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A B S T R A C T

Optimizing the operation of building energy systems holds great potential to reduce energy consump-
tion in buildings. However, this requires detailed system information, such as the relationship of
sensor data. Automatic detection of this information requires monitoring data from buildings, which
is rarely available in the needed quality for automatic assignment. This study bases on 200 weeks
of data collected from eight temperature sensors of a heat pump and a heat exchanger in 5-minute
samples. We use this data to auto-generate grey-box models to extend the data set with 500 weeks
of simulated data. We train six supervised deep learning algorithms with all the data to test whether
detecting connections is possible. The maximum F1 score of 94.9% compared to real-based results
with a maximum of 34.2%, which is over 60% better. The advantage of the proposed approach is its
independence from the low availability of real data.

1. Introduction1

Climate change is the greatest economic challenge of the2

present and future [1]. Including indirect emissions, build-3

ings represent 36% of European CO2 emissions [2]. In exist-4

ing buildings, there is an increased need for CO2 reduction,5

which cannot be met by a current renovation rate of 1% [3],6

as 3% would be required [2]. Therefore, it is necessary to7

implement automated measures to reduce emissions of the8

building stock.9

Especially, non-residential buildings are equipped with10

complex building automation systems (BAS). Improved con-11

trol can reduce the total energy consumption in non-residential12

buildings equipped with BAS by approximately 20-30% [4].13

Advanced control systems can include reinforcement learn-14

ing [5], model predictive control [6, 7] or occupant-centric15

control systems [8, 9]. Machine learning can be applied in16

every stage of building energy system’s life cycle [10, 11].17

Although most building is unique, modern control and18

analysis methods can be developed in a scalable manner.19

For example, the components of a building energy system20

(BES) (e.g., air handling units or chillers) reoccur in build-21

ings, and their operation is similar despite different manu-22

facturers. The components are connected to each other in a23

similar way by means of ducts or pipes. However, novel con-24

trol approaches require detailed information about the BES25
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to be controlled. 26

Graph-based models based on ontologies can represent 27

this information. However, since no current building ontol- 28

ogy represents building operation well [12], the Brick Schema 29

[13] has been developed and is suitable to address this issue. 30

Information includes the types of data streams in the build- 31

ing, the contained technical building equipment (TBE) and 32

the interconnections of the TBE. In the following, we refer 33

to the interconnection of TBEs as topology. 34

Topology mapping can be used to study the proper use 35

of energy flows in buildings, to find the source of error for 36

faulty operation or as input of BES modelling. Especially, 37

when an accurate model of the building is required, as with 38

model predictive control [6, 14], the exact mapping of data 39

streams and the topology is essential. This mapping is often 40

not available in a directly analyzable form. 41

Data streams in BAS often have labeling guidelines that 42

differ depending on the building and operator [12, 15]. The 43

information from these labels is usually very labor-intensive 44

to extract [15]. Labels often only contain information about 45

the type of data stream (e.g. temperature measurement) and 46

possibly the TBE (e.g. air handling unit). Information about 47

the interconnection of TBE and therefore topology of BES 48

is mostly missing. A correlation of labeled sensors with 49

piping and instrumentation diagrams is difficult due to the 50

lack of standardized sensor and actuator labeling in BES 51

diagrams[16]. Building information models (BIM) could 52

also provide this information [17]. However, their applica- 53

tion in existing buildings is not yet widespread, and infor- 54

mation on BES operation is scarce [18]. However, deriving 55

the topology from available time series data is a promising 56

scalable approach. 57

Time series data of BAS provide a valid source if TBE 58

are connected. When a component of TBE starts up or is 59
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switched on, a neighboring TBE component in downstream60

