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Abstract 

A strong innovative tendency is nowadays emerging that largely comprises new hydrological modelling 

approaches, based on Causal Reasoning through Probabilistic Graphical Modelling (PGM), because its 

ability to support probabilistic reasoning from data with uncertainty. These novel modelling frameworks 

are quite diverse and disperse not only in terms of techniques but also regarding its aims. It seems necessary 

to find a general and robust methodology for assessing its performance. This paper aims to provide a novel 

general methodology for assessing the performance of PGM based on Bayesian Causality for modelling 

and analysing the rivers´ runoff behaviour. For it, a structured four-step approach is developed and showed 

throughout the paper. The proposed methodology begins with the identification of the two main factors that 

condition the Bayesian Causal (BC) Modelling: the number of synthetic series (data amount) and the 

number of intervals for probability distributions for training and learning processes. The developed analysis 

comprises the definition of three levels for the first factor and seven levels for the second one, as well as 

the design of an innovative stability framework that assesses the level of BC Modelling performance. 

Furthermore, it has been necessary to create-define two novel indexes, named “Similarity and Stability 

Indexes” from 21 scenarios arising from the combination of the levels of the both factors. The optimal 

combination of factors is identified through a bi-objectives recursive approach based on previous indexes. 

Main results drawn successfully show a high relationship between the level of modelling performance, 

measured in terms of stability, and the river runoff temporal behaviour, measured in terms of temporal 

dependence. This research may help water managers and engineers to develop more rigorous and robust 

hydrological causal modelling implementations. 
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1. Introduction 

Probabilistic Graphical Models (PGMs) since their emergence in the 1980s, within the 

statistical and artificial intelligence reasoning communities (Javidian et al., 2020), have 

been increasingly getting more notoriety in scientific community. This is mainly because 

they are an intuitive formalism to capture the probabilistic (in)dependence information of 

a domain (Pearl, 1988; Vogel et al., 2018) through the combination of probability-graph 

theories (Vogel et al., 2014), as well as a powerful framework for reasoning under 

uncertainty in knowledge-based systems (Cabañas de Paz, 2017; Javidian et al., 2020).  

According to Koller and Friedman (2009), a PGM “use a graph-based representation 

as the basis for compactly encoding a complex distribution over a high-dimensional 

space”. Formally, it is defined by a joint probability distribution P(X) on the set of 

variables of the problem X, and a graph G that represents the (in)dependence relationship 

amongst variables (Cabañas de Paz, 2017). At its core, they are characterized by a 

“qualitative” part which encodes a set of (conditional) (in)dependence relationships 

amongst variables, and a second “quantitative” one that measures the (in)dependence 

strength (Cabañas de Paz, 2017). 

PGMs have been widely applied to a variety of reasoning tasks related to prediction, 

diagnosis, classification and risk assessment under original approaches and applied to 

different scientific disciplines. Engelke and Hitz (2020) introduces a general theory of 

conditional independence applied to graphical models for extremes. For its part, Javidian 

et al., (2020) propose a new algorithm (named LCD-AMP) applied to chain graphs, that 

overcomes the problems of data order dependence. Ramos Fernandez (2018) designs a 

Naïve Bayes PGM as a medical tool for predicting the severe course of acute bronchitis 

in infants. Lehikoinen et al., (2019), by Bayesian network (BN) classifiers, assesses the 

effects of multiple natural and anthropogenic factors on marine ecosystems 

simultaneously. For the first time, Macian-Sorribes et al., (2020) addresses the spatio-

temporal dependence dimensions of inflows in hydrology through BNs. In Vogel et al., 

(2018) is identified the driving factors of flood loss at residential buildings applying novel 

PGMs approaches, based on BNs and Markov Blankets. On the other side, the relation 

among probability distribution and the graph defines the PGM type, existing three classes 

basically (Diez et al., 2018): (a) undirected graphs (e.g. Markov Networks), (b) directed 

acyclic graphs (e.g. BNs) and (c) chain graphs which are a unification of the first two 

(Javidian et al., 2020). Of these, the most widely used is the one based on BNs (Cabañas 

de Paz, 2017; Javidian et al., 2020), due to its ability to describe the overall behaviour of 

a system through the propagation of (in)dependence among the variables throughout the 
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whole graphical structure (Vogel et al., 2018). In addition, the fact that BNs are based on 

the notion of conditional (in)dependence (Steck, 2001) makes them particularly useful for 

dealing with forecasting and analysing of the general behaviour in complex natural 

processes (Molina et al., 2019). 

Referring specifically to hydrology and water resources, BNs have been satisfactorily 

applied to issues such as water planning of catchments (Mamitimin et al., 2015; Xue et 

al., 2017), integrated groundwater management (Carmona et al., 2011; Molina et al., 

2013), reservoir management (Malekmohammadi et al., 2009), assessment of 

environmental risk on large dams (Ahmadi et al., 2015), flood damage (Schroeter et al., 

2014) and drought forecasting and management (Shin et al., 2019), among others.  

Recently, new hydrological challenges have begun to be addressed through the 

potential that BNs offer to discover causal structures in observed data (Spirtes, 2010), 

because the intrinsic (in)dependence relationships within of temporal series are not 

known in depth (Molina and Zazo, 2018; Molina et al., 2019). This is performed under a 

novel framework named Bayesian Causal (BC) Modelling, based on Causality, and which 

is addressed in form of Causal Reasoning (CR), supported by Bayesian modelling 

(Macian-Sorribes et al., 2020; Zazo, 2017). BC Modelling is a suitable technique for 

modelling the temporal behaviour of water resources of a basin when: (1) the approach is 

done from top to down, (2) the analysis is focused on the cause and (3) the objective 

comprises the prediction of the consequence (Macian-Sorribes et al., 2020: Pearl, 2009), 

as in the case of Bayesian Causality. 

