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Abstract

Complex industrial problems coupled with the availability of a more robust
computing infrastructure present many challenges and opportunities for ma-
chine learning (ML) in the construction industry. This paper reviews the
ML techniques applied to the construction industry, mainly to identify ar-
eas of application and future projection in this industry. Studies from 2015

to 2022 were analyzed to assess the latest applications of ML techniques
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in construction. A methodology was proposed that automatically identi-
fies topics through the analysis of abstracts using the Bidirectional Encoder
Representations from Transformers technique to select main topics manu-
ally subsequently. Relevant categories of machine learning applications in
construction were identified and analyzed, including applications in concrete
technology, retaining wall design, pavement engineering, tunneling, and con-
struction management. Multiple techniques were discussed, including vari-
ous supervised, deep, and evolutionary ML algorithms. This review study
provides future guidelines to researchers regarding ML applications in con-

struction.

Keywords: Machine Learning, BERT, Construction, Concretes, Retaining

Walls, Tunnels, Pavements, Construction Management.

1. Introduction

Nowadays, machine learning (ML) techniques are widely applied to mul-
tiple tasks and challenges. Herewith, the availability of a more powerful
computing infrastructure provides the necessary tools for implementing ad-
vanced ML techniques to solve complex industrial problems. In this way, we
can improve decision-making in industries, increasing their sustainability and

productivity. The fourth industrial revolution (Industry 4.0) is changing all
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the industries in different aspects [1]. One of the industries that is expected
to benefit significantly from ML implementation is the construction indus-
try. Multiple articles raise the need to automate construction to improve
the way this industry works, including the need to improve the construction
supply chains,[1, 2, 3]. In this work, a review of ML applications for smart
construction was developed. Articles published in recent years that consider
the concepts of ML and construction were analyzed. The initial database ob-
tained was more than 5000 articles, so it was decided to use a methodology
based on topic modeling, Section 2, to make an initial grouping of the most
interesting topics to later delve into each of these.

The objective of topic modeling is to group documents and words that
have similar meanings. It is widely used in a variety of domains, including
natural language processing (NLP) and information retrieval (IR). It uses
unsupervised ML algorithms to extract topics from document collections.
There are several topic modeling approaches available, for example, Proba-
bilistic Latent Semantic Analysis (PLSA), [4], Latent Dirichlet Assignment
(LDA), [5]. Another interesting method, nonnegative matrix factorization
(NMF), is an unsupervised technique for reducing the dimension of nonneg-

ative matrices, [6], which has been widely utilized to deduce underlying links
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between texts and to find latent themes [7]. Although these approaches do
not require labels to operate, they require specifying the number of categories
to perform the grouping. However, a growing number of topic modeling sys-
tems are based on LDA and NMF, although they require considerable work
in hyperparameter tuning to generate meaningful topics.

In general, the methods outlined above have some drawbacks. One of
these limitations is that they ignore semantic relationships between words
when using bag-of-words representations. These representations do not con-
sider the context of words in a sentence, which may make it difficult for them
to display documents correctly. This article uses a semi-automatic method
to carry out a bibliographic analysis. In the first stage, a search is carried
out on the Scopus database, and a set of abstracts related to the search is
obtained. These abstracts are modeled across topics using BERTopic, [§].
This method has been used to model topics and provides a better contextual
perspective than previous methods.

Based on the latter, this article uses a semi-automatic method to carry
out bibliographic searches. In the first stage, a search is carried out on the
Scopus database, and a set of abstracts related to the search is obtained.

These abstracts are modeled across topics using Bidirectional Encoder Rep-
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resentations from Transformers topis (BERTopic), [8]. Subsequently, the
main topics are validated for consistency by an expert to select the relevant
topics. Using the relevant terms of each of these topics, new Scopus queries
are generated to finally carry out a traditional bibliographic analysis with
the result of said queries and a clustering analysis based on bigrams.

This study aims to determine the latest applications of ML tools in the
construction industry through a semi-automated method that integrates ML
techniques and expert knowledge. The main objective is to determine in what
areas and what ML techniques have been developed and implemented to solve
problems in the construction industry. This state-of-the-art review includes
articles from the last seven years, where the search focused on applications
of machine learning in construction areas.

A brief summary of the structure of the content of the following sections:
Throughout the Section 2, the procedure used to carry out the bibliographic
analysis is explained. In Sections 3 and 4, the bibliographical analysis of
the selected articles is detailed. First, The BERT topics are selected, and a
general scientometric analysis is carried out in 3. Later, for each selected
topic, a bigram analysis is carried out in Section 4, plus the traditional

bibliographic analysis. In Section 5, future directions are developed and



65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

finally in Section 6, develop the conclusions and the next steps.

2. Methodology

This section describes the proposed methodology. First, an overview of
the method is given to later describe each of the stages. In Figure 1, the detail
of the methodology used to carry out the review is shown. In the first stage,
a search on Scopus is carried out using the concepts of "Machine Learning'
and "Construction." Later these are filtered for articles in English retrieved
in the last seven years. These results are analyzed using the methodology
developed in section 2.1. Each of the topics obtained is validated by experts
in the area who determine validity, evaluating the coherence between the
main terms obtained. For the topics that pass the expert criteria for each
of them, a search is performed again based on the attributes obtained in the
topic. With this new search, the selection of articles is carried out according
to expert criteria again, and for this selected set, a bigram analysis is carried
out on the one hand, which is detailed in the section 2.2, in addition to a
traditional review that implies reading of the article and extraction of the

main characteristics is realized.



83

84

85

86

87

88

89

90

91

92

Initial selection of]| BERT Topic

abstracts Analysis Search using the 5
4 ves——>| main words ofthe|—— pesed
on expert criteria

topic

N Traditional
analysis

—| Bigram analysis

Are the
topic

words

consistent

No—s| The topic is not
considered

Figure 1: Flowchart of the semi-automated literature review methodology.

2.1. Topic analysis

The selection of topics is made by analyzing the abstracts of all the re-
trieved documents. In order to make the selection of these, the process
consists of three stages. In the first stage, a numerical and contextual repre-
sentation of each of the terms is generated. To perform this representation,
a pre-trained model of a neural network, Bidirectional Encoder Represen-
tations from Transformers (BERT), [9], was used. This embedding is very
powerful for language comprehension as it captures the semantic relation-
ships between words.

Once the words are embedded in a vector, in order to analyze and group
the concepts in a meaningful way, a dimensionality reduction process must

7
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be carried out. Several techniques allow the reduction process to be carried
out. In this case, as the reduction process requires preserving global and lo-
cal components of the data space, the uniform manifold approximation and
projection for dimension reduction (UMAP) technique, [10], is used. This
algorithm uses the concept of simplex obtained from algebraic topology in
addition to manifold theory to be able to develop dimensionality reduction.
Once the dimensionality reduction has been carried out, it is necessary to
perform the groupings in order to find the similarities that allow us to obtain
the topics. Following on from the work done in [8], at this stage, (HDB-

SCAN), [11] is used to generate the topics.

2.2. Bigram analysis

A bigram is a sequence of two adjacent elements of a chain of tokens; in
our specific case, they correspond to words. The objective is to carry out
a statistical analysis of the frequency distribution of these bigrams in the
different analyzed abstracts. To perform the analysis of each of the topics
identified by BERT, the R-bibliometrix [12] package was used. Specifically,
four visualizations were used. The first corresponds to the Treemap. This
aims to identify the frequency of the main bigrams in each of the topics. Sub-
sequently, the thematic map is used; this graph uses the concept of density

8
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(internal associations) together with that of centrality (external associations),
(13, 14].

This visualization is divided into four quadrants; quadrant 1 identifies
high density and high centrality. And the main topics that appear in the
articles are considered. The second quadrant corresponds to high centrality
and low density, which are basic and transversal topics. Quadrant 3 corre-
sponds to high density and low centrality topics and is related to the niche
or specialized topics. Finally, the fourth quadrant corresponds to emerging
or poorly developed topics.

Finally, the last two visualizations correspond to conceptual maps and
dendrograms. The conceptual structure visualization creates a conceptual
structure map of each of the topics obtained by BERT. Specifically, mul-
tidimensional scaling (MDS) is performed on terms extracted from the ab-
stracts of the documents. In addition to analyzing the relationship between
the terms in a hierarchical way, the conceptual structure is also displayed

through a dendrogram.
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3. BERT Topics and General bibliometrics

This section details the results obtained from the analysis of topics, and
later with the selected articles of each topic, a general analysis of the jour-
nals, authors, and the thematic evolution of the main concepts is carried out.
According to the methodology detailed in the section 2; The analysis begins
with generating topics using BERT to later select the most important topics
according to expert criteria. Figure 2 shows the selection made for the topics.
In particular, five themes are selected. Concrete, retaining walls, pavements,
tunnels, and construction management. With the keywords obtained in each
topic, a manual selection of the articles to be analyzed was made. Figure
3 shows the main journals analyzed. Automation in construction, construc-
tion and building materials, and engineering with computers were the main
sources of articles. Figure 4 shows an analysis of the contribution by country
as well as an analysis of author networks. In the case of countries, in the
upper right diagram of Figure, the country with the greatest contribution
corresponds to the USA with a frequency of 91 author appearances, followed
by China with 57 and further down Iran with 30, South Korea with 20 and
Canada with 17. Additionally, the visualization represents a collaboration

between countries, in which if the frequency of authors between countries

10



w7 with articles in common exceeds the value 5, a connection is drawn between
us them. At this point, the collaboration between the USA and China, the USA

1o and Iran, and Spain and Chile stands out.

