Document downloaded from:

http://hdl.handle.net/10251/190073

This paper must be cited as:

Ngo, KA.; Lucko, G.; Ballesteros-Pérez, P. (2022). Continuous Earned Value Management with Singularity Functions for Comprehensive Project Performance Tracking and Forecasting. Automation in Construction. 143:1-10. https://doi.org/10.1016/j.autcon.2022.104583

The final publication is available at https://doi.org/10.1016/j.autcon.2022.104583

Copyright Elsevier

Additional Information

Continuous Earned Value Management with Singularity Functions for Comprehensive Project Performance Tracking and Forecasting

Ngo, Kiet A.¹, Lucko, Gunnar², Ballesteros-Pérez, Pablo^{3*}

4 5 6

1

2

3

¹ Ngo, Kiet A., Undergraduate Research Intern, Construction Engineering and Management
 Program, Department of Civil and Environmental Engineering, Catholic University of America,
 G-17 Pangborn Hall, 620 Michigan Avenue NE, Washington, DC, USA, <u>ngok@cua.edu</u>

¹⁰
 ² Lucko, Gunnar, Ph.D., Professor and Director of the Construction Engineering and

12 Management Program, Department of Civil and Environmental Engineering, Catholic University

- 13 of America, G-17 Pangborn Hall, 620 Michigan Avenue NE, Washington, DC, USA,
- 14 <u>lucko@cua.edu</u> 15

^{3*} Ballesteros-Pérez, Pablo, Ph.D., *Corresponding author*. Project Management, Innovation and

- 17 Sustainability Research Centre (PRINS). Universitat Politècnica de València, Camino de Vera
- 18 s/n, 46022 Valencia, Spain, <u>pabbalpe@dpi.upv.es</u>
- 19

20 Abstract

21 Earned value management (EVM) is a classical project monitoring technique that is widely used 22 in construction projects. Due to its simplicity, this technique suffers from limitations due to its 23 discrete nature – activity durations, costs, and progress are gathered only at update points with no 24 information in between. These limitations preclude EVM from being easily implemented on some project types (e.g. repetitive projects) and in conjunction with some planning techniques 25 26 (e.g. linear scheduling), where information continuity is both possible and desired. Therefore, in 27 EVM is reformulated based on singularity functions (SF). SF are a type of expressions that can 28 be easily concatenated to model continuous inputs at the activity-level. SF are also additive so as 29 to immediately yield project-level performance information. It is demonstrated how the complete 30 theory of EVM is newly expressed in SF. This offers several advantages: (1) EVM metric axes can be easily swapped (allowing exact calculation of modern metrics such as Earned Schedule or 31 32 the *p*-factor); (2) activity progress data can be inserted at any frequency as the available data 33 allow; and (3) short-term project duration and cost forecasts are directly possible for the first 34 time. These advantages are exemplified on a real construction project. Finally, it is discussed 35 how the new formulation with SF produces more accurate project duration and cost estimates 36 compared to the former discrete EVM on real construction projects.

37

38 Keywords: Earned Value Management; singularity functions; construction projects; continuity;

39 time forecasting; cost forecasting; performance.

41 List of Abbreviations

AC	=	actual cost			
ACF	=	actual cash flow	PC	=	planned cost
AD	=	actual duration	PCF	=	planned cash flow
AP	=	actual percent (of completion)	PD	=	planned duration
AQ	=	actual quantity (of work)	PES	=	planned earliest start
AT	=	actual time	PLS	=	planned latest start
BAC	=	budget at completion	PF	=	performance factor
CV	=	cost variance	PQ	=	planned quantity (of work)
CPI	=	cost performance index	PS	=	planned start date
CSI	=	cost schedule index	PV	=	planned value
EAC	=	estimate at completion	RAC	=	real cost at completion
EV	=	earned value	SF	=	singularity function
EVM	=	earned value management	SPI	=	schedule performance index
ES	=	earned schedule	SV	=	schedule variance

42 **1. Introduction**

The EVM is a deterministic technique that draws information from individual project activities. At its core, EVM combines information about costs and durations of ongoing activities and work completion percentages as essential inputs. When activities are completed, their percentage of completion (progress) reaches 100%, and their final cost and duration are registered as the actual (final) ones. From them, EVM assesses the current status of the project to answer questions like *Are we late or early? Are we spending more or less than planned?* and gives long-term forecasts *What will be the final project cost and duration? When would it end based on current progress?*

50 But as we will show, EVM suffers from the conceptual limitation of being discrete: Its values 51 are known only at those updates; it remains blind in between. This renders it an ineffective 52 instrument for short-term predictability. We will remedy this shortcoming with a novel approach 53 that creates a continuous, additive, and extensible mathematical formulation. It will be tested for 54 validation purposes on the activities dataset of a real-world project to demonstrate its efficacy.