direction reacts to this switching operation. For example, the61

value of a temperature sensor located at a boiler’s output will62

increase if the boiler is switched on. This phenomenon can63

be used for the topology detection (TD) of BES.64

In previous approaches, mainly unsupervised learning65

was used to identify the topology. Since the number of types66

of TBE in energy systems is limited, supervised learning can67

also be used for TD.68

A major problem for the implementation of supervised69

learning for TD is the lack of good publicly available data70

sets [19, 20]. In particular, rare connection types are ei-71

ther not included in public data sets, or are included too in-72

frequently. This is also related to the number of types of73

systems in buildings. For example, an air handling unit or74

variable air volume box is more often present in a specific75

building than a boiler, a heat pump or a combined heat and76

power device. However, the availability of building simula-77

tion models has increased [17]. In [19], a toolchain has been78

introduced to generate building simulation models based on79

labels of data streams in buildings. These models can gener-80

ate data streams of sensors and actors containing combina-81

tions of TBE and the signature that occurs when a change of82

state occurs.83

The approach presented in this work aims to learn the re-84

lation inference (topology) of a multi-functional office build-85

ing. The available monitored data comprises the historic86

data for four water temperature data streams from a heat87

pump and four from a heat exchanger, collected over 20088

weeks in 5 minutes samples. For this purpose, this study89

mainly investigates two aspects:90

1. how to use this information from the data streams to91

generate generic simulation models and thus extend92

the data set,93

2. how to apply current methods of supervised learning94

to detect the connection between the data streams95

The structure of the paper is as follows: The follow-96

ing section introduces the background, related work, and are97

discusses potential methods . In the method, we first de-98

scribe the toolchain to create of building energy system mod-99

els. Here, the generation of generalized time series using100

the models is explained. Second, the developed use cases101

for the supervised detection of building energy systems are102

presented. Afterward, we introduce the toolchain to apply103

six used deep learning multivariate time series classification104

algorithms. We investigate the toolchain’s performance in105

three different use cases. The results are classified and dis-106

cussed and it is explained how to develop and use the pre-107

sented toolchain in future work.108

2. Related work109

This term is adopted here since topology detection in110

electrical grids is the most researched. Moreover, events111

are prevalent in electrical networks compared to thermal net-112

works. Thus, Huchtkoetter and Reinhardt [21] recommend a113

resolution of about 1 kHz for event detection in power grids.114

In buildings, a temporal resolution of at least 0.03Hz is joint. 115

More approaches exist in the literature for topology detection 116

in power grids due to the higher number of measurements in 117

electrical systems. Topology detection also has the name 118

relation inference in building energy systems. In electrical 119

grids, the term "topology detection" is more common. 120

We use the following definition for the term data stream: 121

a data stream is an information carrier that continuously pro- 122

vides information about a state [19]. Supervised learning 123

supports the automatic determination of data stream types 124

in building automation systems. Three different types of in- 125

puts must be distinguished: time series of data streams, their 126

features like physical unit, and their labels. Furthermore, hy- 127

brid versions of the inputs exist [15]. 128

Wang et al. [15] gives an overview of different methods 129

for automatic data stream mapping in building automation 130

systems. However, one problem in comparing different ap- 131

proaches to topology detection and metadata extraction is 132

the comparability between the approaches. Different con- 133

nection types (topology detection) or different data stream 134

types (metadata extraction) are used. The use of standard- 135

ized data sets or the publication of the test and training data 136

supports the development of an algorithm and its compar- 137

ison. We analyzed various publicly available data sets of 138

building automation systems to see if they had suitable time 139

series for our approach. However, none of the 120 found pa- 140

pers and data sets contained appropriate time series data for 141

our use cases. Most data sets were only at the aggregation 142

level or contained only electrical data. However, this is not 143

the focus of our approach. 144

Kazmi et al. [22] has analyzed different energy data sets 145

for their frequency and containing data. None of the ana- 146

lyzed data sets contained data on the topology of the BES. 147

If thermal usage data was present, it was only at the aggre- 148

gation level and included mainly heat flows. 149

The Mortar data set [23] is the most promising data set 150

with time series data from 107 buildings. Nevertheless, it 151

also hardly contains any data on the waterside of energy pro- 152

duction and its direct distribution. For example, the tag "boiler" 153

appears in only one building. This amount of data is usu- 154

ally not sufficient for deep learning processes. However, it 155

is a good database for topology detection of air handling unit 156

based systems. 157

We also analyzed whether the papers cited in the follow- 158

ing have suitable time series for our use case or data sets pub- 159

licly available. Unfortunately, none of the papers on topol- 160

ogy detection provided the data sets to be directly usable for 161

the use cases used here. Either parts of the data set are miss- 162

ing, as can be assumed from the source codes, the time series 163

data itself was not included, or the used connection types did 164

not correspond to the connection types used here. 165

Current and past research focuses mainly on detecting 166

data stream types based on the associated time series and 167

labels. Detecting connections between two or more com- 168

ponents in building energy systems are rarely the subject of 169

research. In the following, we show the related research ap- 170

proaches known by the authors. 171
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Zhou [24] uses an expert-based approach to identify typ-172

ical patterns of temperature responses to a switching signal.173

These include linear, exponential, step-based, and peak pat-174

terns. Patterns that do not correspond to these cases are chal-175

lenging to detect.176

Active control offers an alternative. Pritoni et al. [25] and177

Koh et al. [26] use active control of the TBE to detect further178

connected TBE. Active control is not applicable in buildings179

during normal operating hours. Otherwise, the comfort in180

rooms is compromised. Fürst et al. [27] identify relation-181

ships based on a human-in-the-loop approach, where users182

either perform actions183

(switch on/off) or read information (temperature display in184

the room). If every room with its relationships has to be185

identified manually by a user, this can cause a lot of manual186

work and related costs.187

Hong [28] has closed the research gap from the detection188

of data stream types to the detection of the topology of an en-189

ergy system. The topology detection uses an unsupervised190

procedure that first generates a Markov event model. This191

model identifies transitions and assigns them to the associ-192

ated events based on this model. These events are filtered193

so that only those events remain that are unique between the194

systems. However, only air handling units (AHU) connected195

to variable air volume systems (VAV) were detected. This196

approach corresponds only to the airside of the connections197

within the building and disregards the waterside supply.198

The same connection types have been considered by an199

approach of Li et al. [29] using supervised learning based200

on Short-Time Fourier Transformation with Triplet Network201

(STN). Its advantage is that it can extract highly nonlinear202

features. However, the approach only deals with the supply203

of air and thus does not address the waterside of the building.204

To the best of the author’s knowledge, no supervised205

learning approach exists for the water-based heating and cool-206

ing system of building energy systems other than an approach207

of Stinner et al. [30], which only achieves a maximum accu-208

racy of 52.1%.209

According to Wang et al. [15], supervised learning is an210

established approach for the identification of types of data211

streams in buildings. The labels, metadata, and data streams212

themselves provide input here. Therefore, supervised learn-213

ing is a suitable method for the classification of data streams214

types, achieving over 90% accuracy [15]. In a typical build-215

ing, there are only a limited number of connection types be-216

tween different technical systems. For example, in thermal217

systems, the temperature is a signal that reacts strongly to218

changes in the previous system and, therefore, its tempera-219

ture signal. This reaction corresponds to multivariate time220

series.221

This work shows that supervised learning can detect in-222

dividual connections in BES can be detected by supervised223

learning based on multivariate temperature signals. For su-224

pervised learning of multivariate sensor data, we use six clas-225

sifiers for multivariate time series classification [31, 32, 33,226

34]. We use convolutional neural networks (CNN), which227

performed in the top group in time series classification on228

the UCR time series archive [35]. For correct classification, 229

CNN requires more time series than classical methods (e.g., 230

random forest). However, they offer the potential that they 231

can classify in a generalized manner [35]. 232

A problem with the application of CNN-based super- 233

vised learning in BES is the lack of historical time series 234

data of data streams from BES and the lack of documen- 235

tation of the BES. However, this is crucial for the usage 236

of data in topology detection. Physical simulation models 237

can be used to generate time series from BES data streams. 238

The evaluation of BES in connection with their usage is the 239

primary usage of synthetic data based on grey-box models 240

[36, 37]. Nevertheless, the use of simulation data to feed 241

machine learning algorithms is an option used especially in 242

fault detection [38]. 243

Stinner et al. [19] developed a toolchain for generating 244

generic data streams based on Modelica models for detect- 245

ing data stream types. However, the approach is limited to 246

only a single heat pump. Here, we further developed this 247

toolchain and extended it for scalable use. We take labels 248

named using the BUDO Schema and export them to an on- 249

tology model using the Brick Schema. The Brick schema is 250

able to represent the connections of technical systems (e.g. 251

using pipes). We use a Design of Experiment approach to 252

generate generalized data, which identifies and validates pa- 253

rameters in simulation models. Generalized data have the 254

advantage that not only the connection of a specific techni- 255

cal system can be detected, but a more comprehensive range 256

of systems as well. 257

3. Methodology 258

The implemented toolchain consists of two parts: in sub- 259

section 3.1, we describe the process of generating the generic 260

time series data using grey-box simulation models. The sec- 261

ond part consists of the preprocessing of the time series and 262

the used supervised machine learning algorithms, which is 263

introduced in subsection 3.4. We illustrate the entire pro- 264

cess chain in Figure 1 with the required inputs. The pro- 265

gram code (classifier and toolchain) and the used data sets 266

are stored separately in the repository [39] and are published 267

under the MIT license (link: https://github.com/RWTH-EBC/ 268

Deep-learning-supervised-topology-detection). 269

3.1. Toolchain for generating generic data sets for 270

Machine Learning applications 271

While generating data sets for machine learning tasks, 272

we have developed a tool that permits us to take the infor- 273

mation contained in BUDO schema (a standard to label data 274

streams in buildings [40]) and transforms it to Brick schema. 275

Therefore, we obtain a model in Modelica of the real system 276

[41] that can be simulated for obtaining time series, for in- 277

stance, for machine learning applications. 278

Following the schema in Figure 2, the tool performs the 279

following components: 280

1. BouGen: Downloads time series data from real sen- 281

sors in *.mat file format. 282
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Figure 1: Process overview of the toolchain for supervised learning algorithms of topology
detection.
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input
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Figure 2: Process overview of the toolchain for generating generic data sets.

