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A B S T R A C T

Composite bridge optimization might be challenging because of the significant number of variables involved
in the problem. The optimization of a box-girder steel–concrete composite bridge was done in this study with
cost and CO2 emissions as objective functions. Given this challenge, this study proposes a hybrid algorithm that
integrates the unsupervised learning technique of k-means with continuous swarm intelligence metaheuristics
to strengthen the latter’s performance. In particular, the metaheuristics sine-cosine and cuckoo search are
discretized. The contribution of the k-means operator regarding the quality of the solutions obtained is studied.
First, random operators are designed to use transfer functions later to evaluate and compare the performances.
Additionally, to have another point of comparison, a version of simulated annealing was adapted, which has
solved related optimization problems efficiently. The results show that our hybrid proposal outperforms the
different algorithms designed.
. Introduction

Bridge optimization is an interesting problem to address both be-
ause of the technical challenges that the problem presents and because
f the potential applications in reducing costs, CO2 emissions, and
nergy consumption. The technical difficulties are related to the large
umber of discrete variables required in its design and the complex
bjective functions and restrictions that these must satisfy [1]. Due to
he more significant number of variables necessary for their design,
teel–Concrete Composite Bridges (SCCB) present a considerable chal-
enge. According to the SCCB literature, they can be classified into three
roups according to their cross-section: Plate-beam, Twin-Girders, and
ox-Girder [2], and their behavior are different between these types.

Due to the type of objective function and the constraints used in
tructural design problems, metaheuristics (MH) have had good results
n optimizing structures. These techniques have been applied in steel
tructures [3], arch bridges [4,5] or reinforced concrete columns [6]
mong others. In some studies, metaheuristic has been applied as
irst optimization step for topological optimization [7] due to the
omputational cost of this last method [8]. In particular, metaheuristic
echniques have performed well in addressing complex SCCBs optimiza-
ion [9]. For example, in [10] a discrete harmony search algorithm
as proposed and applied to the design of multi-span composite box
irder bridges. In the article, the authors obtained a 15% reduction of
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V. Yepes).

materials when compared to a traditional design. In [11], a two-stage
based optimization methodology is developed for the design of simply
supported steel–concrete composite I-girder bridges. In the first stage,
a simplified structural model based on expert criteria is developed and
used with the aim of providing a starting point for the local search. In
the second stage, a search group algorithm is chosen based on statistical
analysis. The proposed method was shown to reduce the structural
cost by up to 9.17%. Three metaheuristic algorithms were studied
in [12] and used for reaching the optimal design of steel–concrete
composite I-girder bridges. The algorithms used were Collision Bodies
(CBO), Collision Body Enhanced Optimization (ECBO), and Vibration
Particle System (VPS). Among the results, it was obtained that the final
optimized design does not need longitudinal stiffeners.

Despite the excellent performance of metaheuristics and the large
size of many combinatorial problems, the strengthening of metaheuris-
tics is also necessary. Among the different strategies to strengthen
the metaheuristics, the hybrid methods have stood out. Several of
the most frequently utilized hybridization techniques, include hybrid
heuristic, [13], where different metaheuristic algorithms are combined
to enhance their capabilities. Mateheuristics, [14], where mathematical
programming methods are integrated with metaheuristics techniques.
Simheuristics, [15], which encompass a combination of simulations with
metaheuristic modeling.
141-0296/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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Metaheuristics generate important ancillary data in the solution
search process, which can be exploited by machine learning meth-
ods. This opens a line of research in which machine learning tech-
niques can be integrated into metaheuristic algorithms to strengthen
the performance of the latter.

When searching for integration types in which machine learning
techniques improve the performance of metaheuristic algorithms, three
main categories are found. Low-level integrations, high-level integra-
tions, and optimization problems [16,17]. In the case of the hybrid
algorithm proposed in this article, the type of integration designed is a
low-level integration. The low-level integrations involve local search
operators, population initiation, binarization, parameter control, in
which ML approaches improve particular operators of the MH algo-
rithm. For example in parameter tuning, in [18], an iterated racing
method was employed; a reset mechanism was combined with an elitist
procedure (to assure the optimal configuration), and the use of a trun-
cated sampling distribution to allow for automated parameter setting.
Decision trees were utilized in [19] to modify particular parameters in
the traveling salesman problem. Compared to fixed parameter values,
the decision tree technique improved the quality of the solutions and
the computing time. Another case of low-level integration is used to ini-
tialize solutions. For the shop scheduling problem [20], decision trees
were utilized to produce early solutions for new instances, in conjunc-
tion with Opposition Based Learning (OBL), to begin complementary
solutions. Reinforcement Learning (RL) and other approaches can also
be utilized to create solutions. In these situations, the solution building
may be thought of as a series of additions of decisions, for which an
RL algorithm can be trained. For example, a Deep Q-network was con-
structed and utilized for the optimization of the Job-Shop Scheduling
Problem [21]. Similarly, in [22], transfer learning approaches were
utilized to generate initial solutions using three evolutionary multi-
objective algorithms and applied to 12 benchmark functions. Finally,
another successful application of low-level integration has been used to
generate binary versions of algorithms that work on continuous spaces.

Another essential field of study is the creation of binary versions
of algorithms that function in continuous areas naturally. There are
some examples of ML and metaheuristics working together in this
field. The K-means approach was utilized to build binary versions of
the cuckoo search algorithm (CS) and used to the matrix covering
problem in [23]. For the multidimensional knapsack problem, in [24]
a hybrid algorithm using k-means as the binarization method and KNN
as the local search operator is proposed. The hybridization between
metaheuristic techniques with the aim of improving the convergence
or quality of the solutions is another interesting line of low-level inte-
gration. In [25], the hybridization of hybrid metaheuristic algorithms
was proposed with the aim of addressing the optimal dimensioning of
steel beam structures with numerous discrete variables. The numerical
results indicate that the hybrid algorithm of adaptive dimensional
search and exponential big bang-big crunch is the most promising of
the techniques investigated. In [26], it is integrated the convergence
curve of each subsequent execution of the algorithm in relation to the
information gained from prior executions. It is monitored at specified
times during each subsequent execution, referred to as the solution
monitoring period. The solution monitoring period is chosen in such
a way that each run allows the algorithm to explore the search space
in order to increase the quality of the solution, while also periodically
forcing the algorithm to return to the most promising prior visit. If it is
unable to improve the solution after a specified number of iterations,
it will terminate. Numerical investigations with tough test examples
containing up to 354 design variables reveal that, in general, the
proposed approach improves the solution quality and the robustness
or stability of the outcomes in metaheuristic structure optimization.

Following this last line of generating binary versions to efficiently
solve binary optimization problems. In this article, the integration
method has been adapted to address discrete problems. In particular,
2

a discrete hybrid algorithm is proposed. This algorithm incorporates r
the k-means technique into the discretization solution phase of contin-
uous swarm intelligence metaheuristics. The contribution of this work
includes:

• In this study, a cost, and CO2 emissions optimization of a 60-100-
60 three-span single box-girder steel–concrete composite bridge
has been performed.

• It should be noted that it considers 35 design variables on av-
erage 55 possible choices for each variable, which implies a
computationally demanding structure.

• A discrete hybrid k-means swarm intelligence algorithm is pro-
posed, and the contribution of the k-means technique to the
robustness of the algorithm is studied. In particular, it should be
noted that in previous works [24,27], k-means has been used to
solve binary optimization problems, that is, whether the variable
is present or not. In the optimization developed in this article, the
technique was adapted to allow more than two states for each of
the variables.

• The results of the hybrid algorithm are compared with discrete
simulated annealing that has been efficient in solving related
problems [28], in addition to considering the comparison with
algorithms that perform discretization through transfer functions
that are frequently used to binarize or discretize solutions [29].

A brief content structure of the following sections: In Section 2,
the box-girder steel–concrete composite bridge problem is detailed.
Later, in Section 3, the discrete k-means swarm intelligence algorithm
is developed. Our numerical experiments and comparisons are detailed
in Section 4. Finally, in Section 5, the conclusions and future lines of
research are discussed.

2. The optimization problem and computational model

This section aims to define and detail the optimization problem.
In the case of bridges, there are different objective functions to be
minimized, among which there is a particular interest in the costs of
the bridge and the CO2 emissions released in the manufacture of its
materials. In this work, two mono-objective functions are defined. The
first shows the bridge’s overall cost, which is formalized in Eq. (1) and
is calculated by multiplying the unit cost of each material 𝑐𝑖, multiplied
by the units used, 𝑚𝑖. In the case of CO2 emissions, the calculation
is similar to the previous one, with the difference that instead of
considering cost, the emissions 𝑒𝑖 considers cradle-to-gate analysis for
each unit of material 𝑖 multiplied by the amount of material 𝑖 used. The
missions calculation is formalized in Eq. (2). For the cost function, the
alues from Table 1 are used, which were obtained from the Construc-
ion Technology Institute from Catalonia by the BEDEC database [30].
inally, the bridge design process is subject to constraints imposed
y expert recommendations and regulations related to the standard.
enerically, these are shown in Eq. (3).