55

56 2. Literature Review

57 Earned Value Management (EVM) is a monitoring technique that allows project managers to 58 track the performance of projects in their time and cost dimensions relative to baseline values [1, 59 2]. It was devised as a financial analysis tool by the U.S. Department of Defense (DoD) in the 1960s. But until the early 1980s, it remained largely ignored by project managers. Yet three 60 61 events accelerated its adoption. First, an article published in the Public Works Magazine by David Burstein in 1979, which described how EVM had been successfully implemented in an 62 63 architecture and construction company [3]. The second event was the cancellation of the Navy 64 A-12 Avenger II Program by the DoD, because of performance problems that were detected only 65 after the implementation of EVM [4]. Third, the publication of an EVM industry standard by the American National Standards Institute (ANSI EIA 748-A). From that time on, EVM adoption 66 spread very quickly, especially after this technique was included in the first Project Management 67 Body of Knowledge (PMBOK) guide in 1987. It was then adopted by many U.S. government 68

69 agencies, e.g. the National Aeronautics and Space Administration and the Department of Energy.

70 More recently, EVM has also been standardized in regions such as Australia (AS 4817-2003 /

- 71 2006) and Europe (ISO 21508:2018). Paralleling its adoption by governments, practitioners,
- certification, and professional bodies, EVM has also received extensive research attention [5, 6].
- 73

74 2.1. *Limitations*

Problematically, the inputs forthis technique – progress, costs, and durations of activities – are not collected in a continuous manner. Instead, it is compiled after approximately regular time intervals commonly known as *tracking periods* [7]. In most construction projects such tracking periods are interspersed about every one or two months [8]. Gathering information in shorter time spans is possible, but often too time-consuming [9]. Hence, most project managers perform it only in conjunction with preparing the next schedule update and invoice to the client [10].

81 But this comes at a disadvantage. The project manager knows what the current project status 82 is at every tracking period, but not in between. One may think that it should be relatively easy to 83 extrapolate the project status from those activities that have experienced significant progress 84 since the last tracking period. But this is not the case. In EVM, either all activity information is 85 updated at the current project date (called actual time, AT [11]) or none can be updated. 86 Otherwise the EVM metrics calculation, e.g. earned Value (EV) and Earned Schedule (ES), will incur errors. Take the earned schedule (ES) metric proposed by Lipke in 2003 [12]: Calculating it 87 88 requires performing a linear interpolation between the two adjacent tracking period dates whose 89 planned value (PV) is below and above the current Earned Value (EV). However, the costs of all 90 ongoing activities are attributed to the succeeding tracking period. That is, if an activity was 98% 91 complete at the end of tracking period n, the cost for the remaining 2% is distributed linearly 92 between tracking periods n and n+1. But this ignores whether that activity will finish one day or 93 one month after n. The EVM method here assumes that costs are incurred throughout the entire 94 next tracking period. The same problem will affect activities that have not started at n, but do so 95 in tracking period n+1. Overall, this lumps all metrics into interpolations over tracking periods, 96 which causes significant accuracy losses when implemented in real-life projects with durations 97 of tracking periods longer than a week [13]. To address this issue, reformulations of ES that are 98 calculated at the activity-level have recently been proposed, e.g. the new ES_{min} and ES_{max} metrics 99 [6]. While these enhanced metrics better interpolate the actual project progress, they still only 100 work with *planned* activity start and finish dates, not with *actual* activity start and finish dates.

101 Consequently, project managers cannot know accurately their current project status, except at 102 *tracking points*. This is especially problematic when real projects experience cost and / or time 103 overruns and the project manager must take immediate corrective actions, but will have to wait 104 until the next tracking point to know if the action has actually worked. By then, it may be too late 105 to adjust said action, as many ongoing activities may already have finished or are nearing finish.

Hence, in this paper we propose a new formulation that generates a fully continuous EVM model. With this model, project managers can input future activity start and end dates besides other modelling capabilities. This will eliminate the accuracy loss that is caused by the absence of updates between tracking points, which is especially important in projects with repetitive work cycles, i.e. repetitive projects. In these, the same activities are performed multiple times and the interpolation errors between tracking points are prone to be mistaken for underperformance. By formulating a continuous model, we will also be able to implement EVM in linear schedules, a

113 continuous planning and monitoring technique. Our model will employ Singularity Functions 114 (SF), which are a type of highly flexible functions that can be concatenated to describe complex 115 composite curve patterns. SF are described in detail in a following section and will provide the 116 necessary modelling capabilities to remedy the existing flaws of EVM with our new formulation.

EVM is a straightforward method that compares the budgeted cost of work performed against either the budgeted cost of work scheduled to evaluate the project time performance, or against the actual cost of work performed to evaluate the project cost performance. The budgeted cost of work performed is often called *earned value (EV)*; the budgeted cost of work scheduled is shortened to *planned value (PV)*; and the actual cost of work performed is the *actual cost (AC)*.