Concrete topic Retaining Walls
» Concrete » Retaining
» Structures » Machine
» Machine » Learning
» Learning » Embodied-energy
» Crack » Cost
» Model » Compaction
» Columns » Optimization
» stcc-columns » Load
» compressive-strenght » Geotechnical

Pavement topic Tunnel topic Management topic
» Pavements » Tunnels » Project management
» Deep-learning » Boring » Decision-making
» Asphalt » Machine-Learning » Learning
» Learning » Crack » Classification
» Crack-Detection »> Blasting » Delivery
» Cracknet > CNN » Activity
» Prediction » Health » Recognition
» Detection » Monitoring » Contract
» Distress » Forecasting » Security

Figure 2: BERT topics selection results.

Most Relevant Sources

AUTOMATION IN CONSTRUCTION

CONSTRUCTION AND BUILDING MATERIALS

ENGINEERING WITH COMPUTERS 6

APPLIED SCIENCES (SWITZERLAND) 0

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE
MATHEMATICS

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY

CEMENT AND CONCRETE RESEARCH
EXPERT SYSTEMS WITH APPLICATIONS
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SY
SUSTAINABILITY (SWITZERLAND)
0 2

Sources

ADVANCED ENGINEERING INFORMATICS
ADVANCES IN CIVIL ENGINEERING

AIN SHAMS ENGINEERING JOURNAL
APPLIED SOFT COMPUTING

ARABIAN JOURNAL FOR SCIENCE AND
ASEE ANNUAL CONFERENCE AND EXPOSITION CONFERENCE P
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMEN
CEMENT AND CONCRETE COMPOSITES

COMPUTACION Y SISTEMAS

N. of Dodcuments ° ’
Figure 3: Most relevant sources.
150 The upper left diagram of Figure 4 shows a network analysis of the au-
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thors. There are seven main groups in the diagram. Where the most signifi-
cant collaborative group is highlighted in red, the author’s network, Zhang,
A; from the USA; Fei, Y, from the USA; Chen, C, from the USA; Liu, Y;
from the USA; and, Li, B, from China. The lower diagram highlights the
publications with important impact factors in the red group between 2017
and 2020. Their publication area is related to the detection of cracks in
the asphalt pavement area through the use of deep learning techniques. An-
other collaborative network of authors is the one led by Koopialipoor, M;
of Iran, which considers collaborations with the USA and Vietnam. In the
lower diagram, they have had a significant number of publications in 2019
and 2020, in addition to a significant number of citations. The publication
line is related to applying ML techniques such as deep learning to tunnels.
The inspection and detection of cracks in tunnels have been addressed by
Doulamis A; Protopadakis E ; Doulamis, N, and other collaborators. They
stand out with publications and important impact factors in 2015 and 2017.

Figure 5 depicts a diagram for assessing the topic evolution of the ar-
ticles under consideration. Combining performance analysis and scientific
mapping, this method identifies and visualizes conceptual subdomains, [15].

Co-word analysis is utilized in a longitudinal context to identify the many

12
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study subjects covered during a specific time period. The Figure shows that
machine learning and deep learning topics appear strongly in the first win-
dow of time. The above is quite natural since the review is focused on ML
techniques. It is also observed that these concepts are maintained in the
different time windows. Another interesting point in the first time window is
crack detection. We see that already at this time, this concept was already
addressed significantly through ML techniques. When we move to the second
time window, we see that deep learning techniques are strongly related to
Crack Detection applications, the construction industry and management,
and health monitoring. Finally, two additional concepts appear in the last
window of time; ML and deep learning techniques have been focused on and
strongly converged into prediction models. On the other hand, a new area

of application related to pavement conditions appears.

13



09

or .

0z
leapJad O]

- N ® < 0

SSPIHY'N

Lzoz

Jeaj\

¢+ @

spmye

6102

T4

swl| 8y} JoAo uononpold ,sioyiny-do |

dey uonelogej09 Aipuno)

spnybuoy

o sryepededoiond ! s&a

C) by

ey Bueny

wp bueyz

bl 1

N
2
&
:
. -3 SIMVYAVdVYdOLO¥d
-an
-Q-N ONVOH
15 -N SINVINOa
-V ONVHZ
-AS3d3A
-dOX ONYM w
L -+
Ar LLYYIN W.
-ANM =
-orn
-N3 INIZTVHD
- VIONVYD
-Al3d
-O N3HD
-IN ¥OOdITVIdOOM
_—
-y
wows RS
@ @
ye uepezyeq.
f— &
[ ) 1 uepegye
[ J
Viqesp-o
[
T e
’ Neszeron
- g O
® ®
10 peweyow b ol
w nbuBe
®
A
$ ® w _ﬁzm

uo11LI0Qge||0d YJOMIBN

14
Figure 4: Country and author’s collaboration map.



183

184

185

186

187

188

2015-2019 2020-2021 2022-2022

D deep learning
neural network neural network
‘ ,// artificial neural e il |:|
neural network " .
] learning models
," machine learning )
- _/ o Ld prediction model |:|
L ety . pavement.candition| ]
crack detection
D health monitoring
machine learning - construction industry.
[ ] artificial intelligence
— [ reinforced.concrete

[=civil'engineering

Figure 5: Thematic evolution map.

4. Bigram and traditional results

This section details the analysis for each of the five topics obtained in
the previous section. The analysis, according to the methodology proposed
in the section 2 consists of two parts. First, an analysis of bigrams is carried
out, from which groups of related words are extracted to obtain an overview
of the topic. Then a traditional analysis of the selected articles on each topic

is developed.
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4.1. Concrete Structures

Concrete is the most widely used artificial material in buildings, pave-
ments, and retaining walls. Concrete technology deals with the study of the
properties of concrete and its practical applications. Concrete is used to con-
struct foundations, columns, beams, slabs, and other load-bearing elements
in building construction. The production of concrete requires large quanti-
ties of coarse and fine aggregates. To preserve natural resources, it is of the
utmost importance to pay close attention to the use of waste materials and
by-products in concrete mixes. For this purpose, predictive models based on
ML have been used to determine the properties of concrete in order to save

time, cost, and energy.

4.1.1. Bigram document analysis

When performing the bigram analysis and structuring the most relevant
concepts, we see in the upper left graph in Figure 6 that the main concepts
related to the artificial intelligence techniques appear: artificial neural net-
works (ANN), and support vector machines. When observing the concepts
related to concrete techniques, reinforced concrete, concrete mix, retaining
walls, and compressive strength, appear as the main concepts.

When the co-words analysis is applied, the concepts are later grouped.

16
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The result can be seen in the lower right Figure. In this Figure, it is ob-
served that the concrete and reinforced concrete structures are related to
prediction models. On the other hand, the study of compressive strength
is in conjunction with neural networks. The part of crack detection and
the concrete surface appears strongly related to convolutional neural net-
works. When the bigrams are grouped further, three clusters mainly stand
out. These results are shown in the two figures below. In the lower-left
Figure, we see that there is a cluster that is related to the structural, sus-
tainable design and its optimization. On the other hand, there is a whole
group related to crack detection, structure health monitoring, and convolu-
tional neural networks. Finally, a large group relates a significant number
of machine learning techniques to concrete design and production variables
such as compressive strength of reinforced concrete, mixture proportions, and

compressive strength.
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4.1.2. Traditional analysis

In Table 1, a summary of the different articles selected for Concrete struc-
tures is shown. The table highlights the use of ANN, RF, and SVM tech-
niques. On the other hand, applications for monitoring structures, crack
and prediction of concrete properties appear more frequently. Following the
groups found in the bigram analysis, the main group related to the design
and production of concrete was found. Concrete is the most widely used
artificial material in buildings, pavements, and dams. Concrete production
requires large amounts of coarse and fine aggregates. To preserve natural
resources, much attention has been paid to the use of waste materials and
by-products in concrete mixes. The fresh and hardened properties of con-
crete mixes containing waste foundry sand (WFS) residues as a partial or
total replacement for fine aggregate have been the focus of several recent
studies. To manufacture molds and cores, the ferrous (iron and steel) and
nonferrous (copper, aluminum, and brass) metal-casting industries discard
WFS. Using predictive models for concrete properties can save time and en-
ergy and provide information on scheduling activities such as frame removal.
In [16], the M5P (decision tree) algorithm was used to model the strength,

modulus of elasticity, strength, and tensile strength at the break of these
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concretes. A complete containing information on mixed proportions and me-
chanical property values at different ages was compiled using internationally
published documents. Various performance metrics were used to evaluate
the performance of the developed models, including the root mean square
error (RMSE), the mean absolute error (MAE), the mean absolute percent-
age error (MAPE), the coefficient of determination (R2), and the correlation
coefficient (R). The results indicated that the proposed models could provide
reliable predictions of the target mechanical properties.

The coefficient of thermal expansion (CTE) significantly influences the
performance of the concrete. However, CTE measurements are expensive;
therefore, CTE is often predicted from empirical equations based on histor-
ical data and concrete composition. In [26], the authors were focused on
applying linear and random forest (RF) regression methods to predict CTE
and other properties from a Wisconsin concrete mix database. The results
of this article show that the accuracy of the RF model is significantly better
than the prediction methods recommended by the American Association of
Highway and Transportation Officials (AASHTO) for CTE. Additionally, RF
significantly outperformed the linear regression technique, where the value

of R2 was much lower. The latter shows that the behavior of CTE does not
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have a linear dependence on the independent variables.