2. Budo2Brick: In this step, we use JSON-LD data, a283

mechanism of encoding linked data using JSON. It284

is advantageous to utilize if we use terminology from285

different ontologies and schemes. Thus, Budo2Brick,286

takes the information from the BUDO keys in JSON-287

LD file and transforms it into Brick, using the turtle288

format for the model. Besides, it adds the data prop-289

erties and boundary conditions of the system.290

3. Brick2Modelica: In this step, we extract data from291

the Brick model, and generate the Modelica model.292

This process is done using the SPARQL Protocol, and293

RDF Query Language [42].294

4. Automated simulation tool: After the generation of295

the model in Modelica, our tool automatically sim-296

ulates the model using the Dymola-Python interface297

[43]. The tool takes parameters from a matrix to mod-298

ify each simulation and obtains the desired time series.299

A Design of Experiments approach provides the ap-300

propriate matrix of different parameters that vary in301

the simulations. Thus, with this tool, all the simula- 302

tions can be generated automatically with the model 303

in Modelica, and the data sets can be computed for 304

machine learning purposes. 305

3.1.1. JSON-LD and BudoOnt Ontology 306

It is important to emphasize that we describe the initial 307

information of the system in JSON-LD format. As JSON- 308

LD uses terms linked by ontologies, the information in BUDO 309

schema must be represented by ontologies. In addition, we 310

need further terms relating to HVAC systems that Brick schema 311

does not contain but that we require to create the Modelica 312

model of an energy system. For these reasons, we developed 313

the BudoOnt ontology, previously initiated by Stinner et al. 314

[19] and extended it in this work. 315

Figure 3 shows some of the classes added to the BudoOnt 316

ontology, where the hierarchical structure of the BUDO schema 317

(e.g., system, subsystem) and other terms for detecting the 318

connections of the data streams are defined. In figure 3 there 319
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Figure 3: Subset to illustrate BudoOnt ontology in Protégé

is also a subset of the data properties of the BudoOnt ontol-320

ogy. In this case, we add some properties to facilitate the321

transformation from the initial input to Modelica. For in-322

stance, terms for the conversion of units of measurements,323

concepts to know the nature of the connection, or specific324

properties of a port.325

The implementation of the JSON-LD input file in Python326

is done through the package pyld [44]. The syntax of JSON-327

LD requires a context and the document. A context is used328

to map terms to IRIs (Internationalized Resource Identifier).329

Following the example of the context depicted in figure 4,330

first, the ontologies to be used and their IRIs are defined,331

and then each of the terms that are going to be used in the332

document and to which ontology previously defined they be-333

long. For instance, the term TimeEnd belongs to the ontol-334

ogy Schema, so when it is used in the document, it means335

that it has to follow the definition given by this ontology. In336

the case of HVAC terms, this file has terms from Brick like337

Zone and terms from BudoOnt like BUDOBuildingAssign-338

ment. Thus, the framework of this file is fully characterized.339

Figure 4: Context of a JSON-LD input file

The rest of the document is intuitive since it follows a340

syntax practically identical to the JSON data structure. JSON341

is organized in key-value pairs, being the keys the names of342

the terms previously defined in the context.343

3.2. Study Area344

We apply the developed methodology to the main build-345

ing of the E.ON Energy Research Center located in Aachen,346

Germany [45]. Its energy system consists of a ground source347

heat pump, two condensing boilers, and a gas-fired CHP. A 348

chiller completes the energy conversion as a cold producer. 349

The energy system supplies different offices and laboratories 350

with distribution systems such as concrete core activation or 351

facade ventilation. The distribution systems have three dif- 352

ferent temperature levels: a low temperature (35 °C), a high 353

temperature (87 °C) and a cold temperature (10 °C). 354

Figure 5 shows the investigated part of the energy sys- 355

tem, consisting essentially of the heat pump (HP) and a heat 356

exchanger (HX) between the high and low-temperature loops. 357

The heat pump transfers energy between two sources: the 358

cold side, which is connected to a cold storage tank at about 359

10 °C (T2) and returning to the same tank (T4). The hot side 360

comes from a heat storage tank at 35 °C (T1), and the outlet 361

of this loop returns to it (T3). At the same time, if required, 362

heat can be produced utilizing a Combined Heat and Power 363

(CHP) system and two condensing boilers at a temperature 364

of 87 °C. The boilers and CHP are connected with the dis- 365

tribution network by a hydraulic separator. 366

As these systems cause the water to be heated up to about 367

87 °C, this is used to heat the water coming from the hot 368

tank if required. This is regulated by the cold side of the 369

heat exchanger through a three-way valve, which depending 370

on the temperature coming from the hot tank, the tempera- 371

ture required in the distribution systems, and the tempera- 372

ture generated by the high-temperature systems, opens and 373

passes through the heat exchanger or goes directly to the dis- 374

tribution systems. This is shown in figure 5, where T1 and 375

T2 in the heat exchanger represent the high-temperature side 376

coming from these heating systems, and T3 and T4 the low- 377

temperature side coming from the heat pump, with the en- 378

trance to the heat exchanger regulated. 379

More systems related to these take part in them, but they 380

will be isolated from the rest, and the cases in this work will 381

focus on the heat pump and the heat exchanger. 382

3.3. Obtaining the simulated time series from the 383

model 384

The toolchain described above is used to obtain the mod- 385

els in Modelica of the heat pump and the heat exchanger. The 386

models originate from the AixLib library [46]. In the case of 387

the heat pump, the model uses a temperature-dependent co- 388

efficient of performance (COP); the heat exchanger model 389

adopted from this library uses constant efficiency. 390

These models offer more data streams, such as tempera- 391

tures and volume flow rates, than measured in the real sys- 392

tem. Thus, augmenting the data sets with a Design of Exper- 393

iments (DoE) methodology is possible. We choose Taguchi 394

orthogonal arrays for DoE [47]. This approach is preferred 395

over other traditional DoE, such as full factorial design or 396

central composite design. When having several levels for 397

each factor, a full factorial design has a too high cost (com- 398

putational time) since with 5 factors and 3 levels, 243 sim- 399

ulations would be needed. It would be possible to decrease 400

the number of levels, but then the variability and similarity 401

to the real time series would decrease. For these reasons, 402

Taguchi proves to be more efficient than other DoE method- 403
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Figure 5: Energy systems of the use case.