122 A major limitation of EVM is that it does not differentiate the actual status of individual 123 work units. All activity contributions to the overall project performance measurement are 124 assumed as proportional to their cost, regardless of whether those activities belong to paths that 125 are ahead or delayed [14, 15]. Thus by definition EVM fails to provide an accurate view of how 126 a project is performing in the time dimension. Another limitation of EVM is the impossibility of 127 considering activity duration and cost variability in the planned value curve (i.e. the cumulative 128 cash flow curve that represents the project performance baseline) [16]. This results in the overall 129 project duration frequently being underestimated (see [17] for a more exhaustive description of 130 this phenomenon). These limitations could be partially overcome by combining EVM with other 131 approaches. In this vein, EVM has received many extensions in the last 20 years [6]. It has been 132 combined with Monte Carlo simulation [18, 19], neural networks [20, 21], fuzzy logic [22, 23], 133 Bayesian inference [24], machine learning methods [25-27], and Kalman filter algorithms [24, 134 28], to cite a few. But none of them have improved its fundamentally flawed basic calculations.

Similarly EVM has also been combined with planning techniques to produce more accurate project duration and / or cost forecasts. Examples are combinations of EVM with PERT [29-35] or Critical Chain [36]. More recently Chang *et al.* [37] and Ballesteros-Pérez *et al.* [9] studied how the accuracy of EVM forecasts at tracking points could be improved. But they could not solve the complete lack of in-between information, because their approach remained discrete.

Perhaps the most notable addition to EVM in recent years has been the creation of the earned schedule (*ES*) metric [38]. Until then, EVM counterintuitively defined monetary units [*sic*!] to express its time deviations in absolute terms. But *ES* allowed measuring time deviations in time units, among other advantages [39]. It also opened the door to a partial reformulation of EVM to what has become known as Earned Duration Management (EDM) [40]. EDM is similar to EVM, but only applies to project time performance, not cost. It compares actual versus planned activity progress and durations (instead of activity costs as in EVM). Yet both remain merely discrete.

147

148 2.2. Need

Overall the lack of continuity in EVM and EDM renders them inaccurate in project performance measurement between tracking points. This is especially important for short-term forecasting. While recently many studies have tried to improve long-term forecasting capabilities [13, 38, 40-49], short-term forecasting has been almost completely ignored. By short-term forecasting we mean anticipating how the project time and cost performance will change within the next few workdays. This is a vital feature, because one can only know if corrective actions may actually work when seeing their short-term impact in the EVM metrics (particularly *EV* and *ES*). But any 156 recent project data are only processed at the next tracking point. Until then, even if some of the 157 activities have already finished and some others have already started, the overall project 158 performance does not reflect these updates. This major problem at the core of EVM itself can 159 only be solved by adopting a continuous model. By gaining such a model, project managers 160 could at any time not just add input information on activity starts, finishes, or any duration and 161 cost intermediate values without having to wait until the next 'official' tracking point, but more 162 importantly, would immediately receive current feedback on the evolution of the project 163 performance metrics. This is especially useful for projects that exhibit repetitive activities within 164 their construction process, as is commonly found in practice. Repetitions should be tracked to 165 fine-tune their progress. Another advantage would be the ability to integrate such model and its metrics directly with the already-continuous linear scheduling method. With it one could finally 166 167 study activity and project performance at the fullest level of detail that the available data allow.

168

169 **3. Methodology**

170 3.1. Goal and Objectives

171 The goal of this research is to develop the complete theory for a continuous EVM model. To 172 achieve this, three objectives will be addressed in turn, as is explained in the following sections.

173 1. Create a continuous model with singularity functions and convert existing EVM metrics to it;

- 174 2. Validate the model on a real-world example by drawing observations from its performance;
- 175 3. Explore the *short-term* forecasting capability from activity-level updates to the project-level.
- 176

177 3.2. Singularity Functions

178 Singularity functions are continuous expressions that generalize regular polynomial expressions. 179 They were independently conceived by Föppl [50] and Macaulay [51] over a century ago for use 180 in structural engineering. There they efficiently modeled varying loads over the length of beams. 181 Due to their flexible nature, SF have also been used in the scheduling domain for work over 182 time, resources over time, and cost over time [52]. Regardless of their area of application, SF 183 perform a case distinction in their operator in Equation 1 whether its term is not yet active, i.e. 184 zero – at *x*-values before the activation a – or active from there onward for a given phenomenon.

185
$$s \cdot \langle x - a \rangle^n = \begin{cases} 0 & \text{if } x < a \\ s \cdot (x - a)^n & \text{if } x \ge a \end{cases}$$
 Eq. 1

186 Singularity functions are named after their key feature, the singularity at *a* itself. Note that it does 187 not mean discontinuity – the function is continuously defined and integratable and differentiable 188 like any traditional one. Each function is the algebraic sum of *N* basic terms *i* as per Equation 2.