(�⃗�) =
𝑛
∑

𝑖=1
𝑐𝑖 ⋅ 𝑚𝑖(�⃗�) (1)

(�⃗�) =
𝑛
∑

𝑖=1
𝑒𝑖 ⋅ 𝑚𝑖(�⃗�) (2)

(�⃗�) ≤ 0 (3)

For the description of the problem, the variables, parameters, and
onstraints of the problem will be considered. In the case of variables,
hey correspond to the values modified in the optimization procedure
o achieve the optimum. In the case of parameters, they are values
hat are considered fixed in the optimization, and that usually rep-
esent boundary conditions. Finally, the constraints are imposed by

egulations [31–33] and recommendations of specialists [2,34].
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Fig. 1. Transverse section variables for SCC bridge.
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Table 1
Cost and CO2 emission values.

Unit Cost (e) Emissions (kg of CO2)

m3 of concrete C25/30 88.86 256.66
m3 of concrete C30/37 97.80 277.72
m3 of concrete C35/45 101.03 278.04
m3 of concrete C40/50 104.08 278.04
m2 of precast pre-slab 27.10 54.98
kg of steel B400S 1.40 0.70
kg of steel B500S 1.42 0.70
kg of rolled steel S275 1.72 4.33
kg of rolled steel S355 1.85 4.33
kg of rolled steel S460 2.01 4.33
kg of shear-connector steel 1.70 2.8

2.1. Variables of the problem

Our optimization problem is a Steel–Concrete Composite Bridge
(SCCB) with a box-girder cross section divided in three spans of 60-
100-60 m. The problem variables can be grouped into two groups. The
first group correspond to the geometric variables of the bridge and
the second group with grades of steel and concrete. In order to design
bridges that are feasible to build, these variables cannot take any value,
but only allowed values, with which our search space corresponds
to a discrete space. Variables are shown in Table 2. These variables,
depending on their characteristics, are grouped into five categories.
The first category correspond to geometric variables of the transverse
section. Upper distance between wings (𝑏), wings and cells angle (𝛼𝑤),
top slab thickness (ℎ𝑠), beam high (ℎ𝑏), floor beam minimum high
(ℎ𝑓𝑏), top flange thickness (𝑡𝑓1 ), top flange width (𝑏𝑓1 ), top cells high
ℎ𝑐1 ) and thickness (𝑡𝑐1 ), wing thickness (𝑡𝑤), bottom cells high (ℎ𝑐2 ),
hickness (𝑡𝑐2 ), and width (𝑏𝑐2 ) and bottom slab thickness (ℎ𝑠2 ). For
larity, these variables are outlined in Fig. 1.

The second category of variables corresponds to the diameters of the
ase reinforcement, first reinforcement and second reinforcement bar
iameters (𝜙𝑏𝑎𝑠𝑒, 𝜙𝑟1 , 𝜙𝑟2 ), and the corresponding bar number of the
einforcement areas (𝑛𝑟1 , 𝑛𝑟2 ). These variables are intended to improve
he bridge transverse section. To optimize the top slab reinforcement,
t has been divided into a base reinforcement that is the minimum re-
uired by regulations [31–33] and two more areas, in negative bending
ections, where the reinforcement is increased. The lower slab and the
engths of the increasing area of reinforcement will be described in
3

ection 2.2. t
Table 2
Design variables and boundaries.

Variables Unit Lower bound Increment Upper bound Values number

𝑏 m 7 0.01 10 301
𝛼𝑤 deg 45 1 90 46
ℎ𝑠 mm 200 10 400 21
ℎ𝑏 cm 250 1 400 151
ℎ𝑓𝑏 mm 400 100 700 31
𝑡𝑓1 mm 25 1 80 56
𝑏𝑓1 mm 300 10 1000 71
ℎ𝑐1 mm 0 1 1000 101
𝑡𝑐1 mm 16 1 25 10
𝑡𝑤 mm 16 1 25 10
ℎ𝑐2 mm 0 10 1000 101
𝑡𝑐2 mm 16 1 25 10
𝑏𝑐2 mm 300 10 1000 71
𝑡𝑓2 mm 25 1 80 56
ℎ𝑠2 mm 150 10 400 26
𝑛𝑠𝑓2 u 0 1 10 11
𝑑𝑠𝑡 m 1 0.1 5 41
𝑑𝑠𝑑 m 4 0.1 10 61
𝑏𝑓𝑏 mm 200 100 1000 9
𝑡𝑓𝑓𝑏 mm 25 1 35 11
𝑡𝑤𝑓𝑏

mm 25 1 35 11
𝑛𝑟1 u 200 1 500 301
𝑛𝑟2 u 200 1 500 301
𝜙𝑏𝑎𝑠𝑒 mm 6, 8, 10, 12, 16, 20, 25, 32 8
𝜙𝑟1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
𝜙𝑟2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
𝑠𝑓2 mm From IPE 200 to IPE 600a 12
𝑠𝑤 mm From IPE 200 to IPE 600a 12
𝑠𝑡 mm From IPE 200 to IPE 600a 12
ℎ𝑠𝑐 mm 100, 150, 175, 200 4
𝜙𝑠𝑐 mm 16, 19, 22 3
𝑓𝑐𝑘 MPa 25, 30, 35, 40 4
𝑓𝑦𝑘 MPa 275, 355, 460 3
𝑓𝑠𝑘 MPa 400, 500 2

aFollowing the standard series of IPE profiles.

The stiffeners correspond to the third category of variables. In
this design, half IPE profiles for wings (𝑠𝑤), bottom flange (𝑠𝑓2 ) and
he transverse ones (𝑠𝑡) are considered variable stiffeners. For bot-
om flange stiffeners, the number of stiffeners (𝑛𝑠𝑓2 ) has also been

onsidered as a variable. As can be seen in Fig. 1, there are two
ore variables that define the distance between diaphragms (𝑑𝑠𝑑) and

ransverse stiffeners (𝑑 ).
𝑠𝑡
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Table 3
Optimization problem parameters.

Geometrical parameters

Bridge deck width (𝑊 ) 16 m
Span number 3
Central span length 100 m
External span length 60 m
Minimum web thickness (𝑡𝑤𝑚𝑖𝑛

) 15 mm
Minimum flange thickness (𝑡𝑓2𝑚𝑖𝑛) 25 mm
Reinforcement cover 45 mm

Material parameters

Maximum aggregate size 20 mm
Concrete longitudinal strain modulus (𝐸𝑐𝑚) 22 ⋅ ((𝑓𝑐𝑘 + 8)∕10)3 MPa
Concrete transverse strain modulus (𝐺𝑐𝑚) 𝐸𝑐𝑚∕(2 ⋅ (1 + 0.2)) MPa
Steel longitudinal strain modulus (𝐸𝑠) 210 000 MPa
Steel transverse strain modulus (𝐺𝑠) 80 769 MPa

Regulation requirement parameters

Regulations Eurocodes [31–33,35], IAP-11[36]
Exposure environment XD2
Structural class S5
Service life 100 years

Loading parameters

Reinforced concrete density 25 kN/m3

Steel density 78.5 kN/m3

Asphalt density 24 kN/m3

Asphalt layer thickness 100 mm
Bridge traffic protections 5.6 kN/m
Traffic load According to the codes
Thermal load According to the codes
Wind load According to the codes

The last two categories correspond to the geometry of the shear
onnector’s characteristics, and the floor beam variables. The floor
eam variables are defined by the width of the floor beam (𝑏𝑓𝑏) and
he thicknesses of the flanges (𝑡𝑓𝑓𝑏 ) and webs (𝑡𝑤𝑓𝑏

). Shear connectors
ave been defined by their height (ℎ𝑠𝑐) and diameter (𝜙𝑠𝑐). Finally, the
lastic limit of rolled steel (𝑓𝑦𝑘), the strength of concrete (𝑓𝑐𝑘) and the
lastic limit of reinforcing steel bars (𝑓𝑠𝑘) complete the definition of the
ariables.

.2. Parameters of the problem

In each optimization problem, it is necessary to set some variables,
ypical of the conditions to which the structure will be subjected, de-
ined by some regulation, environmental conditions, or some geometric
efinition that has no need or the possibility of changing. These fixed
ttributes are called parameters and remain unchanged throughout the
ptimization process. The parameters and values defined in the bridge
esign are summarized in Table 3.

Considering the Eurocode regulations [31,32], that our bridge is
60-100-60 m three-span box-girder steel–concrete composite bridge
ith a deck width (𝐵) of 16 m without height variation, for cells
ave been defined in the transverse section for improving the resistant
ehavior. These cells are shown in Fig. 1. Two cells are at the upper side
f the wings, and the other two are at the bottom. The minimum height
f these cells, (ℎ𝑐1 , ℎ𝑐2 ), has been set to zero in order to identify if they
ontribute to the reduction of costs or emissions of CO2 additionally for
et the upper limit of these, the bridge design rules defined in [34] has
een considered.

