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Abstract

Complex industrial problems coupled with the availability of a more robust

computing infrastructure present many challenges and opportunities for ma-

chine learning (ML) in the construction industry. This paper reviews the

ML techniques applied to the construction industry, mainly to identify ar-

eas of application and future projection in this industry. Studies from 2015

to 2022 were analyzed to assess the latest applications of ML techniques
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in construction. A methodology was proposed that automatically identi-

fies topics through the analysis of abstracts using the Bidirectional Encoder

Representations from Transformers technique to select main topics manu-

ally subsequently. Relevant categories of machine learning applications in

construction were identified and analyzed, including applications in concrete

technology, retaining wall design, pavement engineering, tunneling, and con-

struction management. Multiple techniques were discussed, including vari-

ous supervised, deep, and evolutionary ML algorithms. This review study

provides future guidelines to researchers regarding ML applications in con-

struction.
Keywords: Machine Learning, BERT, Construction, Concretes, Retaining

Walls, Tunnels, Pavements, Construction Management.

1. Introduction1

Nowadays, machine learning (ML) techniques are widely applied to mul-2

tiple tasks and challenges. Herewith, the availability of a more powerful3

computing infrastructure provides the necessary tools for implementing ad-4

vanced ML techniques to solve complex industrial problems. In this way, we5

can improve decision-making in industries, increasing their sustainability and6

productivity. The fourth industrial revolution (Industry 4.0) is changing all7
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the industries in different aspects [1]. One of the industries that is expected8

to benefit significantly from ML implementation is the construction indus-9

try. Multiple articles raise the need to automate construction to improve10

the way this industry works, including the need to improve the construction11

supply chains,[1, 2, 3]. In this work, a review of ML applications for smart12

construction was developed. Articles published in recent years that consider13

the concepts of ML and construction were analyzed. The initial database ob-14

tained was more than 5000 articles, so it was decided to use a methodology15

based on topic modeling, Section 2, to make an initial grouping of the most16

interesting topics to later delve into each of these.17

The objective of topic modeling is to group documents and words that18

have similar meanings. It is widely used in a variety of domains, including19

natural language processing (NLP) and information retrieval (IR). It uses20

unsupervised ML algorithms to extract topics from document collections.21

There are several topic modeling approaches available, for example, Proba-22

bilistic Latent Semantic Analysis (PLSA), [4], Latent Dirichlet Assignment23

(LDA), [5]. Another interesting method, nonnegative matrix factorization24

(NMF), is an unsupervised technique for reducing the dimension of nonneg-25

ative matrices, [6], which has been widely utilized to deduce underlying links26
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between texts and to find latent themes [7]. Although these approaches do27

not require labels to operate, they require specifying the number of categories28

to perform the grouping. However, a growing number of topic modeling sys-29

tems are based on LDA and NMF, although they require considerable work30

in hyperparameter tuning to generate meaningful topics.31

In general, the methods outlined above have some drawbacks. One of32

these limitations is that they ignore semantic relationships between words33

when using bag-of-words representations. These representations do not con-34

sider the context of words in a sentence, which may make it difficult for them35

to display documents correctly. This article uses a semi-automatic method36

to carry out a bibliographic analysis. In the first stage, a search is carried37

out on the Scopus database, and a set of abstracts related to the search is38

obtained. These abstracts are modeled across topics using BERTopic, [8].39

This method has been used to model topics and provides a better contextual40

perspective than previous methods.41

Based on the latter, this article uses a semi-automatic method to carry42

out bibliographic searches. In the first stage, a search is carried out on the43

Scopus database, and a set of abstracts related to the search is obtained.44

These abstracts are modeled across topics using Bidirectional Encoder Rep-45
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resentations from Transformers topis (BERTopic), [8]. Subsequently, the46

main topics are validated for consistency by an expert to select the relevant47

topics. Using the relevant terms of each of these topics, new Scopus queries48

are generated to finally carry out a traditional bibliographic analysis with49

the result of said queries and a clustering analysis based on bigrams.50

This study aims to determine the latest applications of ML tools in the51

construction industry through a semi-automated method that integrates ML52

techniques and expert knowledge. The main objective is to determine in what53

areas and what ML techniques have been developed and implemented to solve54

problems in the construction industry. This state-of-the-art review includes55

articles from the last seven years, where the search focused on applications56

of machine learning in construction areas.57

A brief summary of the structure of the content of the following sections:58

Throughout the Section 2, the procedure used to carry out the bibliographic59

analysis is explained. In Sections 3 and 4, the bibliographical analysis of60

the selected articles is detailed. First, The BERT topics are selected, and a61

general scientometric analysis is carried out in 3. Later, for each selected62

topic, a bigram analysis is carried out in Section 4, plus the traditional63

bibliographic analysis. In Section 5, future directions are developed and64
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finally in Section 6, develop the conclusions and the next steps.65

2. Methodology66

This section describes the proposed methodology. First, an overview of67

the method is given to later describe each of the stages. In Figure 1, the detail68

of the methodology used to carry out the review is shown. In the first stage,69

a search on Scopus is carried out using the concepts of "Machine Learning"70

and "Construction." Later these are filtered for articles in English retrieved71

in the last seven years. These results are analyzed using the methodology72

developed in section 2.1. Each of the topics obtained is validated by experts73

in the area who determine validity, evaluating the coherence between the74

main terms obtained. For the topics that pass the expert criteria for each75

of them, a search is performed again based on the attributes obtained in the76

topic. With this new search, the selection of articles is carried out according77

to expert criteria again, and for this selected set, a bigram analysis is carried78

out on the one hand, which is detailed in the section 2.2, in addition to a79

traditional review that implies reading of the article and extraction of the80

main characteristics is realized.81
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Figure 1: Flowchart of the semi-automated literature review methodology.

2.1. Topic analysis82

The selection of topics is made by analyzing the abstracts of all the re-83

trieved documents. In order to make the selection of these, the process84

consists of three stages. In the first stage, a numerical and contextual repre-85

sentation of each of the terms is generated. To perform this representation,86

a pre-trained model of a neural network, Bidirectional Encoder Represen-87

tations from Transformers (BERT), [9], was used. This embedding is very88

powerful for language comprehension as it captures the semantic relation-89

ships between words.90

Once the words are embedded in a vector, in order to analyze and group91

the concepts in a meaningful way, a dimensionality reduction process must92
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be carried out. Several techniques allow the reduction process to be carried93

out. In this case, as the reduction process requires preserving global and lo-94

cal components of the data space, the uniform manifold approximation and95

projection for dimension reduction (UMAP) technique, [10], is used. This96

algorithm uses the concept of simplex obtained from algebraic topology in97

addition to manifold theory to be able to develop dimensionality reduction.98

Once the dimensionality reduction has been carried out, it is necessary to99

perform the groupings in order to find the similarities that allow us to obtain100

the topics. Following on from the work done in [8], at this stage, (HDB-101

SCAN), [11] is used to generate the topics.102

2.2. Bigram analysis103

A bigram is a sequence of two adjacent elements of a chain of tokens; in104

our specific case, they correspond to words. The objective is to carry out105

a statistical analysis of the frequency distribution of these bigrams in the106

different analyzed abstracts. To perform the analysis of each of the topics107

identified by BERT, the R-bibliometrix [12] package was used. Specifically,108

four visualizations were used. The first corresponds to the Treemap. This109

aims to identify the frequency of the main bigrams in each of the topics. Sub-110

sequently, the thematic map is used; this graph uses the concept of density111
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(internal associations) together with that of centrality (external associations),112

[13, 14].113

This visualization is divided into four quadrants; quadrant 1 identifies114

high density and high centrality. And the main topics that appear in the115

articles are considered. The second quadrant corresponds to high centrality116

and low density, which are basic and transversal topics. Quadrant 3 corre-117

sponds to high density and low centrality topics and is related to the niche118

or specialized topics. Finally, the fourth quadrant corresponds to emerging119

or poorly developed topics.120

Finally, the last two visualizations correspond to conceptual maps and121

dendrograms. The conceptual structure visualization creates a conceptual122

structure map of each of the topics obtained by BERT. Specifically, mul-123

tidimensional scaling (MDS) is performed on terms extracted from the ab-124

stracts of the documents. In addition to analyzing the relationship between125

the terms in a hierarchical way, the conceptual structure is also displayed126

through a dendrogram.127
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3. BERT Topics and General bibliometrics128

This section details the results obtained from the analysis of topics, and129

later with the selected articles of each topic, a general analysis of the jour-130

nals, authors, and the thematic evolution of the main concepts is carried out.131

According to the methodology detailed in the section 2; The analysis begins132

with generating topics using BERT to later select the most important topics133

according to expert criteria. Figure 2 shows the selection made for the topics.134

In particular, five themes are selected. Concrete, retaining walls, pavements,135

tunnels, and construction management. With the keywords obtained in each136

topic, a manual selection of the articles to be analyzed was made. Figure137

3 shows the main journals analyzed. Automation in construction, construc-138

tion and building materials, and engineering with computers were the main139

sources of articles. Figure 4 shows an analysis of the contribution by country140

as well as an analysis of author networks. In the case of countries, in the141

upper right diagram of Figure, the country with the greatest contribution142

corresponds to the USA with a frequency of 91 author appearances, followed143

by China with 57 and further down Iran with 30, South Korea with 20 and144

Canada with 17. Additionally, the visualization represents a collaboration145

between countries, in which if the frequency of authors between countries146
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with articles in common exceeds the value 5, a connection is drawn between147

them. At this point, the collaboration between the USA and China, the USA148

and Iran, and Spain and Chile stands out.149

Figure 2: BERT topics selection results.