189
$$y(x)_{sng_{-}fnc} = \sum_{i=1}^{N} \left(s_i \cdot \left\langle x - a_i \right\rangle^{n_i} \right)$$
 Eq. 2

190 Multiple terms with the same *a* and *n* are shortened by adding their strengths *s*. Modeling growth 191 will typically have a linear behavior with a slope term of n = 1, while n = 0 indicates a step term,

192 in other words a sudden jump or drop in the function output value.

193 A complete SF contains an initial s-value plus change terms $\Delta y / \Delta x$ that update its value at later

- activations. In our context the activities will be represented by a SF whose *s*-value corresponds to
- the activity's (planned, actual, or earned) unit cost (per time unit), with an activation point a
- 196 when the activity starts, and a second (de)activation point when the same activity is completed.
- 197

198 **4. Model Development**

199 Our continuous model will be developed on the four-activity network schedule of Figure 1. Its 200 activity nodes A to D list their planned duration (PD) and planned value (PV). Each definition or 201 transformation will be explained by deriving a formula and inserting values to demonstrate its 202 practical application. We will manually solve all equations for transparency to allow independent 203 verification of the results [29]. Of course, computer implementation could handle calculations for 204 real projects with a larger number of activities. We will develop first the basic EVM metrics (PV, 205 AC, EV), then other more recent metrics and performance indices (e.g. ES, ES_{min} , SV(t), SPI(t)). 206 For clarity some mathematical details are found in **Appendices** (Supplemental online material).

207

208 4.1. Planned Value

Using the additive nature of SF, the planned value (*PV*) at the project-level is the sum of the activity *PV* values. Each can be written per Equation 3, which is activated at the planned start (*PS*) and is later deactivated at the planned finish (*PS*) after its planned duration PD = PF - PS.

212
$$y(x)_{PV_{activity}} = PV/PD \cdot [\langle x-PS \rangle^1 - \langle x-PF \rangle^1]$$

For example, activity A has PV = \$210 and PD = 2 days for $y(x)_{PV_A} = \$105/1d \cdot [\langle x-0 \rangle^1 - \langle x-2 \rangle^1]$. This means activity A begins causing cost from its start (which coincides with the project start at 0 days); will grow linearly at a rate of \$105 per day until day 2; and then remains constant at PV= \$210 until the project ends. **Appendix 1-A** provides all values and equations for activities A to D as well as a bar chart with planned cash flow (*PCF*) over actual time (*AT*). *AT* is the standard term for project elapsed time in EVM, which in our equations coincides with the horizontal variable *x*. The sum of Equations 3 composes the project *PV* in Equation 4.

220
$$y(x)_{PV_project} = \Sigma y(x)_{PV_activity}$$

Eq. 4

- 221 The project *PV* thus is $y(x)_{PV_project} = \$105/1d \cdot \langle x-0 \rangle^1 + (-\$105 + \$235)/1d \cdot \langle x-2 \rangle^1 + (-\$235 + \$75)/1d \cdot \langle x-5 \rangle^1 \$75/1d \cdot \langle x-9 \rangle^1$ After merging terms with the same cutoff, this simplifies to $y(x)_{PV_project} = \$105/1d \cdot \langle x-0 \rangle^1 + \$130/1d \cdot \langle x-2 \rangle^1 \$160/1d \cdot \langle x-5 \rangle^1 \$75/1d \cdot \langle x-9 \rangle^1$. This
- cumulative expression is the baseline for the project and plotted with a dashed curve in Figure 2.
- 225

Figure 1: Development Example

Figure 2: Project Planned Value (Dashed) and Earned Value (Solid) Curves

The project planned duration of 9 days is the maximum of activity planned finishes per Equation 5. Here the dashed curve in Figure 2 flattens, because its cost growth has been removed. This serves as a checksum, because at the project end all activity cost slopes should now add to zero.

229
$$PD_{\text{project}} = \max\{PF_{\text{activity}}\}$$

230 Evaluating Equation 4 at $x = PD_{\text{project}}$ gives the project budget at completion (*BAC*, Equation 6).

231
$$BAC_{project} = y(PD_{project})_{PV_project}$$

232 This illustrates how SF are evaluated: $BAC_{project} = y(9d)_{PV_project} = \$105/1d \cdot \langle 9-0 \rangle^1 + \$130/1d \cdot \langle 9-233 \rangle^1 - \$160/1d \cdot \langle 9-5 \rangle^1 - \$75/1d \cdot \langle 9-9 \rangle^1 = \$945 + \$910 - \$640 - \$0 = \1215 , which is the correct

sum of the activity *PV* from Figure 1. Note that the last term at PD_{project} can often be skipped, as

it has only just been activated and $-\frac{75}{1d} \cdot \frac{9-9}{1}$ is still \$0. This reduces the evaluation effort.