By means of BC Modelling it is highlighted the hidden logical temporal 

(in)dependence structure, that inherently underlies into hydrological historical records 

(Macian-Sorribes et al., 2020; Zazo et al., 2020). Under this approach, some noteworthy 

contributions have emerged in the field of stochastic hydrology. In Molina et al. (2016), 

a preliminary dynamic analysis of temporal dependence propagation was presented. For 

its part, Molina and Zazo (2018) discovered and quantified, for the first time, two opposite 

temporal-fractions within annual runoff time series, one conditioned by time and other 

no. Molina et al. (2019) developed a dynamic predictive runoff model based on the 

temporal behaviour trends of previously discovered runoff temporal fractions. Zazo et al. 

(2019) showed a qualitative approach for assessing temporal dependence through a novel 

dependence graph. Recently, Macian-Sorribes et al., (2020) analysed and assessed, 

simultaneous and completely, of spatio-temporal dimension of inflows across two 

adjacent and parallel river basins. In this sense, BC Modelling framework deliver much 
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more accurate and powerful hydrological simulations and predictions, in line with new 

trends in stochastic hydrological research based on hybrid approaches between 

“traditional-novel techniques” (Mohammadi et al., 2006; Nourani et al.,2011; Valipour et 

al., 2012). 

At this point, it is worth highlighting that PGMs are characterised by learning directly 

from the data when the structure of the network is unknown (Javidian et al., 2020; Malone 

and Yuan, 2012), and that such learning comprises not only the quantitative dimension of 

the data but also its intrinsic structure (Koller and Friedman, 2009; Steck, 2001). 

Therefore, issues such as the number of data or the modelling structure itself are crucial 

for suitable and reliable model performances (Koller and Friedman, 2009; Vogel et al., 

2018). In this sense, there are significant algorithm-based developments for learning 

model structure from sampled data, which are well known-stablished in the scientific 

community. For instance, inductive causation (IC) algorithm (Verma and Pearl, 

1991,1992), a similar approach independently developed by Peter Spirtes and Clark 

Glymour, known as PC algorithm (Spirtes et al., 2000; Madsen et al., 2003), based on 

conditional independence decisions (Le et al., 2016), and the improvement of the latter, 

named NPC learning algorithm, that introduces the notion of a Necessary Path Condition 

(Madsen et al., 2003; Steck, 2001). Nevertheless, in respect of the data there are two key 

driving factors for building a reliable dataset for learning and/or training which have not 

yet been addressed in depth. These are: (1) “number of synthetic series” and (2) “number 

of intervals” for discrete probability distributions. 

The aim of this research is to provide a methodological framework for achieving an 

optimal combination between the different considered levels of two main driving factors 

that condition Learning-Training Processes of BC Modelling. This approach was applied 

to increase knowledge of the temporal behaviour of water resources in a river basin and 

have not yet been addressed by any hydrological research based on Bayesian Causality. 

The first, external one, is “number of synthetic series” that populates the Bayesian causal 

models (Factor 1; three considered levels in annual synthetic data). The second, internal 

one, is “number of intervals” for discrete probability distributions of synthetic data 

(Factor 2; with seven considered levels). This was developed to improve the performance 

of causal models with respect to their analytical and predictive capacity in the context of 

temporal behaviour of water resources of a basin. The influence between the levels of 

both factors was measured through two innovative indices, named "Similarity Index" and 

"Stability Index". These allowed the identification of the optimal combination between 

the levels of both factors through a bi-objectives recursive approach, in terms of overall 



5 

 

stability of the BC Modelling process. These findings may be extrapolated to other 

approaches based on this type of PGMs for improving their analytical and forecast 

capabilities. 

This paper is organized as follows: after this introduction, the methodological section 

and data description is addressed. Then, the main results drawn from the research are 

presented. Finally, in discussion and conclusions section the results are discussed in 

detail, as well as the general conclusions from the study are outlined. 

2. Methodological approach 

The framework for assessing the BC Modelling performance, in terms of overall 

stability process comprises a four-step approach (Fig 1). Step-1 implies the generation of 

synthetic data from historical records through a parametric Autoregressive Moving 

Average Model (ARMA) model or any alternative model approach able to generate 

synthetic time series. Use of observational data would only be possible if enough data to 

populate the BNs is available. Step-2 designs the BC Modelling by 4 sequential phases 

(Learning, Preprocessing, Constraints and Structure-Learning Process). In Step-3, 

probability propagation is addressed by Dependence Mitigation Graphs (DMGs), 

obtaining also its uncertainty bands through a Bootstrap approach. Finally, Step-4 

assesses the BC Modelling performance innovatively. Firstly, a novel Similarity index is 

defined through an in-depth analysis of the overlap between uncertainty bands of wrap-

around averages of DMGs. Secondly, a Stability index is created for assessing global BC 

Modelling performance of all possible combinations between the levels of both factors. 

Then, a bi-objectives recursive approach identifies the optimal combination of factors.  
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Fig 1. General methodology. 

As DMG supposes an innovative way for assessing probability propagation, for 

understanding of the reader Uncertainty Band generation and their overlap analysis are 

facilitated by exemplary figures. 

On the other side, the application of ARMA models to hydrological 

analysis/simulation and prediction reveals a wide heterogeneity of data samples. For 

example, in Srinivas and Srinivasan (2006) is assessed a hybrid model for stochastic 

simulation of multi season stream flows through 100 synthetic data seasonal-threshold 

model. Borgomeo et al., (2015) presented a method to generate synthetic monthly 

streamflow through random sampling from a parametric or a nonparametric distribution, 

assessed by 100 flow sequences. In Molina et al., (2019) a dynamic predictive model 

which was populated with 200 synthetic annual runoff series from an ARMA model is 

developed. 