T2_HP

T1_HP m1_HP

m2_HP

Control
Signal

Figure 6: Factors that vary in the heat pump model simula-
tions.

ologies. It minimizes the number of simulations to perform404

without decreasing the accuracy substantially.405

3.3.1. Heat Pump406

To design the orthogonal array, we first settle which fac-407

tors to modify in each of the simulations and in which levels408

they vary. In the case of the heat pump model, we decide409

these factors (see figure 6): first, the simultaneous measure-410

ments of the control signal of the compressor, the mass flow411

rate of the high-temperature side (m1_HP), and the mass412

flow rate of the low-temperature side (m2_HP). The second413

is the hot side’s inlet temperature (T1_HP), and the third is414

the cold side’s inlet temperature (T2_HP).415

Figure 7 shows an example of the procedure that we fol-416

low. With the factors mentioned above, we consider two417

different levels consisting of the actual measurements of the418

FACTORS LEVELS

DOE METHODOLOGY:

TAGUCHI ORTHOGONAL ARRAY

INPUT MATRIX FOR SIMULATIONS

Figure 7: Example with the procedure followed to obtain the
time series with the heat pump model.

sensor of the monitoring system that corresponds to that fac- 419

tor. In this case, we take weeks A and B as different levels 420

of each factor. Following Taguchi’s orthogonal array design, 421

the matrix is designed with four simulations to be obtained 422

from the model. 423

Within this work, we have made a set of simulations with 424
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these same 3 factors and with 10 different levels (10 weeks of425

measurements), resulting in 100 simulations, corresponding426

to 100 time series of duration one week each.427

3.3.2. Heat Exchanger428

Following the procedure described with the heat pump429

model, the methodology to obtain the time series from the430

heat exchanger model is similar to this one. In this case,431

it consists in maintaining as one factor in each simulation432

real values of simultaneous measurements of the 4 bound-433

ary conditions (inlet temperature and mass flow rate of both434

sides: m1_HX, m3_HX, T1_HX, T3_HX). The other factor435

in changing in each of the simulations is the efficiency (�) of436

the heat exchanger (see figure 8).437

m1_HX
T1_HX

T3_HXm3_HX

η

Figure 8: Factors that vary in the Heat Exchanger model
simulations.

A Taguchi design is also used with 2 factors and 10 levels438

for these simulations, resulting in 100 simulations. The heat439

exchanger efficiency is assumed to have values between 0.5440

and 0.95 with intervals of 0.05.441

3.3.3. Heat pump connected to the heat exchanger442

Apart from the cases of the isolated systems of the heat443

pump and the heat exchanger, a simulated case connecting444

the two isolated systems mentioned above is studied. For445

this purpose, we make several simplifications concerning the446

actual case.447

The primary assumption is that the circuit outlet that ex-448

changes heat with the heat pump’s condenser is directly con-449

nected with the heat exchanger. Therefore, T3_HP and T3_HX450

are equal (and thus in figure 9 called directly T3_HP), as well451

as m1_HP and m3_HX (in scheme, m1_HP). In this sim-452

plification, the heat storage is omitted (as seen in figure 5).453

Furthermore, the water leaving the tank does not always en-454

ter the heat exchanger before going to the distribution system455

but depends on the regulation of the three-way valve. There-456

fore, in these simulations, the heat storage tank and the three-457

way valve are ignored, which play an important role in how458

these two systems are connected.459

In this model, we have taken the data set of the simu-460

lated time series with the heat pump, and we have used them461

as input of the heat exchanger. Specifically, the simulated462

results of T3_HP and m1_HP have been used as substitutes463

for T3_HX and m3_HX in the heat exchanger. Thus, the464

m1_HX

T3_HP

T1_HX

T2_HP

T1_HP

m1_HP

m2_HP

Control

Signal

Figure 9: Factors changed in the case with the heat pump
connected to the heat exchanger.

heat exchanger model has been simulated separately with 465

these variables as input, taking for T1_HX and m1_HX the 466

real simultaneous measurements of the previously consid- 467

ered weeks. 468

3.4. Toolchain for Machine learning 469

After generating generic data sets, we develop a toolchain 470

for topology detection with supervised learning algorithms. 471

Thus, following figure 10, we use the simulated and real time 472

series and preprocess them. After that, we have three use 473

cases in which we assign the corresponding classes for ap- 474

plying the algorithms. We can then use the supervised learn- 475

ing algorithms and compare the results in the considered use 476

cases. 477

3.4.1. Class assignation to the data sets for 478

classification with Supervised Learning 479

We establish three different cases with a focus on detect- 480

ing the topology and potential connections between energy 481

systems. The classification tasks have been carried out with 482

real data streams and simulated data streams in all of them. 483

This work also explores the case of training the algorithm 484

with simulated time series, which we then validate with real 485

time series. 486

It is possible to see the data streams that are considered 487

connected and not connected in each case. In the case of 488

the connected ones, we distinguish into directly connected 489

if both data streams belong to the same hydraulic circuit or 490

indirectly connected if they are from different loops but in 491

the same system). 492

In particular, the studied cases are the following: 493

• Case 1 - Connections in the HP and no connection 494

between the isolated HP and HX: Direct connec- 495

tion of two temperature sensors on the same side of 496

the heat pump (T1_HP and T3_HP), indirect connec- 497
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Real data

- Time series of real

HVAC components 

Results 

- Comparison of

predicted categories to

real categories  

(F1 score, accuracy,

precision, recall) 

 N Time Series

Data 

mat file

-Time series for

Machine Learning
approaches

Deep learning  

algorithm
Preprocessing

Test-training-data 

numpy file

Machine learning

algorithm 

- MALSTM-FCN

- MLSTM-FCN
- FCN

- Inception
- MLP

- ResNet

Use case 

- Use case 1: 

connection HP
- Use case 2: 

connection HX 

- Use case 3: 

connection HP-HX 

Data set 
- train-test real

- train sim- test real

- train-test sim

Figure 10: Process overview of the toolchain for supervised learning algorithms of topology
detection.