236

237 4.2. Actual Cost

Progress is measured as actual costs (*AC*) and activities' actual starts and finishes (*AS*, *AF*) to calculate their actual duration (*AD*). This information is only available as the project is carried out. Imagine that for A to D they are $AC = \{\$210, \$390, \$300, \$240\}$ and $AD = \{3d, 3d, 4d, 3d\}$. This delays the *AS* of D by one day. **Appendix 1-B** provides all equations and the actual cash flow (*ACF*) over actual time (*AT*). In analogy to Equation 3, activity *AC* is written as Equation 7.

243
$$y(x)_{AC_activity} = AC/AD \cdot [\langle x-AS \rangle^1 - \langle x-AF \rangle^1]$$

Here activity A has AC = \$210 and AD = 3 days for the actual cost slope in $y(x)_{AC_A} = \$210/3d \cdot [\langle x-0 \rangle^1 - \langle x-3 \rangle^1]$. As for *PV*, it is commonly assumed that *AC* is incurred linearly during execution. Its value grows at that slope from *AS* until the current tracking period. Of course, one cannot know *AF* before it occurs – the model explicitly does *not* require writing it in the equation until the activity finishes and the slope is removed then. If this linearity assumption is not suitable, one can write a step function at the actual time of incurring any such a single expense per Equation 8.

250
$$y(x)_{AC_activity_{step}} = AC \cdot \langle x - AT \rangle^0$$

Eq. 7

Summing all Equations 7 gives the project *AC* per Equation 9 as $y(x)_{AC_project} = \$210/3d \cdot [\langle x-0 \rangle^1 - \langle x-3 \rangle^1] + \$390/3d \cdot [\langle x-3 \rangle^1 - \langle x-6 \rangle^1] + \$300/4d \cdot [\langle x-3 \rangle^1 - \langle x-7 \rangle^1] + \$240/3d \cdot [\langle x-7 \rangle^1 - \langle x-10 \rangle^1] =$

7

Eq. 6

253 $\$70/1d \cdot \langle x-0 \rangle^1 + \$135/1d \cdot \langle x-3 \rangle^1 - \$130/1d \cdot \langle x-6 \rangle^1 + \$5/1d \cdot \langle x-7 \rangle^1 - \$80/1d \cdot \langle x-10 \rangle^1$. This can 254 now be evaluated at any *x*-value to give the spending up to then. Yet its cumulative actual cost 255 slopes also offer an <u>automatic ability to forecast project cost in the short-term future</u>. Namely 256 Equation 9 extrapolates it until the next *AF* of any ongoing activity or *AS* of any newly started 257 one is recorded, which the updates its slope with the newest information as it becomes available.

258
$$y(x)_{AC_project} = \Sigma y(x)_{AC_activity}$$

Finally, for the sake of completeness, the project *AD* is the maximum of activity *AF* per Equation 10, here 10 days. In analogy to Equation 6, the real cost at completion (*RAC*) is gained by inserting *AD*_{project} into Equation 9 per Equation 11, which is $RAC_{project} = y(10d)_{AC}$ project = \$1140.

262
$$AD_{\text{project}} = \max\{AF_{\text{activity}}\}$$

263 $RAC_{project} = y(AD_{project})_{AC_{project}}$

264

265 4.3. Earned Value

By definition, EV is the actual percent AP (of completion) of an activity multiplied by its planned cost *PC*. In other words, $EV = AP \cdot PC$. This *AP* per Equation 12 is not defined via *PV* or *PD*, but for the actual quantity *AQ* in work units performed so far (e.g. cubic meters of concrete) relative to the planned quantity *PQ*, which is known from the design (taken off plan drawings). Hence:

270
$$y(x)_{AP_activity} = AQ/PQ \cdot \langle x-AS \rangle$$

Appendix 1-C lists all *AP* values for our example, which in practice come from the same records as *AS* and *AF* in Appendix B. Equation 13 multiplies *PC* onto each activity *AP* to determine *EV*.

273
$$y(x)_{\text{EV}_{\text{activity}}} = PC \cdot y(x)_{\text{AP}_{\text{activity}}}$$

To write the SF, **Appendix 1-D** extracts differences of AP as the slope changes at AS and AF for the AP equations. Summing Equations 13 (**Appendix 1-E**) gives the project EV in Equation 14.