The base reinforcement for the upper and lower concrete slab is set
ccording to the minimum need for reinforcement defined in Eurocode
[33]. The connection between the concrete slab and the steel beam is
imensioned to resist the shear lag stresses produced in the top flanges.
or bending resistance the effective width given by Eurocode 4 [31]
ave been considered. Also, because the only width considered resistant
s effective, the defined steel bar reinforcements are placed only in that
4

idth.
Finally, steel bar reinforcement increase and lower slab areas are
efined. The lower slab is placed in negative bending sections to
obilize the composite dual-action. To define lengths where negative

ending can be produced, we have considered the distance defined by
urocode 4 [31] for shear lag stresses that correspond with one-third of
he span length. As stated earlier, it is necessary to increase the upper
lab reinforcement to resist the tension stresses produced. In this case
tudy, we have considered two reinforcement areas. The first is placed
n zones where the section can be subjected to negative bending, and
ase reinforcement cannot resist the stresses. The second is placed on
op of supports, corresponding to one-third of the distance between the
upport and the point of change of sign of the bending of the theoretical
aw.

.3. Constraints of the problem

In designing a structure, the constraints imposed by regulations
nd specific conditions to the structure, such as safety factors, must
e considered. Mainly, in the optimization of this bridge, the nec-
ssary constraints to consider are defined in the regulations, [31–
3] and additionally, recommendations defined in, [2,34] have been
ncorporated.

When analyzing the regulations, it is found that the constraints
mposed make up two groups: The first one corresponds to the Ultimate
imit States (ULS) and the second group, to the Service Limit States
SLS). In the case of ULS, the restrictions are related to the structural
esistance of the bridge elements subjected to the stresses caused by the
cting loads. In the case of SLS, the restrictions are intended to ensure
he serviceability of the structure during its useful life. All applied loads
nd their combination are defined in the [35] regulation. The Table 3
ummarizes the load cases considered.

In order to verify the ULS restrictions in all the elements of the
ridge, both the global and the local analyses have been considered. In
he case of the global analysis, the checks consider shear, flexure, tor-
ion, and flexure–shear interaction. To obtain stresses and deflections, a
inear elastic analysis has been considered. When considering [31,32],
hese indicate that the resistance of the section must be included, in
ur design, the effective section has been selected and applying it both
he shear lag reductions and the reduction of the section of steel plates
lassified as class 4. To achieve the above, a precision of 10−6 m has
een considered for the iterative process. To obtain the value of the
echanical characteristics of the homogenized section, the relationship
𝑛) between the longitudinal deformation modulus of concrete (𝐸𝑐𝑚)
nd steel (𝐸𝑠) has been obtained according to Eq. (4). For the case of
oncrete creep and shrinkage, they were defined following the [31,33]
tandard. Likewise, a local model was developed to verify the beams,
einforcements, and diaphragms in the ULS floor, considering controls
or shear, flexure, buckling, and minimum mechanical characteristics.

=
𝐸𝑠
𝐸𝑐𝑚

(4)

The SLS considered for the analysis is the tension limit for materials,
fatigue, and deflection. There is no apparent limit for deflection in
Eurocodes, but the IAP-11 Spanish regulation [36] gives a maximum
of 𝐿∕1000 for the frequent combination of live loads deflection value,
with 𝐿 representing the span length. This has been considered as the
maximum value of the deflection. In addition, we have considered
geometrical and constructibility requirements.

Additionally, a numerical model has been implemented to obtain
the stresses and carry out all the ULS, SLS, and geometric and con-
structibility checks. In the case of deflections and stresses, the model
applies the perfect embedding forces method, taking the 34 bridge
variables we selected as input data. The model divides each span of
bridge into a defined number of bars. In this case, the total number of
bars is 44, distributed in 12-20-12 corresponding to the three spans of
the bridge; thus, discretize the bridge into bars of 5 m in length. Once
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the stresses have been obtained, the program performs structural checks
and returns the measurement results, cost, emissions, and verification
coefficients. These verification coefficients correspond to the quotient
between the design values of the effects of the actions (𝐸𝑑) and their
corresponding resistance value (𝑅𝑑), as shown in Eq. (5). If these
oefficient values are greater than or equal to one, then the Section
omplies with the imposed restriction.
𝑅𝑑
𝐸𝑑

≥ 1 (5)

2.4. Structure computational model description

The procedure used to obtain the deflections and stresses has been
the perfect embedding forces method. This method consists in solving
Eq. (6).

𝐟 = 𝐊 ⋅ 𝐝 + 𝐟𝟎 (6)

In this equation, 𝐟𝟎 correspond to the perfect embedding forces
vector. These forces would be obtained if each of the system bars
had all the degrees of freedom constrained. 𝐊 is the stiffness matrix
of the system, generated by assembling the stiffness matrices of all
bar elements. To get the stiffness matrix of each element, the average
between both frontal and dorsal nodes’ mechanical properties has been
calculated. The complete section without considering the shear lag
and panel reduction has been considered to obtain these mechanical
properties. Finally, 𝐝 and 𝐟 are the deflections and stress vectors,
espectively.

This procedure is repeated with all load cases. The following load
ases have been considered loading the entire bridge length as a single
oad case: Self Weight, Dead Loads, Thermal Heating, Thermal Cooling,
nd Wind. In order to consider the different positions of traffic loads,
very 5-m bar has been loaded separately, considering two separated
oading cases, the punctual load and the distributed. This gives, as a
esult, 88 load cases for traffic load and a total of 93 if all load cases
re considered. The results obtained from loading each bar have been
ombined to consider all loading possibilities regarding traffic load.
fter this, the load case envelope has been calculated to consider each
ection’s maximum and minimum results.

Regarding combinations and envelopes, the envelope of all per-
istent and transitory situations combinations have been obtained for
LS. These combinations have been considered dominant action all

ive loads in different combinations. The envelope of all characteristic
ombinations has been considered for SLS regarding stress limitation.

. Optimization algorithms

The detail of the discretization algorithms will be explained in
his Section. First, the metaheuristics used to perform the optimization
ill be detailed in Section 3.1. Then the proposed hybrid algorithm,
ection 3.2, which uses k-means as the discretization method will
e explained. Later in Section 3.3, the algorithm that uses a transfer
unction as a discretization method is detailed. The following reference
s recommended for a greater depth of transfer functions and their ap-
lications in combinatorial optimization [29]. We must emphasize that
he k-means discretization method takes all the solutions, groups them,
nd later assigns the probabilities. In the case of transfer functions,
ach probability is assigned individually, without looking at the other
olutions.

Fig. 2 shows the flowchart used to perform the optimization using
uckoo search and the sine cosine algorithms (SCA). As a starting point,
he set of solutions is initialized, this set corresponds to a valid set, that
s, it complies with the constraints imposed by the problem. Once the
olutions have been initialized, it is asked whether the stopping criteria
f the algorithm are met. In this case, the stopping criterion of the
lgorithm corresponds to the maximum number of defined iterations.
n the event that the maximum number of iterations has not been
5

met, the hybrid algorithm is executed. As a first stage of the hybrid
algorithm, the set of velocities for the different generated solutions is
obtained. Subsequently to the set of solutions, the k-means clustering
technique is applied in order to group the solutions and assign a
transition probability to each group in the transition probabilities stage.
The detail of these three stages will be explained in Section 3.2. Finally,
a solution update criterion is established, in which it is evaluated if each
of the variables or dimensions associated with a solution is updated.
This is intended to balance the exploitation and exploitation of the
search space. Solutions with good values of the fitness function will
have few updates to be able to exploit the space. The detail of this
update will also be made in Section 3.2

3.1. Swarm intelligence algorithms: SCA and CS

This section details the swarm intelligence algorithms used to ad-
dress optimization. Specifically, the cuckoo search was chosen as it has
successfully solved a large number of optimization problems, particu-
larly in the area of civil engineering. Additionally, the parameterization
of the original algorithm is quite simple. In the case of the sine cosine
algorithm, the type of move it executes is based on the sin and cosine
functions and is completely different from the move of cuckoo search.
On the other hand, this last metaheuristic does not require proper
parameter tuning.

3.1.1. Sine Cosine Algorithm (SCA)
Sine Cosine Algorithm (SCA) was proposed in [37] and corre-

sponded to a swarm intelligence algorithm that considers the sine and
cosine functions to carry out the process of exploring and exploiting
the search space. To carry out the movement of the solutions, 𝑃 𝑡

𝑗 is
additionally used, which corresponds to the position of the destination
solution for iteration t and dimension j, and typically uses the best solu-
tion obtained so far. In addition to 𝑃 𝑡

𝑗 , the algorithm uses four random
numbers 𝑟1, 𝑟2, 𝑟3, 𝑟4. As the algorithm starts to iterate, 𝑟1 decreases. It
starts at 2 and converges to 0 at the end of the optimization. On the
other hand, 𝑟2 takes values between 0, 2𝜋. 𝑟3 considers values between
0 and 2, and finally 𝑟4 is used to select Eqs. (7) and (8) taking values
between 0 and 1 and a threshold of 0.5.