tion of temperature sensors on different sides (high498

and low temperature) of the heat pump (T3_HP and499

T4_HP) and no connection between a sensor of the500

heat pump and a sensor of the heat exchanger (T3_HP501

and T2_HX). This is illustrated in figure 11.502

• Case 2 - Connection in the HX and no connection503

between the isolated HP and HX: Connection of two504

temperature sensors of the heat exchanger (T2_HX and505

T4_HX) and no connection between a sensor of the506

heat pump and a sensor of the heat exchanger (T4_HX507

and T4_HP), as seen in figure 12.508

• Case 3 - Connection in the HP connected to the509

HX and no connection between the isolated HP and510

HX: Connection of a temperature sensor of the heat511

pump and another of the heat exchanger when we have512

simulated them following the subsection 3.3.3 (T4_HP513

and T2_HX_CON) and no connection between a sen-514

sor of the heat pump and a sensor of the heat exchanger515

isolated one from each other (T4_HP and T2_HX).516

This is illustrated in figure 13.517

3.4.2. Data preprocessing518

The described models and the approaches used for get-519

ting the data sets are all simulated with the automated simu-520

lation tool. As explained above, this tool uses as inputs the521

model in Modelica and an input matrix with the values to be522

changed in each simulation.523

This procedure allows parameters and start values to be524

set before the simulation and the final values obtained at the525

end of the simulation. We have used the following settings526

in all simulations:527

• Start time: 0 s, Stop time: 604800 s.528

• Interval length: 300 s.529

T4_HP

Direct connection

Indirect connection

T2_HX

T1_HP T3_HP

No connection

Figure 11: Case 1: Classification of data streams connected
(direct and indirect) and not connected with a heat pump and
a heat exchanger (isolated one from the other).

• Solver: Dassl. It is an implicit, higher order, multi- 530

step solver with a step-size control. In particular, it is 531

the default integration algorithm of Dymola [43]. 532

In order to use the available data sets and implement the 533

classification cases described above in the algorithm, pre- 534

processing of the time series is required. 535

The real time series of data streams are downloaded from 536

the database and divided into time series of one-week dura- 537

tions to have them in the same format as the simulated time 538

series. Subsequently, those weeks that do not provide suf- 539

ficient information in the classification tasks are eliminated, 540

either because of errors or constant values in the measure- 541

ments. The criterion adopted for deleting weekly time series 542

is based on the dynamic standard deviation. Thus, in the case 543

of the heat exchanger, we delete the weeks that have in any of 544

the four temperature sensors a standard deviation less than 545

0.3 °C to ensure dynamics. With the heat pump, we adopt 546
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T4_HP

Connected

Not

connected

T2_HX

T4_HX

Figure 12: Case 2: Classification of data streams connected
and not connected with a heat pump and a heat exchanger
isolated one from each other.

T2_HX

CON

T4_HP

T2_HX

Connected

Not

connected

Figure 13: Case 3: Classification of data streams connected
and not connected with a heat pump connected to a heat
exchanger and an isolated heat exchanger.

a less restrictive criterion, where the standard deviation is547

limited to 0.5 °C.548

Afterward, we process both real and simulated time se-549

ries of data streams in the same way. First, subsets of the550

weeks are broken down to days, and then the measurements551

are resampled in steps of 5 min, resulting in time series of552

length 288. We do the resampling by applying the mean553

or backward or forward interpolation since the appropriate554

method is different depending on each time series.555

After resampling the time series, we apply a Hampel fil-556

ter to remove outliers [48]. It uses a sliding window of con-557

figurable width to go over the data. In this case, it is applied558

with a window size of 7 and a threshold of 3.559

After these steps, the time series are packed in NumPy560

arrays [49]. Depending on the case to study, they are divided 561

differently for training and testing. In the case in which the 562

classification is made with simulated data, these belong to 563

different simulation tests, so after assigning a label to each 564

class, they are divided into 70% for training and 30% for 565

testing and then we shuffle them. We do this with the help of 566

the Scikit Learn library [50]. We proceed in the same way 567

for the cases in which we use real measurements. Finally, 568

in the cases in which time series from simulation and real 569

measurements are mixed, only the simulated ones are used 570

to train and the real ones to validate, being able to check 571

in these cases if training the algorithm with simulated time 572

series improves classification of the real measurements. 573

3.4.3. Deep learning algorithms 574

The toolchain implements six different algorithms based 575

on Convolutional Neural Networks (CNN) for classification. 576

We use the implementation of Multivariate Long-Short- 577

Term-Memory with Fully Convolutional Network Layer 578

(MLSTM-FCN) provided by Karim et al. [31]. In a com- 579

parison of different deep learning approaches on the UCR 580

data set (on univariate [32], and multivariate [31] time se- 581

ries classification), this implementation outperforms the ap- 582

proaches developed until 2018 the most. In addition, we use 583

the algorithm with attention mechanism (MALSTM-FCN), 584

which is supposed to enhance the performance, since in the- 585

ory, it focuses on the essential parts of the time series [31]. 586

The available adjustments of the algorithm are the number of 587

epochs and the batch size. An epoch refers to all the training 588

samples passing through the entire network each time. It is 589

adjusted in all cases to ten since the time series sizes are not 590

large, and a more significant number of time series instances 591

is not needed to improve the results. The batch size refers to 592

the number of samples needed to run before adjusting the 593

neural network weights. The batch size is set to 128 for all 594

cases, as it is the number recommended by the authors. 595

Furthermore, we selected four implementations of algo- 596

rithms from a comparison presented by Ismail Fawaz et al. 597

[34]. A total of nine deep learning algorithms are imple- 598

mented in the approach Ismail Fawaz et al. [34]. Unfortu- 599

nately, the other algorithms are not usable because, among 600

other things, they did not deliver results for such short time 601

series that we used in each case. 602

Wang et al. [51] propose deep multilayer perceptrons 603

(MLP) for the classification of time series. The advantage is 604

its simplicity. Its disadvantage is the required determination 605

of the length of the time series. It contains a Fully Connected 606

Network (FC), which does not consider the temporal depen- 607

dencies because each timestamp is considered independently 608

from the others [34]. They compared the MLP with a Resid- 609

ual Network (ResNet) implementation [51]. ResNet is the 610

most complex layered approach in our comparison (11 lay- 611

ers). In this case, many layers mean a high training capac- 612

ity and abstraction of the trained classes, which needs many 613

training data. 614

The third approach used by Wang et al. [51] is a Fully 615

Convolutional Network (FCN). Here the Fully Convolutional 616

F Stinner et al.: Preprint submitted to Elsevier Page 9 of 17



Comparative study of supervised algorithms for topology detection of sensor networks in building energy systems