276 $y(x)_{\text{EV_project}} = \sum y(x)_{\text{EV_activity}}$

For our example the short form of Equation 14 is $y(x)_{EV_project} = \frac{70}{1d} \cdot \frac{x-0}{1} + \frac{136.25}{1d} \cdot \frac{x-2}{14}$ $3^{1} - \frac{120}{1d} \cdot \frac{x-6}{1} + \frac{13.75}{1d} \cdot \frac{x-7}{1} - \frac{100}{1d} \cdot \frac{x-10}{1}$. It is represented by the solid line in Figure 2. As real-world projects will have longer equations, they would of course be handled by a computer implementation. Yet a strength of SF is that they can always easily be evaluated manually for verification purposes or in educational settings with smaller examples similar to this one. At the project end AD = 10 days it correctly gives \$1215, which equals the output of

- Equation 6 at AT = 9 days (the project planned value at its planned duration, i.e. the *BAC*).
- 284

285 4.4. Earned Schedule

The earned schedule (*ES*) [13] is a conceptually straightforward and well-known project-level metric. It compares the *PV* and *EV* curves in Figure 2: *At the current time, we have a certain EV. At what (earlier or later) time did the PV curve have that same value?* Essentially, this analysis moves through a *PV-EV* chart in three steps [53]: First from the current time (or tracking period) on the horizontal axis vertically up to the *EV* curve. Then horizontally over to the intersection with the *PV* curve. And finally back down to the time *x*-axis, where we read how much time the

8

Eq. 13

Eq. 12

Eq. 9

Eq. 10

Eq. 11

ongoing work has really 'earned' so far. If ES is to the left of the actual (current) time AT, then the project is behind schedule. If it lays to the right of AT, then the project is ahead of schedule.

Yet to develop the SF of *ES*, an intermediate step is needed. *ES* is a metric whose input is a time and its output is also in time units. This differs from SF of the three previous basic metrics (*PV*, *AC*, and *EV*) that were expressed as money over time. To compose such a new expression, we illustrate this approach with Figure 3. Conceptually speaking, we derive its steps as follows:

- 298 1. Figure 3a plot both *PV* and *EV* over time *AT*. Their difference along the horizontal time *x*-299 axis indicates how far the project is ahead or behind relative to perfect performance. This 300 difference will later be called SV(t);
- 301 2. Yet taking a difference between *PV* and *EV* (Equations 4 and 14, respectively) acts in the
 302 vertical direction. To measure their horizontal (time) difference, we will switch (transpose)
 303 both axes. This operation simply rotates the chart by 90 degrees which results in Figure 3b;
- 304 3. Their (time) difference after rotation but still expressed as a function of *EV* (money) units
 305 on the *x* axis is represented in Figure 3c;
- 4. Finally, the *x*-axis in money units is replaced with *AT*. In this operation, what are the correct cutoffs on this new *AT* axis for our *ES* values? All those in which either the original *PV* or *EV* curves had a slope change. And since perfect project performance means ES = AT (the bisector or diagonal line), said difference is drawn relative to said *diagonal* to give the *ES* curve. This last step is represented in Figure 3d with a bold curve.
- 311

Figure	3:	Calculation	steps	of ES	from	the <i>i</i>	PV	and	EV	curves
	•••	Curculation	prepo -							

312

In summary, for every tracking period AT, we must find the time when PV equals the current EV. Yet this is only possible if (a) PV and EV are continuous expressions; and (b) we can obtain the exact value of PV (dependent variable) from EV (independent variable). Note that due to EVM's inherent discrete nature, conditions (a) and (b) would remain unfulfilled unless we employ SF. Such an exact calculation of the *ES* metric has been impossible in traditional EVM. To fulfill condition (b), both *PV* and *EV* equations must be transposed. Axis transposition in SF has already been implemented for resource leveling [54] in construction scheduling, resulting in Figure 3b. Such transposition converts all slopes from $\Delta y/\Delta x = (y_2-y_1)/(x_2-x_1)$ to $\Delta x/\Delta y = (x_2-x_1)/(y_2-y_1)$ – recall that SF contain change terms after an initial slope. It also updates their original *x*-cutoffs to *y*-values by evaluating the original SF at all *x*-cutoffs. Thus instead of first summing all of the activities and transposing the resulting project curves, it would also equivalently be possible to first invert activities and then adding them, which is the commutative property of SF.

Now the difference SF has the shape of Figure 3c, yet still needs to be modified to a dual time axis. This is accomplished by adjusting its cutoffs to the known singularities in the *PV* and *EV* curves to stretch the gray shape along the *x*-axis (Figure 3d). Taking perfect performance as the diagonal [55], each day of actual time earns one day. From this optimal line, the gray shape is subtracted to gain the final *ES* curve over *AT*, which is marked with a thick line in Figure 3d.