The compressive strength of concrete is a fundamental parameter in the
design of durability and the prediction of the useful life of concrete structures
in civil engineering projects. Therefore, being able to predict this resistance
has a significant practical utility. In [21] the authors proposed a hybrid
ensemble surrogate ML technique for predicting the compressive strength of
concrete. The proposed model is robust in handling overfitting problems and
is therefore suitable for predicting the compressive strength of concrete.

Predicting the carbonation depth of concrete structures is essential for
optimizing their design and maintenance. In [29], a way to improve the pre-
diction of carbonation is proposed using a model based on ML. The model in
question considers the parameters that influence the carbonation process. In
the study, an example is carried out that allows us to see the model’s applica-
bility, which allows predicting the depth of carbonation with high precision.
Underwater and hydraulic concrete structures require periodic inspection due
to the constant water loads. Determining the humidity in the structures is
very important since it guarantees the correct functioning of the structures.
In [30], the authors proposed a method for determining humidity based on

percussion. The method includes the Mel Frequency Cepstral Coefficients
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(MFCC) used as a characteristic of the sound included by impact. A mi-
crophone was also used with which the impact-induced sound signals were
obtained. The use of ML techniques, particularly a support vector machine
(SVM), is proposed to predict moisture in the concrete. Finally, the authors
report that the proposed system has a precision greater than 98%.

Estimating the axial strength of concrete columns confined with steel
tubes is essential when making structural designs. However, this estimation
is challenging because it depends non-linearly on a series of parameters such
as the compressive strength of the concrete, the elastic limit of the steel,
the diameter of the column, the thickness of the steel tube, the length of
the column. In [18], an optimized hybrid ML model was proposed with
the aim of predicting the axial force in columns. To address this challenge, a
hybrid method was used that integrates the support vector regression method
with the Gray wolf optimization metaheuristic. To verify the quality of the
results, they were compared with models that use neural networks, random
forest, and linear regression. With the hybrid method, an R2 coefficient
was obtained with respect to the real values of 0.992 and an average error
percentage of 7%.

Concrete mixing is a complex process that contains several stages. In
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(28], ML techniques are used to improve the design of concrete mixes. By
building and analyzing an extensive database of concrete recipes and their
respective laboratory validations. One of the main results of this study is
the translation of the architecture of the proposed ANN to a mathematical
equation that can be used in practical applications in the real world.

One of the most common uses of machine learning is to generate predic-
tion models. In [22], the use of ML models to predict chloride concentration in
marine concrete surfaces is addressed. The study uses a ML ensemble model
to predict the concentration of surface chloride (Cs) in concrete. In the first
place, a database is established that is then used to train five ML models,
which are: linear regression (LR), Gaussian process regression (GPR), sup-
port vector machine (SVM), artificial neural network multilayer perceptron
(MLP-ANN) and RF. In addition, the metaheuristic combination of predic-
tions of RF, MLP-ANN, and SVM achieves greater precision when predicting
compared to each model independently.

The use of machine learning methods also applies to sustainable concrete
design. Specifically, in [31] the embodied energy and carbon dioxide emissions
of a reinforced concrete column are optimized. Conventionally, the design of

reinforced concrete structures focuses on minimizing construction costs while
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satisfying the structural design code. However, the aspect of sustainability
is a relevant dimension in structural design. According to the experiments,
it is concluded that when a cost increase of 10% is assumed, the embodied
energy and the CO, emissions can suffer an overall reduction of up to 22%
and 63%, respectively.

A second group identified in the bigram analysis corresponded to crack de-
tection and concrete monitoring. Checking the damage status of a structure
is essential when checking concrete structures. In the article [32], it is pro-
posed to design a framework for the automated probabilistic classification of
cracks in cementitious components based on acoustic emission (AE) signals.
Waveform parameters, including RA and average frequency (AF) values, are
grouped by an unsupervised grouping algorithm dictated by density. Using
the Support Vector Machine (SVM) algorithm, clusters that intersect in the
data are separated through a hyperplane. Finally, it is possible to estab-
lish that the expectations based on the compound theory are correct; this is
achieved through the cracking modes that are obtained from the proposed
machine learning approach.

Cracks in concrete structures are certainly an indicator that something is

wrong, and over the years, the process of detecting these indicators has been
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carried out manually; that is, there must be a person in charge of the process
that generates the precision of the measurements is not entirely correct. In
[33], the way to perform this inspection automatically using ML techniques is
proposed. In principle, there is a training stage where images are binarized,
used to extract possible regions of cracks, then classification models with
a convolutional neural network. Finally, the proposed method is evaluated
with other concrete images that contain and do not contain cracks. The same
is raised in [34], where they proposed automatically detecting cracks through
images using a convolutional neural network.

In [27], the Voronoi Diagram algorithm was used to estimate crack pat-
terns and spread on a random concrete surface. A random photo of a concrete
crack located on the surface of a fountain is taken, and the dimensions and di-
rections of the crack are measured. After that, the crack was divided into 12
parts to assess the algorithm’s ability to estimate the crack pattern, includ-
ing its direction. As a result of the study, it is identified that this method
is precise, fast, economical, and useful for monitoring and estimating the
propagation of cracks in concrete surfaces.

High-Performance Fiber Reinforced Concrete (HPFRC) is a standard

concrete (NC) structure repair material. In [24], a prediction model based
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on HPFRC and ML to address repair problems in concrete structures is ad-
dressed. This is achieved in the first instance by conducting a study on the
disunity behavior between HPFRC and NC subjected to a direct shear load.
A finite element (FE) model is then developed to predict the direct debark-
ing response. Finally, a ML model is developed that makes it possible to
formulate the shear strength of HPFRC-NC.

In concrete crack analysis, acoustic emission monitoring has taken an
important role since it allows for monitoring changes in structural integrity
and durability. However, it is necessary to distinguish crack signals from
ambient noise. In [19] a convolutional network model is explored, allowing
us to distinguish environmental noise signals from the crack’s own signals.
In particular, a two-dimensional convolutional model was proposed, able to
distinguish and separate both sets successfully.

In [35] the authors address the problem of automatic detection of cracks
in concrete structures from images. The article indicates that a more practi-
cal and precise method is necessary, for which they propose a method based
on image processing using the light gradient magnification machine (Light-
GBM). It is possible to obtain a precision of the proposed method of 99.7%,

a sensitivity of 75.71%, a specificity of 99.9%, a precision of 68.2% and an F
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measure of 0.6952. With these results, it is possible to demonstrate that the
proposed method manages to detect cracks with great precision in concrete
structures.

In [25], a classification of in-plane failure modes are established for con-
crete frames using ML. In the first instance, an experimental database is
built, then six ML algorithms are implemented and evaluated for the failure
mode classification. In this article, it was obtained a result that the high-
est precision (85.7%) was achieved with the Adaptive Boosting and Support
Vector Machine algorithms.

In [23], a study is presented proposing an automated approach to quan-
tifying digitally documented crack patterns in reinforced concrete shell el-
ements subjected to reverse cyclical shear loads. A set of artificial cracks
is analyzed using multifractal analysis. With the results of the paramet-
ric study, a multiclass classification model is trained and used to estimate
the level of damage for cracked concrete elements. Finally, the multifrac-
tal characteristics manage to translate the shape of the crack patterns into

meaningful information with an accuracy of 89.3%.
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4.2. Retaining Walls design

Retaining walls are rigid concrete walls used to laterally support the soil so
they can be retained at different levels on the two sides. Optimizing cost and
CO2 emissions in retaining walls is a relevant issue for the competitiveness of
construction companies and the environmental impact of the construction of
these structures. Within ML applications in the efficient design of retaining
walls, hybrid models have been used to estimate safety factors. The particle
swarm optimization (PSO) algorithm has been used to calculate the optimal
construction cost of reinforced concrete retaining walls. Models that combine
ANN with the artificial bee colony algorithm (ABC) have also been used to

estimate and optimize the safety factors of retaining walls.

4.2.1. Bigram document analysis

This section details the bigram analysis performed for the concepts of
machine learning and retaining walls. The results are shown in Figure 7.
When analyzing the treemap in the upper left corner, retaining wall con-
cepts such as geotechnical engineering, carbon emissions, bearing capacity,
and loads, all of them typical of the retaining wall subject. However, ML
concepts such as forecasting, classification, neural networks, mean square er-
ror, and convolutional neural networks are also mentioned. Additionally, a
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third group is observed that is related to optimization, with concepts such
as optimization algorithms and artificial bee colonies appearing. When co-
words are analyzed, and subsequent grouping occurs, the lower right figure
illustrates groups associated with retaining walls, wall height, friction an-
gles, and artificial intelligence algorithms or prediction models. Additionally,
there is a subgroup for optimization, specifically of reinforced concrete walls,
and metaheuristic algorithms such as harmony search or hybrid algorithms.
When creating a conceptual structure map, we notice that the major groups
correspond to two (lower left Figure): on the one hand, concepts related to
retaining walls and ML algorithms such as neural networks appear predom-
inantly in red. On the other hand, another group appears in blue, which is
concerned with optimizing the design of walls and metaheuristic algorithms.
The dendrogram illustrates the relationship between the various concepts

mentioned previously (Figure top right).