Layer is used as a feature extractor. This layer offers the ad-617

vantage of extracting individual sections of the time series618

as individual features.619

Ismail Fawaz et al. [33] developed InceptionTime , which620

is inspired by the Inception-v4 architecture [52] (a ResNet621

variant) and should serve as an equivalent to AlexNet [53],622

which is a classic deep learning model for image classifica-623

tion. Its advantages are low dependence on training data and624

fast execution with consistent or better results. We call this625

algorithm in the next Inception.626

4. Results627

4.1. Comparison of the generated data-sets from628

the models developed with the toolchain629

We compare the results of the simulated models with the630

actual measurements of these systems on the same dates and631

under the same conditions. To analyze the model’s perfor-632

mance relative to reality, we use the Root Mean Square Er-633

ror (RMSE) of one simulation week. Figure 14 presents an634

example of the results of the heat pump model with the out-635

let temperatures from both external loops of the heat pump636

(T3_HP and T4_HP). In this instance, the simulation results637

and the actual measurements are very similar (RMSE = 2.82638

K for T4_HP and RMSE = 1.65 K for T3_HP), and we can639

see that the time series present the same tendency and be-640

havior.641

Figure 14: Comparison of the simulation results of the heat
pump model and the real measurements of one week (T3_HP
and T4_HP).

Regarding the heat exchanger model, figure 15 illustrates642

the results of the output temperatures of the high and low-643

temperature sides, comparing real and simulated time series.644

We execute these simulations according to the methodology645

explained in 3.3.2 with a heat exchanger efficiency of 0.8.646

It is shown that for T2_HX, the simulated model and the647

real measurements are in agreement, as the RMSE for a one- 648

week simulation is 3.08 K. However, T4_HX differs signif- 649

icantly from the real case to the simulated one (RMSE = 650

13.48 K), seeming to indicate that the heat exchanger model 651

with constant efficiency is not adequate in this case. Despite 652

this, the behavior and trends of both time series are com- 653

parable (real and simulated) as the changes in dynamics are 654

corrected, resulting in a convenient model to get the simu- 655

lated time series for subsequently training the algorithms. 656

Figure 15: Comparison of the simulation results of the heat
exchanger model and the real measurements of one week
(T2_HX and T4_HX).

Figure 16 shows two further examples of simulations 657

with the heat exchanger model, with results of T2_HX and 658

T4_HX. With the time series in this figure, we evidence how 659

different samples are obtained with the same model and how 660

they are consistent with reality. Hence, this tool allows scal- 661

ability when getting new data for succeeding applications. 662

Regarding the model with the heat pump connected to 663

the heat exchanger, we show one week of the time series as 664

an example in figure 17. It shows T4_HP and T2_HX, com- 665

paring the actual measurements with the simulated ones us- 666

ing the connected case of the same weeks as boundary con- 667

ditions. We observe that the simulated temperatures are very 668

similar to the real ones in both cases (T4_HP has RMSE = 669

2.78 K, T2_HX has RMSE = 4.54 K) and that the approach 670

of connecting these systems ignoring certain real constraints 671

that occur is valid. The difference between the modeled sys- 672

tem and the real existing system is that the T3_HP (the output 673

of the high-temperature side of the heat pump) goes directly 674

to the heat exchanger (T3_HX). In the real system, there is a 675

storage tank and valves that regulate its input. Nevertheless, 676

figure 18 shows the real measurements of T3 in both systems. 677

This example indicates how this temperature is practically 678

the same in both systems. Thus, the assumption of directly 679

using the heat pump’s outlet to pass through the input of the 680
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Figure 16: Simulated data streams of two samples of the heat
exchanger (T2_HX and T4_HX).

Figure 17: Comparison of the simulation results of the heat
pump connected to the heat exchanger model and the real
measurements of one week (T2_HX and T4_HP).

heat exchanger is justified.681

4.2. Classification results682

As described, the classification results are divided into683

three use cases. Each of the use cases represents a differ-684

ent building energy system. In each use case, a distinction685

was made between training and testing with real data (clas-686

sic method), training with simulation data and testing with687

real data (our new method), and training and testing with688

simulation data (maximum achievable results).689

Figure 18: Real data streams of T3 in the heat pump and T3
in the heat exchanger.

4.2.1. Case 1: Connections in the HP and no 690

connection between the isolated HP and HX 691

In case 1, the heat pump and the heat exchanger are iso- 692

lated. It is apparent from the results (see table 1) that the F1 693

score increases to a value between 97.1% and 97.9% (In- 694

ception) in the cases with simulated data (maximum achiev- 695

able results). However, testing and training with real data 696

(classical method) show that the algorithm cannot detect the 697

topology. F1 score is between 16.9% and 18.8% (FCN) and 698

accuracy is between 33.9% and 35.4% (FCN) and only one 699

class is identified. 700

Table 1

F1 score of all used algorithms in case 1 ("real" means
that training and testing were done with real data, "sim"
means that the input for training and testing were simu-
lation data, "sim real" means that the input for training
were simulation data and the input for testing were real
data)
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1 real 17.1 17.1 18.8 16.9 16.9 16.9
1 sim real 69.6 66 61.9 70.5 24.4 67.9
1 sim 97.6 97.1 97.4 97.9 62.6 97.7

By training and testing the algorithm with the simula- 701

tion data set, the algorithms reached an F1 score above 97% 702

except for MLP. Nevertheless, training with simulation data 703

set and testing with real data makes it possible to catego- 704

rize the real data streams. As a result, the F1 score reaches 705
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a maximum value of 70.5% (Inception) by testing with real706

data streams. In this case, the accuracy is 72.3%. These707

results demonstrates the improved results from our chosen708

approach.709

If we take a closer look at the results in the categories710

within the algorithms, we find that the results shown on the711

left side of figure 19 are typical for all used algorithms ex-712

cept MLP. For example, the algorithm identify both direct713

and indirect heat pump connections. However, by analyzing714

the confusion matrices, the non-connections (i.e. the heat715

pump data streams and the ones of the heat exchanger, both716

isolated from each other) are, in the best of cases, identified717

only 33.8% of the time (Inception).718

MLP does not achieve satisfactory results in any of the719

data sets. On the contrary, except for testing and training720

with real data, where it scores as poorly as the other algo-721

rithms, it shows strongly deviating results (differences in the722

F1 score of up to 46%).723

Figure 19: Accuracy of predicted classes of test data with the
Inception algorithm in case 1 (left: trained with simulated and
tested with real data, right: trained and tested with simulated
data).