Based on the review of the scientific literature and in the expertise acquired in the 

development of causal models applied to the analysis and prediction of spatio-temporal 

behaviour of water resources in a river basin(s) three different numbers of annual 

synthetic series (Factor 1; 50, 100 y 200) were generated in each case study, all of them 

with the same length of the historical datasets. In contrast, Factor 2 (number of intervals 

for probability discretization) and whose influence has not yet been addressed within the 

framework of hydrological research, was given seven levels (3, 4, 5, 6, 7, 8 and 9 

intervals). This led to the design, execution and analysis of the results of 21 causal models 
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for each case study, which ensures the robustness of the findings and the designed 

methodological framework. 

Data description - Case studies 

The framework in which this research is conducted involves that the case studies form 

part of the methodological section. In order to define a robust methodological approach 

that would allow extrapolating the research findings to the field of prediction based on 

Bayesian causal models, two headwater case studies were chosen according to the 

following key aspects: (1) their completely opposite temporal behaviour, temporal 

(in)dependence, (2) same time period of analysis and (3) lack of spatial correlation 

between them.  

Both headwaters (Porma in the north, and Adaja in the south) belong to Duero River 

Basin (the largest international river basin between Spain and Portugal). Furthermore, 

they are defined by gauging stations, located upstream the first regulating reservoir (flows 

under natural regime). They are: Camposolillo (code 2078) in the first case, and Adaja 

(code 2046) in the second one (Fig. 2a). The time period covered 37 hydrological years 

(from October to September) 1974/75 and 2010/11. The historical records (without 

missing data) were supported by the network of gauging stations of Duero river basin 

Authority (MITECO, 2021). Table 1 summarizes the main statistical parameters.  

 

Fig 2. (a) Case studies location. (b) Correlograms and Anderson probability limits for an independent 
series (95 and 99 percent probability level). (c) Main climatic factors. (d) Historical annual series 
(1974/75 to 2010/11). Note: Hydrological year in Spain begins in October and ends in September of 
the following year. 
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Main statistic parameters 

Sub-basins 

Porma Adaja 

“Camposolillo” (2078) “Adaja” (2046) 

Annual mean (Hm³): 191.29 95.90 

Standard deviation (Hm³): 80.92 73.44 
Skewness coefficient: 0.98 1.25 

Table 1. Historical records. Main statistical parameter. 

Porma case study displays a temporal behaviour completely dependent, with its 

correlation coefficients outside the Anderson limits of the correlogram or very close it. In 

contrast, Adaja case study, exhibits an opposite behaviour, clearly independent, with all 

correlation coefficients within the independence area of the correlogram. Fig.2b displays 

both correlograms. 

Both case studies are characterized by a cold Mediterranean climate, highly 

continental. Porma case study shows an annual average rainfall of 1430 mm. 

Geologically, there are important formations of limestones, sandstone and alluvial 

deposits in the fluvial courses. Hydrogeological speaking, it is characterized by low 

permeability or impermeable materials and low productivity and small extension aquifers 

(Molina and Zazo, 2018). Adaja case study presents an average annual about 400 mm. 

Geologically, it shows important areas of arkoses, granitic blocks and alluvial deposits at 

the bottom of the valley. Regarding hydrogeology, impermeable or very low permeability 

formations are present (Molina and Zazo, 2018). Fig. 2c displays the main climatic factors 

and Fig. 2d shows the graphic of both historical annual series. 

2.1 Step-1. Synthetic data generation 

This step is addressed through a parsimonious ARMA (1,1) model for each sub-basin, 

developed according to Molina et al. (2016). ARMA model plays a crucial role in this 

research because it provides reliable data to populate the BC Modelling process. In this 

sense, the purpose of this initial phase is to generate, in form of synthetic series all of 

them equiprobable to the historical series considered, the amount of information 

necessary to populate the subsequent Bayesian causal models. This stochastic, 

parsimonious and unconditioned model confers the highest degree of freedom to 

Bayesian modelling. An ARMA (p,q) is expressed as (Salas et al., 1980): 

𝑌௧ ൌ µ ൅  ෍ ∅௝ ൫𝑌௧ି௝ െ µ൯ ൅ 𝜖௧

௣

௝ୀଵ

െ ෍ 𝜃௝ 𝜖௧ି௝

௤

௝ୀଵ

  (1) 
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where Yt is the value of the temporal series at a certain time-step t, μ is the mean of the 

time series; (p,q) are the number of autoregressive (AR) and moving average (MA) 

average parameters, ∅j, θj are the coefficient of AR and MA average model respectively 

and 𝜖௧ represents the historical residuals. 

Before the postulation of the model, a normalization process was applied using three 

different methods: square root, natural logarithm plus one and natural double logarithm 

plus one (Salas et al., 1980). These functions are commonly applied to operational 

hydrology (Ochoa-Rivera et al., 2007). The natural logarithm plus one method was 

chosen in both cases, as it yielded the lowest skewness coefficient. Afterwards, the 

synthetic data (equiprobable to historical records) were generated.  

The validation of synthetic time series was carried out comparing their relevant 

statistics to those of historical records (Ochoa-Rivera et al., 2007). In this case, due to use 

annual time series, this process was focused on mean values (Molina et al., 2021). Given 

that the levels considered for Factor 1 (50, 100 and 200 synthetic series) and the length 

of the historical data (37 years) a total of 1850, 3700 and 7400 annual synthetic data were 

respectively generated in each case study. 

