ApM/M is contained in K/M by induction. Hence Ap ≤ K.
Therefore we may assume that ApM/M ∩ K/M = 1 and Ap ∩ K ≤ M .
Since Ap ∩K 6= 1 and M is of prime order, we have M = Ap ∩K. On the
other hand, Bp′ acts as a power automorphism group on Ap because CBp′

is a supersoluble subgroup of G for each subgroup C of Ap. Consequently
either Ap is abelian or Bp′ centralises Ap by [8; Hilfssatz 5]. Suppose that Bp′

centralises Ap. Then M is central in G. This contradicts [7; IV, 5.18, V, 4.2,
and V, 3.2]. Thus Bp′ cannot centralise Ap. This implies that Ap is abelian
and Bp′ acts as a non-trivial universal power automorphism group on Ap by
[8; Hilfssatz 5] and [14; 13.4.3]. It follows that [Ap, Bp′ ] = Ap by [7; A, 12.5].
Now ApK/K is centralised by Bp′K/K because G/K is nilpotent. Therefore
Ap = [Ap, Bp′ ] ≤ K as desired. Similar arguments to those used above yield
Bp ≤ K if Bp ∩K 6= 1.
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Finally, suppose that Ap is contained in K and Bp′ centralises Ap. Let
1 6= x ∈ Ap. Then there exists a chief factor E/F of G below K such
that E/F = 〈xF 〉. It is clear that E/F is central in G, a contradiction.
Consequently Bp′ does not centralise Ap and 2 holds. Analogously Ap′ does
not centralise Bp if Bp∩K 6= 1. The proof of the lemma is now complete.

Proof of Theorem 2. Let p be a prime dividing |K|. Then, by Lemma 10,
the Sylow p-subgroup Kp of K must contain Ap or Bp. Assume that Bp is
a proper subgroup of Kp. Then, since Kp is normal in G, Kp is contained
in the Sylow p-subgroup ApBp of G. Hence there exists an element ab ∈ K
with a ∈ Ap and b ∈ Bp and a 6= 1. Since Bp is contained in K, it follows
that Ap ∩ K 6= 1. By Lemma 10, Ap is contained in K and Kp = ApBp.
Assume that Z = Ap ∩Bp. Then Z is centralised by a Hall p′-subgroup of G
and by a Sylow p-subgroup of G (note that K is abelian). Since K contains
no central chief factors of G by [7; IV, 5.18, V, 4.2, and V, 3.2], it follows
that Z = 1 and Kp = Ap ×Bp.

It is known that if G = AB is a totally permutable product of A and B,
then [A,BN] = [B,AN] = 1 ([6; Theorem 1]), but, in general, GN 6= ANBN.
Our next lemma analyses this case.

Lemma 11. Let G = AB be a totally permutable product of two subgroups
A and B. Denote M , N , and K the nilpotent residuals of A, B, and G,
respectively. Suppose that K 6= MN , a Sylow p-subgroup Ap of A is contained
in K for some prime p, and [Ap, Bp′ ] is not contained in MN for a Hall p′-
subgroup Bp′ of B. Then Bp′ acts as a group of power automorphisms on
ApM/M , M is a p′-group, and Ap is subnormal in G.

Proof. First of all we will prove that Bp′ normalises ApM . Denote by T the
nilpotent residual of Bp′ . Note that MT is a normal subgroup of ABp′ by
[6; Theorem 1]. Let H/MT be the nilpotent residual of ABp′/MT . Since
[Ap, Bp′ ] is not contained in MN , it follows that [Ap, Bp′ ] is not contained in
MT . Hence ApMT/MT ∩H/MT 6= 1. Now ABp′/MT is a totally permut-
able product of the nilpotent subgroups AMT/MT and Bp′MT/MT . By
Lemma 10, ApMT/MT is contained in H/MT and since ApMT/MT is the
Sylow p-subgroup of the abelian subgroup H/MT , it follows that ApMT is
normal in ABp′ . On the other hand, ABp′/M is a totally permutable product
of the subgroups AM/M and Bp′M/M . By Beidleman and Heineken’s res-
ult [6; Theorem 1], [ApM/M,TM/M ] = 1. Hence ApMT/M has ApM/M
as a unique Sylow p-subgroup. Therefore ApM is normal in ABp′ . This
implies that if X is a subgroup of ApM/M , then X(Bp′M/M) is a sub-
group of G/M and Bp′M/M normalises X. This means that Bp′ acts as
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a group of power automorphisms on ApM/M . Assume that ApM/M 6= 1.
We prove by induction on |M | that Mp = Ap ∩ M = 1. If M = 1, the
result is clear. Suppose that M 6= 1 and let U be a minimal normal sub-
group of (ApM)Bp′ contained in M . By induction, M/U is a p′-group.
If U is a p′-group, there is nothing to be proved. Therefore we may as-
sume that U is a p-group. On the other hand, ApM/M is abelian because
ApM/M ≤ K/M . Since Bp′M/M acts as a group of power automorphisms
on ApM/M and [Bp′ , Ap] is not contained in M , it follows that Bp′M/M acts
as a group of non-trivial universal power automorphisms on ApM/M by [8;
Hilfssatz 5] and [14; 13.4.3]. Applying [7; A, 12.5], CApM/M(Bp′M/M) = 1,
ApM/M = [ApM/M,Bp′M/M ], and 〈(Bp′M/M)ApM/M〉 = (ApBp′)M/M .
This means that 〈(Bp′)