4.2.2. Case 2: Connection in the HX and no724

connection between the isolated HP and HX725

The example of this case proposes recognizing the differ-726

ent topology of the connection inside a heat exchanger un-727

like two isolated systems (heat exchanger and heat pump).728

Therefore, there are two labels in this instance, and the same729

simulation tests as in case 1 are used.730

Table 2 shows that the detection of each of these two731

classes occurs with an F1 score of 100% with simulated data732

(FCN, Inception, ResNet). With the real time series of data733

streams, as with the rest of the cases, the classification does734

not work correctly because the algorithm correctly classified735

only one of the two labels. However, when training the algo-736

rithm with the simulated data, the real data is validated with a737

94.9% F1 score (with FCN). Thus, this algorithm produces738

a remarkable improvement with our method as almost the739

same results as training and testing only with simulated data740

are accomplished (maximum achievable results). Remark-741

ably, the F1 score for the MALSTM-FCN when training with742

simulated data and testing with real data is 13.1% lower than743

the comparable MLSTM-FCN (80.9% vs. 94.0%), which744

differs only in the attention mechanism. Figure 20 shows745

Table 2

F1 score of all used algorithms in case 2 ("real" means
that the input for training and testing were real data,
"sim" means that the input for training and testing were
simulation data, "sim real" means that the input for
training was simulation data and the input for testing
was with real data)
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2 real 34.2 34.2 33.7 33.7 33.7 33.7
2 sim real 80.9 94 94.9 92.2 67.2 92.6
2 sim 99.8 99.8 100 100 87.4 100

the resulting confusion matrices with the best tests of this 746

case. The actual connections were identified in the best re- 747

sult to a 100% true positive rate. The algorithm identified 748

non-existing compounds as connected to a 10.2% false neg- 749

ative rate. The different results of the other algorithms (ex- 750

cept MLP and MALSTM-FCN) are only due to the different 751

results for the non-connections. Each of them has detected 752

the connections to a 100% true positive rate. 753

Figure 20: Accuracy of predicted classes of test data with
the FCN algorithm in case 2 (left: trained with simulated and
tested with real data, right: trained and tested with simulated
data).

In this case (a heat exchanger), it is essential to con- 754

sider which temperatures are connected and which are not 755

because not all temperature sensors appear connected inside 756

the heat exchanger equipment. Thus, observing the scheme 757

of the systems (figure 5), it could be said that T1_HX and 758

T2_HX are connected. However, this cannot be considered 759

a connection in the classification tasks made in this work 760

since T1_HX comes from the high-temperature systems and 761

T2_HX reaches the temperature established in the heat bal- 762

ance, always being a few degrees higher than T4_HX. There- 763

fore, we have considered that T2_HX, T3_HX, and T4_HX 764

are connected, but T1_HX is not. Thus, the results of this 765

case, with T2_HX and T4_HX as a class of connected time 766

series, are 94.9% accurate when training with the simulated 767

data sets and validating with the real measurements. The 768

results are the best obtained. 769

F Stinner et al.: Preprint submitted to Elsevier Page 12 of 17



Comparative study of supervised algorithms for topology detection of sensor networks in building energy systems

Data streams could be connected but are not connected770

in the classification based on piping and instrumentation dia-771

grams. If experienced technicians manually check these, no772

connection can be detected either. Because of this fact, they773

are not connected in the classification tasks.774

4.2.3. Case 3: Connection in the HP connected to the775

HX and no connection between the isolated HP776

and HX777

The last case to analyze is where the heat pump con-778

nected to the heat exchanger is used to find the connection779

between these two different systems, comparing it with the780

detection of the non-connection of the heat pump and the781

heat exchanger separated. Accordingly, there are two labels782

in this case, namely for the connection and no connection783

classes.784

Table 3

F1 score of all used algorithms in case 3 ("real" means
that the input for training and testing were real data,
"sim" means that the input for training and testing were
simulation data, "sim real" means that the input for
training was simulation data and the input for testing
was done with real data)
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3 real 34.2 34.2 33.7 33.7 33.7 33.7
3 sim real 55.7 52.0 36.3 56.1 34.4 50.5
3 sim 63.3 76.7 76.2 71.1 53.6 89.7

As indicated with the results in table 3, the F1 score785

achieved with simulated data streams is 89.7% (with ResNet).786

Concerning the real data streams, the results agree with the787

previous cases in which the classification was not success-788

ful, and the algorithms classified only one of the classes cor-789

rectly. Unlike in the previous cases, the improvement is not790

very big regarding the real data streams trained with the sim-791

ulation data sets. In the best case (with Inception), it goes792

from an F1 score of 50.8% training with real time series793

to 57.5% training with the simulated data. FCN and MLP794

have similar values as when training with real data (˜ 33-795

36% F1 score) and therefore do not generate usable infor-796

mation. Confusion matrices from these tests are shown in797

figure 21. In contrast to the other cases, the other algorithms798

differ significantly from the best algorithm in classifying the799

simulated data. These were recognized with an F1 score of800

63.3% to 76.7%.801

These results suggest that simulated time series may not802

be as similar to the real ones in this model compared to the803

other cases. The reason for this is that the data from the sim-804

ulated heat exchanger takes two boundary conditions from805

the simulation results of a heat pump test and the other two806

boundary conditions as real measures of this system. How-807

ever, the real measurements used as boundary conditions of808

the heat pump were not of the exact dates as those used in 809

the heat exchanger simulations. Although the validation of 810

the model is successful, there are certain discrepancies. De- 811

veloping a model that connects both systems and considers a 812

test with the conditions of both taken simultaneously could 813

solve this. 814

Figure 21: Accuracy of predicted classes of case 3 with the
Inception algorithm (training - simulated data, testing - real
data) and ResNet (training, testing - simulated).