4.2.2. Traditional analysis

In Table 2, a summary of the different articles selected for retaining wall
structures is shown. There is an important group of applications related to
metaheuristics, machine learning, and optimization of costs, emissions, and

embodied energy. On the other hand, there are also ML applications in re-
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Figure 7: Tree, Thematic, conceptual and dendrogram maps applied a retaining wall data

set.
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taining walls related to safety factors. When going into detail in the articles
regarding the group related to optimization, metaheuristic or hybrid tech-
niques are mainly explored to solve the optimization of costs, emissions, or
energy consumption. It was found that optimizing cost and C'Oy emissions
in earth retaining walls is critical for a construction company’s competitive-
ness and that optimizing emissions is critical for the environmental impact
of construction. In [36], the optimization based on the black hole algorithm
was used, along with a discretization mechanism based on min-max normal-
ization. The results obtained were compared with another algorithm that
solves the problem (Harmony Search algorithm). Solutions that minimize
CO4y emissions prefer the use of concrete rather than those that optimize
cost. When compared to another algorithm, the results show good perfor-
mance in optimization using the black hole algorithm. In [38], the buttressed
walls problem was determined using an application of a hybrid clustering
PSO algorithm. In this study, the focus was the optimization in the design
of reinforced earth retaining walls, particularly minimizing the amount of
CO4 emissions generated in its construction and the economic cost. This
problem has high computational complexity since it involves 32 design vari-

ables. The authors propose a hybrid algorithm in which the PSO method is

33



449

450

451

452

453

454

455

456

457

458

459

461

462

463

464

465

466

467

integrated that solves optimization problems in continuous spaces with the
db-scan clustering technique. The db-scan operator significantly improves
the solutions’ quality, showing good results compared to the harmony search
algorithm.

In [40], a hybrid k-means cuckoo search algorithm was applied to the
counterfort retaining walls problem. In [46] a PSO algorithm is employed
to calculate the optimum construction cost of reinforced concrete retaining
walls. Geotechnical and structural limitations are considered constraints for
the optimization problem. The critical role of building in natural resource
use is driving structural design professionals to develop more efficient struc-
tural designs that reduce emissions and energy consumption. In [43], an
automated approach to generating optimal buttressed earth retaining wall
designs with minimal embodied energy is described. In this research, two
objective functions were used to compare the cost optimization and embod-
ied energy optimization strategies. This study employed a hybrid simulated
optimization algorithm to determine the geometry, concrete resistances, and
concrete and material quantities required to create the optimal buttressed
earth-retaining wall with the lowest embodied energy. A relationship was

discovered between the two optimization criteria, implying that cost and en-
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ergy optimization are inextricably related. This permits the statement that
a 1 cost reduction results in a 4.54 kWh reduction in energy consumption.
The other interesting group obtained from the bigrams analysis was the
application of ML techniques to prediction and classification. Particularly
in [37], the authors present intelligent models to solve problems related to
retaining walls. For this, the safety factors of 2800 retaining walls were
modeled and recorded, considering different effective parameters of retaining
walls. This includes the following parameters: wall height, wall thickness,
friction angle, soil density, and rock density. A combination of the arti-
ficial bee colony (ABC) and ANN algorithm was used to approximate the
safety factors of the retaining wall (compared to a previously developed ANN
without ABC). The performances of the generated models were evaluated us-
ing coefficients of determination (R?) and performance indices of the error
(RMSE). The new hybrid model (ANN + ABC) can significantly increase
the performance capacity of the network (compared to ANN without ABC).
R? values of 0.982 and 0.985 for training and testing of the ABC + ANN
model, respectively, compared to values of 0.920 and 0.924 for the ANN model
(without ABC). In conclusion, the results showed that the new hybrid model

could be introduced as a sufficiently capable technique in the field of this
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study to estimate the safety factors of RW. In [41], a combination of ANN
and artificial bee colony (ABC) is employed for predicting and optimizing
safety factors of retaining walls. A comprehensive database of 2880 datasets
was used; the input parameters included wall height, wall width, wall mass,
soil mass, and internal angle. A critical point in the study of retaining walls
is the structure’s failure probability. In [45], a reliability study of the struc-
ture is conducted using ML techniques, incorporating geotechnical variables.
They are predicted using Neural Networks, Multivariate Adaptive Regres-
sion Splines, and vector machine support techniques. The application of
these techniques yielded results that deviated by less than two % of the real
values, simplifying the process of calculating these safety factors.

Making design decisions is a subjective process that considers multiple di-
mensions such as economic, social, and environmental. In [42], self-organizing
maps (SOM) were used to simulate decision-making in order to determine the
most appropriate retaining wall technique. N-fold cross-validation was used
to validate the model. This study demonstrates that self-organized maps are
beneficial for decision-making when selecting a retaining wall method. The
SOM had a maximum accuracy of 81.5 percent and a mean accuracy of 79.8

percent. Through the use of classification convolutional neural networks, in
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[44], models were built that were trained using previously classified retain-
ing wall images. These images indicated whether the constructed wall was
safe or not. In the training process of the convolutional network, image sets
that had between 500 and 200,000 images were used to verify the results
against 20,000 images later in the testing stage. The result of the models
achieved an accuracy of 97.94 % in the safety classification of a wall. In
[39], an estimation of compaction parameters is performed. Estimating these
parameters is an essential point in the design of retaining walls. The Proctor
Test is usually used to make this estimate. However, this test is expensive
and time-consuming. The study developed a new model for predicting com-
paction parameters based on eleven new progressive ML methods to overcome
these limitations. The modeling phase was performed using a database of 147
samples collected from different studies. Model performance was evaluated
across six metrics in addition to incorporating K-fold cross-validation. The
comparative study demonstrated the effectiveness of the RF technique, which

showed the highest performance in predicting soil compaction parameters.

4.3. Pavement Engineering

Pavement engineering is a discipline that uses engineering techniques to
optimize the design and maintenance of flexible asphalt and rigid concrete
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pavements. Determining the shear strength of soil is an essential task in the
design phase of a pavement construction project. For this purpose, models
integrating the support vector machine (SVM) algorithm and cuckoo search
optimization (CS) have been used. Some architectures based on convolu-
tional neural networks (CNN) have also been used for the detection of pave-
ment cracks on asphalt surfaces. With this same purpose, deep convolutional
neural networks with transfer learning have been used to detect and classify

pavement faults based on computational vision automatically.

4.3.1. Bigram document analysis

This section details the bigram analysis performed for ML and pavement
concepts. The results are shown in Figure 8. When analyzing the treemap,
concepts related to crack detection, monitoring, and conditions and the pre-
diction of coefficients or variables related to the pavement are highlighted.
This can be seen in the upper left Figure by complementing the analysis with
an analysis of co-words and clustering, which is shown in the lower image
on the right. We see that there is a group related to pavement maintenance
policies. Another group is associated with cracks, and a third group is re-
lated to pavement condition prediction. On the other hand, techniques such

as deep learning and RF stand out. Finally, when performing a conceptual
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map clustering, two groups stand out. The first group in blue is mainly
distinguished maintenance and policies related to pavement maintenance.
On the other hand, the red cluster is a little more diffuse, highlighting the
application of ML techniques related to cracks in the pavement analysis of
parameters such as vibration, shear strength, and pavement surface. This
is complemented by the dendrogram shown in the upper right image, which

indicates the closeness between the different concepts.

4.3.2. Traditional analysis

In Table 3, a summary of the different articles selected for Pavements
structures is shown. Among the main techniques used, different architectures
of convolutional networks stand out, in addition to ANN multilayer percep-
tron, RF and SVM. Regarding the applications, the detection of Crack, and
prediction of indicators related to its monitoring and deterioration stand out.
When performing traditional analysis driven by the topics found in bigram
analysis. An interesting group that appears is related to pavement mainte-
nance policies. The effects of climate change in particular, which are related
to temperature changes, directly impact the pavement. Having a guide to
guarantee the adequate maintenance of the pavements allows efficiencies to

be made when maintaining them. In [55] the authors address this problem
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in the case of Iran. Particularly in certain areas, climate change has changed
from a cold semi-desert to a relatively hot semi-desert. In the article, ML
algorithms are used to develop a methodology that allows evaluating the
necessary maintenance differences and thus developing a maintenance policy.
This policy allows an adequate evaluation of the costs involved in the main-
tenance process due to the effects of climate change. In [57], a framework
was proposed using ML to find optimal maintenance policies in a road net-
work. The stages included grouping the network based on relevant factors,
identifying criteria that impact optimal policies, and determining policies
and application periods. Additionally, regression algorithms such as gradi-
ent boost regression, lasso, ridge, RF regression, and neural network, among
others, were used to quantify and predict the cost of policies.

A second line found in the bigram analysis is related to the detection of
cracks and distress in the pavement. In [64], an architecture based on Convo-
lutional Neural Networks (CNN) called CrackNet, is developed and employed
for pavement crack detection on threedimensional (3D) asphalt surfaces. This
same group of authors from the School of Civil and Environmental Engineer-
ing at Oklahoma State University (USA) published three new versions, in

[63], of the CNN-based pavement crack detection architecture, CrackNet II,
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CrackNet-V, and CrackNet-R . In [62], a CrackNet version using recurrent
neural networks was developed (called CrackNet-R), four times faster and
with better accuracy than the original CrackNet version. This version pro-
poses a gated recurrent multilayer perceptron (GRMLP) to update the in-
ternal memory recursively. GRMLP is intended for deeper input and hidden
state abstractions by conducting multilayer nonlinear transforms at gating
units. The training of CrackNetR is completed using 3,000 diverse 3D im-
ages. The analysis using 500 testing pavement images shows a precision of
88.9%, a recall of 95.0%, and a Fmeasure of 91.84%. In [49], CrackNet-V
was developed as a more efficient version of the CNN-based architecture.
This version has a deeper architecture but fewer parameters, with improved
accuracy and efficient feature extraction.