The update method used is shown in Eqs. (7) and (8).

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + 𝑟1 × 𝑠𝑖𝑛(𝑟2)× ∣ 𝑟3𝑃 𝑡
𝑗 − 𝑥𝑡𝑖,𝑗 ∣ (7)

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + 𝑟1 × 𝑐𝑜𝑠(𝑟2)× ∣ 𝑟3𝑃 𝑡
𝑗 − 𝑥𝑡𝑖,𝑗 ∣ (8)

3.1.2. Cuckoo search algorithm (SC)
The reproductive strategy phenomena observed in cuckoo species,

which lay their eggs in the nests of other bird species, has inspired the
CS algorithm. Such is the level of sophistication of cuckoo birds that in
some cases even the colors and patterns of the eggs of the chosen host
species are mimicked. In the analogy, an egg corresponds to a solution.
The concept behind the analogy is to use the best solutions (cuckoos)
to replace those that do not perform well. The CS algorithm uses three
basic rules:

1. Each cuckoo lays one egg at a time and deposits its egg in a
randomly chosen nest.

2. The nests with the best results, that is, with high-quality eggs,
will be considered in the next generation.

3. The number of nests available is a fixed parameter. The egg laid
by a cuckoo can be discovered by the host bird with a probability
𝑝𝑎 ∈ (0, 1)

In Eq. (9) the movement of CS is defined. The symbol ⊕, denotes
entry-wise multiplication, whereas 𝛼 > 0 denotes the step size. This
step size specifies the maximum distance that a particle can travel in
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random walk over a set number of iterations. The Lévy distribution
odulates the transition probability of the Lévy flights in Eq. (10).
𝑡+1
𝑖,𝑗 = 𝑥𝑡𝑖,𝑗𝛼 ⊕ 𝑙𝑒𝑣𝑦(𝜆) (9)

𝑒𝑣𝑦(𝜆) ∼ 𝑔−𝜆, (1 < 𝜆 < 3) (10)

.2. K-means discrete algorithm

In this subsection, the detail of the algorithm that allows discretizing
he SCA and CS metaheuristics is explained, these MH, naturally work
n continuous search spaces. The k-means discrete algorithm (KMDA),
ses the unsupervised learning technique k-means to cluster the solu-
ions. As input parameters, KMDA considers the list of solutions 𝑙𝑆𝑜𝑙,
he metaheuristic 𝑀𝐻 to be discretized, and the list of transition
robabilities 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑜𝑏𝑠, where each group obtained by applying
-means is associated with a value of transition probability. In line 4,
MDA uses the metaheuristic that is being discretized, for this case,
CA or CS, however, it can be any continuous swarm intelligence
etaheuristic, and together with the list of solutions 𝑙𝑆𝑜𝑙 obtained in
6

0

he previous iteration, the movement of the metaheuristic is applied,
btaining the velocity for each solution in the list of solutions. The
alculation of the velocity for each dimension of the solution vector
s done using the Eqs. (7) and (9). The velocity in the metaheuristics is
onsidered by 𝑙𝑆𝑜𝑙𝑖,𝑗 = |𝑥𝑡+1𝑖,𝑗 − 𝑥𝑡𝑖,𝑗 |. 𝑣𝑙𝑆𝑜𝑙 identifies the list of velocities
ssociated with the list of solutions 𝑙𝑆𝑜𝑙.

Once the list of solutions 𝑣𝑙𝑆𝑜𝑙 has been obtained, the next step
corresponds to grouping the velocities using the k-means technique for
a number 𝐾 of clusters. This applies in line 5 of the algorithm. The
objective of applying k-means is to generate groups where the elements
of each group have similar characteristics. In this case the groups that
have velocities with small values and that therefore in continuous space
would move very little, will be related to small transition values in
our discrete space. As a result of clustering, 𝑙𝑆𝑜𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 is obtained,

here the cluster is stored for each of the components of each speed
ssociated with the list of solutions 𝑙𝑆𝑜𝑙.

Subsequently, each component’s 𝑑𝑖𝑚𝑆𝑜𝑙 cluster is considered for
ach solution, and a transition probability is assigned. For the case
tudied here, a 𝐾 = 5 was used and with transition probabilities [0.1,
.2, 0.4, 0.8, 0.9]. The smallest value of the transition probability is
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Table 4
Parameter setting for the hybrid cuckoo search algorithm.

Parameters Description Value Scanned range

N Number of nest 10 [5, 10, 20]
𝛾 Step length 0.01 0.01
𝜅 Levy distribution parameter 1.5 1.5
𝐾 Number of clusters 5 [4, 5]
Iteration number Maximum iterations 600 [200, 400, 600]

assigned to the cluster with the lowest average velocity, and in that
order, the probabilities are assigned. The assignment of the transition
probabilities was established intuitively and supported by previous
experiences when solving binary problems. Following the idea that
the first two clusters have the smallest velocities, small transition
probabilities are assigned, with the aim of favoring the exploitation
of space. The last two clusters that have the highest velocities, are
assigned high probabilities to favor exploration of the search space, and
the middle cluster has a probability of 0.4.

Finally, using a random number 𝑟1 it is determined if the component
𝑙𝑆𝑜𝑙𝑖,𝑗 , is updated or stays the same. The higher the probability of
transition, the greater the probability of change. Additionally, it is used
a random number 𝑟2, making the update be considering the best value
r randomly. In our case 𝛽 = 0.8. The KMDA pseudocode is shown in

algorithm 1.

Algorithm 1 k-means discrete algorithm (KMDA)
1: Function KMDA(𝑙𝑆𝑜𝑙, 𝑀𝐻 ,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑜𝑏𝑠)
2: Input 𝑙𝑆𝑜𝑙, 𝑀𝐻 , 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑜𝑏𝑠
3: Output 𝑙𝑆𝑜𝑙
4: 𝑣𝑙𝑆𝑜𝑙 ← getVelocities(𝑙𝑆𝑜𝑙, 𝑀𝐻)
5: 𝑙𝑆𝑜𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 ← appliedKmeansClustering(𝑣𝑙𝑆𝑜𝑙, 𝐾)
6: for (each 𝑆𝑜𝑙𝑖 in 𝑙𝑆𝑜𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑) do
7: for (each 𝑑𝑖𝑚𝑆𝑜𝑙𝑖,𝑗 𝑙 in 𝑆𝑜𝑙𝑖) do
8: 𝑑𝑖𝑚𝑆𝑜𝑙𝑃 𝑟𝑜𝑏𝑖,𝑗 = getClusterProbability(𝑑𝑖𝑚𝑆𝑜𝑙, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑜𝑏𝑠)
9: if 𝑑𝑖𝑚𝑆𝑜𝑙𝑃 𝑟𝑜𝑏𝑖,𝑗 > 𝑟1 then
0: if 𝑏𝑒𝑡𝑎 > 𝑟2 then
1: Update 𝑙𝑆𝑜𝑙𝑖,𝑗 considering the best.
2: else
3: Update 𝑙𝑆𝑜𝑙𝑖,𝑗 with a random value allowed.

14: end if
15: else
16: Don’t update the element in 𝑙𝑆𝑜𝑙𝑖,𝑗
17: end if
18: end for
19: end for
20: return 𝑙𝑆𝑜𝑙

3.3. Transfer function discrete algorithm

In the case of the algorithm that uses transfer functions, the struc-
ture is very similar to KMDA. Specifically, a transfer function is applied
that aims to bring the velocity values, which can take values in R,
to values between [0, 1). In this case, a v-shape transfer function,
∣ tanh(𝑣) ∣=∣ 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ∣, was used. The fundamental difference is that
KMDA calculates the speeds and then applies clustering by analyzing
all the values of the solutions. This can be seen in lines 4 and 5 of
algorithm 1. In the case of transfer functions, this is done individually
7

within the for loops on lines 6 and 7 of algorithm 2.
Algorithm 2 Transfer function discrete algorithm
1: Function Discretization(𝑙𝑆𝑜𝑙, 𝑀𝐻)
2: Input 𝑙𝑆𝑜𝑙
3: Output 𝑙𝑆𝑜𝑙
4: for (each 𝑆𝑜𝑙 in 𝑙𝑆𝑜𝑙) do
5: for (each 𝑑𝑖𝑚𝑆𝑜𝑙 in 𝑆𝑜𝑙) do
6: 𝑣𝑑𝑖𝑚𝑆𝑜𝑙 ← getVelocity(𝑑𝑖𝑚𝑆𝑜𝑙, 𝑀𝐻)
7: 𝑑𝑖𝑚𝑆𝑜𝑙𝑃 𝑟𝑜𝑏 ← appliedTransferFunction(𝑣𝑑𝑖𝑚𝑆𝑜𝑙)
8: if 𝑑𝑖𝑚𝑆𝑜𝑙𝑃 𝑟𝑜𝑏 > 𝑟1 then
9: if 𝑏𝑒𝑡𝑎 > 𝑟2 then

10: Update 𝑙𝑆𝑜𝑙𝑖,𝑗 considering the best.
11: else
12: Update 𝑙𝑆𝑜𝑙𝑖,𝑗 with a random value allowed.
13: end if
14: else
15: Don’t update the element in 𝑙𝑆𝑜𝑙𝑖,𝑗
16: end if
17: end for
18: end for
19: return 𝑙𝑆𝑜𝑙

4. Results

In this Section, the experiments developed to evaluate the behavior
of the discrete hybrid algorithm are detailed, in addition to analyzing
the findings found when optimizing the bridge. The results are divided
into four subsections. In Section 4.1 it is explained how the selection
of the hyperparameters used by the algorithm was made. Later in
Section 4.2, the results of the experiments that identify the contribu-
tion of the algorithm in the optimization result are detailed. Later in
Section 4.3, the results are compared with other implementations.