4.2.4. Overall results 815

Table 4 sums up the results (average F1 score and rank) 816

of our algorithm comparison. The results are overall mixed. 817

Due to the small number of data sets, the explanatory power 818

of mean rank is difficult to determine. If we consider only 819

the mean rank, the results of the 820

M(A)LSTM-FCN algorithms are generally better. However, 821

they achieved good ranks mainly in training and testing with 822

real data. They achieved higher F1 scores and accuracy than 823

the other algorithms but marginally better and did not pro- 824

duce valuable results. ResNet achieved the highest average 825

F1 score over all cases and data sets. 826

None of the algorithms show usable results when tested 827

and trained with real data. Sometimes they are worse than 828

a randomized selection of categories (<50% F1 score for 829

two categories). The simulated data provided the best results 830

across all algorithms and data sets. Here, values of up to 831

100% are achieved depending on the use case. Only use 832

case 3 achieved a maximum F1 score of 89.7%. 833

This approach aims to train with simulation data and test- 834

ing with real data. Here the results are to be judged differ- 835

ently. In use case 2, the F1 score reached a value of 94.9%. 836

In contrast, use case 3 is only marginally above the random 837

selection (F1 score 56.1%). Use case 1 is not recognized 838

with an F1 score that is useful for direct use (maximum 839

70.5%), which, however, is significantly better than in use 840

case 3. 841

MLP does not achieve usable results as an algorithm. 842

Here, the missing convolutional layer and the lack of con- 843

sideration of continuous time series becomes visible. 844

5. Discussion 845

5.1. Generating generic data sets 846

The difference between an algorithm trained with real 847

data and an algorithm trained with data from simulation mod- 848
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Table 4

Mean F1 score and rank of all used algorithms and all
used data sets (real and simulated)
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all data sets from all cases:

mean rank 3.2 3.1 3.8 3.6 6.0 3.8
mean F1 61.4 63.5 61.4 63.6 46.0 64.7

only trained with sim and tested with real (sim real):

mean rank 3.0 3.0 3.7 2.0 6.0 3.3
mean F1 68.7 70.7 64.3 73.0 42.0 70.3

els is significant (22 to 60%), depending on the use case.849

Nevertheless, the results show that the idea of the generation850

of time series data using simulation models works. Further-851

more, algorithms trained with simulated data achieved bet-852

ter results than those trained with real data in all considered853

cases and algorithms.854

Especially use case 2, with an F1 score of 94.9% and an855

accuracy of 94%, shows the potential of our time series gen-856

eration method. Not every use case reached these promising857

results, but training with simulated time series achieved bet-858

ter results in all of them. Since we considered only three use859

cases, a general assertion is difficult to derive.860

Remarkably, the real data has successfully trained and861

validated the algorithm in none of the cases. Some of the862

reasons that may explain this outcome are errors in the real863

measurements and constant measurements on many occa-864

sions, which do not provide information to the algorithm.865

Another possible factor is that in most cases, the number of866

samples used in tests with real data has been lower than in867

cases with simulated data (about 20% more samples with868

simulated than with real data).869

The generation of results strongly depends on the qual-870

ity of the simulation models as the models must represent871

the correct dynamics. This circumstance limits the general872

applicability of the approach. However, we can see from the873

exemplary simulation results that even unvalidated simula-874

tion models generate time series similar to those found in875

existing systems. For the training of algorithms, the simu-876

lated time series have the advantage that they can represent877

several energy systems with different scalings (e.g., the dif-878

ferent heating power of a boiler or a heat pump). In theory,879

this enables the algorithm to learn and abstract the typical880

physical behavior of different energy systems. The differ-881

ence between training with simulated data and real data may882

indicate that this theoretical goal is partially achievable.883

In this approach, we have considered three different con-884

nections of only two different systems of technical building885

equipment. This circumstance limits the statement about the886

general application of our approach.887

5.2. Algorithms 888

The results of the multivariate time series classification 889

algorithms provide no general statement. However, the In- 890

ception algorithm was the best in two of the three use cases 891

for training with simulated data and testing with real data. 892

It achieved only slightly different results in the third case. 893

Therefore it can be recommended here. However, it has to 894

be checked with other topology connections in the building 895

if good results are achievable here. 896

When training and testing with real data, all algorithms 897

fail. Thus, using real data cannot be recommended. Here, 898

it is also questionable whether changes in pre-processing, 899

other technical connections, or other algorithms can achieve 900

an improvement. The characteristics of the simulated time 901

series, such as a permanent deviation of the temperature or 902

no disturbances, suggest that classical classification methods 903

like random forest do not obtain the necessary information 904

for classification. 905

The poor results of MLP show that for topology detec- 906

tion in building energy systems, due to the high dead times 907

(flow through the building and heat transfer), the time de- 908

pendencies must be considered. However, the other algo- 909

rithms generally achieve this with significantly better overall 910

results. 911

5.3. Overall process 912

Use case 2 with an F1 score of 94.9% when training with 913

simulated data and testing with simulated data shows that 914

our approach of supervised topology detection with gener- 915

alized generated data works. However, the other use cases 916

also show the limitations of the current methodology. For 917

example, comparing different algorithms is challenging due 918

to the lack of supervised algorithms and data sets for topol- 919

ogy detection in building energy systems. 920

With unsupervised methods of topology detection, accu- 921

racies of >90% have already been achieved [54]. Since the 922

systems are very different (hydraulic system versus air han- 923

dling unit), a comparison of the results is questionable. The 924

results in [30] with a maximal accuracy of 52.1%, which 925

used the same energy system in the same building, but with- 926

out the same focus on technical equipment, are the most 927

comparable results. Especially the lack of reaching steady 928

states was a problem in detecting connections. In our super- 929

vised algorithm, this is not a requirement. The comparable 930

results show that our approach delivers equivalent or better 931

results. 932

6. Conclusion 933

The results show that it is possible to detect connections 934

in building energy systems (BES) based on supervised learn- 935

ing trained using generalized time series from grey-box sim- 936

ulation models. Nevertheless, some research still needs to be 937

done to apply this approach in a scalable way. Furthermore, 938

a comparison of this approach against other connection cases 939

between technical building equipment types is needed. 940

The used algorithms based on CNN showed especially 941

in use case 2 results that were above 90% F1 score. The 942
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inception algorithm was the best algorithm on average with943

our method. It is questionable whether classical machine944

learning algorithms also benefit from the approach devel-945

oped here.946

The comparison of training using simulated and real data947

shows that simulated data can be an alternative to real data in948

identifying connections in energy systems when not enough949

data is available. Nevertheless, publicly available building950

energy system data containing the topology data is rare. So,951

the generation of generalized data covering a more compre-952

hensive range of technologies than available real data sets is953

required. For this case, the presented method has high po-954

tential.955

The physical simulation models reflect the energy sys-956

tems without disturbances which usually occur in existing957

systems. However, this can be a disadvantage, especially for958

the application in machine learning algorithms. These al-959

gorithms are then not necessarily robust. Here, integrating960

disturbances into the physical model could help represent the961

actual operation more robustly.962

We could transfer our results to thermal systems with963

higher thermal inertia, such as underfloor heating or concrete964

core activation. Here, other algorithms may be required, es-965

pecially to cope with the high dead time.966

Whether the supervised topology detection would also967

work with different systems still needs to be researched. The968

results indicate that a generalized application of connection969

detection is complex. If the connections can be clearly de-970

fined and no neighboring systems produce disturbances, the971

approach shown here can provide suitable results.972
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