Figure 3: Most relevant sources.

The upper left diagram of Figure 4 shows a network analysis of the au-150
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thors. There are seven main groups in the diagram. Where the most signifi-151

cant collaborative group is highlighted in red, the author’s network, Zhang,152

A; from the USA; Fei, Y, from the USA; Chen, C, from the USA; Liu, Y;153

from the USA; and, Li, B, from China. The lower diagram highlights the154

publications with important impact factors in the red group between 2017155

and 2020. Their publication area is related to the detection of cracks in156

the asphalt pavement area through the use of deep learning techniques. An-157

other collaborative network of authors is the one led by Koopialipoor, M;158

of Iran, which considers collaborations with the USA and Vietnam. In the159

lower diagram, they have had a significant number of publications in 2019160

and 2020, in addition to a significant number of citations. The publication161

line is related to applying ML techniques such as deep learning to tunnels.162

The inspection and detection of cracks in tunnels have been addressed by163

Doulamis A; Protopadakis E ; Doulamis, N, and other collaborators. They164

stand out with publications and important impact factors in 2015 and 2017.165

Figure 5 depicts a diagram for assessing the topic evolution of the ar-166

ticles under consideration. Combining performance analysis and scientific167

mapping, this method identifies and visualizes conceptual subdomains, [15].168

Co-word analysis is utilized in a longitudinal context to identify the many169
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study subjects covered during a specific time period. The Figure shows that170

machine learning and deep learning topics appear strongly in the first win-171

dow of time. The above is quite natural since the review is focused on ML172

techniques. It is also observed that these concepts are maintained in the173

different time windows. Another interesting point in the first time window is174

crack detection. We see that already at this time, this concept was already175

addressed significantly through ML techniques. When we move to the second176

time window, we see that deep learning techniques are strongly related to177

Crack Detection applications, the construction industry and management,178

and health monitoring. Finally, two additional concepts appear in the last179

window of time; ML and deep learning techniques have been focused on and180

strongly converged into prediction models. On the other hand, a new area181

of application related to pavement conditions appears.182
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Figure 4: Country and author’s collaboration map.
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Figure 5: Thematic evolution map.

4. Bigram and traditional results183

This section details the analysis for each of the five topics obtained in184

the previous section. The analysis, according to the methodology proposed185

in the section 2 consists of two parts. First, an analysis of bigrams is carried186

out, from which groups of related words are extracted to obtain an overview187

of the topic. Then a traditional analysis of the selected articles on each topic188

is developed.189
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4.1. Concrete Structures190

Concrete is the most widely used artificial material in buildings, pave-191

ments, and retaining walls. Concrete technology deals with the study of the192

properties of concrete and its practical applications. Concrete is used to con-193

struct foundations, columns, beams, slabs, and other load-bearing elements194

in building construction. The production of concrete requires large quanti-195

ties of coarse and fine aggregates. To preserve natural resources, it is of the196

utmost importance to pay close attention to the use of waste materials and197

by-products in concrete mixes. For this purpose, predictive models based on198

ML have been used to determine the properties of concrete in order to save199

time, cost, and energy.200

4.1.1. Bigram document analysis201

When performing the bigram analysis and structuring the most relevant202

concepts, we see in the upper left graph in Figure 6 that the main concepts203

related to the artificial intelligence techniques appear: artificial neural net-204

works (ANN), and support vector machines. When observing the concepts205

related to concrete techniques, reinforced concrete, concrete mix, retaining206

walls, and compressive strength, appear as the main concepts.207

When the co-words analysis is applied, the concepts are later grouped.208
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The result can be seen in the lower right Figure. In this Figure, it is ob-209

served that the concrete and reinforced concrete structures are related to210

prediction models. On the other hand, the study of compressive strength211

is in conjunction with neural networks. The part of crack detection and212

the concrete surface appears strongly related to convolutional neural net-213

works. When the bigrams are grouped further, three clusters mainly stand214

out. These results are shown in the two figures below. In the lower-left215

Figure, we see that there is a cluster that is related to the structural, sus-216

tainable design and its optimization. On the other hand, there is a whole217

group related to crack detection, structure health monitoring, and convolu-218

tional neural networks. Finally, a large group relates a significant number219

of machine learning techniques to concrete design and production variables220

such as compressive strength of reinforced concrete, mixture proportions, and221

compressive strength.222
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Figure 6: Tree, Thematic, conceptual and dendrogram maps applied a concrete data set.
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4.1.2. Traditional analysis223

In Table 1, a summary of the different articles selected for Concrete struc-224

tures is shown. The table highlights the use of ANN, RF, and SVM tech-225

niques. On the other hand, applications for monitoring structures, crack226

and prediction of concrete properties appear more frequently. Following the227

groups found in the bigram analysis, the main group related to the design228

and production of concrete was found. Concrete is the most widely used229

artificial material in buildings, pavements, and dams. Concrete production230

requires large amounts of coarse and fine aggregates. To preserve natural231

resources, much attention has been paid to the use of waste materials and232

by-products in concrete mixes. The fresh and hardened properties of con-233

crete mixes containing waste foundry sand (WFS) residues as a partial or234

total replacement for fine aggregate have been the focus of several recent235

studies. To manufacture molds and cores, the ferrous (iron and steel) and236

nonferrous (copper, aluminum, and brass) metal-casting industries discard237

WFS. Using predictive models for concrete properties can save time and en-238

ergy and provide information on scheduling activities such as frame removal.239

In [16], the M5P (decision tree) algorithm was used to model the strength,240

modulus of elasticity, strength, and tensile strength at the break of these241
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concretes. A complete containing information on mixed proportions and me-242

chanical property values at different ages was compiled using internationally243

published documents. Various performance metrics were used to evaluate244

the performance of the developed models, including the root mean square245

error (RMSE), the mean absolute error (MAE), the mean absolute percent-246

age error (MAPE), the coefficient of determination (R2), and the correlation247

coefficient (R). The results indicated that the proposed models could provide248

reliable predictions of the target mechanical properties.249

The coefficient of thermal expansion (CTE) significantly influences the250

performance of the concrete. However, CTE measurements are expensive;251

therefore, CTE is often predicted from empirical equations based on histor-252

ical data and concrete composition. In [26], the authors were focused on253

applying linear and random forest (RF) regression methods to predict CTE254

and other properties from a Wisconsin concrete mix database. The results255

of this article show that the accuracy of the RF model is significantly better256

than the prediction methods recommended by the American Association of257

Highway and Transportation Officials (AASHTO) for CTE. Additionally, RF258

significantly outperformed the linear regression technique, where the value259

of R2 was much lower. The latter shows that the behavior of CTE does not260
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have a linear dependence on the independent variables.261

The compressive strength of concrete is a fundamental parameter in the262

design of durability and the prediction of the useful life of concrete structures263

in civil engineering projects. Therefore, being able to predict this resistance264

has a significant practical utility. In [21] the authors proposed a hybrid265

ensemble surrogate ML technique for predicting the compressive strength of266

concrete. The proposed model is robust in handling overfitting problems and267

is therefore suitable for predicting the compressive strength of concrete.268

Predicting the carbonation depth of concrete structures is essential for269

optimizing their design and maintenance. In [29], a way to improve the pre-270

diction of carbonation is proposed using a model based on ML. The model in271

question considers the parameters that influence the carbonation process. In272

the study, an example is carried out that allows us to see the model’s applica-273

bility, which allows predicting the depth of carbonation with high precision.274

Underwater and hydraulic concrete structures require periodic inspection due275

to the constant water loads. Determining the humidity in the structures is276

very important since it guarantees the correct functioning of the structures.277

In [30], the authors proposed a method for determining humidity based on278

percussion. The method includes the Mel Frequency Cepstral Coefficients279
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(MFCC) used as a characteristic of the sound included by impact. A mi-280

crophone was also used with which the impact-induced sound signals were281

obtained. The use of ML techniques, particularly a support vector machine282

(SVM), is proposed to predict moisture in the concrete. Finally, the authors283

report that the proposed system has a precision greater than 98%.284

Estimating the axial strength of concrete columns confined with steel285

tubes is essential when making structural designs. However, this estimation286

is challenging because it depends non-linearly on a series of parameters such287

as the compressive strength of the concrete, the elastic limit of the steel,288

the diameter of the column, the thickness of the steel tube, the length of289

the column. In [18], an optimized hybrid ML model was proposed with290

the aim of predicting the axial force in columns. To address this challenge, a291

hybrid method was used that integrates the support vector regression method292

with the Gray wolf optimization metaheuristic. To verify the quality of the293

results, they were compared with models that use neural networks, random294

forest, and linear regression. With the hybrid method, an R2 coefficient295

was obtained with respect to the real values of 0.992 and an average error296

percentage of 7%.297

Concrete mixing is a complex process that contains several stages. In298
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[28], ML techniques are used to improve the design of concrete mixes. By299