Ap〉M = ApBp′M and ApBp′ = 〈(Bp′)
Ap〉(M ∩ApBp′).

Denote Y = 〈(Bp′)
Ap〉 and Z = M∩ApBp′ . Without loss of generality, we can

assume that Ap = YpZp by [1; 1.3.3], where Yp and Zp are Sylow p-subgroups
of Y and Z, respectively. Then [Ap,M ] = [YpZp,M ] = [Zp,M ] because
[Y,M ] = 1 by [6; Theorem 1]. Since Zp ≤ U , it follows that [Ap,M ] ≤ U .
In particular, MAp/U = M/U ×ApU/U . This implies that Ap is normalised
by Bp′ . Since Ap is a Sylow p-subgroup of ApBp′ , we have that Bp′ acts as
a group of power automorphisms on Ap. Moreover Bp′ does not centralise
Ap. By [8; Hilfssatz 5] and [14; 13.4.3], Bp′ must act as a group of universal
power automorphisms on Ap. This contradicts the fact that 1 6= U and Bp′

centralises U .
Consequently M is a p′-group and Ap

∼= ApM/M is abelian because
Bp′M/M does not centralise ApM/M . Note that the arguments used above
show that Ap is contained in Y = 〈(Bp′)

Ap〉 and so [Ap,M ] = 1 because
[Y,M ] = 1. Therefore [MN,Ap] = 1 (note that [N,A] = 1 by [6; The-
orem 1]) and Ap is normal in ApMN . Now we distinguish two cases. If no
non-trivial elements of BpMN/MN belong to K/MN , then, by Lemma 10,
ApMN/MN is a normal Sylow subgroup of the abelian normal subgroup
K/MN of G/MN , and so ApMN is normal in G. If a non-trivial ele-
ment of BpMN/MN belongs to K/MN , then, by Lemma 10, we have that
BpMN/MN ≤ K/MN and thus P/MN = ApMN/MN ×BpMN/MN is a
Sylow p-subgroup of K/MN . Since K/MN is abelian, we have that P/MN
is normal in K/MN , and so ApMN is a subnormal subgroup of G. Hence,
in both cases, Ap is a subnormal subgroup of G.

Proof of Theorem 3. Assume the result is false and let G be a counterexample
of minimal order. Then G has a unique minimal normal subgroup because
X ◦ N is a formation. Denote M = AN, N = BN, and K = GN. Then
M and N are normal subgroups of G because [M,B] = 1 = [N,A] by [6;
Theorem 1]. Since A and B are (X ◦N)-groups, it follows that M and N are
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X-groups. Therefore MN ∈ X because formations are closed under taking
central products ([7; A, 19.4]). This implies that K 6= MN . By Lemma 10,
there exists a prime p such that either ApMN/MN ≤ K/MN and Bp′ does
not centralise ApMN/MN or BpMN/MN ≤ K/MN and Ap′ does not cent-
ralise BpMN/MN . Suppose that ApMN/MN ≤ K/MN . By Lemma 11,
Bp′ acts as a group of power automorphisms on ApMN/MN , M is a p′-
group and Ap is a subnormal subgroup of G. Since Ap 6= 1, it follows that
Op(G) 6= 1 and so Soc(G) is a p-group. This implies that M = 1. If N = 1,
then K is abelian and so K ∈ X, a contradiction. Consequently N 6= 1 and
Soc(G) is contained in N . In particular, N is not a p′-group. By Lemmas 10
and 11, BpN/N ∩ K/N = 1 and, by Theorem 2, ApN/N is the Sylow p-
subgroup of K/N . If q is another prime dividing |K/N |, then either Bq′ does
not centralise AqN/N and Aq is subnormal in G, or Aq′ does not centralise
BqN/N and Bq is subnormal in G. In both cases, Oq(G) 6= 1, a contradic-
tion. Therefore K/N is a p-group and K/N = ApN/N . Now Bp′ acts as
a group of power automorphisms on Ap because Ap is subnormal in G and
the product ApBp′ is totally permutable. Since Bp′ does not centralise Ap, it
follows that Ap is abelian. Consequently K = ApN is a central product of
an abelian group and an X-group. By [7; A, 19.4], this implies that K ∈ X,
final contradiction.