2.2 Step-2. Bayesian causal model design 

Conceptually BC Modelling, as PGM based on BNs, is defined as a direct acyclic 

graph (DAG) in which conditional probability among variables is computed (Molina et 

al., 2021) and propagated omnidirectionally supported by Bayes’ Theorem (Zazo et al., 

2020). Mathematically, BC Modelling is expressed as (Madsen et al., 2003):  

𝑃ሺ𝑉ሻ ൌ ෑ 𝑃൫𝑋|𝑝𝑎ሺ𝑋ሻ൯
௑∈௏

, (2) 

  

where P(V) is the joint probability distribution over set of nodes V (random variables, 

X) present in the graph and which are defined through DAG and P(X|pa(X)) is the 

conditional probability distribution for each variable X ∈ V that belongs to a set of 

probability distributions.  

BC Modelling application to hydrological time series makes possible to 

determine/quantify the strength of (in)dependence relationships between variables in a 

dynamic and step-by-step manner (Macian-Sorribes et al., 2020). This is performed 

through modifying and analyzing the evolution of the probability distribution over time 
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(Macian-Sorribes et al., 2020), by maximizing the statistical evidence of highest discrete 

probability distributions interval in each BN´s variable (Molina et al., 2016). After this 

maximization over a particular variable (node), the change (its influence) in the expected 

value of the other ones is assessed and quantified (Molina et al., 2016). 

BC Modelling design was developed in 4 phases: (1) learning from synthetic data from 

ARMA (1,1) models (Factor 1); (2) preprocessing that implies the discretization of the 

synthetic data into discrete probability distributions (Factor 2), all of them with the same 

amplitude; (3) considering constraints initially that the main relationship among variables 

is natural (consecutive variables linking, time-lag=1); and (4) structure learning, which 

highlights the real structure of interdependence of runoff series by a constraint-based 

approach (Steck, 2001; Vogel et al., 2018), which finds a DAG structure from synthetic 

data through conditional independence statistical tests.  

This final stage is the core of BC Modelling because it reveals the hidden, non-trivial 

and logical interdependence structure (time lag > 1) that underlies into hydrological 

series. It was done through NPC learning algorithm (Madsen et al., 2003) which allows 

efficient simplifications to find net-structures (Steck, 2001) under the condition of not 

including links between conditionally independent nodes (HUGIN, 2021).  

BC Modelling design was supported by software HUGIN® Expert (version 7.3) with a 

significance level of 0.05 for Structure Learning Process. All BC Modelling parameters 

were fixed except the two factors analyzed. 

2.3 Step-3. Probability propagation 

This step comprises probability propagation analysis over the time throughout the 

network. through an innovative Dependence Mitigation Graphs (DMG, Zazo et al., 2019). 

DMG encompasses two variables: (1) “time” (X-axe; in form of time-lag) and (2) “% 

relative of change” (Y-axe; propagation of temporal dependence strength over the time). 

Conceptually, DMG is obtained through the relative percentage of change produced in 

the child variable, connected with the parent (Molina et al., 2016; Zazo et al., 2019).  

Fig. 3 shows two DMGs for both sub-basins. Temporally dependent basins tend to 

present a dominant positive part (Fig 3a Porma). In contrast, temporally non-dependent 

basins show a tendency towards symmetric wrap-around results; positive or Wrap-around 

Maximum (W-MAX), and negative or Wrap-around Minimum (W-MIN), as found in Fig 

3b Adaja (Molina et al., 2016). 
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Fig 3. Dependence Mitigation Graphs for Porma (a) and Adaja (b) case studies. 

2.3.1 Uncertainty bands generation 

In order to study the uncertainty of the wrap-around results before changes in the levels 

of the two parameters/factors studied, 95 % uncertainty bands for W-MAX and W-MIN 

series were generated by Bootstrap estimation (Efron and Tibshirani, 1993). 

For the band around W-MAX, let 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 be the values used for getting 𝐦𝐚𝐱
𝒊

𝒙𝒊 

for a particular lag. From these values, 10,000 bootstrap samples 𝒙𝟏
∗ , 𝒙𝟐

∗ , … , 𝒙𝒏
∗  were 

generated and the maximum value 𝐦𝐚𝐱
𝒊

𝒙𝒊
∗ was calculated for each one. Then, 2.5th and 

97.5th percentiles of those maximum values were obtained. Those percentiles were named 

ሺ𝐦𝐚𝐱 𝒙∗ሻ𝟎.𝟎𝟐𝟓 and ሺ𝐦𝐚𝐱 𝒙∗ሻ𝟎.𝟗𝟕𝟓 respectively. Finally, the 95% confidence interval for 

this particular time-lag is developed as:  

ቀ𝟐 𝐦𝐚𝐱
𝒊

𝒙𝒊 െ ሺ𝐦𝐚𝐱 𝒙∗ሻ𝟎.𝟗𝟕𝟓; 𝟐 𝐦𝐚𝐱
𝒊

𝒙𝒊 െ ሺ𝐦𝐚𝐱 𝒙∗ሻ𝟎.𝟎𝟐𝟓 ቁ   (3) 
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Then 95% uncertainty band for W-MAX series is calculated by joining the upper and 

lower limits from the confidence intervals. Similarly, it is determined W-MIN 95% 

confidence intervals. From both bands the 95% uncertainty band for the Wrap-around 

Average (W-AVE) can be constructed.  

The usefulness of W-AVE is based on the application of the three-fold criterion 

“statistical-comparability-representativeness”: (1) Statistically, of the three wrap-

arounds, W-AVE exhibits the lowest dispersion; (2) in river basins with temporally 

dependent behavior, W-MAX is clearly predominant with a minimal influence of W-

MIN. By contrast, in independent ones, W-MAX and W-MIN tend to compensate each 

other (Molina et al., 2016; Zazo et al., 2019). Consequently, W-AVE can compare both 

types of river basins through a unique "wrap-around"; and (3) W-AVE is also able to 

capture/represent the temporal behavior of water basins. When W-AVE is generally 

positioned above the DMG X-axis the basin exhibits a dependent behavior; whereas if 

W-AVE is positioned in both sides of the X-axis the behavior is independent. 