building and analyzing an extensive database of concrete recipes and their300

respective laboratory validations. One of the main results of this study is301

the translation of the architecture of the proposed ANN to a mathematical302

equation that can be used in practical applications in the real world.303

One of the most common uses of machine learning is to generate predic-304

tion models. In [22], the use of ML models to predict chloride concentration in305

marine concrete surfaces is addressed. The study uses a ML ensemble model306

to predict the concentration of surface chloride (Cs) in concrete. In the first307

place, a database is established that is then used to train five ML models,308

which are: linear regression (LR), Gaussian process regression (GPR), sup-309

port vector machine (SVM), artificial neural network multilayer perceptron310

(MLP-ANN) and RF. In addition, the metaheuristic combination of predic-311

tions of RF, MLP-ANN, and SVM achieves greater precision when predicting312

compared to each model independently.313

The use of machine learning methods also applies to sustainable concrete314

design. Specifically, in [31] the embodied energy and carbon dioxide emissions315

of a reinforced concrete column are optimized. Conventionally, the design of316

reinforced concrete structures focuses on minimizing construction costs while317
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satisfying the structural design code. However, the aspect of sustainability318

is a relevant dimension in structural design. According to the experiments,319

it is concluded that when a cost increase of 10% is assumed, the embodied320

energy and the CO2 emissions can suffer an overall reduction of up to 22%321

and 63%, respectively.322

A second group identified in the bigram analysis corresponded to crack de-323

tection and concrete monitoring. Checking the damage status of a structure324

is essential when checking concrete structures. In the article [32], it is pro-325

posed to design a framework for the automated probabilistic classification of326

cracks in cementitious components based on acoustic emission (AE) signals.327

Waveform parameters, including RA and average frequency (AF) values, are328

grouped by an unsupervised grouping algorithm dictated by density. Using329

the Support Vector Machine (SVM) algorithm, clusters that intersect in the330

data are separated through a hyperplane. Finally, it is possible to estab-331

lish that the expectations based on the compound theory are correct; this is332

achieved through the cracking modes that are obtained from the proposed333

machine learning approach.334

Cracks in concrete structures are certainly an indicator that something is335

wrong, and over the years, the process of detecting these indicators has been336
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carried out manually; that is, there must be a person in charge of the process337

that generates the precision of the measurements is not entirely correct. In338

[33], the way to perform this inspection automatically using ML techniques is339

proposed. In principle, there is a training stage where images are binarized,340

used to extract possible regions of cracks, then classification models with341

a convolutional neural network. Finally, the proposed method is evaluated342

with other concrete images that contain and do not contain cracks. The same343

is raised in [34], where they proposed automatically detecting cracks through344

images using a convolutional neural network.345

In [27], the Voronoi Diagram algorithm was used to estimate crack pat-346

terns and spread on a random concrete surface. A random photo of a concrete347

crack located on the surface of a fountain is taken, and the dimensions and di-348

rections of the crack are measured. After that, the crack was divided into 12349

parts to assess the algorithm’s ability to estimate the crack pattern, includ-350

ing its direction. As a result of the study, it is identified that this method351

is precise, fast, economical, and useful for monitoring and estimating the352

propagation of cracks in concrete surfaces.353

High-Performance Fiber Reinforced Concrete (HPFRC) is a standard354

concrete (NC) structure repair material. In [24], a prediction model based355
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on HPFRC and ML to address repair problems in concrete structures is ad-356

dressed. This is achieved in the first instance by conducting a study on the357

disunity behavior between HPFRC and NC subjected to a direct shear load.358

A finite element (FE) model is then developed to predict the direct debark-359

ing response. Finally, a ML model is developed that makes it possible to360

formulate the shear strength of HPFRC-NC.361

In concrete crack analysis, acoustic emission monitoring has taken an362

important role since it allows for monitoring changes in structural integrity363

and durability. However, it is necessary to distinguish crack signals from364

ambient noise. In [19] a convolutional network model is explored, allowing365

us to distinguish environmental noise signals from the crack’s own signals.366

In particular, a two-dimensional convolutional model was proposed, able to367

distinguish and separate both sets successfully.368

In [35] the authors address the problem of automatic detection of cracks369

in concrete structures from images. The article indicates that a more practi-370

cal and precise method is necessary, for which they propose a method based371

on image processing using the light gradient magnification machine (Light-372

GBM). It is possible to obtain a precision of the proposed method of 99.7%,373

a sensitivity of 75.71%, a specificity of 99.9%, a precision of 68.2% and an F374
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measure of 0.6952. With these results, it is possible to demonstrate that the375

proposed method manages to detect cracks with great precision in concrete376

structures.377

In [25], a classification of in-plane failure modes are established for con-378

crete frames using ML. In the first instance, an experimental database is379

built, then six ML algorithms are implemented and evaluated for the failure380

mode classification. In this article, it was obtained a result that the high-381

est precision (85.7%) was achieved with the Adaptive Boosting and Support382

Vector Machine algorithms.383

In [23], a study is presented proposing an automated approach to quan-384

tifying digitally documented crack patterns in reinforced concrete shell el-385

ements subjected to reverse cyclical shear loads. A set of artificial cracks386

is analyzed using multifractal analysis. With the results of the paramet-387

ric study, a multiclass classification model is trained and used to estimate388

the level of damage for cracked concrete elements. Finally, the multifrac-389

tal characteristics manage to translate the shape of the crack patterns into390

meaningful information with an accuracy of 89.3%.391

28



4.2. Retaining Walls design392

Retaining walls are rigid concrete walls used to laterally support the soil so393

they can be retained at different levels on the two sides. Optimizing cost and394

CO2 emissions in retaining walls is a relevant issue for the competitiveness of395

construction companies and the environmental impact of the construction of396

these structures. Within ML applications in the efficient design of retaining397

walls, hybrid models have been used to estimate safety factors. The particle398

swarm optimization (PSO) algorithm has been used to calculate the optimal399

construction cost of reinforced concrete retaining walls. Models that combine400

ANN with the artificial bee colony algorithm (ABC) have also been used to401

estimate and optimize the safety factors of retaining walls.402

4.2.1. Bigram document analysis403

This section details the bigram analysis performed for the concepts of404

machine learning and retaining walls. The results are shown in Figure 7.405

When analyzing the treemap in the upper left corner, retaining wall con-406

cepts such as geotechnical engineering, carbon emissions, bearing capacity,407

and loads, all of them typical of the retaining wall subject. However, ML408

concepts such as forecasting, classification, neural networks, mean square er-409

ror, and convolutional neural networks are also mentioned. Additionally, a410
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third group is observed that is related to optimization, with concepts such411

as optimization algorithms and artificial bee colonies appearing. When co-412

words are analyzed, and subsequent grouping occurs, the lower right figure413

illustrates groups associated with retaining walls, wall height, friction an-414

gles, and artificial intelligence algorithms or prediction models. Additionally,415

there is a subgroup for optimization, specifically of reinforced concrete walls,416

and metaheuristic algorithms such as harmony search or hybrid algorithms.417

When creating a conceptual structure map, we notice that the major groups418

correspond to two (lower left Figure): on the one hand, concepts related to419

retaining walls and ML algorithms such as neural networks appear predom-420

inantly in red. On the other hand, another group appears in blue, which is421

concerned with optimizing the design of walls and metaheuristic algorithms.422

The dendrogram illustrates the relationship between the various concepts423

mentioned previously (Figure top right).424

4.2.2. Traditional analysis425

In Table 2, a summary of the different articles selected for retaining wall426

structures is shown. There is an important group of applications related to427

metaheuristics, machine learning, and optimization of costs, emissions, and428

embodied energy. On the other hand, there are also ML applications in re-429
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Figure 7: Tree, Thematic, conceptual and dendrogram maps applied a retaining wall data
set.
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taining walls related to safety factors. When going into detail in the articles430

regarding the group related to optimization, metaheuristic or hybrid tech-431

niques are mainly explored to solve the optimization of costs, emissions, or432

energy consumption. It was found that optimizing cost and CO2 emissions433

in earth retaining walls is critical for a construction company’s competitive-434

ness and that optimizing emissions is critical for the environmental impact435

of construction. In [36], the optimization based on the black hole algorithm436

was used, along with a discretization mechanism based on min-max normal-437

ization. The results obtained were compared with another algorithm that438

solves the problem (Harmony Search algorithm). Solutions that minimize439

CO2 emissions prefer the use of concrete rather than those that optimize440

cost. When compared to another algorithm, the results show good perfor-441

mance in optimization using the black hole algorithm. In [38], the buttressed442

walls problem was determined using an application of a hybrid clustering443

PSO algorithm. In this study, the focus was the optimization in the design444

of reinforced earth retaining walls, particularly minimizing the amount of445

CO2 emissions generated in its construction and the economic cost. This446

problem has high computational complexity since it involves 32 design vari-447

ables. The authors propose a hybrid algorithm in which the PSO method is448
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integrated that solves optimization problems in continuous spaces with the449