The following result is needed in the proof of Theorem 4.

Lemma 12. Let F be a formation and let G be a group in F which is a
central product of the subgroups A and B. Then A and B belong to F.

Proof. Assume that the result is false. Choose for G a group of least order
such that G is a central product of the subgroups A and B, but A does not
belong to F. Among all these pairs of subgroups (A,B), we can choose one
with |A|+ |B| minimal. By [7; IV, 1.14], B cannot be nilpotent. Let M be a
maximal subgroup of B such that B = M F(B). Then G = AM F(B). Since
AM is a supplement to F(B) in G, we have that AM belongs to F by [7;
IV, 1.14]. On the other hand, AM is a central product of A and M . The
minimality of (G,A,B) yields that A ∈ F, a contradiction.

Proof of Theorem 4. Assume that the result is false. Let G ∈ X ◦ N be a
group of least order such that G is a totally permutable product of two groups
A and B, but B /∈ X ◦N. Let L be a normal subgroup of G. Since G/L is a
totally permutable product of the subgroups AL/L and BL/L, we have that
BL/L ∈ X ◦N. Since BL/L ∼= B/B ∩ L, we have that BX◦N ≤ B ∩ L. If G
has two minimal normal subgroups, then B ∈ X ◦N, a contradiction. Hence
G has a unique minimal normal subgroup, L say. Set M = AN, N = BN,
and K = GN. Then K/MN is the nilpotent residual of G/MN .
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If K = MN , then M , N ∈ X by Lemma 12. Hence B ∈ X ◦ N, a
contradiction. Therefore K 6= MN . By Lemma 10, there exists a prime p
dividing |K/MN | such that either ApMN/MN ≤ K/MN and Bp′ does not
centralise ApMN/MN , or BpMN/MN ≤ K/MN and Ap′ does not centralise
BpMN/MN . Suppose that the first possibility holds. Then, arguing as in
the above theorem, M = 1 and L is a p-group. Therefore Ap′ centralises
BpMN/MN and Bp/MN ∩ K/MN = 1 by Lemma 10. This implies that
ApN/N is a Sylow p-subgroup of K/N . If K/N is not a p-group and q is
another prime dividing its order, then Oq(G) 6= 1 by Lemmas 10 and 11, a
contradiction. Consequently K = ApN is a central product of Ap and N . By
Lemma 12, N ∈ X, a contradiction.

Proof of Theorem 5. Let G be a totally permutable product of the subgroups
A and B. Since AF ≤ AN and BF ≤ BN, from [6; Theorem 1] it follows that
[AF, B] = [A,BF] = 1, and so AF and BF are normal subgroups of G.

On the other hand, since AFBF is a normal subgroup of G and G/AFBF is
a totally permutable product of the subgroups ABF/AFBF and BAF/AFBF,
which belong to F, G/AFBF belongs to F by Theorem 3. It follows that
GF ≤ AFBF.

Now G/GF ∈ F is a totally permutable product of the subgroups AGF/GF

and BGF/GF. Hence both factors belong to F by Theorem 4. But AGF/GF ∼=
A/(A ∩ GF) ∈ F, which implies that AF ≤ GF. Analogously, BF ≤ GF. It
follows that AFBF ≤ GF, and so AFBF = GF, as desired.

Proof of Theorem 6. Let G = AB be a totally permutable product of the
subgroups A and B. As usual, denote M , N , and K the nilpotent residuals
of A, B, and G, respectively. Let ap (respectively, bp) be the number of non-
isomorphic non-central p-chief factors in A (respectively, B) for a prime p.
Then all p-chief factors of G above K are central and every chief factor of G
between MN and K is non-central because K/MN is the nilpotent residual
of G/MN and K/MN is abelian by Theorem 1 and [7; IV, 5.18, V, 4.2, and
V, 3.2]. On the other hand, note that the p-chief factors of G covered by M
are centralised by B, so they are indeed chief factors of A. A similar argument
shows that the p-chief factors of G covered by N are chief factors of B. Now
a non-central p-chief factor of A covered by M cannot be G-isomorphic to a
non-central p-chief factor of B covered by N . Consequently the number of
non-central non-G-isomorphic chief factors of G covered by MN is ap + bp.