In [52], Deep Convolutional Neural Networks (DCNN) with transfer learn-
ing were applied for computer vision-based automated pavement distress de-
tection and classification. The FHWA /LTPP database with multiple Pave-
ment images datasets was used. The truncated DCNN was used to build
deep features for road imaging. Various ML classifiers were trained using
semantic image vectors. A neural network classifier trained in deep transfer

learning vectors gave the best results.
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In [47], a novel method based on a hybrid ABC-ANN model for pave-
ment surface distress detection and classification was used. In this study, the
ANN was used to classify a hazard area as a specific hazard type, includ-
ing transverse cracks, longitudinal cracks, and potholes. The study results
demonstrate that the hybrid ABC-ANN approach works well for pavement
distress detection and can classify types of distress on pavement images with
reasonable precision. The precision obtained by the proposed ABC-ANN
method achieves an increase of 20% compared to the existing algorithms.

In [54], the performance of different ML algorithms was analyzed for as-
phalt pavement crack classification, including support vector machine (SVM),
ANN, and the RF. The feature set consisting of the properties derived from
the projective integral and the properties of crack objects can offer the most
desirable result. Experimental results show that SVM has achieved the high-
est classification accuracy rate (87.50%), followed by ANN (84.25%) and RF
(70%). The proposed approach may be useful in assisting transportation
agencies and inspectors in the task of assessing the condition of the pave-
ments.

A relevant issue in public safety is related to cracks in the pavement,

despite advances in imaging techniques and segmentation. Segmenting or
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recognizing pavement cracks is a non-trivial problem. This is because there
is no regularity in the pavement cracks, so there is no clear pattern. At In,
[50], a variation of the U-net topology was developed to perform automatic
pavement crack detection. To validate the proposal, benchmark data such
as CFD and AigleRN were used.

The primary non-destructive pavement evaluation methods are image
recognition models, ML algorithms, and visual inspections. While the previ-
ous methodologies are efficient, they include uncertainty, noise, and overfit-
ting. By and large, the cracks do not follow a predictable pattern. The use
of ANN to predict the qualification of cracks in pavements is addressed in
[56] to strengthen the results of the learning models already used in predict-
ing cracks in pavements. An interesting facet of the work is the data used.
The model formulation incorporates variables such as average daily traffic
and truck factor, road functional class, asphalt thickness, and pavement con-
dition time series data. By and large, the work concludes that ANNs are
considered suitable ML models for crack classification.

In [53] also uses ML techniques to detect potholes on the asphalt pave-
ment surface. In this case, Gaussian filters, steerable filters, and integral

projection are used to extract features from digital images. Once the feature
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set was generated, the robustness of the LS-SVM and ANN methods was
evaluated. The evaluation was performed using 200 images as a training and
validation set. Both methods had values in the precision indicator above 85%
and a ROC-AUC of 0.96. Particularly LS-SVM was the one that obtained
the best results.

An application thinking of autonomous cars corresponds to detecting the
texture of the road since it directly affects the operation of the tires and brak-
ing. In [48], deep learning is used to perform pavement texture recognition.
As a first step, the captured images were pore-processed and subsequently
augmented using the Generative adversarial networks (GANs). Finally, the
RF technique and the Densenet network were used for the texture identifi-
cation process. The latter obtained better precision than RF. Particularly
when using the data augmented with GANs, a better quality database is
obtained, and therefore when training with this new set of images, it is ob-
served that the accuracy improves from 59% to 82%. To train the adversary
network, 250,000 iterations were used. These methods were also found to
work better than manual methods.

Regarding the third group related to using ML in order to predict pave-

ment properties. The shear strength property of the soil is critical. De-
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termining the shear strength of the soil is an important task in the design
phase of the construction project. In [61], the authors present a hybrid Al
model that integrates the Least squares support vector machine (LSSVM)
algorithm and the cuckoo search optimization (CSO). A data set of 332 soil
samples collected from the Luong National Highway Project in Vietnam was
used to construct and validate the model. The input variables used in this
study were: the depth of the sample, the percentage of sand, the percentage
of clay, the percentage of clay, the moisture content, the wet density of the
soil, the specific gravity, the liquid limit, the plastic limit, the plastic in-
dex, and the liquid index. LSSVM is used to generalize functional mapping
that estimates shear strength from the information provided by the input
variables. The LSSVM model requires proper configuration of the regular-
ization and parameters of the kernel function; instead, the CSO algorithm is
used to determine these parameters automatically. The experimental results
show that the prediction precision of the LSSVM and CSO hybrid method
(RMSE = 0.082, MAPE = 14.841, and R? = 0.885) is better than that of the
reference approaches that include the standard LSSVM, the ANN, and the
tree regression. Therefore, the proposed method is a promising alternative

to assist construction engineers in estimating the shear strength of the soil.
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Another interesting indicator to consider in flexible pavements is the inter-
national roughness index (IRI). The RF technique is used in [51] to perform
automatic prediction on this indicator. Eleven thousand samples were used
to create the data set. Eighty percent of the data was used in the training
process, with the remaining twenty percent reserved for validation. Sam-
pling was conducted at random. The results outperformed regularized linear
regression models, with indicators exceeding 95%. When the importance of
variables is analyzed, it is discovered that the primary influencing variables
are the initial value of IRI, as well as the average rainfall, fatigue cracking,
and transverse cracking. In [58] a general ML technique be used to construct
models for pavement performance prediction in pavement management sys-
tems (PMS). The proposed models were developed using a RF algorithm and
datasets that included past IRI observations as well as structural, meteoro-
logical, and traffic data. The proposed approach is compatible with a variety
of machine learning algorithms and emphasizes generalization performance.
A case study is presented for the prediction of the IRI over the next five and
ten years utilizing the Long-Term Pavement Performance.

Pavement condition prediction is a powerful and critical tool for deter-

mining the most effective maintenance approaches and treatment processes.
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Similar to previous works, in [60], use ML methods to forecast the IRI and
pavement condition indices (PCI). These performance indices are frequently
used in pavement monitoring to correctly determine the state of a pave-
ment’s health. Additionally, the paper discusses the most critical variables
that pavement condition prediction models include. In [65], the prediction
of the PCI indicator is addressed through the use of cascade models. The
goal is to be able to replace visual inspections, and in order to calibrate the
models, they chose the six most frequent defects: patches, alligator cracks,
transverse and longitudinal cracks, shoving, and potholes. The cascade ar-
chitecture uses traditional learning models integrated with a neural network.
After applying the statistical cross-validation techniques, the results show
that the model can predict the index with an adequate degree of precision.
Finally, the pavement maintenance quality index (PQI) prediction is covered
in [59]. The study proposes a prediction model for the deterioration of the
technical condition index of the pavement surface based on the Light Gradi-
ent Boost Machine. To properly fit the model, the grid-search technique was
used. The prediction result is compared with the prediction result using a
RF. The comparison indicates that the boost method has a good prediction;

this is observed when analyzing the R, indicator, which obtained a value of
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0.754 and the MAE that reaches 2.651.

4.4. Tunnels

Tunnels are underground infrastructure that seeks to connect two exter-
nal points by crossing flat surfaces, mountainous accidents, and even seas.
One of the main challenges in tunnel engineering is the inspection, evalu-
ation, maintenance, and safe operation of the infrastructure. In order to
study structural damage in tunnels, computer vision techniques have been
used, including combinations of convolutional neural networks (CNN) and
fuzzy spectral clustering (Fuzzy spectral clustering). On the other hand,
predicting machinery performance is critical for accurate cost estimation in
tunnel construction projects. For this purpose, deep neural network models
have been used to predict the penetration rate of tunnel boring machinery.

These systems offer high detection accuracy compared to existing methods.

4.4.1. Bigram document analysis

The bigram analysis is shown in Figure 9. In the upper left Figure, tunnel
inspection and crack detection are obtained as major issues being developed
in tunnels. This is confirmed in the graphs below. In the thematic map,

shown in the lower right Figure, we see that three groups appear. One group
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is related to tunnel inspection, another group is related to crack detection,
and a third group does not have a precise meaning. When analyzing the clus-
ters generated by the conceptual map, shown in the Figure lower left. It is
noted that two clusters appear; the blue one is related to the concept of mon-
itoring and structural health with image segmentation, ML, deep learning,
and convolutional networks. In a second cluster in red, the concept of crack
detection appears related to penetration rates, excavations, and geotechnics
and in conjunction with metaheuristic optimization techniques, deep learn-
ing, and ML. When analyzing the dendrogram in the upper right Figure, we
see that tunnel inspection is very close to convolutional networks and image
segmentation concepts. On the other hand, in the red group, crack detection
concepts are related to metaheuristic techniques such as artificial bee colony

and ML regression and classification techniques.

4.4.2. Traditional analysis

In Table 4, a summary of the techniques, applications, and results ob-
tained in the different works analyzed is shown. Regarding the applications,
the inspections and monitoring of tunnels stand out, in addition to the pre-
diction of penetration rates and performances. Among the techniques, the

use of SVM, convolutional networks and Multilayer perceptron stands out.
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On the other hand, the first line identified in the bigram analysis is related
to tunnel crack detection. In [66], convolutional neural networks and fuzzy
spectral clustering were used for real-time crack detection in tunnels. This
article proposes a computational vision model for tunnel crack detection,
a challenging process due to low visibility, curvature, and crack structures
that, although very narrow, are very deep. The proposed system integrates a
robot that examines tunnels in real-time as it moves through the infrastruc-
ture. Initially, a convolutional neural network is used to detect cracks. Then,
a combined fuzzy spectral clustering is introduced to refine the detected crack
regions. The model was tested in tunnels on the Egnatia Highway. Due to
the low visibility and geometry of the system, the accuracy and F1-score val-
ues are not that high; however, the system offers a considerable improvement
in detection compared to existing methods. Additionally, the ability of the
robot to touch the crack allows for on-site measurements with accuracy.