db-scan clustering technique. The db-scan operator significantly improves450

the solutions’ quality, showing good results compared to the harmony search451

algorithm.452

In [40], a hybrid k-means cuckoo search algorithm was applied to the453

counterfort retaining walls problem. In [46] a PSO algorithm is employed454

to calculate the optimum construction cost of reinforced concrete retaining455

walls. Geotechnical and structural limitations are considered constraints for456

the optimization problem. The critical role of building in natural resource457

use is driving structural design professionals to develop more efficient struc-458

tural designs that reduce emissions and energy consumption. In [43], an459

automated approach to generating optimal buttressed earth retaining wall460

designs with minimal embodied energy is described. In this research, two461

objective functions were used to compare the cost optimization and embod-462

ied energy optimization strategies. This study employed a hybrid simulated463

optimization algorithm to determine the geometry, concrete resistances, and464

concrete and material quantities required to create the optimal buttressed465

earth-retaining wall with the lowest embodied energy. A relationship was466

discovered between the two optimization criteria, implying that cost and en-467
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ergy optimization are inextricably related. This permits the statement that468

a 1 cost reduction results in a 4.54 kWh reduction in energy consumption.469

The other interesting group obtained from the bigrams analysis was the470

application of ML techniques to prediction and classification. Particularly471

in [37], the authors present intelligent models to solve problems related to472

retaining walls. For this, the safety factors of 2800 retaining walls were473

modeled and recorded, considering different effective parameters of retaining474

walls. This includes the following parameters: wall height, wall thickness,475

friction angle, soil density, and rock density. A combination of the arti-476

ficial bee colony (ABC) and ANN algorithm was used to approximate the477

safety factors of the retaining wall (compared to a previously developed ANN478

without ABC). The performances of the generated models were evaluated us-479

ing coefficients of determination (R2) and performance indices of the error480

(RMSE). The new hybrid model (ANN + ABC) can significantly increase481

the performance capacity of the network (compared to ANN without ABC).482

R2 values of 0.982 and 0.985 for training and testing of the ABC + ANN483

model, respectively, compared to values of 0.920 and 0.924 for the ANN model484

(without ABC). In conclusion, the results showed that the new hybrid model485

could be introduced as a sufficiently capable technique in the field of this486
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study to estimate the safety factors of RW. In [41], a combination of ANN487

and artificial bee colony (ABC) is employed for predicting and optimizing488

safety factors of retaining walls. A comprehensive database of 2880 datasets489

was used; the input parameters included wall height, wall width, wall mass,490

soil mass, and internal angle. A critical point in the study of retaining walls491

is the structure’s failure probability. In [45], a reliability study of the struc-492

ture is conducted using ML techniques, incorporating geotechnical variables.493

They are predicted using Neural Networks, Multivariate Adaptive Regres-494

sion Splines, and vector machine support techniques. The application of495

these techniques yielded results that deviated by less than two % of the real496

values, simplifying the process of calculating these safety factors.497

Making design decisions is a subjective process that considers multiple di-498

mensions such as economic, social, and environmental. In [42], self-organizing499

maps (SOM) were used to simulate decision-making in order to determine the500

most appropriate retaining wall technique. N-fold cross-validation was used501

to validate the model. This study demonstrates that self-organized maps are502

beneficial for decision-making when selecting a retaining wall method. The503

SOM had a maximum accuracy of 81.5 percent and a mean accuracy of 79.8504

percent. Through the use of classification convolutional neural networks, in505
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[44], models were built that were trained using previously classified retain-506

ing wall images. These images indicated whether the constructed wall was507

safe or not. In the training process of the convolutional network, image sets508

that had between 500 and 200,000 images were used to verify the results509

against 20,000 images later in the testing stage. The result of the models510

achieved an accuracy of 97.94 % in the safety classification of a wall. In511

[39], an estimation of compaction parameters is performed. Estimating these512

parameters is an essential point in the design of retaining walls. The Proctor513

Test is usually used to make this estimate. However, this test is expensive514

and time-consuming. The study developed a new model for predicting com-515

paction parameters based on eleven new progressive ML methods to overcome516

these limitations. The modeling phase was performed using a database of 147517

samples collected from different studies. Model performance was evaluated518

across six metrics in addition to incorporating K-fold cross-validation. The519

comparative study demonstrated the effectiveness of the RF technique, which520

showed the highest performance in predicting soil compaction parameters.521

4.3. Pavement Engineering522

Pavement engineering is a discipline that uses engineering techniques to523

optimize the design and maintenance of flexible asphalt and rigid concrete524
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pavements. Determining the shear strength of soil is an essential task in the525

design phase of a pavement construction project. For this purpose, models526

integrating the support vector machine (SVM) algorithm and cuckoo search527

optimization (CS) have been used. Some architectures based on convolu-528

tional neural networks (CNN) have also been used for the detection of pave-529

ment cracks on asphalt surfaces. With this same purpose, deep convolutional530

neural networks with transfer learning have been used to detect and classify531

pavement faults based on computational vision automatically.532

4.3.1. Bigram document analysis533

This section details the bigram analysis performed for ML and pavement534

concepts. The results are shown in Figure 8. When analyzing the treemap,535

concepts related to crack detection, monitoring, and conditions and the pre-536

diction of coefficients or variables related to the pavement are highlighted.537

This can be seen in the upper left Figure by complementing the analysis with538

an analysis of co-words and clustering, which is shown in the lower image539

on the right. We see that there is a group related to pavement maintenance540

policies. Another group is associated with cracks, and a third group is re-541

lated to pavement condition prediction. On the other hand, techniques such542

as deep learning and RF stand out. Finally, when performing a conceptual543
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map clustering, two groups stand out. The first group in blue is mainly544

distinguished maintenance and policies related to pavement maintenance.545

On the other hand, the red cluster is a little more diffuse, highlighting the546

application of ML techniques related to cracks in the pavement analysis of547

parameters such as vibration, shear strength, and pavement surface. This548

is complemented by the dendrogram shown in the upper right image, which549

indicates the closeness between the different concepts.550

4.3.2. Traditional analysis551

In Table 3, a summary of the different articles selected for Pavements552

structures is shown. Among the main techniques used, different architectures553

of convolutional networks stand out, in addition to ANN multilayer percep-554

tron, RF and SVM. Regarding the applications, the detection of Crack, and555

prediction of indicators related to its monitoring and deterioration stand out.556

When performing traditional analysis driven by the topics found in bigram557

analysis. An interesting group that appears is related to pavement mainte-558

nance policies. The effects of climate change in particular, which are related559

to temperature changes, directly impact the pavement. Having a guide to560

guarantee the adequate maintenance of the pavements allows efficiencies to561

be made when maintaining them. In [55] the authors address this problem562
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Figure 8: Tree, Thematic, conceptual and dendrogram maps applied a pavement data set.
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in the case of Iran. Particularly in certain areas, climate change has changed563

from a cold semi-desert to a relatively hot semi-desert. In the article, ML564

algorithms are used to develop a methodology that allows evaluating the565

necessary maintenance differences and thus developing a maintenance policy.566

This policy allows an adequate evaluation of the costs involved in the main-567

tenance process due to the effects of climate change. In [57], a framework568

was proposed using ML to find optimal maintenance policies in a road net-569

work. The stages included grouping the network based on relevant factors,570

identifying criteria that impact optimal policies, and determining policies571

and application periods. Additionally, regression algorithms such as gradi-572

ent boost regression, lasso, ridge, RF regression, and neural network, among573

others, were used to quantify and predict the cost of policies.574

A second line found in the bigram analysis is related to the detection of575

cracks and distress in the pavement. In [64], an architecture based on Convo-576

lutional Neural Networks (CNN) called CrackNet, is developed and employed577

for pavement crack detection on threedimensional (3D) asphalt surfaces. This578

same group of authors from the School of Civil and Environmental Engineer-579

ing at Oklahoma State University (USA) published three new versions, in580

[63], of the CNN-based pavement crack detection architecture, CrackNet II,581
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CrackNet-V, and CrackNet-R . In [62], a CrackNet version using recurrent582

neural networks was developed (called CrackNet-R), four times faster and583

with better accuracy than the original CrackNet version. This version pro-584

poses a gated recurrent multilayer perceptron (GRMLP) to update the in-585

ternal memory recursively. GRMLP is intended for deeper input and hidden586

state abstractions by conducting multilayer nonlinear transforms at gating587

units. The training of CrackNetR is completed using 3,000 diverse 3D im-588

ages. The analysis using 500 testing pavement images shows a precision of589

88.9%, a recall of 95.0%, and a Fmeasure of 91.84%. In [49], CrackNet-V590

was developed as a more efficient version of the CNN-based architecture.591

This version has a deeper architecture but fewer parameters, with improved592

accuracy and efficient feature extraction.593

In [52], Deep Convolutional Neural Networks (DCNN) with transfer learn-594

ing were applied for computer vision-based automated pavement distress de-595

tection and classification. The FHWA/LTPP database with multiple Pave-596

ment images datasets was used. The truncated DCNN was used to build597

deep features for road imaging. Various ML classifiers were trained using598

semantic image vectors. A neural network classifier trained in deep transfer599

learning vectors gave the best results.600
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In [47], a novel method based on a hybrid ABC-ANN model for pave-601

ment surface distress detection and classification was used. In this study, the602