Appendix 1-F lists slope change terms for transposing *PV* and *EV* as $x(y)_{PV_project} = 1d/\$105 \cdot$ $\langle y-\$0 \rangle^1 - 26d/\$4935 \cdot \langle y-\$210 \rangle^1 + 32d/\$3525 \cdot \langle y-\$915 \rangle^1 - 1d/\$75 \cdot \langle y-\$1215 \rangle^1$ and $x(y)_{EV_project} =$ $1d/\$70 \cdot \langle y-\$0 \rangle^1 - 109d/\$11550 \cdot \langle y-\$210 \rangle^1 + 128d/\$18975 \cdot \langle y-\$828.75 \rangle^1 - 11d/\$6900 \cdot \langle y-\$915 \rangle^1$ $- 1d/\$100 \cdot \langle y-\$1215 \rangle^1$. **Appendix G** compiles the cutoffs from both *PV* and *EV* and calculates 334 the slope changes of *ES*. Equation 15 casts this entire intermediate step for *ES* into a compact SF.

335
$$z(x)_{\text{ES_project}} = 1d/1d \cdot \langle x-0 \rangle^1 - \Sigma[\Delta(z(x(y)_{\text{EV}}-x(y)_{\text{PV}})/\Delta x(y_i)) \cdot \langle x-x(y_i) \rangle^1]$$
 Eq. 15

Its square bracket is the schedule variance in time units $y(x)_{SV(t)_project}$ that is defined in the next section. The intermediate step gives $z(x)_{ES} = 2/3 \cdot \langle x-0d \rangle^1 + 119/564 \cdot \langle x-3d \rangle^1 - 24/47 \cdot \langle x-6d \rangle^1 + 545/564 \cdot \langle x-7d \rangle^1 - 1/3 \cdot \langle x-10d \rangle^1$. Evaluating it gives $z(10d)_{ES} = 20/3 + 833/564 - 96/47 + 545/188 + 0 = 9$. This means that the project has ended 1 day late.

340

341 4.5. Earned Schedule Minimum and Maximum

Many EVM metrics and extensions were proposed in the last 20 years [6]. It is beyond the scope of this paper to review them all. So far, we have focused on classical ones (*PV*, *AC* and *EV*) plus a more recent significant metric, *ES*. To demonstrate that upgrading the EVM framework into SF is not just feasible, but will gain real calculation advantages, we review other significant ones.

Building on the previous *ES* metric, Ballesteros-Pérez *et al.* [13] introduced the earned schedule min-max (ES_{min} , ES_{max}) metrics at the activity-level, which are also expressed in time units. They measure project progress by the progress of its most delayed path (ES_{min}) or its more ahead path (ES_{max}). This refines *ES* (see [6] for details). Per Equations 16-17, ES_{min} and ES_{max} are measured from the planned earliest start date (*PES*) and planned latest start dates (*PLS*) of said activity:

351
$$z(x)_{\text{ES}_{\text{activity}},\text{min}} = PLS_{\text{activity}} + PD_{\text{activity}} \cdot y(x)_{\text{AP}_{\text{activity}}}$$
 Eq. 16

352
$$z(x)_{\text{ES}_{\text{activity}_{\text{max}}}} = PES_{\text{activity}} + PD_{\text{activity}} \cdot y(x)_{\text{AP}_{\text{activity}}}$$
 Eq. 17

353 Note that the project-level values per Equations 18-19 use cropped datasets: For *ES*_{project_min} only

activities with AP < 100% are included; for $ES_{project_max}$ only activities with AP > 0%. Therefore

- each activity equation is multiplied by a selection operator $s(y_{AP_activity})_{min} = [1-\langle 0-y_{AP_activity} \rangle^0]_{min}$
- 356 or $s(y_{AP_activity})_{max} = [1 \langle y(x)_{AP_activity} 1 \rangle^0]_{max}$ that returns 1 for all valid values or 0 otherwise. 357 These case distinctions, which select from the current data, are straightforward by employing SF:

- $z(x)_{\text{ES project min}} = \sum \{ [1 \langle y(x)_{\text{AP activity}} 1 \rangle^0]_{\text{min}} \cdot z(x)_{\text{ES activity min}} \}$ 358 Eq. 18
- $z(x)_{\text{ES_project}_{\text{max}}} = \sum \{ [1 \langle 0 y(x)_{\text{AP}_{\text{activity}}} \rangle^0]_{\text{max}} \cdot z(x)_{\text{ES}_{\text{activity}_{\text{max}}}} \}$ 359 Eq. 19

360 Appendix 1-H tabulates the values and selections of Equations 18-19, and Appendix 1-I lists all of the activity-level ES_{min} and ES_{max} equations for completeness. Note that due to the symmetric 361

structure of our development example, all activities happen to be critical and simply *PES* = *PLS*. 362

363

364 *4.6*. Variances and Indices

- 365 The cost and schedule variances (CV and SV) are differences of metrics per Equations 20 and 21.
- 366 $y(x)_{CV_{project}} = y(x)_{EV_{project}} - y(x)_{AC_{project}}$
- y(x)SV_project = y(x)EV_project y(x)PV_project 367