Finally, uncertainty band for W-AVE is built by averaging the 95% uncertainty bands 

for W-MAX and W-MIN series. In other words, the upper (lower) limit of the uncertainty 

band for the W-AVE series become the average of the upper (lower) limits of the 

uncertainty bands for the W-MAX and MIN series. In this manner, a single wrap-around 

(with its uncertainty band) is available. For a better understanding of this process Fig. 4 

schematizes the W-AVE generation process and its uncertainty band. 

 

Fig 4. Graph of uncertainty bands. Wrap-around Maximum (W-MAX), Minimum (W-MIN) and 
Average (W-AVE). Note: Uncertainty bands at 95% confidence level. Example Porma case study. 

 



13 

 

2.4 Step-4. BC Modelling performance assessment 

This step determines how the W-AVE built depends on Factors 1 and 2 of BC 

Modelling. For this purpose, for each of the 21 scenarios (3x7) considered, W-AVE and 

95% uncertainty band are constructed and then the overlapping between all of them is 

analysed. In this regard, two novel indexes have been defined: (1) Similarity index and 

(2) Stability index. The first one analyses in depth the overlap between uncertainty bands 

for the W-AVE, and the second one assesses the overall performance of the process. 

Moreover, in the scientific literature there are a variety of indices based on Bayesian 

approaches, such as the Bayesian Information Criterion (Schwarz, 1978) one of the most 

widely applied to model selection, those arising from the combination of different indices 

and causes (Bradley et al., 2015; Kim et al., 2018), or from the combination of different 

causes to assess a particular problem (Giné-Garriga et al., 2018), among others.  

2.4.1 Similarity index 

For each pairwise comparison of scenarios a Similarity Index is calculated through a 

complete Uncertainty Bands Overlapping Analysis (UBOA) as follows: 

1. If the two uncertainty bands overlap for a certain time-lag, the value 1 is assigned 

to that time-lag. Otherwise, a 0 value is assigned. This is mathematically 

expressed by a Boolean Factor of Overlap (Fo). 

2. A weighted sum of the overlaps of all time-lag is obtained through following 

weights (wi): 0.5 for lag0 and lag1 (w0=w1=0.5), 0.1 for lag2 to lag4 

(w2=w3=w4=0.1) and 0.01 for the rest lags (wi=0.01 for i > 4). This weight 

structure is based on the acquired knowledge on DMG (Zazo et al., 2019). DMG 

allows us to identify two regions of higher and lower mitigation of time 

dependence. Of these, lag0 and lag1 are those that present a higher mitigation 

gradient, for that w0=w1=0.5. The limit between these regions has been observed 

in lag4 or lag5, mainly in lag4, which justifies the assignment of weight 0.1 to lag2-

4. From lag5 the mitigation gradient is gradual, up to a relative percentage of 

change equal to 0.  

3. The weighted sum is corrected through a multiplicative factor (0, 1, 2, 3, 4, 5) that 

considers the consecutiveness of the overlap of uncertainty bands for the first 5 

time-lags, denoted as F(c). If the bands are overlapped within the first 5 lags, 

multiplier F(c) is 5; 4 if the overlap is within the first 4 lags, and successively. 

F(c)=0 if no overlap in the first 5 lags. This threshold (first 5 time-lags, up to lag4) 
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is defined according to the limit between the two regions of dependence mitigation 

indicated above.  

4. The Similarity Index of each pairwise comparison is obtained by the 

normalization of the previous rate to be enclosed within 0 (no overlap) and 1 (total 

overlap). This normalization is done by dividing the previous rate by the 

summation of all time-lag weights and multiplying the result by 5 (maximum Fo 

value). Fig. 5 schematizes UBOA process for a Similarity index value of 0.71. 

Similarity Index is formally expressed as: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 ൌ
𝐹ሺ௖ሻ ∙ ∑ሺ𝑤௜ ∙ 𝐹௢ሻ

5 ∙ ∑ 𝑤௜
, (4) 

  

 

Fig 5. Uncertainty Bands Overlapping Analysis. Example Porma case study of overlapping between 
uncertainty bands. Note: This analysis process is repeated for each of the 21 possible combinations 
resulting from Factor levels 1 and 2. 

Then, Similarity index values were arranged in matrix form and grouped on two 

categories and five classes (Table 2). For each case study 10 different matrices were 

defined: seven 3x3 matrixes for grouping the results of Factor 1 vs Factor 2, and three 

7x7 matrixes in the case of Factor 2 vs Factor 1 results. 

Similarity categories  Classes Color code Description 

Similarity Index ≥ 0.50 
High evidence of similarity 

[1.00 , 0.90]  Fully 

(0.90 , 0.80]  Highly 

(0.80 , 0.65]  Similar 

(0.65 , 0.50]  Slightly 
Similarity Index < 0.50 
Null or Low evidence of similarity 

(0.50 , 0.00] 
  

Table 2. Similarity Index. Categories and classes. 
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2.4.2 Stability index  

The Stability Index is computed by averaging the Similarity indexes of each scenario 

with the others (including the scenario in hand) in the form of a transposed matrix. 