ANN was used to classify a hazard area as a specific hazard type, includ-603

ing transverse cracks, longitudinal cracks, and potholes. The study results604

demonstrate that the hybrid ABC-ANN approach works well for pavement605

distress detection and can classify types of distress on pavement images with606

reasonable precision. The precision obtained by the proposed ABC-ANN607

method achieves an increase of 20% compared to the existing algorithms.608

In [54], the performance of different ML algorithms was analyzed for as-609

phalt pavement crack classification, including support vector machine (SVM),610

ANN, and the RF. The feature set consisting of the properties derived from611

the projective integral and the properties of crack objects can offer the most612

desirable result. Experimental results show that SVM has achieved the high-613

est classification accuracy rate (87.50%), followed by ANN (84.25%) and RF614

(70%). The proposed approach may be useful in assisting transportation615

agencies and inspectors in the task of assessing the condition of the pave-616

ments.617

A relevant issue in public safety is related to cracks in the pavement,618

despite advances in imaging techniques and segmentation. Segmenting or619
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recognizing pavement cracks is a non-trivial problem. This is because there620

is no regularity in the pavement cracks, so there is no clear pattern. At In,621

[50], a variation of the U-net topology was developed to perform automatic622

pavement crack detection. To validate the proposal, benchmark data such623

as CFD and AigleRN were used.624

The primary non-destructive pavement evaluation methods are image625

recognition models, ML algorithms, and visual inspections. While the previ-626

ous methodologies are efficient, they include uncertainty, noise, and overfit-627

ting. By and large, the cracks do not follow a predictable pattern. The use628

of ANN to predict the qualification of cracks in pavements is addressed in629

[56] to strengthen the results of the learning models already used in predict-630

ing cracks in pavements. An interesting facet of the work is the data used.631

The model formulation incorporates variables such as average daily traffic632

and truck factor, road functional class, asphalt thickness, and pavement con-633

dition time series data. By and large, the work concludes that ANNs are634

considered suitable ML models for crack classification.635

In [53] also uses ML techniques to detect potholes on the asphalt pave-636

ment surface. In this case, Gaussian filters, steerable filters, and integral637

projection are used to extract features from digital images. Once the feature638
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set was generated, the robustness of the LS-SVM and ANN methods was639

evaluated. The evaluation was performed using 200 images as a training and640

validation set. Both methods had values in the precision indicator above 85%641

and a ROC-AUC of 0.96. Particularly LS-SVM was the one that obtained642

the best results.643

An application thinking of autonomous cars corresponds to detecting the644

texture of the road since it directly affects the operation of the tires and brak-645

ing. In [48], deep learning is used to perform pavement texture recognition.646

As a first step, the captured images were pore-processed and subsequently647

augmented using the Generative adversarial networks (GANs). Finally, the648

RF technique and the Densenet network were used for the texture identifi-649

cation process. The latter obtained better precision than RF. Particularly650

when using the data augmented with GANs, a better quality database is651

obtained, and therefore when training with this new set of images, it is ob-652

served that the accuracy improves from 59% to 82%. To train the adversary653

network, 250,000 iterations were used. These methods were also found to654

work better than manual methods.655

Regarding the third group related to using ML in order to predict pave-656

ment properties. The shear strength property of the soil is critical. De-657
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termining the shear strength of the soil is an important task in the design658

phase of the construction project. In [61], the authors present a hybrid AI659

model that integrates the Least squares support vector machine (LSSVM)660

algorithm and the cuckoo search optimization (CSO). A data set of 332 soil661

samples collected from the Luong National Highway Project in Vietnam was662

used to construct and validate the model. The input variables used in this663

study were: the depth of the sample, the percentage of sand, the percentage664

of clay, the percentage of clay, the moisture content, the wet density of the665

soil, the specific gravity, the liquid limit, the plastic limit, the plastic in-666

dex, and the liquid index. LSSVM is used to generalize functional mapping667

that estimates shear strength from the information provided by the input668

variables. The LSSVM model requires proper configuration of the regular-669

ization and parameters of the kernel function; instead, the CSO algorithm is670

used to determine these parameters automatically. The experimental results671

show that the prediction precision of the LSSVM and CSO hybrid method672

(RMSE = 0.082, MAPE = 14.841, and R2 = 0.885) is better than that of the673

reference approaches that include the standard LSSVM, the ANN, and the674

tree regression. Therefore, the proposed method is a promising alternative675

to assist construction engineers in estimating the shear strength of the soil.676
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Another interesting indicator to consider in flexible pavements is the inter-677

national roughness index (IRI). The RF technique is used in [51] to perform678

automatic prediction on this indicator. Eleven thousand samples were used679

to create the data set. Eighty percent of the data was used in the training680

process, with the remaining twenty percent reserved for validation. Sam-681

pling was conducted at random. The results outperformed regularized linear682

regression models, with indicators exceeding 95%. When the importance of683

variables is analyzed, it is discovered that the primary influencing variables684

are the initial value of IRI, as well as the average rainfall, fatigue cracking,685

and transverse cracking. In [58] a general ML technique be used to construct686

models for pavement performance prediction in pavement management sys-687

tems (PMS). The proposed models were developed using a RF algorithm and688

datasets that included past IRI observations as well as structural, meteoro-689

logical, and traffic data. The proposed approach is compatible with a variety690

of machine learning algorithms and emphasizes generalization performance.691

A case study is presented for the prediction of the IRI over the next five and692

ten years utilizing the Long-Term Pavement Performance.693

Pavement condition prediction is a powerful and critical tool for deter-694

mining the most effective maintenance approaches and treatment processes.695
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Similar to previous works, in [60], use ML methods to forecast the IRI and696

pavement condition indices (PCI). These performance indices are frequently697

used in pavement monitoring to correctly determine the state of a pave-698

ment’s health. Additionally, the paper discusses the most critical variables699

that pavement condition prediction models include. In [65], the prediction700

of the PCI indicator is addressed through the use of cascade models. The701

goal is to be able to replace visual inspections, and in order to calibrate the702

models, they chose the six most frequent defects: patches, alligator cracks,703

transverse and longitudinal cracks, shoving, and potholes. The cascade ar-704

chitecture uses traditional learning models integrated with a neural network.705

After applying the statistical cross-validation techniques, the results show706

that the model can predict the index with an adequate degree of precision.707

Finally, the pavement maintenance quality index (PQI) prediction is covered708

in [59]. The study proposes a prediction model for the deterioration of the709

technical condition index of the pavement surface based on the Light Gradi-710

ent Boost Machine. To properly fit the model, the grid-search technique was711

used. The prediction result is compared with the prediction result using a712

RF. The comparison indicates that the boost method has a good prediction;713

this is observed when analyzing the R2 indicator, which obtained a value of714
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0.754 and the MAE that reaches 2.651.715

4.4. Tunnels716

Tunnels are underground infrastructure that seeks to connect two exter-717

nal points by crossing flat surfaces, mountainous accidents, and even seas.718

One of the main challenges in tunnel engineering is the inspection, evalu-719

ation, maintenance, and safe operation of the infrastructure. In order to720

study structural damage in tunnels, computer vision techniques have been721

used, including combinations of convolutional neural networks (CNN) and722

fuzzy spectral clustering (Fuzzy spectral clustering). On the other hand,723

predicting machinery performance is critical for accurate cost estimation in724

tunnel construction projects. For this purpose, deep neural network models725

have been used to predict the penetration rate of tunnel boring machinery.726

These systems offer high detection accuracy compared to existing methods.727

4.4.1. Bigram document analysis728

The bigram analysis is shown in Figure 9. In the upper left Figure, tunnel729

inspection and crack detection are obtained as major issues being developed730

in tunnels. This is confirmed in the graphs below. In the thematic map,731

shown in the lower right Figure, we see that three groups appear. One group732
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is related to tunnel inspection, another group is related to crack detection,733

and a third group does not have a precise meaning. When analyzing the clus-734

ters generated by the conceptual map, shown in the Figure lower left. It is735

noted that two clusters appear; the blue one is related to the concept of mon-736

itoring and structural health with image segmentation, ML, deep learning,737

and convolutional networks. In a second cluster in red, the concept of crack738

detection appears related to penetration rates, excavations, and geotechnics739

and in conjunction with metaheuristic optimization techniques, deep learn-740

ing, and ML. When analyzing the dendrogram in the upper right Figure, we741

see that tunnel inspection is very close to convolutional networks and image742

segmentation concepts. On the other hand, in the red group, crack detection743

concepts are related to metaheuristic techniques such as artificial bee colony744

and ML regression and classification techniques.745

4.4.2. Traditional analysis746

In Table 4, a summary of the techniques, applications, and results ob-747

tained in the different works analyzed is shown. Regarding the applications,748

the inspections and monitoring of tunnels stand out, in addition to the pre-749

diction of penetration rates and performances. Among the techniques, the750

use of SVM, convolutional networks and Multilayer perceptron stands out.751
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Figure 9: Tree, Thematic, conceptual and dendrogram maps applied a Tunnel data set.
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On the other hand, the first line identified in the bigram analysis is related752