In [67], an image acquisition system is designed, which uses multi-line
scanning cameras. The objective is to capture images of the tunnel surface
to generate a model for automatic crack detection. For the training of the
model, three stages were developed. The first is an improvement of the data

set through a frequency-domain improvement algorithm. A filter is then
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generated to remove noise generated by water stains and existing devices on
the tunnel’s surface. Finally, a segmentation algorithm is used to segment the
cracks. The algorithm was tested on Line 1 of the Beijing subway, surpassing
state-of-the-art algorithms.

Predicting cracks or overflows in the face of critical conditions is vital
in monitoring and maintaining essential infrastructure. In [68, 69], a neu-
ral network was built, which was used to predict the overbreak induced by
the blasting operations of the Gardaneh Rock tunnel. R2 values of 0.923
were obtained in the validation set. With this model and considering that
overbreak is one of the main difficulties in tunnel excavations, the excavation
operation is improved. Specifically, extra drilling of 47% was achieved.

In [70] stability evaluation using reliability was applied; the main dif-
ficulty of the above is the nature of the limit state function. The article
developed a hybrid approach, integrating the uniform design with a regres-
sion model using the support vector machine technique, was developed. The
hybrid proposal was evaluated in three tunnels with different characteris-
ticsa first simplified case and later two real cases. The results concluded that
the hybrid method could train adequately with less data than traditional

methods, maintaining the quality of the predictions.
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The second line of research obtained from bigram analysis is related to
tunnel inspection and analysis of operational conditions. One way to detect
the health status of structures in tunnels is by laser scanning. This form is
proposed in the article by [71], where they focus directly on railway tunnels
because they represent one of the tunnels whose accidents can be more catas-
trophic. However, it is mentioned that the human component in these types
of constructions continues to be predominant, which is why it is worrying and
generates a need to advance through automation. The study determined that
laser scanning in conjunction with custom processing tools can provide data
for additional structural operations. A methodology is used divided into the
preprocessing of the point cloud, then the division of the cloud into terrestrial
and non-terrestrial points, and finally, the detection of the elements present
and each of the clouds.

In [72], Deep convolutional neural networks were used for efficient vision-
based tunnel inspection. One of the main challenges facing engineers today
is the safe inspection, evaluation, maintenance, and operation of civil infras-
tructure. For this process, manual processes are used, which are slow and
produce subjective results, or automated approaches, which depend on com-

plex handmade characteristics, where it is seldom known in advance which
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characteristics are important for the problem in question. This article pro-
poses a fully automated tunnel evaluation approach. Complex features were
hierarchically constructed with a monocular camera using a deep learning
model. The obtained features were used to train a defect detector using a
convolutional neural network to build high-level features and, as a detector,
a multilayer perceptron was used due to its global function approximation
properties. Very rapid predictions were obtained with the proposed system
due to the advancing nature of convolutional neural networks and multilayer
perceptrons.

In [73], an application of deep neural networks was employed to predict
the penetration rate of tunnel boring machines(TBM). Performance predic-
tion is critical to accurate and reliable cost estimation using a TBM in mech-
anized tunnel construction projects. A wide variety of artificial intelligence
methods have been used in predicting the penetration rate of TBM. This fo-
cuses on developing a deep neural network (DNN) based model, an advanced
version of an ANN, for predicting the penetration rate of TBM based on data
obtained from the transfer tunnel of raw water Pahang-Selangor in Malaysia.
Based on the results obtained from the coefficient of determination and the

root mean square error (RMSE), a significant increase in the prediction of
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the performance of the penetration rate is achieved through developing a
predictive DNN model. The DNN model demonstrated better performance
for estimating the penetration rate than the ANN model.

In [74], a supervised machine learning technique was used to predict tun-
nel boring machine penetration rate. Prediction of the penetration rate is
a complex and challenging task due to the interaction between the tunnel
boring machine (TBM) and the rock mass. This article discusses the use of
supervised ML techniques, including k-nearest neighbor (KNN), chi-squared
automatic interaction detection (CHAID), SVM, classification and regression
trees (CART), and ANN to predict the penetration rate (PR) of a TBM. To
achieve this goal, an experimental database based on field observations and
laboratory tests was created for a tunnel project in Malaysia. In the database,
uniaxial compressive strength, Brazilian tensile strength, rock quality desig-
nation, weathering zone, push force, and revolution per minute was used
as inputs to predict the TBM PR. Then KNN, CHAID, SVM, CART, and
NN predictive models were developed to select the best. In this article, the
KNN model has the best performance to predict the PR of TBM. The KNN
model identified uniaxial compressive strength (0.2) as the most important

and revolution per minute (0.14) as the least important factor in predicting
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the TBM penetration rate.

In [75], the topic of tunnel convergence prediction using ML methods
is addressed. The study focuses on the construction of a tunnel in Namak-
lan where ANN, multivariate linear regression (MLR), multivariate nonlinear
regression (MNR), support vector regression (SVR), Gaussian process regres-
sion ( GPR), regression trees (RT), to predict the convergence rate (CR). Six
predictive parameters were selected, which are: cohesion, internal friction an-
gle, uniaxial compressive strength of the rock mass, rock mass classification,
overburden height, and the number of rock bolts installed. Using the coeffi-
cient of determination (R?) it was possible to determine that the MLP-ANN
model is the most optimal, with R? = 0.93. In contrast, the MLR model has
a prediction with the lowest B? = 0.61, and the RT and GPR models are the
least indicated for predicting these indicators.

In [76], it is mentioned how to predict the linear response for tunnels
built in anisotropic clay. This is important when building a tunnel because
it considerably impacts the duration and safety it will have over time. Five
parameters were taken into account to measure: Burial depth, the center-
to-center distance of the tunnel, soil resistance, stiffness ratio, and degree

of anisotropy. These are known as finite elements (FE). Then, through the
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application of multivariate adaptive regression splines and decision tree re-
gression methods, the prediction of the bending moment within the linings
of the first tunnel is evaluated based on the cases of FE constructed. This
allows engineers to estimate the structural response of tunnels with greater
reliability.

In [77], the use of an automated robotic inspector that can assess the
condition of a tunnel is proposed. This inspector has mobile autonomy, has
a crane arm, and is directed by the crack detector based on computer vision.
In addition, the robotic inspector has ultrasound sensors, stereo cameras, and
a laser scanner. The inspector’s method is initially crack detection through
a deep learning approach, using a visual inspection based on convolutional
neural networks. Then this generates a detailed 3D model of the cracked
area using photogrammetric methods. In [80], the idea of detecting cracks in
tunnels and their segmentation is raised. They do this using a convolutional
deep neural network technique called "CrackSegNet," and a dense segmenta-
tion of cracks is carried out in the form of pixels. The network consists of a
backbone, dilated convolution, spatial pyramid cluster, and jump connection
modules. The proposed network achieves significantly higher precision and

generalizability than the compared methods, thus achieving greater efficiency
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at a low cost.

The manual inspection procedure for cracks and leaks in metro shield tun-
nels is slow. One of the main causes of the slowness is the difficulty, which
is an interference defect that occurs in the tunnels. In [78], the manual
procedure was replaced with an automatic procedure based on deep learn-
ing. In particular, a semantic segmentation algorithm is proposed to identify
cracks and leaks. The proposed method was compared against state-of-the-
art methods, finding that the semantic segmentation algorithm is superior
to the other methods analyzed. This superiority was not only in the qual-
ity of the recognition but also in the processing times to obtain the result.
Robotics is a fundamental actor in the automation of tunnel inspection. In
[79], a robotic inspector is used for tunnel evaluation. Among the impor-
tant features, the robotic inspector is able to navigate autonomously in the
structure. In addition, it captures images and finally analyzes them to iden-
tify defects in the structure. The cracks are detected through deep learning
techniques, and later the robot can create a 3D model with the detail of the
cracked area. The autonomous system was evaluated in railway and road

tunnels.
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4.5. Construction Management

Due to the complex and dynamic nature of many construction and in-
frastructure projects, the ability to detect and classify key on-site activities
by various teams and human personnel can improve the quality and man-
agement of construction projects. One of the approaches in this matter is
using sensors integrated with smartphones as data collection and transmis-
sion nodes to detect activities in construction equipment. These systems
of recognition and classification of the activity of construction workers are
combined with data collected from sensors and ML models. In this way,
it is possible to assess the condition, behavior, and surrounding context of
construction workers to effectively manage and control projects. Another
example is related to safety in construction management. Safety Leading
Indicators are a way of flagging sites that are most at risk. Some works pro-
pose using machine learning to develop safety indicators that classify sites

according to their safety risk in construction projects.

4.5.1. Bigram analysis

Figure 10 shows the bigram analysis performed for the management con-
cept. In the upper left figure, the treemap indicates that Construction
projects, Contract delivery, price index, and activity recognition correspond
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to the most frequent bigram. Regarding ML techniques, we see that the
support vector machine is the only technique that appears in the treemap.
When analyzing the thematic map, lower right figure, we see an important
group related to project management and delivery and other groups related
to the activity recognition. In the conceptual structure map, two groups are
distinguished in light blue a group related to management and delivery and
a more diffuse red group. In the red group, the concepts of productivity
monitoring and construction productivity appear again, but there are also

the concepts of activity recognition and construction safety.