Python 3.6 was used to create the algorithm, along with a PC
running Windows 10, a core i7 processor, and 32 GB of RAM. To
see if the difference is statistically significant, the Wilcoxon signed-
rank [38]method was used. The 0.05 𝑝-value was chosen. The methods
described in [39] was used to choose the test. The Shapiro–Wilk
normality test is used initially in this process. The Wilcoxon signed-
rank is recommended to check the difference if one of the populations
is not normal and has the same number of points.

4.1. Parameter setting

The methodology used to select the correct parameters was adapted
from the procedure defined [27]. To obtain an adequate selection of
the parameters, we used three measures defined by the Eqs. (11) to
(13). For the generation of values, each combination of parameters was
executed five times. The set of parameters explored and selected for CS
is shown in Table 4. For the calculation of the best performance, each of
the indicators is constructed to have values between 0 and 1. The closer
to 1, the better the performance. These values are plotted on a radar
chart and the area under the curve is calculated. The set of indicators
that takes the largest area, corresponds to the best performance.

1. The percentage deviation of the best value obtained in the
specific execution, compared to the best value obtained of all
the runs:

𝑏𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 − 𝐵𝑒𝑠𝑡𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 − 𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒
𝐵𝑒𝑠𝑡𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒

(11)

2. The percentage deviation of the worst value obtained in the
specific execution, compared to the best value obtained of all
the runs:

𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 − 𝐵𝑒𝑠𝑡𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 −𝑊 𝑜𝑟𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 (12)

𝐵𝑒𝑠𝑡𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒
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Fig. 3. Cost boxplots for Random0.5, Random0.3, and SCA Algorithms.
a
w
v
m
t
b
S
t
a
t
o
c
t
a
W
S
c
i
o

k
i
t
m
a
b
t
o
a
a
r
d
t
d
p
t

a
d
o
o
w
d
T

3. The percentage deviation of the average value obtained in the
specific execution, compared to the best value obtained of all
the runs:

𝑎𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 −
𝐵𝑒𝑠𝑡𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑉 𝑎𝑙𝑢𝑒

𝐵𝑒𝑠𝑡𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒
(13)

.2. Insight into discrete algorithm

This Section aims to evaluate the contribution of the KMDA operator
n the result of the optimization of the bridge. Two random discretiza-
ion operators were designed, 𝑅𝑎𝑛𝑑𝑜𝑚0.5 and 𝑅𝑎𝑛𝑑𝑜𝑚0.3. Specifically,
hese operators do not execute the clustering in line 5 of the algorithm

or the probability assignment in line 8. The value of 𝑑𝑖𝑚𝑆𝑜𝑙𝑃 𝑟𝑜𝑏𝑖,𝑗
s replaced by 0.5 in the case of 𝑅𝑎𝑛𝑑𝑜𝑚0.5 and 0.7 in the case of
𝑎𝑛𝑑𝑜𝑚0.3 (30% probability of transition). The rest of the code remains
nchanged. These operators were applied to the SCA metaheuristics
nd the bridge cost optimization problem. The results are shown in
able 5 and Fig. 3.

In Table 5, the result of 30 executions for each of the operators
entioned above, together with the descriptive statistics, are shown.

n this experiment, the objective function corresponds to cost opti-
ization. From each of the optimizations, the bridge that obtained the

est cost is registered, the emissions obtained for that bridge, and the
ime it took for the optimization. In the case of the cost results, we
ee that Hybrid SCA obtains the best values and smaller dispersion of
he results. When emissions are analyzed, we see that the Hybrid SCA
ase is more robust in all indicators. Additionally, the latter suggests
n essential correlation between optimizing the cost of the bridge and
educing its emissions. The Wilcoxon test shows that the results are
tatistically significant. When the execution times are analyzed, the
esults are similar in the three evaluated operators. When comparing
he cost boxplots, Fig. 3, we visually observe the robustness of Hybrid
CA against random operators.

.3. Algorithm comparisons

This Section will evaluate KMDA’s performance against other im-
lementations that have effectively solved combinatorial problems. The
irst algorithm used was an implementation of simulated annealing (SA)
roposed in [40] and used to optimize prestressed concrete precast road
ridges and later applied to other structural design problems [28,41].
or the second comparison, the algorithm detailed in Section 3.3 is
sed, which performs the discretization procedure using the v-shape
𝑡𝑎𝑛ℎ(𝑣)| function. To make the comparison, all the algorithms are
xecuted 30 times to optimize costs and 30 times to optimize CO2
missions. The results are recorded in Tables 6, and 7. Additionally,
he results are shown through box diagrams in Figs. 4, and 5.
8

t

In Table 6, the cost optimization for SA, transfer SCA, hybrid SCA,
nd hybrid CS is shown. When analyzing the descriptive statistics,
e see that the cost results obtained by the hybrid algorithms are
ery similar and superior to those for SA and transfer CSA in the
inimum, maximum, average, and deviation obtained. When applying

he Wilcoxon test, it indicates that the difference is not significant
etween the hybrid algorithms and if it is significant between hybrid
CA with respect to SA and transfer SCA. When applying the Wilcoxon
est, it indicates that the difference is not significant between the hybrid
lgorithms and if it is significant between hybrid SCA with respect
o SA, transfer SCA and transfer CS. In the case of the emissions
btained in cost optimization, we observe that both hybrid algorithms
onsistently obtain very similar results and are more robust than SA and
ransfer SCA. Again, the strong relationship between optimizing costs
nd reducing emissions of CO2 is observed in the hybrid algorithms.
hen analyzing the times, we see that SA is 21.5% slower than Hybrid

CA, being this very similar to transfer SCA and hybrid CS. When
omparing the boxplots, Fig. 4, the similarity of the hybrid methods
s visually observed, and the robustness of the results concerning the
ther methods.

Table 7 shows the comparison between discrete algorithms that use
-means (Section 3.2), SA, and transfer functions (Section 3.3), optimiz-
ng CO2 emissions. When analyzing the amount of CO2 produced during
he emissions optimization process, we see that the results of the hybrid
ethod are better than the one that uses transfer functions and SA in

ll indicators. This is also visually verified by comparing the different
oxplots in Fig. 5. However, when analyzing the costs obtained in
he optimization of emissions, it does not behave equivalent to the
ptimization of costs. In this case, a significant dispersion is observed in
ll algorithms. The range between Max and Min is significant in all five
lgorithms. This correlation between cost optimization and emission
eduction of CO2 identified in Table 5, is related to the fact that the
ifferent grades of steel obtained from the BEDEC [30] database have
he same amount of emissions. In the case of the CO2 optimization,
ifferent elastic limit values are obtained for structural steel without
roducing essential variations in its objective emission function, but
he highest in terms of cost.

In Table 8 the design variables results have been shown for cost
nd CO2 optimization objectives. As it can be seen, there are some
ifferences between cost and CO2 optimization design results. The first
ne is the yield stress (𝑓𝑦𝑘) obtained for the best individual. It is
bserved that cost optimization results from this variable 275 MPa
hile CO2 optimization gets 460 MPa. This difference is due to the
ifference in structural steel’s cost and emission values. As shown in
able 1 as the cost increase, as the value of the yield stress increases,

he value is the same for emissions for all yield stress values. Thus,



Engineering Structures 266 (2022) 114607D. Martínez-Muñoz et al.

l
t
T
z
u
b
i

Table 5
Cost minimization results for 30 executions of Random0.5, Random0.3, and discrete hybrid SCA algorithms.