to tunnel crack detection. In [66], convolutional neural networks and fuzzy753

spectral clustering were used for real-time crack detection in tunnels. This754

article proposes a computational vision model for tunnel crack detection,755

a challenging process due to low visibility, curvature, and crack structures756

that, although very narrow, are very deep. The proposed system integrates a757

robot that examines tunnels in real-time as it moves through the infrastruc-758

ture. Initially, a convolutional neural network is used to detect cracks. Then,759

a combined fuzzy spectral clustering is introduced to refine the detected crack760

regions. The model was tested in tunnels on the Egnatia Highway. Due to761

the low visibility and geometry of the system, the accuracy and F1-score val-762

ues are not that high; however, the system offers a considerable improvement763

in detection compared to existing methods. Additionally, the ability of the764

robot to touch the crack allows for on-site measurements with accuracy.765

In [67], an image acquisition system is designed, which uses multi-line766

scanning cameras. The objective is to capture images of the tunnel surface767

to generate a model for automatic crack detection. For the training of the768

model, three stages were developed. The first is an improvement of the data769

set through a frequency-domain improvement algorithm. A filter is then770
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generated to remove noise generated by water stains and existing devices on771

the tunnel’s surface. Finally, a segmentation algorithm is used to segment the772

cracks. The algorithm was tested on Line 1 of the Beijing subway, surpassing773

state-of-the-art algorithms.774

Predicting cracks or overflows in the face of critical conditions is vital775

in monitoring and maintaining essential infrastructure. In [68, 69], a neu-776

ral network was built, which was used to predict the overbreak induced by777

the blasting operations of the Gardaneh Rock tunnel. R2 values of 0.923778

were obtained in the validation set. With this model and considering that779

overbreak is one of the main difficulties in tunnel excavations, the excavation780

operation is improved. Specifically, extra drilling of 47% was achieved.781

In [70] stability evaluation using reliability was applied; the main dif-782

ficulty of the above is the nature of the limit state function. The article783

developed a hybrid approach, integrating the uniform design with a regres-784

sion model using the support vector machine technique, was developed. The785

hybrid proposal was evaluated in three tunnels with different characteris-786

ticsa first simplified case and later two real cases. The results concluded that787

the hybrid method could train adequately with less data than traditional788

methods, maintaining the quality of the predictions.789
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The second line of research obtained from bigram analysis is related to790

tunnel inspection and analysis of operational conditions. One way to detect791

the health status of structures in tunnels is by laser scanning. This form is792

proposed in the article by [71], where they focus directly on railway tunnels793

because they represent one of the tunnels whose accidents can be more catas-794

trophic. However, it is mentioned that the human component in these types795

of constructions continues to be predominant, which is why it is worrying and796

generates a need to advance through automation. The study determined that797

laser scanning in conjunction with custom processing tools can provide data798

for additional structural operations. A methodology is used divided into the799

preprocessing of the point cloud, then the division of the cloud into terrestrial800

and non-terrestrial points, and finally, the detection of the elements present801

and each of the clouds.802

In [72], Deep convolutional neural networks were used for efficient vision-803

based tunnel inspection. One of the main challenges facing engineers today804

is the safe inspection, evaluation, maintenance, and operation of civil infras-805

tructure. For this process, manual processes are used, which are slow and806

produce subjective results, or automated approaches, which depend on com-807

plex handmade characteristics, where it is seldom known in advance which808
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characteristics are important for the problem in question. This article pro-809

poses a fully automated tunnel evaluation approach. Complex features were810

hierarchically constructed with a monocular camera using a deep learning811

model. The obtained features were used to train a defect detector using a812

convolutional neural network to build high-level features and, as a detector,813

a multilayer perceptron was used due to its global function approximation814

properties. Very rapid predictions were obtained with the proposed system815

due to the advancing nature of convolutional neural networks and multilayer816

perceptrons.817

In [73], an application of deep neural networks was employed to predict818

the penetration rate of tunnel boring machines(TBM). Performance predic-819

tion is critical to accurate and reliable cost estimation using a TBM in mech-820

anized tunnel construction projects. A wide variety of artificial intelligence821

methods have been used in predicting the penetration rate of TBM. This fo-822

cuses on developing a deep neural network (DNN) based model, an advanced823

version of an ANN, for predicting the penetration rate of TBM based on data824

obtained from the transfer tunnel of raw water Pahang-Selangor in Malaysia.825

Based on the results obtained from the coefficient of determination and the826

root mean square error (RMSE), a significant increase in the prediction of827
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the performance of the penetration rate is achieved through developing a828

predictive DNN model. The DNN model demonstrated better performance829

for estimating the penetration rate than the ANN model.830

In [74], a supervised machine learning technique was used to predict tun-831

nel boring machine penetration rate. Prediction of the penetration rate is832

a complex and challenging task due to the interaction between the tunnel833

boring machine (TBM) and the rock mass. This article discusses the use of834

supervised ML techniques, including k-nearest neighbor (KNN), chi-squared835

automatic interaction detection (CHAID), SVM, classification and regression836

trees (CART), and ANN to predict the penetration rate (PR) of a TBM. To837

achieve this goal, an experimental database based on field observations and838

laboratory tests was created for a tunnel project in Malaysia. In the database,839

uniaxial compressive strength, Brazilian tensile strength, rock quality desig-840

nation, weathering zone, push force, and revolution per minute was used841

as inputs to predict the TBM PR. Then KNN, CHAID, SVM, CART, and842

NN predictive models were developed to select the best. In this article, the843

KNN model has the best performance to predict the PR of TBM. The KNN844

model identified uniaxial compressive strength (0.2) as the most important845

and revolution per minute (0.14) as the least important factor in predicting846
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the TBM penetration rate.847

In [75], the topic of tunnel convergence prediction using ML methods848

is addressed. The study focuses on the construction of a tunnel in Namak-849

lan where ANN, multivariate linear regression (MLR), multivariate nonlinear850

regression (MNR), support vector regression (SVR), Gaussian process regres-851

sion ( GPR), regression trees (RT), to predict the convergence rate (CR). Six852

predictive parameters were selected, which are: cohesion, internal friction an-853

gle, uniaxial compressive strength of the rock mass, rock mass classification,854

overburden height, and the number of rock bolts installed. Using the coeffi-855

cient of determination (R2) it was possible to determine that the MLP-ANN856

model is the most optimal, with R2 = 0.93. In contrast, the MLR model has857

a prediction with the lowest R2 = 0.61, and the RT and GPR models are the858

least indicated for predicting these indicators.859

In [76], it is mentioned how to predict the linear response for tunnels860

built in anisotropic clay. This is important when building a tunnel because861

it considerably impacts the duration and safety it will have over time. Five862

parameters were taken into account to measure: Burial depth, the center-863

to-center distance of the tunnel, soil resistance, stiffness ratio, and degree864

of anisotropy. These are known as finite elements (FE). Then, through the865
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application of multivariate adaptive regression splines and decision tree re-866

gression methods, the prediction of the bending moment within the linings867

of the first tunnel is evaluated based on the cases of FE constructed. This868

allows engineers to estimate the structural response of tunnels with greater869

reliability.870

In [77], the use of an automated robotic inspector that can assess the871

condition of a tunnel is proposed. This inspector has mobile autonomy, has872

a crane arm, and is directed by the crack detector based on computer vision.873

In addition, the robotic inspector has ultrasound sensors, stereo cameras, and874

a laser scanner. The inspector’s method is initially crack detection through875

a deep learning approach, using a visual inspection based on convolutional876

neural networks. Then this generates a detailed 3D model of the cracked877

area using photogrammetric methods. In [80], the idea of detecting cracks in878

tunnels and their segmentation is raised. They do this using a convolutional879

deep neural network technique called "CrackSegNet," and a dense segmenta-880

tion of cracks is carried out in the form of pixels. The network consists of a881

backbone, dilated convolution, spatial pyramid cluster, and jump connection882

modules. The proposed network achieves significantly higher precision and883

generalizability than the compared methods, thus achieving greater efficiency884
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at a low cost.885