Consequently, the previous ten matrixes for each case study are summarized in only two: 

one of dimensions 3x7 in the case of Factor 1, and second one of 7x3 for grouping the 

results of Factor 2. Both matrixes are expressed as:  

𝑺ிିଵ ሺଷ௫଻ሻ ൌ

⎝

⎜
⎜
⎜
⎜
⎛

∑ ൫𝑆𝐼௅ଵ,ிଶ൯
௠,ଵ

ଷ
௠ୀଵ

3 ௅ଵ,ிଵ
…

∑ ൫𝑆𝐼௅଻,ிଶ൯
௠,ଵ

ଷ
௠ୀଵ

3 ௅ଵ,ிଵ

∑ ൫𝑆𝐼௅ଵ,ிଶ൯
௠,ଵ

ଷ
௠ୀଵ

3 ௅ଶ,ிଵ
…

∑ ൫𝑆𝐼௅଻,ிଶ൯
௠,ଵ

ଷ
௠ୀଵ

3 ௅ଶ,ிଵ

∑ ൫𝑆𝐼௅ଵ,ிଶ൯
௠,଻

ଷ
௠ୀଵ

3 ௅ଷ,ிଵ
…

∑ ൫𝑆𝐼௅଻,ிଶ൯
௠,଻

ଷ
௠ୀଵ

3 ௅ଷ,ிଵ⎠

⎟
⎟
⎟
⎟
⎞

 (5) 

  

𝑺ிିଶ ሺ଻௫ଷሻ ൌ
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⎛
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଻
௠ୀଵ

7

∑ ൫𝑆𝐼௅ଶ,ிଵ൯
௠,ଵ

଻
௠ୀଵ

7

∑ ൫𝑆𝐼௅ଷ,ிଵ൯
௠,ଵ

଻
௠ୀଵ

7
⋮ ⋮ ⋮

∑ ൫𝑆𝐼௅ଵ,ிଵ൯
௠,଻

଻
௠ୀଵ

7

∑ ൫𝑆𝐼௅ଶ,ிଵ൯
௠,଻

଻
௠ୀଵ

7

∑ ൫𝑆𝐼௅ଷ,ிଵ൯
௠,଻

଻
௠ୀଵ

7 ⎠

⎟⎟
⎞

 (6) 

  

where SILi,F-1 and SILi,F-2 are the mean values of Similarity Index (SI) of each levels of 

Factors 1 and 2 respectively. 

Then, overall performance of Stability indexes was recursively analysed through trend 

graphs, according to their classification in two categories and five classes (Table 3). 

Stability categories  Classes Description 

Stability Index ≥ 0.50 
High evidence of stability 

[1.00 , 0.90] Fully 

(0.90 , 0.80] Highly 

(0.80 , 0.65] Stable 

(0.65 , 0.50] Slight stable 
Stability Index < 0.50 
Null or Low evidence of stability 

(0.50 , 0.00] 
 

Table 3. Stability Index. Categories and classes. 
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2.4.3 Stability framework 

The influence of the factors over the BC Modelling Performance is analyzed through 

a recursive process that provides the highest possible stability: 

1. The process starts with the evaluation of Factor 1, through plotting the 

performance of the Stability Index (Y-axis) versus Factor 2 (X-axis). In this graph, 

the Factor 1 level with the highest Stability Indexes is selected. 

2. The level value of Factor 2 is determined through plotting the trend of the Stability 

Index (Y-axis) versus Factor 1 (X-axis). The number of intervals (Factor 2 levels) 

is chosen so that the Stability Index for the previously determined value of Factor 

1 displays the highest value. This is done recursively if there are several values 

that satisfy the indicated condition. 

3. Results 

3.1 Generation of synthetic time series 

Average values of mean, standard deviation and skewness coefficient were determined 

from each historical records and synthetic data time series of each case study (Table 4). 

It is worth to highlight the maintenance of the mean value, according to the average 

behaviour that annual data offer. Fig. 6 shows the spectrum (wrap-arounds of each set of 

synthetic data of Factor 1), which will populate the BC Modelling. 
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Historical 
time series 

50 SS 100 SS 200 SS 

Annual mean (Hm³): 191.29 195.88 192.57 189.64 
Standard deviation (Hm³): 80.92 75.32 74.72 72.55 

Skewness coefficient: 0.96 0.90 0.88 0.85 

A
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Historical 
time series 

50 SS 100 SS 200 SS 

Annual mean (Hm³): 95.90 102.16 100.93 101.11 
Standard deviation (Hm³): 73.44 100.68 97.26 97.77 

Skewness coefficient: 1.25 2.19 2.14 2.15 

Table 4. Main statistical parameters: Historical records vs. Synthetic data generation.  
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Fig 6. Historical records and Spectrum of synthetic data (3 level) to populate Bayesian Causal 
Modelling. (Upper) Porma sub-basin. (Bottom) Adaja sub-basin.  

3.2 Similarity indexes 

Fig. 7 shows Similarity Indexes obtained in matrix form. In general, it is noticeable 

that the values are relevant for 6 intervals and beyond (Fig. 7 left). For this reason, the 

analysis of the resulting 7x7 dimension matrixes (Factor 1 vs. Factor 2) focuses on 

intervals 6 to 9. In contrast, 3x3 matrixes of the Factor 2 vs. Factor 1 are analysed for all 

of them.  

In Porma case study, the highest values are obtained with 50 and 200 SS (Factor 1), 

with the combination of 200 SS and intervals 6 to 9 (Factor 2) showing the highest indexes 

[(6-7=0.94), (6-8=0.94), (6-9=0.97), (7-8=0.97), (7-9=0.99) and (8-9=0.74)]. In contrast, 

in the case of 50 SS the highest values are only obtained with the combination of 7 to 9 

intervals [(7-8=0.96), (7-9=0.94) and (8-9=1.00)]. In both cases (50-200 SS), the values 

are homogeneous, with minimal variability, high evidence of similarity and belonging 

principally to the “Fully similar” class. 