If p does not divide |K/MN |, then the number of non-central non-G-
isomorphic p-chief factors of G is ap+bp. Assume now that p divides |K/MN |.
By Lemma 10, either Ap ≤ K or Bp ≤ K, where Ap is a Sylow p-subgroup
of A and Bp is a Sylow p-subgroup of B. Assume that 1 6= ApMN/MN ≤
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K/MN . By Lemma 11, we have that M is a p′-group and Bp′ acts as a
group of non-trivial power automorphisms on ApM/M . In particular, Bp′

acts as a group of non-trivial power automorphisms on ApMN/MN . Then
ApMN/MN is abelian by [8; Hilfssatz 5] and all chief factors of G between
MN and ApMN are G-isomorphic p-chief factors. If 1 6= BpMN/MN ≤
K/MN , the same argument shows that N is a p′-group and all chief factors
of G between MN and BpMN are isomorphic when regarded as G-modules.
This gives two G-isomorphism classes of non-central chief factors. If K/MN∩
BpMN/MN = 1, then the number cp of non-isomorphic non-central chief
factors is bounded by 1 + bp. Therefore we have the bound cp ≤ a0p + b0p,
where a0p = max{1, ap} and b0p = max{1, bp}.

Proof of Theorem 8. Since PSTc-groups are abelian-by-nilpotent by [13; The-
orem 2], we have that G = AB is abelian-by-nilpotent by Theorem 3. Thus
the nilpotent residual L = GN of G is abelian. Let p be a prime dividing
|L|. Denote Fp = Op(G) and let Lp be a Sylow p-subgroup of L. Then Lp

is contained in Fp. Since A and B have coprime indices in G, we have that
either Fp is contained in A or Fp is contained in B. Assume, for instance,
that Fp is contained in A. Since Fp is a normal subgroup of G and the
product is totally permutable, we have that for every subgroup X of Fp and
for every p′-subgroup Y of B, XY is a subgroup of G. Hence Y normalises
X. Therefore the p′-elements of B induce power automorphisms on Fp. On
the other hand, since Fp is a nilpotent normal subgroup of A, we have that
Fp is contained in F(A), the Fitting subgroup of A. Since the nilpotent re-
sidual AN is abelian, A = ANC and A ∩ C = 1 for a Carter subgroup C of
A by [9; VI, 7.15]. Now AN is a Hall subgroup of F(A) by [13; Theorem 2].
This implies that F(A) = AN×

(
F (G)∩C

)
. Hence either Fp is contained in

AN or Fp is contained in C. If Fp ≤ AN, then the p′-elements of A induce
power automorphisms on Fp by [13; Theorem 2]. If Fp is contained in C,
then Fp is centralised by a Hall p′-subgroup of C and by AN. Therefore, in
any case, the p′-elements of A act as power automorphisms on Fp. Let q be a
prime number different from p. There exists a Sylow q-subgroup Gq such that
Gq = AqBq for suitable Sylow q-subgroups Aq of A and Bq of B by [1; 1.3.3].
It follows that every subgroup of Fp is normalised by Gq. Since Fp is normal
in G, it follows that all p′-elements of G act as power automorphisms on Fp.
Note that Fp cannot be centralised by all p′-elements of G because L does
not contain central p-chief factors of G. But if Lp 6= Fp, then the p′-elements
of G act trivially on Fp/Lp, but non-trivially on Lp, a contradiction. Hence
Lp = Fp. By [13; Theorem 2], G is a PSTc-group.

Proof of Corollary 9. Let M be a normal subgroup of G. Since G/M is a
totally permutable product of the PST -groups AM/M and BM/M , and
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both have coprime index in G/M , it follows that G/M is a PSTc-group by
Theorem 8. By [13; Theorem 7], we have that G is a PST -group.
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concerning formations. J. Algebra, 182:738–747, 1996.

[5] J. C. Beidleman, P. Hauck, and H. Heineken. Totally permutable
products of certain classes of finite groups. J. Algebra, 276:826–835,
2004.

[6] J. C. Beidleman and H. Heineken. Totally permutable torsion groups.
J. Group Theory, 2:377–392, 1999.

[7] K. Doerk and T. Hawkes. Finite Soluble Groups. Number 4 in De
Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New
York, 1992.

[8] B. Huppert. Zur Sylowstruktur auflösbarer Gruppen. Arch. Math.,
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