The manual inspection procedure for cracks and leaks in metro shield tun-886

nels is slow. One of the main causes of the slowness is the difficulty, which887

is an interference defect that occurs in the tunnels. In [78], the manual888

procedure was replaced with an automatic procedure based on deep learn-889

ing. In particular, a semantic segmentation algorithm is proposed to identify890

cracks and leaks. The proposed method was compared against state-of-the-891

art methods, finding that the semantic segmentation algorithm is superior892

to the other methods analyzed. This superiority was not only in the qual-893

ity of the recognition but also in the processing times to obtain the result.894

Robotics is a fundamental actor in the automation of tunnel inspection. In895

[79], a robotic inspector is used for tunnel evaluation. Among the impor-896

tant features, the robotic inspector is able to navigate autonomously in the897

structure. In addition, it captures images and finally analyzes them to iden-898

tify defects in the structure. The cracks are detected through deep learning899

techniques, and later the robot can create a 3D model with the detail of the900

cracked area. The autonomous system was evaluated in railway and road901

tunnels.902

61



4.5. Construction Management903

Due to the complex and dynamic nature of many construction and in-904

frastructure projects, the ability to detect and classify key on-site activities905

by various teams and human personnel can improve the quality and man-906

agement of construction projects. One of the approaches in this matter is907

using sensors integrated with smartphones as data collection and transmis-908

sion nodes to detect activities in construction equipment. These systems909

of recognition and classification of the activity of construction workers are910

combined with data collected from sensors and ML models. In this way,911

it is possible to assess the condition, behavior, and surrounding context of912

construction workers to effectively manage and control projects. Another913

example is related to safety in construction management. Safety Leading914

Indicators are a way of flagging sites that are most at risk. Some works pro-915

pose using machine learning to develop safety indicators that classify sites916

according to their safety risk in construction projects.917

4.5.1. Bigram analysis918

Figure 10 shows the bigram analysis performed for the management con-919

cept. In the upper left figure, the treemap indicates that Construction920

projects, Contract delivery, price index, and activity recognition correspond921
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to the most frequent bigram. Regarding ML techniques, we see that the922

support vector machine is the only technique that appears in the treemap.923

When analyzing the thematic map, lower right figure, we see an important924

group related to project management and delivery and other groups related925

to the activity recognition. In the conceptual structure map, two groups are926

distinguished in light blue a group related to management and delivery and927

a more diffuse red group. In the red group, the concepts of productivity928

monitoring and construction productivity appear again, but there are also929

the concepts of activity recognition and construction safety.930

4.5.2. Traditional analysis931

In Table 5, a summary of the articles analyzed in the management area932

is shown. Among the applications that stand out is the detection of critical933

activities in relation to safety on the construction site. On the other hand,934

there are also works related to the prediction of cost indicators or the progress935

of the project. From the point of view of techniques, KNN and ANN are the936

main techniques used. By complementing this information with the bigram937

analysis, we observe a first group related to security and recognition of activ-938

ities. Activity recognition is an emerging general area with great potential in939

the Construction Engineering Management (CEM) domain. Due to the com-940
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Figure 10: Tree, Thematic, conceptual and dendrogram maps applied a Management data
set.
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plex and dynamic nature of many construction and infrastructure projects,941

the ability to detect and classify key activities carried out in the field by di-942

verse teams and human personnel can improve project decision-making and943

control quality and reliability.944

In [81], embedded smartphone sensors are proposed as ubiquitous multi-945

modal data collection and transmission nodes to detect detailed activities of946

construction teams. Accelerometer and gyroscope sensors are used to train947

supervised learning classifiers. To evaluate the models, the selection of dis-948

criminatory characteristics was used to extract, the sensitivity analysis of the949

size of the data segmentation window, and the choice of the classifier to train.950

Choosing the level of detail (LoD) in describing team actions (classes) is an951

important factor with a major impact on ranking performance. Computa-952

tional efficiency and end-use of the classification process may well influence953

the decision for selecting an optimal LoD to describe team activities (classes).954

In [82], a smartphone-based construction workers’ activity recognition955

and classification system is proposed. Assessing the condition, behavior, and956

surrounding context of construction workers is essential for effective project957

management and control. The embedded sensors of ubiquitous mobile phones958

offer a great opportunity to automate the recognition of worker activity. This959
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study proposes the use of smartphones to capture body movements by col-960

lecting data using integrated gyro and accelerometer sensors. The collected961

data is used to train five different types of ML algorithms. Activity recog-962

nition precision analysis has been performed for all different ML activity963

categories and classifiers in user-dependent and independent ways. The re-964

sults indicate that neural networks outperform other classifiers by offering965

accuracy ranging from 87% to 97% for user-dependent categories and from966

62% to 96% for user-independent categories.967

Construction safety is one of this industry’s most relevant and concerning968

issues. Although ML has been considered by construction research for more969

than two decades, it has not yet been applied to safety concerns. In [83],970

RF and Stochastic Gradient Tree Boosting (SGTB) models are proposed971

to a set of categorical safety attributes data extracted from a large set of972

textual reports of construction injuries. The integration of a natural language973

processing tool (NLP) developed by the same researchers in previous works974

is proposed. Both models can predict the type of injury, the type of energy,975

and the part of the body with great performance (0.236 <RPSS <0.436),976

surpassing the parametric models found in the literature. This work opens977

the door to a new field of research, where construction safety is considered978
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an empirically founded quantitative science.979

The construction industry is one of the most dangerous in many coun-980

tries. Safety leading indicators are a way to mark sites that are most at981

risk. ML is not widely used in the construction industry, especially in the982

development of safety-leading indicators. In [84], an ML approach to devel-983

oping safety leading indicators that rank sites according to their safety risk984

on construction projects is proposed. In this study, five ML algorithms were985

compared for predicting the occurrence and severity of accidents. The data986

includes safety inspection records, accident cases, and project-related data.987

These data were obtained from a large contractor in Singapore, and the data988

was accumulated from 2010 to 2016. From thirty-three input variables, 13989

input variables were selected using a combination of Boruta technical feature990

selection and decision tree. Of the 13 input variables selected, six of them991

are related to the project, and seven of them are elements in the Contrac-992

tor safety inspection checklists. During validation, the RF model provided993

the best prediction performance with an accuracy of 0.78 and has achieved994

substantial strength according to the Weighted-Kappa statistics of 0.70.995

Constant monitoring of work progress and identifying deviations from996

plans are critical to designing a more efficient and safe workplace. Sustained997
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physical work will result in work-related musculoskeletal disorders (WMSD)998

that can adversely affect the health of workers and the project’s budget,999

schedule, and productivity. To prevent WMSD, health and safety organiza-1000

tions have established rules and regulations limiting labor-intensive activi-1001

ties’ duration and frequency. In [85], a wearable sensor data and ML system1002

was used for activity recognition, productivity analysis, and ergonomic risk1003

assessment. The model implements embedded smartphone sensors and a1004

multi-class Support vector machine (SVM) to recognize worker activities in1005

the field and extract duration and frequency information, which will ulti-1006

mately be used to assess productivity and ergonomic risks associated with1007

each activity.1008

Project management, control, and delivery were other important groups1009

identified in the bigram analysis. In [86], Digital images and video clips1010

collected at construction job sites are commonly used for extracting useful1011

information. Exploring new applications for image processing techniques1012

within construction engineering and management is a steadily growing field1013

of research. One of the initial steps for various image processing applications1014

is automatically detecting various construction materials on construction im-1015

ages. In this paper, the authors conducted a comparison study to evaluate the1016
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performance of different ML techniques for detecting three common building1017

materials: Concrete, red brick, and OSB boards. The employed classifiers1018

in this research are: Multilayer Perceptron (MLP), Radial Basis Function1019

(RBF), and Support Vector Machine (SVM). To achieve this goal, the feature1020

vectors extracted from image blocks are classified to compare the efficiency of1021

these methods for building material detection. The results indicate that for1022

all three types of materials, SVM outperformed the other two techniques in1023

accurately detecting the material textures in images. The results also reveal1024

that the common material detection algorithms perform very well in cases1025

of detecting materials with distinct colors and appearance (e.g., red brick).1026

In contrast, their performance for detecting materials with color and texture1027

variance (e.g., concrete) and materials containing similar color and appear-1028

ance properties with other elements of the scene (e.g., ORB boards) might be1029

less accurate. For example, OSB surfaces and flooring can have similar color1030

and texture values, making the detection process more challenging. In these1031

cases, an interesting line to explore is strengthening the database with more1032

images. These images can be real or artificially generated through GANs,1033

for example.1034

In [87], while unavoidable, inspections, progress monitoring, and com-1035
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paring as-planned with as-built conditions in construction projects do not1036

readily add tangible intrinsic value to the end-users. In large-scale construc-1037

tion projects, the process of monitoring the implementation of every single1038

part of buildings and reflecting them on the BIM models can become highly1039

labor-intensive and error-prone due to the vast amount of data produced in1040

the form of schedules, reports and photo logs. In order to address the men-1041

tioned methodological and technical gap, this paper presents a framework and1042

a proof of concept prototype for on-demand automated simulation of con-1043

struction projects, integrating some cutting-edge IT solutions, namely image1044

processing, ML, BIM, and Virtual Reality. This study utilized the Unity1045

game engine to integrate data from the original BIM models and the as-built1046

images, which were processed via various computer vision techniques. These1047

methods include object recognition and semantic segmentation for identi-1048

fying different structural elements through supervised training in order to1049

superimpose the real-world images on the as-planned model. The proposed1050

framework leads to an automated update of the 3D virtual environment with1051

the states of the construction site. This framework empowers project man-1052

agers and stockholders with an advanced decision-making tool, highlighting1053

the inconsistencies in an effective manner. This paper contributes to body1054
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knowledge by providing a technical exemplar for the integration of ML and1055

image processing approaches with immersive and interactive BIM interfaces,1056

the algorithms and program codes which can help replicability of these ap-1057

proaches by other scholars.1058

In [88], the sound recognition technology, which has been adopted in1059

diverse disciplines, has not received much attention in the construction in-1060

dustry. Since each working and operation activity on a construction site1061

generates its distinct sound, its identification provides imperative informa-1062

tion regarding work processes, task performance, and safety-relevant issues.1063

Thus, accurate sound data analysis is vital for project participants to monitor1064

project procedures, make data-driven decisions, and evaluate task productiv-1065

ities. To accomplish this objective, this paper investigates the sound recogni-1066

tion technology for construction activity identification and task performance1067

analyses. Mel-frequency cepstral coefficients are extracted for sound identifi-1068

cation as the features of the six types of sound data. In addition, a supervised1069