On the other hand, the matrixes (Factor 1 vs. Factor 2) for Adaja case study are less 

homogeneous, although the highest values are also associated with 50 and 200 SS. 

Moreover, the 200 SS level shows that for 6 to 9 intervals there is an alternation between 
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values with null or low evidence of similarity [(6-8=0.34), (7-8=0.32), (8-9=0.34)] and 

values belonging to class slight similarity [(6-7=0.75), (6-9=0.75), (7-9=0.75)]. In the 50 

SS level the disparity of values is meaningful, where values of practically null evidence 

of similarity [(7-8=0.12, 8-9=0.39)] are alternating with values of total similarity [(7-

9=0.99)]. 

In both case studies, the 100 SS level Factor 1 shows the highest variability of indexes, 

even with the lowest values (the lowest evidence of similarity), Porma: [(6-9=0.07, (7-

9=0.08), (8-9=0.19)], Adaja: [(6-8=0.10), (7-8=0.39), (8-9=0.10)]. On the other hand, the 

analysis of the 3x3 matrixes (Factor 2 vs. Factor 1) highlights clearly that the highest 

indexes were found for 7 intervals except for the combination of 5 intervals with 100 and 

200 SS in the Adaja case study (value of 0.75). In the rest of combinations, the values 

show null or low evidence of similarity. 

 

Fig 7. Similarity Indexes. (Left) Matrixes (7x7): Factor 1 vs. Factor 2. (Right) Matrixes (3x3): Factor 
2 vs. Factor 1. Please note it additionally includes the mean value of each scenario denoted by , 
which justifies the posterior Stability Index. 



19 

 

Finally, it is evident that the highest similarity is achieved with 200 SS, being its 

combinations with 7 to 9 intervals the ones that “a priori” offer the greatest similarity. 

The assessment of the overall performance of both factors through the Stability Indexes, 

and by means bi-objectives recursive process, will allow defining the optimal 

combination of both factors. 

3.3 BC Modelling performance assessment  

3.3.1 Stability indexes 

Table 5 summarizes the Stability indexes of Factor 1 vs. Factor 2. In contrast, Table 6 

shows the Stability indexes resulting according to the levels of Factor 2 for fixed levels 

of Factor 1. It is observed that the highest values of the Stability Index are mainly 

associated with the combination of 200 SS (Factor 1) with 7 to 9 intervals (Factor 2). In 

particular, for Porma case study: [200 SS vs. (7 intervals = 0.61), (8 intervals = 0.67)], 

and for Adaja case study: [200 SS vs. (6 intervals = 0.67), (7 intervals = 0.62), (9 intervals 

= 0.71)] (see Table 5).  

On the other side, it is worth noting that in Porma case study no stability index is above 

0.5 (lower limit of the stability threshold) for the levels 50 and 100 SS of Factor 1, and 

almost the same result is observed in Adaja save two combinations: [(50 SS, 9 intervals) 

= 0.70] and [(100 SS, 7 intervals) = 0.51]. Furthermore, in Adaja stability indices for all 

combinations of Factor 1 with 8 intervals are lower than the preceding and following ones 

(0.40, 0.27, 0.42).  

 Gauging stations 

Porma (2078) Adaja (2046) 

Synthetic series Synthetic series 

50 100 200 50 100 200 

In
te

rv
al

s 

3 0.21 0.17 0.19 0.30 0.26 0.48 

4 0.37 0.19 0.27 0.47 0.27 0.55 

5 0.46 0.42 0.45 0.30 0.41 0.61 

6 0.45 0.44 0.60 0.49 0.41 0.67 

7 0.48 0.49 0.61 0.50 0.51 0.62 

8 0.45 0.45 0.67 0.40 0.27 0.42 

9 0.49 0.23 0.58 0.70 0.40 0.71 

Table 5. Stability Indexes of levels of Factor 2 fixing the levels of Factor 1. Note: The highest values 
are indicated in bold type. Please see Figure 7 where the Stability Index values are justified. 
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Additionally, in both case studies the Stability Indexes for 200 SS and 7 intervals 

exhibit a high and almost equal evidence of stability (0.61 and 0.62 respectively), being 

the combination that offers the greatest stability of results with the minimum spread of 

values. 

Regarding the Stability Indexes of Factor 1 levels after setting the levels of Factor 2 

(Table 6), the highest stability indexes are achieved, in general, from 7 intervals in all 

levels of Factor 1. In this sense, the highest values are observed in Adaja case study for 9 

intervals (0.99, 0.83 and 0.83) and in Porma case study for 100 SS and 7 intervals (0.81). 

However, a detailed analysis reveals that the level of the 7 intervals of Factor 2 is the only 

one for which the resulting values are all higher than 0.50 in both cases. In particular, 

Adaja case study shows increasing values, from 0.56 to 0.77. 
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 Number of intervals 

3 4 5 6 7 8 9 

50 SS 0.36 0.33 0.36 0.33 0.66 0.41 0.44 

100 SS 0.39 0.37 0.46 0.50 0.81 0.45 0.53 

200 SS 0.37 0.37 0.43 0.50 0.51 0.51 0.45 

A
da

ja
 

 Number of intervals 

3 4 5 6 7 8 9 

50 SS 0.40 0.46 0.46 0.49 0.56 0.69 0.99 

100 SS 0.41 0.36 0.65 0.53 0.62 0.66 0.83 

200 SS 0.34 0.43 0.65 0.53 0.77 0.37 0.83 

Table 6. Stability Indexes of levels of Factor 1 fixing the levels of Factor 2. Note: The highest values 
are indicated in bold type. 

3.3.2 Bi-objective recursive process. Optimal combination of levels 

The influence of both factors over the general BC Modelling Performance is analysed 

through a bi-objective recursive approach inspired by a One-Way ANOVA.  