4.5.2. Traditional analysis

In Table 5, a summary of the articles analyzed in the management area
is shown. Among the applications that stand out is the detection of critical
activities in relation to safety on the construction site. On the other hand,
there are also works related to the prediction of cost indicators or the progress
of the project. From the point of view of techniques, KNN and ANN are the
main techniques used. By complementing this information with the bigram
analysis, we observe a first group related to security and recognition of activ-
ities. Activity recognition is an emerging general area with great potential in

the Construction Engineering Management (CEM) domain. Due to the com-
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plex and dynamic nature of many construction and infrastructure projects,
the ability to detect and classify key activities carried out in the field by di-
verse teams and human personnel can improve project decision-making and
control quality and reliability.

In [81], embedded smartphone sensors are proposed as ubiquitous multi-
modal data collection and transmission nodes to detect detailed activities of
construction teams. Accelerometer and gyroscope sensors are used to train
supervised learning classifiers. To evaluate the models, the selection of dis-
criminatory characteristics was used to extract, the sensitivity analysis of the
size of the data segmentation window, and the choice of the classifier to train.
Choosing the level of detail (LoD) in describing team actions (classes) is an
important factor with a major impact on ranking performance. Computa-
tional efficiency and end-use of the classification process may well influence
the decision for selecting an optimal LoD to describe team activities (classes).

In [82], a smartphone-based construction workers’ activity recognition
and classification system is proposed. Assessing the condition, behavior, and
surrounding context of construction workers is essential for effective project
management and control. The embedded sensors of ubiquitous mobile phones

offer a great opportunity to automate the recognition of worker activity. This
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study proposes the use of smartphones to capture body movements by col-
lecting data using integrated gyro and accelerometer sensors. The collected
data is used to train five different types of ML algorithms. Activity recog-
nition precision analysis has been performed for all different ML activity
categories and classifiers in user-dependent and independent ways. The re-
sults indicate that neural networks outperform other classifiers by offering
accuracy ranging from 87% to 97% for user-dependent categories and from
62% to 96% for user-independent categories.

Construction safety is one of this industry’s most relevant and concerning
issues. Although ML has been considered by construction research for more
than two decades, it has not yet been applied to safety concerns. In [83],
RF and Stochastic Gradient Tree Boosting (SGTB) models are proposed
to a set of categorical safety attributes data extracted from a large set of
textual reports of construction injuries. The integration of a natural language
processing tool (NLP) developed by the same researchers in previous works
is proposed. Both models can predict the type of injury, the type of energy,
and the part of the body with great performance (0.236 <RPSS <0.436),
surpassing the parametric models found in the literature. This work opens

the door to a new field of research, where construction safety is considered
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an empirically founded quantitative science.

The construction industry is one of the most dangerous in many coun-
tries. Safety leading indicators are a way to mark sites that are most at
risk. ML is not widely used in the construction industry, especially in the
development of safety-leading indicators. In [84], an ML approach to devel-
oping safety leading indicators that rank sites according to their safety risk
on construction projects is proposed. In this study, five ML algorithms were
compared for predicting the occurrence and severity of accidents. The data
includes safety inspection records, accident cases, and project-related data.
These data were obtained from a large contractor in Singapore, and the data
was accumulated from 2010 to 2016. From thirty-three input variables, 13
input variables were selected using a combination of Boruta technical feature
selection and decision tree. Of the 13 input variables selected, six of them
are related to the project, and seven of them are elements in the Contrac-
tor safety inspection checklists. During validation, the RF model provided
the best prediction performance with an accuracy of 0.78 and has achieved
substantial strength according to the Weighted-Kappa statistics of 0.70.

Constant monitoring of work progress and identifying deviations from

plans are critical to designing a more efficient and safe workplace. Sustained
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physical work will result in work-related musculoskeletal disorders (WMSD)
that can adversely affect the health of workers and the project’s budget,
schedule, and productivity. To prevent WMSD, health and safety organiza-
tions have established rules and regulations limiting labor-intensive activi-
ties’ duration and frequency. In [85], a wearable sensor data and ML system
was used for activity recognition, productivity analysis, and ergonomic risk
assessment. The model implements embedded smartphone sensors and a
multi-class Support vector machine (SVM) to recognize worker activities in
the field and extract duration and frequency information, which will ulti-
mately be used to assess productivity and ergonomic risks associated with
each activity.

Project management, control, and delivery were other important groups
identified in the bigram analysis. In [86], Digital images and video clips
collected at construction job sites are commonly used for extracting useful
information. Exploring new applications for image processing techniques
within construction engineering and management is a steadily growing field
of research. One of the initial steps for various image processing applications
is automatically detecting various construction materials on construction im-

ages. In this paper, the authors conducted a comparison study to evaluate the

69



1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

performance of different ML techniques for detecting three common building
materials: Concrete, red brick, and OSB boards. The employed classifiers
in this research are: Multilayer Perceptron (MLP), Radial Basis Function
(RBF), and Support Vector Machine (SVM). To achieve this goal, the feature
vectors extracted from image blocks are classified to compare the efficiency of
these methods for building material detection. The results indicate that for
all three types of materials, SVM outperformed the other two techniques in
accurately detecting the material textures in images. The results also reveal
that the common material detection algorithms perform very well in cases
of detecting materials with distinct colors and appearance (e.g., red brick).
In contrast, their performance for detecting materials with color and texture
variance (e.g., concrete) and materials containing similar color and appear-
ance properties with other elements of the scene (e.g., ORB boards) might be
less accurate. For example, OSB surfaces and flooring can have similar color
and texture values, making the detection process more challenging. In these
cases, an interesting line to explore is strengthening the database with more
images. These images can be real or artificially generated through GANS,
for example.

In [87], while unavoidable, inspections, progress monitoring, and com-
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paring as-planned with as-built conditions in construction projects do not
readily add tangible intrinsic value to the end-users. In large-scale construc-
tion projects, the process of monitoring the implementation of every single
part of buildings and reflecting them on the BIM models can become highly
labor-intensive and error-prone due to the vast amount of data produced in
the form of schedules, reports and photo logs. In order to address the men-
tioned methodological and technical gap, this paper presents a framework and
a proof of concept prototype for on-demand automated simulation of con-
struction projects, integrating some cutting-edge I'T solutions, namely image
processing, ML, BIM, and Virtual Reality. This study utilized the Unity
game engine to integrate data from the original BIM models and the as-built
images, which were processed via various computer vision techniques. These
methods include object recognition and semantic segmentation for identi-
fying different structural elements through supervised training in order to
superimpose the real-world images on the as-planned model. The proposed
framework leads to an automated update of the 3D virtual environment with
the states of the construction site. This framework empowers project man-
agers and stockholders with an advanced decision-making tool, highlighting

the inconsistencies in an effective manner. This paper contributes to body
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knowledge by providing a technical exemplar for the integration of ML and
image processing approaches with immersive and interactive BIM interfaces,
the algorithms and program codes which can help replicability of these ap-
proaches by other scholars.

In [88], the sound recognition technology, which has been adopted in
diverse disciplines, has not received much attention in the construction in-
dustry. Since each working and operation activity on a construction site
generates its distinct sound, its identification provides imperative informa-
tion regarding work processes, task performance, and safety-relevant issues.
Thus, accurate sound data analysis is vital for project participants to monitor
project procedures, make data-driven decisions, and evaluate task productiv-
ities. To accomplish this objective, this paper investigates the sound recogni-
tion technology for construction activity identification and task performance
analyses. Mel-frequency cepstral coefficients are extracted for sound identifi-
cation as the features of the six types of sound data. In addition, a supervised
ML algorithm called Hidden Markov Model is used to perform sound classifi-
cation. The research findings show that the maximum classification accuracy
is 94.3% achieved by a 3-state HMM. This accuracy of the adopted technique

is expected to reliably execute the construction sound recognition, which sig-
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nificantly leverages construction monitoring, performance evaluation, and
safety surveillance approaches.

In [89], the Construction Cost Index (CCI) is calculated monthly and
published by Engineering News-Record (ENR). CCI is utilized for capital
project budgeting and construction cost estimation, especially when mid-
and long-term forecasts are needed. Accurate prediction of CCI helps avoid
underestimating and overestimating project costs. However, the current pre-
vailing time series prediction models do not show promising results, especially
in mid-and long-term forecasting. The capability of two machine-learning
algorithms, k nearest neighbor (KNN) and perfect random tree ensembles
(PERT), are utilized to enhance CCI forecasting, especially in the mid-and
long-term. The proposed machine-learning algorithms can significantly en-
hance forecasting CCI’s predictability in all the short-, mid-, and long-term
scenarios. Data from January 1985 to December 2014 is collected from ENR
and the bureau of labor statistics to conduct empirical studies and quantita-
tively measure the performance of the proposed methods. As the outcomes
show, the prediction accuracies of both proposed methods are better than
those of current prevailing time series models under all the tested scenarios. It

is anticipated that cost estimators can benefit from CCI forecasting by incor-
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porating predicted price variations in their estimates, preparing more-precise

bids for contractors, and developing more accurate budgets for owners.