ML algorithm called Hidden Markov Model is used to perform sound classifi-1070

cation. The research findings show that the maximum classification accuracy1071

is 94.3% achieved by a 3-state HMM. This accuracy of the adopted technique1072

is expected to reliably execute the construction sound recognition, which sig-1073
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nificantly leverages construction monitoring, performance evaluation, and1074

safety surveillance approaches.1075

In [89], the Construction Cost Index (CCI) is calculated monthly and1076

published by Engineering News-Record (ENR). CCI is utilized for capital1077

project budgeting and construction cost estimation, especially when mid-1078

and long-term forecasts are needed. Accurate prediction of CCI helps avoid1079

underestimating and overestimating project costs. However, the current pre-1080

vailing time series prediction models do not show promising results, especially1081

in mid-and long-term forecasting. The capability of two machine-learning1082

algorithms, k nearest neighbor (KNN) and perfect random tree ensembles1083

(PERT), are utilized to enhance CCI forecasting, especially in the mid-and1084

long-term. The proposed machine-learning algorithms can significantly en-1085

hance forecasting CCI’s predictability in all the short-, mid-, and long-term1086

scenarios. Data from January 1985 to December 2014 is collected from ENR1087

and the bureau of labor statistics to conduct empirical studies and quantita-1088

tively measure the performance of the proposed methods. As the outcomes1089

show, the prediction accuracies of both proposed methods are better than1090

those of current prevailing time series models under all the tested scenarios. It1091

is anticipated that cost estimators can benefit from CCI forecasting by incor-1092
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porating predicted price variations in their estimates, preparing more-precise1093

bids for contractors, and developing more accurate budgets for owners.1094

5. Future directions1095

Figure 11 shows a summary diagram of the five main topics obtained along1096

with the lines that are being developed in each of the topics. In addition,1097

Table 6 has been introduced, which proposes four groups related to challenges1098

and future lines. The first group in the Table, is related to the prediction of1099

variables. The second group is concerned with safety applications, the third1100

group with images and convolutional networks, and the fourth group with1101

the optimization of structural designs. For the first group, which corresponds1102

to the prediction or classification of variables, in the topic of concrete, we1103

find the prediction of its mechanical properties or, in the case of retaining1104

walls, the prediction of geotechnical variables. When analyzing the metrics1105

of the ML models, it is observed that, in general, the ML models are capable1106

of predicting the variables with outstanding results. So the challenge is to1107

move to the second level of ML application. With this, we mean: that the1108

previous studies have been carried out with historical datasets compiled by1109

the authors. How can the model now be put into a production environment?1110
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The first stage is to be able to generate a data lake with information holistic1111

and related to the production processes. The creation of the data lake implies1112

the capture of the variables of interest to subsequently carry out all the1113

engineering and data governance for the proper development of this. On the1114

other hand, how does the result of this prediction fit into decision-making?1115

A model that has good predictions but that is not useful for making decisions1116

does not generate value within an industrial process. These same challenges1117

related to the prediction of variables appear in tunnels, for example, for1118

certain variables such as penetration or overtopping rates or the prediction1119

of costs related to project management.1120

Considering the overtopping case and safety factor prediction applications1121

such as in the management topic, related to safety and activity recognition1122

or in the case of safety factor prediction in retaining walls. In addition to1123

the two previous challenges, there is a challenge that these predictions must1124

be carried out in times close to real. This generates challenges of having to1125

integrate these safety models with big-data techniques in order to execute1126

decision-making in real-time. The above can also be complemented with all1127

the technologies developed by cloud providers. Another group of interesting1128

applications is related to detecting cracks in concrete, pavements, retaining1129
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walls, tunnels, or the case of activity recognition. Usually, the techniques1130

used are related to convolutional neural networks. Convolutional networks,1131

in general, are quite intensive in computation, especially in the training part1132

and if they have a significant number of layers, also when making predictions.1133

Again thinking about the productive case, it is interesting for networks with1134

many layers to be able to generate simpler architectures, with fewer layers,1135

capable of operating on simple hardware, for example, cell phones. This1136

allows, for example, in the case of security applications to be able to carry1137

out close detection in real-time directly in the hardware. On the other hand,1138

in the case of having to train neural networks, it is interesting to explore1139

the capabilities of cloud providers to generate better training in less time.1140

Here we also emphasize the importance of generating a data lake for future1141

experiments and development.1142

Finally, there is a group of applications related to the optimization of1143

structures. Usually, what is found here are cost optimizations, CO2, or1144

embodied energy. We believe that a fundamental point that would make1145

it easier to integrate into decision-making is to consider different sustain-1146

ability criteria: economic, environmental, social, and constructability, which1147

naturally implies multi-objective optimization with multi-criteria decisions.1148
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When defining the objective function that guides this optimization, the com-1149

plete life cycle analysis must be considered: Manufacturing, Construction,1150

Use, Maintenance, and End of Life. Furthermore, all structural designs in-1151

volve variability and uncertainty. The initial parameters, the structure’s di-1152

mensions, the materials’ mechanical characteristics, and the loads may differ1153

from the design values. Therefore, the optimization should naturally consider1154

this uncertainty to obtain a robust design.1155
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Figure 11: Summary of the main topics identified and lines developed in each of them.
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6. Conclusions1156

In this work, we propose a hybrid methodology. As a first instance, we1157

used the bidirectional encoder representation for the transforms technique1158

to find topics in the abstracts of articles obtained from Scopus. Later we1159

used the expert knowledge to select the relevant topics. This methodology1160

found five topics of ML applications to construction: concrete structures,1161

retaining walls, pavement, tunnels, and management. The leading journals1162

in this area of research are Automation in Construction, Construction and1163

Building Materials, and Computer Engineering.1164

On the topic of concrete, we distinguish two main research lines; the first1165

is strongly related to automatic crack detection and monitoring of struc-1166

tures, and the second cluster is associated with the prediction or automatic1167

identification of parameters for an efficient and sustainable design of con-1168

crete. Regarding retaining walls, the main lines of research have to do with1169

optimizing the design of walls where hybrid techniques between ML and1170

metaheuristics have obtained good performance. On the other hand, the1171

prediction of design parameters of the structure through ML techniques has1172

been studied. Regarding the pavement topic, an essential line of research1173

is related to pavement maintenance policies and how events such as climate1174
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change affect them. A second line is related to monitoring and detecting1175

cracks and distress in the pavement. In the case of tunnels, structure mon-1176

itoring appears again as a main line of research in addition to identifying,1177

predicting, and optimizing operational variables such as penetration rates,1178

excavations, and geotechnical variables. Finally, in the case of construction1179

management, incorporating ML in the control, management, costs, and de-1180

livery of projects is a line of interest. Still considering project management1181

and administration, another line is related to the safety of workers and the1182

identification of activities within the work.1183

There is an opportunity to strengthen the proposed hybrid review tech-1184

nique regarding the next steps. We would particularly like to carry out the1185

analysis of other construction themes and consider other areas. Considering1186

the research lines found, we observe that most investigations focus on obtain-1187

ing the model. However, the model must be inserted into the decision-making1188

process to generate value. At this point, we see an opportunity to extend1189

much of the research. In the case of lines that incorporate optimizations, a1190

large number of fixed parameters are usually considered; an extension would1191

be to consider a robust and multi-objective optimization, considering not1192

only the cost of the optimization but also variables such as environmental or1193
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social.1194

The study is particularly useful for supporting decision-making processes1195

and optimizing the effectiveness and sustainability of construction processes.1196

The results have their roots in the BERT methodology, which leverages ML1197

to investigate prominent and relevant topics. Thus, identifying critical re-1198

search lines that have the most significant influence in practice provides clear1199

guidance for management to identify, select, and analyze which ML method1200

makes sense to improve their companies performance and sustainability.1201

This is particularly relevant since the practical application of ML de-1202

mands a high-skilled workforce and capabilities, which companies do not1203

easily reach. First, information technology resources are highly disputed and1204

often scarce. Second, construction demands compliance because of strict1205

rules and norms, which adds further resources. Hence, having a study set-1206

ting out the base and the state-of-the-art regarding ML for construction is1207

vital for accelerating and reducing costs for achieving a more pervasive effect1208

on the market.1209

Another significant implication is the results of the herein applied method-1210

ology. We uncovered critical areas in the construction sector by combining1211

BERT methodology with experts knowledge. Expanding such technic to in-1212
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clude patents and other scientific and technological knowledge sources may be1213

valuable for recognizing innovation opportunities. Considering that the con-1214

struction sector is not broadly recognized for high innovativeness and given1215

its relevance for the worlds economy and sustainability, this might have a1216

path for attracting entrepreneurs and companies to pursue innovations, pri-1217

marily business model innovations combined with product innovations.1218
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