Run Random0.5 Random0.3 Hybrid SCA

Cost (e) CO2 (kg) Time (s) Cost (e) CO2 (kg) Time (s) Cost (e) CO2 (kg) Time (s)

1 3 841 685.5 9 423 182.3 7545.1 3 854 631.0 9 441 992.7 7434.5 3 830 092.8 9 390 104.1 7835.5
2 3 838 056.5 9 417 710.5 8121.4 3 841 685.5 9 423 182.3 7892.6 3 864 886.9 9 480 536.6 7945.0
3 3 856 001.6 9 455 145.0 6978.9 3 868 347.8 9 487 298.0 7112.7 3 826 395.0 9 388 407.3 7873.4
4 4 004 603.5 9 837 622.5 7984.7 4 041 117.6 9 915 536.1 8001.2 3 825 919.0 9 385 589.0 7929.9
5 3 837 584.6 9 406 572.5 6921.5 3 863 494.3 9 467 939.5 6893.2 3 823 801.1 9 385 004.6 7916.1
6 3 920 211.2 9 618 810.5 8021.3 4 009 757.4 9 837 067.3 8021.3 3 835 442.1 9 391 386.1 7911.4
7 3 863 494.3 9 467 939.5 7214.8 3 835 377.4 9 395 269.5 7324.6 3 826 324.6 9 389 542.7 7920.3
8 4 004 603.5 9 837 622.5 7498.1 3 973 917.2 9 747 159.4 7568.3 3 826 206.4 9 385 730.7 7935.5
9 3 920 211.2 9 618 810.5 8210.4 3 844 805.5 9 422 679.4 7901.4 3 830 234.3 9 387 716.3 7858.2
10 3 867 325.2 9 485 202.2 7645.7 3 938 023.8 9 657 116.7 7923.5 3 825 188.7 9 385 235.2 7931.7
11 3 920 211.2 9 618 810.5 7645.2 3 912 499.4 9 593 267.2 7234.8 3 828 878.5 9 387 047.9 7748.9
12 3 847 797.6 9 432 071.6 8024.1 3 840 298.2 9 419 023.8 8024.1 3 831 864.4 9 388 519.9 7719.6
13 3 844 078.0 9 432 582.0 7643.7 3 847 990.2 9 432 380.4 7701.4 3 823 462.5 9 384 378.1 7637.7
14 3 848 079.2 9 419 256.1 7891.4 3 844 078.0 9 432 582.0 7903.2 3 828 178.8 9 386 856.2 7819.4
15 3 927 551.4 9 631 163.6 7798.4 3 920 211.2 9 618 810.5 7923.2 3 826 847.5 9 386 123.4 7933.9
16 3 853 756.2 9 458 527.3 7234.1 3 847 713.1 9 431 886.6 8001.5 3 824 311.6 9 384 796.6 7687.4
17 3 854 631.0 9 441 992.7 8102.3 3 851 331.6 9 451 618.9 8114.7 3 822 723.1 9 384 013.6 6165.3
18 4 004 603.5 9 837 622.5 7743.6 3 829 666.1 9 398 360.6 6902.6 3 824 024.1 9 384 655.0 7767.6
19 3 844 695.3 9 425 683.0 7893.9 3 844 407.2 9 425 168.7 7745.2 3 824 115.0 9 384 852.9 7918.0
20 3 840 156.4 9 402 992.6 7745.1 3 853 756.2 9 458 527.3 7801.4 3 829 979.1 9 387 820.3 7891.1
21 3 858 728.1 9 455 868.2 7874.5 3 846 266.3 9 424 806.5 7931.6 3 823 245.0 9 384 270.9 7870.4
22 3 846 266.3 9 424 806.5 7534.2 3 856 001.6 9 455 145.0 7345.2 3 828 654.6 9 388 464.0 7945.4
23 3 868 347.8 9 487 298.0 7654.9 3 858 728.1 9 455 868.2 7791.5 3 827 333.5 9 386 286.3 7895.7
24 3 853 062.4 9 444 842.4 7943.4 3 930 520.1 9 638 238.9 8002.3 3 824 394.8 9 384 837.7 7876.2
25 4 004 603.5 9 481 380.6 7653.2 3 866 161.5 9 481 380.6 7754.8 3 830 913.2 9 388 051.0 7855.7
26 3 920 211.2 9 618 810.5 7896.7 3 853 062.4 9 444 842.4 7931.9 3 829 366.5 9 387 824.7 7668.7
27 3 844 407.2 9 425 168.7 7745.7 3 867 165.6 9 474 659.0 7742.5 3 833 463.0 9 391 767.1 7731.3
28 3 847 873.6 9 432 179.5 7653.3 3 847 714.8 9 447 150.9 7509.8 3 824 394.8 9 384 837.7 7845.4
29 3 851 331.6 9 451 618.9 7694.9 3 844 695.3 9 425 683.0 7654.7 3 823 562.7 9 384 427.5 7696.0
30 3 867 165.6 9 474 659.0 7893.5 3 938 023.8 9 657 116.7 8032.4 3 830 124.4 9 388 127.9 7947.6

Average 3 883 377.8 9 512 198.4 7713.6 3 879 048.3 9 512 058.6 7704.1 3 828 477.6 9 389 907.0 7789.3
Max 4 004 603.5 9 837 622.5 8210.4 4 041 117.6 9 915 536.1 8114.7 3 864 886.9 9 480 536.6 7947.6
Min 3 837 584.6 9 402 992.6 6921.5 3 829 666.1 9 395 269.5 6893.2 3 822 723.1 9 384 013.6 6165.3
Std 55 639.3 130 762.0 312.2 54 164.3 134 417.5 340.2 7 622.2 17 251.2 320.7
Wilcoxon p-value 4.1e−4 1.7e−4
Fig. 4. Cost boxplots for SA, discrete transfer SCA, discrete hybrid SCA, and discrete hybrid CS Algorithms.
the CO2 optimization takes a higher yield stress value because the
strength capacity of these steels is higher and is capable of resisting
more stresses with less material. Regarding cells dimensions it can be
seen that CO2 best design gets higher values for both upper (ℎ𝑐1 ) an
ower (ℎ𝑐1 ) cells heights. In the case of the cost objective function,
he best individual gives a null value to the height of the upper cell.
he objective of these cells is to reduce the distance between stiffened
ones to reduce the web plate’s reduction. For cost optimization, the
pper cell does not accomplish this function or is almost not enough to
e relevant for the design, while for CO2 emissions objective function,
t allows a better cross-section behavior and takes a positive value.
9

Regarding bottom flange stiffeners (𝑛𝑠𝑓2 ), both optimization objectives
remove this elements for the optimum design. This is because, in
negative bending moments, sections exist a concrete slab in the bottom
flanges that do not allow the instability of the bottom flange plate,
while in positive bending moment sections, this plate is in tension and,
consequently, cannot buckle, and these elements are not necessary.
Regarding the other variables, both optimization designs give a similar
value being the higher difference in the beam height value (ℎ𝑏), where
CO2 optimization takes a lower value due to the increase in the yield
stress (𝑓𝑦𝑘) that allow reducing the Section by increasing the structural
steel resistance.
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Table 6
Cost minimization comparison for 30 executions of SA, discrete transfer function SCA and CS, discrete hybrid SCA, and CS algorithms. Time is measured in seconds.

Run SA Transfer SCA Transfer CS Hybrid SCA Hybrid CS

Cost (e) CO2 (kg) Time Cost (e) CO2 (kg) Time Cost (e) CO2 (kg) Time Cost (e) CO2 (kg) Time Cost (e) CO2 (kg) Time