As indicated previously, the highest stability index for Factor 1 level is determined 

firstly, and then the stability trend for the levels of Factor 2 is observed for the set level. 

In this manner, both factors are controlled simultaneously and recursively. Fig. 8 displays 

the overall stability framework of the process. 
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Fig 8. Overall stability framework. (Upper) Factor 1 (3 levels) vs. Factor 2. (Bottom) Factor 2 (7 
levels) vs. Factor 1. Please note that the category of null or low evidence of stability, (0.50 , 0.00], is 
coloured in light red. In contrast, the category of high evidence of stability, [1.00 , 0.50], is coloured 
in light green. For Stability index thresholds please see Table 3. 

The choice of the level of Factor 1 (upper Fig. 8) is clear. In both case studies the 

highest overall Stability indexes and trends are only achieved for the level 200 SS of 

Factor 1. In the case of Porma sub-basin, the values display an increasing trend from 0.19 

(minimum value; 3 intervals) to 0.60 (6 intervals). From this point a stability is observed, 

with a maximum of 0.67 (8 intervals) and a gradual decrease to 0.58 (9 intervals). In the 

case of the other two levels of Factor 1 (50 and 100 SS), the described behavioural pattern 

is generally maintained, but always inside the category of null or low evidence of stability. 

On the other hand, in the Adaja sub-basin case, the highest overall stability trend is found 

for the levels of 6 and 7 intervals of Factor 2 (0.67 maximum and 0.62 respectively). The 

other two levels for Factor 1 exhibit an irregular stability behaviour.  

Once set the level of Factor 1 (200 SS), the best level of Factor 2 is determined the 

graphs at the bottom of Figure 8. In Porma case study, all levels of Factor 2 display a 

pattern of lack of relevant stability in the results, excluding the level of 7 intervals. The 

overall stability indexes of this level are higher than 0.50 in all cases. In contrast, in Adaja 

case study is not so evident with two meaningful levels. Whilst the 9-interval level shows 

the highest stability values, with a clearly stable trend at the value 0.83 for 100 and 200 

SS (see Table 6), the 7-interval level shows a clearly increasing trend of stability up to 
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0.77 (200 SS). Considering the minimal difference between both values of the stability 

index (0.83 vs. 0.77, roughly 7%), both values confirm a high evidence of stability and, 

for consistency and homogeneity of results with the previous case, the best level of 

intervals is achieved for 7 ones.  

Consequently, the optimal combination of levels of both factors is obtained with 200 

SS and 7 intervals. 

4. Discussion and Conclusions 

This research proposes an innovative methodological framework for assessing and 

improving the performance of BC Modelling, applied to the analysis and the prediction 

of runoff temporal behaviour of a river basin, based on Causality. For that, a robust 

stability framework to assess performance Learning-Training Processes of BC Modelling 

is set up employing an innovative bi-objective recursive approach. This is conditioned by 

two main factors: the number of synthetic series that populate the causal models (Factor 

1), and the number of intervals defined for discrete probability distributions of synthetic 

data (Factor 2). These factors have not yet been addressed by any hydrological research 

based on Bayesian Causality.  

This innovative stability framework has led to the development of two novel 

indicators. The first one, named “Similarity Index”, enables an in-depth analysis of the 

overlap between wrap-around of DMGs (in this case focused on W-AVE uncertainty 

bands). The second one, called “Stability Index”, assesses the overall BC Modelling 

performance process. In addition, the number of causal models executed/analyzed 

together with the strong mathematical foundations applied highlights the robustness and 

reliability of the findings. 

Moreover, this research has revealed, for the first time, the influence of the number of 

intervals of probability distributions of synthetic data (Factor 2) on the BC Modelling 

process, and by extension to Bayesian PGMs, by means of Similarity and Stability 

indexes. This factor had not yet been analysed in a hydrological causal reasoning context.  

This research, focused on two exemplary temporal case studies through bi-objective 

recursive developed approach, highlights that the most stable combination of factors is 

achieved through the combination of the 200 SS level of Factor 1 and 7-interval level of 

Factor 2.  
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As the improvement of BC Modelling performance has been conducted on the decision 

variables of the process itself, in this case annual normalizable runoff time series, the 

optimal combination of levels achieved may also be effective for other temporal scales 

such as seasonal and/or monthly, normalizable ones as well. Furthermore, the fact that 

the case studies show opposite, and exemplary temporal behaviors indicates that the 

conclusions of this research can be extrapolated to other river basins.  

On the other hand, the optimal combination of factor levels will allow a better 

understanding of statistical evidence propagation between the model variables. This will 

undoubtedly make possible to predict future events and analyze the temporal and spatio-

temporal behaviour of water resources in a river basin in a more reliably way.  

Furthermore, the optimization of the BC Modelling will enable progressing in future work 

on the DMG by incorporating uncertainty bands and developing new indicators of 

temporal and even spatio-temporal behaviour, these latter addressed by means of 

multivariate analysis. 

Additionally, the framework developed might be applied to both flow classification 

and prediction. It provides an in-depth knowledge of the historical flow patterns, as an 

alternative to standard statistical analyses, and maybe automatized (subject to data 

requirements) to classify river reaches according to how the conditioned and the 

unconditioned fraction behave and interact. In addition, BC Modelling might be used to 

predict streamflows in an alternative way compared to traditional hydrometeorological 

forecasting methods (e.g. Ensemble Streamflow Prediction, use of stochastic models, use 

of meteorological forecasts to force a hydrological model). In fact, it is one of the most 

promising applications of the methodology proposed. 

Finally, the methodological framework may serve as a basis for further advances in 

the field of classification applied to Bayesian PGMs. 
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