5. Future directions

Figure 11 shows a summary diagram of the five main topics obtained along
with the lines that are being developed in each of the topics. In addition,
Table 6 has been introduced, which proposes four groups related to challenges
and future lines. The first group in the Table, is related to the prediction of
variables. The second group is concerned with safety applications, the third
group with images and convolutional networks, and the fourth group with
the optimization of structural designs. For the first group, which corresponds
to the prediction or classification of variables, in the topic of concrete, we
find the prediction of its mechanical properties or, in the case of retaining
walls, the prediction of geotechnical variables. When analyzing the metrics
of the ML models, it is observed that, in general, the ML models are capable
of predicting the variables with outstanding results. So the challenge is to
move to the second level of ML application. With this, we mean: that the
previous studies have been carried out with historical datasets compiled by

the authors. How can the model now be put into a production environment?
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The first stage is to be able to generate a data lake with information holistic
and related to the production processes. The creation of the data lake implies
the capture of the variables of interest to subsequently carry out all the
engineering and data governance for the proper development of this. On the
other hand, how does the result of this prediction fit into decision-making?
A model that has good predictions but that is not useful for making decisions
does not generate value within an industrial process. These same challenges
related to the prediction of variables appear in tunnels, for example, for
certain variables such as penetration or overtopping rates or the prediction
of costs related to project management.

Considering the overtopping case and safety factor prediction applications
such as in the management topic, related to safety and activity recognition
or in the case of safety factor prediction in retaining walls. In addition to
the two previous challenges, there is a challenge that these predictions must
be carried out in times close to real. This generates challenges of having to
integrate these safety models with big-data techniques in order to execute
decision-making in real-time. The above can also be complemented with all
the technologies developed by cloud providers. Another group of interesting

applications is related to detecting cracks in concrete, pavements, retaining
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walls, tunnels, or the case of activity recognition. Usually, the techniques
used are related to convolutional neural networks. Convolutional networks,
in general, are quite intensive in computation, especially in the training part
and if they have a significant number of layers, also when making predictions.
Again thinking about the productive case, it is interesting for networks with
many layers to be able to generate simpler architectures, with fewer layers,
capable of operating on simple hardware, for example, cell phones. This
allows, for example, in the case of security applications to be able to carry
out close detection in real-time directly in the hardware. On the other hand,
in the case of having to train neural networks, it is interesting to explore
the capabilities of cloud providers to generate better training in less time.
Here we also emphasize the importance of generating a data lake for future
experiments and development.

Finally, there is a group of applications related to the optimization of
structures. Usually, what is found here are cost optimizations, CO2, or
embodied energy. We believe that a fundamental point that would make
it easier to integrate into decision-making is to consider different sustain-
ability criteria: economic, environmental, social, and constructability, which

naturally implies multi-objective optimization with multi-criteria decisions.
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When defining the objective function that guides this optimization, the com-
plete life cycle analysis must be considered: Manufacturing, Construction,
Use, Maintenance, and End of Life. Furthermore, all structural designs in-
volve variability and uncertainty. The initial parameters, the structure’s di-
mensions, the materials’ mechanical characteristics, and the loads may differ
from the design values. Therefore, the optimization should naturally consider

this uncertainty to obtain a robust design.
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6. Conclusions

In this work, we propose a hybrid methodology. As a first instance, we
used the bidirectional encoder representation for the transforms technique
to find topics in the abstracts of articles obtained from Scopus. Later we
used the expert knowledge to select the relevant topics. This methodology
found five topics of ML applications to construction: concrete structures,
retaining walls, pavement, tunnels, and management. The leading journals
in this area of research are Automation in Construction, Construction and
Building Materials, and Computer Engineering.

On the topic of concrete, we distinguish two main research lines; the first
is strongly related to automatic crack detection and monitoring of struc-
tures, and the second cluster is associated with the prediction or automatic
identification of parameters for an efficient and sustainable design of con-
crete. Regarding retaining walls, the main lines of research have to do with
optimizing the design of walls where hybrid techniques between ML and
metaheuristics have obtained good performance. On the other hand, the
prediction of design parameters of the structure through ML techniques has
been studied. Regarding the pavement topic, an essential line of research

is related to pavement maintenance policies and how events such as climate

79



"SOZUA[[RYD SUTUIRY[ SUIYDRW JO ATRWWNG :9 9[qe],

‘suotsuowIIp PaI9PISUOD aI® BLISILIOD
A1[1QBIONIJSUOD PUR ‘OIWOUO0DD ‘[RIDOS ‘[RJUSWUOIIAUD uorjeziwijdo A31ous pue 4500 ¢ (O ‘swyjlLIoIre 9% em SUITIEIo
U SUOISIONP BIIS}LID-I}[Nw sojerodrooul yeyy uoryezruijdo SOIpSTINeYRIOW pue sonbruyde) Suruies ‘lew)‘[ew]‘low] ‘[8€] ‘log u aresey
I 1 a 1 1 viler uoryeziuiydo 2Injoniyg
aA1700(qo-13[nu Jsnqoul ‘sisA[eur aarid-oj}-o[peid ojerodiodouy aulyorwW 9jeiIdajul jey) sepouwr uonezrwindQo 1€ 939I10U0)) i T
[28] ‘[98 juoweSeurRIN
SOLIJOW 19930q YIM los]“[£L] ‘[29] ‘[99 [euung,
pue ‘seSewr arow ssod0id ‘Sururer) JULIOLS [w9] ‘[e9
arow wrojred 09 sjusuodwiod pnopd jo asn (g S3IOM)OU [BUOTIN[OATOD ‘[z9) ‘[vs] ‘leg] ‘[eg] © juoweA®q
S[OPOW I0M}DU JUBIDLJe IO (T doop se yons senbruyoe) Surures| log] ‘[87] ‘[6¥) ‘(2% UO130090p 2aNn[Iej pue 3oeI))
:ur se3ue[[eyo are a10Yy ‘sdnoid snorasad doeop ogeiodioour jey) sjepowr ‘A[rens) ¥ 1IeA\ Sururejoy
oY} ul pazATeur soSua[[eyd 9y} 0} UOI}IPPeR U] [ez] ‘61 919I10U0D)
[s8] ‘[¥8] ‘[e8] ‘[es] ‘[18 juoweSeuRIN
awi}-[eal 10j senbruyoey eyep Siq pue [69] ‘[89 Puuny,
so1jA1euR jo uorjeiodioour a8y} ‘A[[RUOIHIPPY S[OPOJA SuruIear] SUIYORIN [RUOIIIPRIT, 0S JUSWOAR J suoryeorjdde Kjejeg
‘dnoi8 snotaaid oY) se se3us[[eyDd ouwIes oY T, [ew)‘[1% Irem Sururejoy]
(22 ‘[1e] ‘loz 03010U00
SUOIjRICI[RIAI 2ININJ 10 S[OPOW Y3 JO .
oeqpea)j pue sseooid uorjonpord ayy uo . . raw_ . 88 JusmdeURIN
lo4] ‘[s2] “[e] ‘[eL] ‘[1L [puuny,
[epout o1} jo joedwir oYy jo uonyeniess (g (o] ‘log] ¢
Suny{ew UOISIOap 91} Ojul pajersajur o] 109l 164 JuewWIaA® J
‘ ‘[8g] ‘[2g] “[og] ‘[se so[qrIIRA
syuowuoIIAue aa1onpoxd ur spppoN (g S[OPOJN SUluIRSr] SUIYDIRN [RUOIIIPRL],
. 6¢€ Trem Sururejoy UOI}BOYISSBIO 10 UOIJOIPaI]
T $¥ep oM o Futmions log] “[se]‘oa] [gz] ‘ot
ue uorjisinboe eyep orpRWOIN 9j910U0
v e ¥ep aemonmy (1 ‘Ivel ‘lee] ‘[81] ‘21 ¥ o

soSua[reyD-TIN 29e)S [BNIOY ERLERE) R oIy dnoin

80



1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

change affect them. A second line is related to monitoring and detecting
cracks and distress in the pavement. In the case of tunnels, structure mon-
itoring appears again as a main line of research in addition to identifying,
predicting, and optimizing operational variables such as penetration rates,
excavations, and geotechnical variables. Finally, in the case of construction
management, incorporating ML in the control, management, costs, and de-
livery of projects is a line of interest. Still considering project management
and administration, another line is related to the safety of workers and the
identification of activities within the work.

There is an opportunity to strengthen the proposed hybrid review tech-
nique regarding the next steps. We would particularly like to carry out the
analysis of other construction themes and consider other areas. Considering
the research lines found, we observe that most investigations focus on obtain-
ing the model. However, the model must be inserted into the decision-making
process to generate value. At this point, we see an opportunity to extend
much of the research. In the case of lines that incorporate optimizations, a
large number of fixed parameters are usually considered; an extension would
be to consider a robust and multi-objective optimization, considering not

only the cost of the optimization but also variables such as environmental or
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social.

The study is particularly useful for supporting decision-making processes
and optimizing the effectiveness and sustainability of construction processes.
The results have their roots in the BERT methodology, which leverages ML
to investigate prominent and relevant topics. Thus, identifying critical re-
search lines that have the most significant influence in practice provides clear
guidance for management to identify, select, and analyze which ML method
makes sense to improve their companies performance and sustainability.

This is particularly relevant since the practical application of ML de-
mands a high-skilled workforce and capabilities, which companies do not
easily reach. First, information technology resources are highly disputed and
often scarce. Second, construction demands compliance because of strict
rules and norms, which adds further resources. Hence, having a study set-
ting out the base and the state-of-the-art regarding ML for construction is
vital for accelerating and reducing costs for achieving a more pervasive effect
on the market.

Another significant implication is the results of the herein applied method-
ology. We uncovered critical areas in the construction sector by combining

BERT methodology with experts knowledge. Expanding such technic to in-
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clude patents and other scientific and technological knowledge sources may be
valuable for recognizing innovation opportunities. Considering that the con-
struction sector is not broadly recognized for high innovativeness and given
its relevance for the worlds economy and sustainability, this might have a
path for attracting entrepreneurs and companies to pursue innovations, pri-

marily business model innovations combined with product innovations.
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