1 3 829 112 9 393 007 9196 3 854 631 9 441 992 7497 3 853 274 9 447 811 7621 3 830 092 9 390 104 7835 3 825 644 9 385 453 7975
2 3 845 663 9 442 138 7589 3 841 685 9 423 182 7822 3 853 926 9 449 454 7741 3 864 886 9 480 536 7945 3 825 115 9 385 192 7976
3 3 829 827 9 390 569 9687 3 868 347 9 487 298 7889 3 861 618 9 468 696 7812 3 826 395 9 388 407 7873 3 825 644 9 385 453 7891
4 3 834 439 9 395 041 9719 3 837 467 9 411 814 7635 3 837 015 9 413 229 7635 3 825 919 9 385 589 7929 3 830 529 9 387 861 7959
5 3 836 720 9 393 995 9430 3 863 494 9 467 939 7786 3 859 823 9 464 319 7653 3 823 801 9 385 004 7916 3 822 875 9 384 095 7930
6 3 832 832 9 394 394 9198 3 838 032 9 396 760 7795 3 933 952 9 636 170 7563 3 835 442 9 391 386 7911 3 827 681 9 386 457 7983
7 3 837 598 9 398 873 9291 3 835 377 9 395 269 7317 3 844 299 9 425 351 7752 3 826 324 9 389 542 7920 3 824 141 9 384 712 8008
8 3 841 417 9 408 629 9271 3 839 077 9 400 419 7876 3 832 605 9 397 118 7976 3 826 206 9 385 730 7935 3 827 522 9 386 379 7971
9 3 826 259 9 391 263 9225 3 844 805 9 422 679 7832 3 853 274 9 447 811 7698 3 830 234 9 387 716 7858 3 827 541 9 386 388 7949
10 3 837 246 9 398 956 9691 3 867 325 9 485 202 7880 3 857 615 9 458 840 8043 3 825 188 9 385 235 7931 3 825 756 9 387 883 8055
11 3 838 964 9 399 136 9507 3 833 501 9 406 118 7556 3 829 202 9 389 102 7467 3 828 878 9 387 047 7748 3 824 519 9 384 899 8267
12 3 844 258 9 420 045 9668 3 840 298 9 419 023 7903 3 861 618 9 468 696 7894 3 831 864 9 388 519 7719 3 831 847 9 388 511 8292
13 3 840 202 9 408 438 9557 3 844 078 9 432 582 7509 3 854 516 9 450 954 7735 3 823 462 9 384 378 7637 3 827 980 9 386 681 8291
14 4 701 903 11 582 022 9856 3 848 079 9 419 256 7789 3 836 478 9 406 458 7642 3 828 178 9 386 856 7819 3 823 891 9 384 589 8267
15 4 004 603 9 837 622 9956 3 920 211 9 618 810 7820 3 853 274 9 447 811 7756 3 826 847 9 386 123 7933 3 825 444 9 385 765 8148
16 3 837 030 9 407 814 9504 3 840 156 9 402 992 7886 3 860 073 9 450 935 7985 3 824 311 9 384 796 7687 3 823 063 9 384 870 8210
17 3 838 077 9 398 394 9705 3 851 331 9 451 618 7740 3 851 195 9 427 987 7463 3 822 723 9 384 013 6165 3 832 782 9 401 328 8308
18 3 826 142 9 389 610 9793 3 829 666 9 398 360 7905 3 848 626 9 422 617 7683 3 824 024 9 384 655 7767 3 828 246 9 386 736 8370
19 3 836 306 9 393 541 9326 3 844 407 9 425 168 7902 3 839 130 9 400 681 7843 3 824 115 9 384 852 7918 3 831 724 9 388 450 8249
20 3 829 965 9 397 333 9912 3 853 756 9 458 527 7736 3 839 701 9 402 112 7722 3 829 979 9 387 820 7891 3 824 459 9 384 869 8236
21 3 834 063 9 395 196 9590 3 846 266 9 424 806 7921 3 851 195 9 427 987 7463 3 823 245 9 384 270 7870 3 830 466 9 387 831 7897
22 3 838 868 9 397 515 9535 3 856 001 9 455 145 7502 3 879 874 9 500 752 7985 3 828 654 9 388 464 7945 3 825 593 9 385 428 7645
23 3 840 493 9 410 516 9238 3 858 728 9 455 868 7583 3 861 537 9 457 936 7583 3 827 333 9 386 286 7895 3 826 446 9 385 925 7912
24 3 836 563 9 399 930 9617 3 839 779 9 410 778 7903 3 881 525 9 505 995 7793 3 824 394 9 384 837 7876 3 827 796 9 386 514 7914
25 3 833 027 9 394 227 9494 3 866 161 9 481 380 7729 3 849 452 9 428 558 7642 3 830 913 9 388 051 7855 3 822 766 9 384 035 7896
26 3 834 233 9 397 503 9412 3 853 062 9 444 842 7790 3 841 782 9 409 898 7856 3 829 366 9 387 824 7668 3 822 723 9 384 013 7024
27 3 845 712 9 417 868 9565 3 867 165 9 474 659 7781 3 854 384 9 440 750 7843 3 833 463 9 391 767 7731 3 822 723 9 384 013 5218
28 3 832 969 9 403 292 9984 3 847 714 9 447 150 7552 3 858 984 9 467 252 7748 3 824 394 9 384 837 7845 3 825 907 9 385 583 7943
29 3 829 559 9 389 435 8800 3 844 695 9 425 683 7660 3 851 331 9 448 449 7654 3 823 562 9 384 427 7696 3 823 593 9 384 442 7923
30 3 834 992 9 398 075 9775 3 838 056 9 417 710 7891 3 841 344 9 423 805 7962 3 830 124 9 388 127 7947 3 830 083 9 388 051 7914

Average 3 870 301 9 487 479 9470 3 850 445 9 440 101 7746 3 854 421 9 446 251 7740 3 828 477 9 389 907 7789 3 826 483 9 386 414 7921
Max 4 701 903 11 582 022 9984 3 920 211 9 618 810 7921 3 933 952 9 636 170 8043 3 864 886 9 480 536 7947 3 832 782 9 401 328 8370
Min 3 826 142 9 389 435 7589 3 829 666 9 395 269 7317 3 829 202 9 389 102 7463 3 822 723 9 384 013 6165 3 822 723 9 384 013 5218
Std 160 135 403 661 443 17 047 43 542 159 19 179 45 846 158 7 622 17 251 320 2 954 3 137 570
Wilcoxon 3.6e−4 1.4e−4
p-value
Fig. 5. Emissions boxplots for SA, discrete transfer SCA, discrete transfer CS, discrete hybrid SCA, and discrete hybrid CS Algorithms.
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. Conclusions

The present work proposes a discrete hybrid KMDA method that
ses the k-means unsupervised learning technique in conjunction with
CA and SC to solve a discrete optimization issue. It was specifically
pplied in this work to the design of a Steel–Concrete Composite
ridge. Two experiments were designed to demonstrate the superi-
rity of KMDA in bridge optimization. The first experiment aims to
ompare the proposed approach to a baseline algorithm in which
he discretization stage is executed by a random operator with fixed
10

ransition probabilities. 𝑅𝑎𝑛𝑑𝑜𝑚0.3 and 𝑅𝑎𝑛𝑑𝑜𝑚0.5. The results showed n
that the incorporation of the k-means operator allows obtaining better
results, as well as the reduction of the dispersion of the objective
values. In the comparison, it was obtained for cost optimization that
Hybrid SCA reduced the value by 1.4% compared to 𝑅𝑎𝑛𝑑𝑜𝑚0.5 and by
1.3% compared to 𝑅𝑎𝑛𝑑𝑜𝑚0.3. In the comparison of the emissions of

O2, considering cost optimization, the hybrid SCA managed to reduce
missions by 1.3% in both cases. The Wilcoxon statistical test showed
hat the difference is significant. Regarding the execution times, these
ere similar in the different algorithms.

In the second experiment, the result of the proposed hybrid tech-

ique was compared with another frequently used method to discretize
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Table 7
CO2 minimization comparison for 30 executions of the discrete transfer function and discrete hybrid SCA and CS algorithms.

Run SA Transfer SCA Transfer CS Hybrid SCA Hybrid CS

Cost (e) CO2 (kg) Cost (e) CO2 (kg) Cost (e) CO2 (kg) Cost (e) CO2 (kg) Cost (e) CO2 (kg)

1 4 103 199.1 9 394 472.7 3 826 062.4 9 388 245.3 4 531 487.4 10 115 112.3 4 420 699.5 9 384 170.2 4 421 107.9 9 384 371.6
2 4 104 830.5 9 393 422.6 4 107 363.5 9 398 200 4 931 000.7 10 230 565.0 3 828 339.5 9 386 782.2 4 091 626.2 9 384 500.2
3 4 095 750.7 9 386 615.5 4 106 480.8 9 419 624.4 4 789 317.2 10 033 694.7 4 092 720.6 9 385 866.9 4 093 543.7 9 385 445.5
4 4 101 735.1 9 390 010.9 3 830 420.8 9 390 027.3 4 607 448.4 9 710 063.3 4 092 681.4 9 385 020.4 4 421 714.6 9 384 676.8
5 4 431 949.9 9 390 386.3 4 423 829.8 9 388 224.6 4 724 373.8 9 870 644.4 4 428 155.9 9 387 845.9 3 823 916.4 9 384 601.8
6 4 428 021.6 9 387 786.7 4 104 429.3 9 413 019.9 4 735 134.9 9 912 923.2 3 829 500.6 9 387 354.6 3 823 680 9 384 485.3
7 4 428 243.3 9 393 282.6 4 444 861.3 9 427 586 4 730 550.6 9 924 267.8 4 427 399.4 9 387 473 4 091 769.9 9 384 571.1
8 4 424 257.7 9 387 914.4 3 845 183.8 9 417 923.6 4 503 658.7 9 765 664.9 4 093 430.2 9 385 389.5 3 823 245 9 384 270.9
9 4 099 351.4 9 395 896.2 3 828 004.3 9 391 991.1 4 212 280.9 10 052 411.1 3 831 646.9 9 388 412.7 4 421 527.7 9 384 578.5
10 3 836 602.7 9 407 896.6 4 434 043.8 9 399 596.9 4 666 593.6 9 725 656.3 3 827 295.3 9 386 273.6 4 093 543.7 9 385 445.5
11 4 436 583.5 9 399 830.4 4 440 365 9 405 285.5 4 841 631.0 10 686 873.0 4 091 126.9 9 384 254.1 3 824 016.6 9 384 651.2
12 4 099 070.8 9 391 395.7 4 098 731.9 9 398 154.5 5 058 456.2 10 525 430.7 3 824 275.7 9 384 778.9 3 823 245 9 384 270.9
13 3 837 692.9 9 394 543.3 4 097 483.5 9 395 141.9 4 257 869.8 9 838 989.8 4 093 666.6 9 385 506.1 3 826 336.9 9 385 795.0
14 4 098 859.5 9 394 851.7 4 447 519.4 9 406 304.8 4 957 796.6 10 944 461.4 4 091 859.4 9 385 667.9 3 827 656.8 9 386 445.7
15 4 092 562.3 9 385 573.4 4 149 564.8 9 501 199.2 4 721 028.2 9 992 277.7 3 828 232.5 9 386 739.1 4 426 817 9 387 185.9
16 4 437 303.8 9 398 323.1 4 111 137.6 9 411 014.2 4 925 090.5 10 312 531.2 4 091 796.4 9 384 584.1 4 096 921.1 9 387 110.4
17 4 100 494.5 9 392 570.7 4 103 984.7 9 401 026.2 4 977 891.6 10 121 176.4 3 829 720 9 387 462.8 4 101 662 9 389 447.4
18 4 424 307.7 9 386 325.9 3 852 755.9 9 455 679.3 4 552 468.0 10 031 915.7 4 090 883.3 9 384 585.2 3 824 016.6 9 384 651.2
19 4 102 823.5 9 396 581.4 3 831 846.9 9 398 755 4 611 778.6 10 355 530.8 4 100 425.2 9 388 837.8 4 093 460.5 9 385 404.4
20 4 428 702.7 9 390 314.8 3 853 687 9 444 022.8 4 928 246.3 10 324 582.5 3 823 782.1 9 384 535.6 4 423 239.1 9 385 422.2
21 4 430 019.3 9 392 768.3 3 834 232.5 9 393 079.5 4 894 711.7 10 129 787.8 3 825 979.5 9 385 618.9 3 825 050.6 9 385 167.1
22 4 102 389.5 9 391 525.7 3 843 360.9 9 430 497.2 4 878 828.2 10 058 610.4 4 096 206.3 9 386 758 4 568 165.1 9 384 308.4
23 3 829 423.6 9 390 490.5 4 132 163.3 9 459 204.2 4 891 768.4 10 229 330.1 4 094 423 9 385 878.9 3 823 948.5 9 384 617.7
24 4 106 712.4 9 395 756.6 4 111 394.3 9 413 642.1 4 598 949.9 10 406 844.4 3 826 340.7 9 385 796.9 4 092 556.6 9 384 958.9
25 3 833 087.7 9 391 660.1 3 835 567.5 9 409 985.7 4 763 740.6 9 977 672.0 4 095 292.9 9 386 307.8 3 826 660.3 9 385 954.4
26 3 823 206.8 9 384 338.0 4 109 800.5 9 405 586.3 4 614 532.1 9 738 456.8 3 828 734.7 9 386 977.1 3 823 948.5 9 384 617.7
27 4 428 242.5 9 392 728.7 4 442 164.1 9 424 594.9 5 249 949.1 10 943 039.5 3 823 782.1 9 384 535.6 3 832 507.4 9 388 836.8
28 3 832 154.7 9 388 663.3 4 108 189.4 9 406 482.7 4 371 744.8 9 740 572.8 4 100 432.8 9 388 841.5 3 825 740.1 9 388 369.9
29 4 428 372.5 9 397 013.8 4 445 608.5 9 410 269.7 4 872 910.1 10 028 070.8 3 828 738.5 9 386 978.9 4 090 843.3 9 384 114.8
30 4 096 391.3 9 387 611.7 3 837 284.5 9 401 492.1 4 576 118.0 9 997 514.0 3 832 291.8 9 388 730.6 4 092 556.6 9 384 958.9

Average 4 167 411 9 392 617.2 4 087 917.4 9 413 528.6 4 732 578.5 10 124 155.7 4 002 995.3 9 386 265.5 4 039 167.5 9 385 469.5
Max 4 437 303 9 407 896.6 4 447 519.4 9 501 199.2 5 249 949.1 10 944 461.4 4 428 155.9 9 388 841.5 4 568 165.1 9 389 447.4
Min 3 823 206 9 384 338.0 3 826 062.4 9 388 224.6 4 212 280.9 9 710 063.3 3 823 782.1 9 384 170.2 3 823 245.0 9 384 114.8
Std 226 692 4878 232 227.7 24 665.3 231 256.6 328 416.3 192 413.8 1423.3 241 158.4 1414.8.9
Wilcoxon 2.7e−4 1.2e−4 2.7e−6

p-value
algorithms, transfer functions. Additionally, a version of SA adapted
to solve civil engineering optimization problems was included. In the
case of transfer functions, the solution only uses its information to
discretize, unlike k-means which first analyzes the group of solutions
and then discretizes. From the results of the experiments, it is once
again observed that the proposed hybrid technique is superior in the
results obtained. Particularly in the case of cost optimization, it is
observed that Hybrid SCA reduced costs on average compared to SA
by 1.1% and compared to transfer SCA by 0.57%. In the case of
Hybrid CS, the result was very similar to that of Hybrid SCA, the
latter being 0.05% higher on average. In the case of CO2 optimization,
we again observed that the hybrid algorithms were superior to those
using transfer function and SA. Hybrid CS outperformed Transfer CS
by 7.8%, and up to 0.07% compared to SA. In the case of Hybrid CSA,
it outperforms Transfer CSA by 0.3% and SA by 0.07%.

Finally, an analysis of the optimum obtained was conducted, observ-
ing that outstanding results are also obtained for CO2 emissions when
costs are optimized. However, the reciprocal, that is, when emissions
are optimized, does not imply that costs are optimized. This was related
to the fact that different steel grades have different costs but generate
the same emissions.

As a new line of research, we identified that optimization consumes
a significant amount of time, near to 8000 (s), with which developing
algorithms that allow reducing optimization times allows exploring
a more significant number of configurations and more complex sit-
uations. When an analysis of the execution times is carried out, we
observe that the primary time is consumed to evaluate the constraints.
It is hypothesized that by incorporating a deep learning model that does
not have essential execution times, the constraints could be modeled
and replaced, thereby improving the times used in optimization. Along
the same lines, to try to reduce the number of calculations, another
11
idea to explore is to use upper bound strategies (UBS) [42] to reduce
the total number of structural analyzes in design optimization.
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Table 8
Design variables results for best, mean, minimum, maximum, and standard deviation
values.

Variables Unit Cost optimization CO2 optimization

Best Mean Min Max Best Mean Min Max

𝑏 m 7 7 7 7 7 7 7 7
𝑎𝑙𝑝ℎ𝑎𝑤 deg 55 63 45 87 71 62.3 45 90
ℎ𝑠 mm 200 200 200 200 200 200 200 200
ℎ𝑏 cm 298 304 250 381 286 311 250 388
ℎ𝑓𝑏 mm 410 438 400 610 620 480 400 680
𝑡𝑓1 mm 25 27 25 57 25 26 25 39
𝑏𝑓1 mm 300 309 300 480 300 300 300 300
ℎ𝑐1 mm 0 264 0 960 9 333 0 830
𝑡𝑐1 mm 16 16 16 17 16 16 16 16
𝑡𝑤 mm 16 16 16 16 16 16 16 16
ℎ𝑐2 mm 33 38.8 00 90 41 32.8 0 86
𝑡𝑐2 mm 18 19 16 25 18 19 16 25
𝑏𝑐2 mm 300 302 300 370 300 300 300 300
𝑡𝑓2 mm 25 25 25 29 25 25 25 25
ℎ𝑠2 mm 150 150 150 150 150 150 150 150
𝜙𝑏𝑎𝑠𝑒 mm 6 6 6 6 6 6 6 6
𝜙𝑟1 mm 6 6 6 6 6 6 6 6
𝜙𝑟2 mm 6 6 6 6 6 6 6 6
𝑛𝑟1 u 200 278.4 200 436 200 282 200 425
𝑛𝑟2 u 200 280 200 403 228 270.8 200 418
𝑠𝑓2 mm 300 322.1 200 550 200 328 200 550
𝑛𝑠𝑓2 u 0 0 0 0 0 0 0 0
𝑠𝑤 mm 450 327.5 200 600 200 347.6 200 600
𝑠𝑡 mm 240 306 200 600 200 322.6 200 600
𝑑𝑠𝑡 m 3.3 2.407 1 4.2 2.52 1.2 1 5
𝑑𝑠𝑑 cm 6 6.5 4.1 9.7 4.8 6.3 4 9.9
𝑏𝑓𝑏 mm 1000 450 200 1000 200 430 200 1000
𝑡𝑓𝑓𝑏 mm 33 29 25 35 29 29 25 34
𝑡𝑤𝑓𝑏

mm 27 28 25 35 26 29 25 35
𝑓𝑐𝑘 MPa 25 25 25 25 25 25 25 25
𝑓𝑦𝑘 MPa 275 275 275 275 460 328 275 460
𝑓𝑠𝑘 Mpa 500 500 500 500 500 500 500 500
ℎ𝑠𝑐 mm 100 100 100 100 100 100 100 100
𝜙𝑠𝑐 mm 16 17 16 22 16 16.3 16 22
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