Writing them with values gives $y(x)_{CV_{project}} = + \$1.25/1d \cdot \langle x-3 \rangle^1 + \$10/1d \cdot \langle x-6 \rangle^1 + \$8.75/1d \cdot$ 368 $\langle x-7 \rangle^1 - \$20/1d \cdot \langle x-10 \rangle^1$, which evaluates as $y(10d)_{CV_{project}} = \$8.75 + \$40 + \$26.25 - \$0 = \75 . 369 And inserting values gives $y(x)_{SV \text{ project}} = -\frac{35}{1d} \cdot \langle x-0 \rangle^1 - \frac{130}{1d} \cdot \langle x-2 \rangle^1 + \frac{136.25}{1d} \cdot \langle x-3 \rangle^1$ 370 + $\frac{160}{1d} \cdot \frac{x-5}{1} - \frac{120}{1d} \cdot \frac{x-6}{1} + \frac{13.75}{1d} \cdot \frac{x-7}{1} + \frac{57}{1d} \cdot \frac{x-9}{1} - \frac{100}{1d} \cdot \frac{x-10}{1}$ 371 which evaluates as $y(10d)_{SV \text{ project}} = -\$350 - \$1040 + \$953.75 + \$800 - \$480 + \$41.25 + \$75 - \$0$ 372 373 = \$0. By day 10 the project was under (!) budget and finished. Yet the SV metric unfortunately is 374 biased towards the project end (Equation 21 tends to 0 when we approach the project planned 375 duration, no matter the project AD). Schedule variance in days is obtained from Equation 22.

- 376 y(x)SV(t) project = z(x)ES project - x
- 377 Here $y(10d)_{SV(t)_{project}} = -1$ days; the project was late. Besides absolute values, relative values are 378 obtained as the cost and schedule performance indicators (CPI and SPI) per Equations 23-24:
- 379 $y(x)_{CPI_project} = y(x)_{EV_project} / y(x)_{AC_project}$ Eq. 23
- 380 $y(x)_{\text{SPI_project}} = y(x)_{\text{EV_project}} / y(x)_{\text{PV_project}}$

381 Evaluating these indices yields $y(10d)_{CPI_{project}} = $1215/$1140 \approx 106.6\%$ and $y(10d)_{SPI_{project}} =$

382 1215/1215 = 100% (like SV, the SPI also approaches 100% towards the project planned end).

383 When using the ES metric, the SPI can be reformulated as the SPI(t), which is calculated as:

384 $y(x)_{\text{SPI(t)_project}} = z(x)_{\text{ES_project}} / x$

385 Here, $y(10d)_{SPI(t) \text{ project}} = 9d/10d = 90\%$; the project was late. Combined cost-schedule indices CSI and CSI(t), called *critical ratios*, are easy to express as products per Equations 25-27 as well: 386

- 387 $y(x)_{\text{CSI project}} = y(x)_{\text{CPI project}} \times y(x)_{\text{SPI project}}$
- 388 $y(x)_{CSI(t)_project} = y(x)_{CPI_project} \times y(x)_{SPI(t)_project}$
- 389 Their respective values at AT = 10 days are $106.58\% \times 100\% \approx 106.6\%$, and $106.6\% \times 90\% \approx$ 390 95.9%. For the project status, its percent complete and percent money spent are Equations 28-29:
- 391 Percent Complete $(x)_{\text{project}} = y(x)_{\text{EV project}} / BAC$ Eq. 28
- 392 Eq. 29 Percent Money Spent $(x)_{\text{project}} = y(x)_{\text{AC project}} / BAC$
- 393 Equations 28 and 29 give 1215/1215 = 100% and $1140/1215 \approx 93.8\%$ for our example.
- 394 Variances and indices are tabulated in Appendix 1-J.

Eq. 22

Eq. 20

- Eq. 24
- Eq. 25
- Eq. 26
- Eq. 27

396 4.7. Forecasts

While for this example the actual values at completion are assumed as known, this is not the case in practice until the project ends [56]. Vanhoucke [7] listed 6 ways to forecast project cost, called estimate at completion (EAC(\$), and 9 for project duration, called estimate at completion of time EAC(t). Ballesteros-Pérez *et al.* [13] reviewed these and other forecasting indices for EVM. All

401 are cast into SF as Equations 30 to 44. Numerical outputs for each are listed in **Appendix 1-K**.

402	$EAC(\$)_{PF=1_project} = y(x)_{AC_project} + (BAC - y(x)_{EV_project}) / 1$	Eq. 30
403	$EAC(\$)_{PF=CPI_project} = y(x)_{AC_project} + (BAC - y(x)_{EV_project}) / y(x)_{CPI_project}$	Eq. 31
404	$EAC(\$)_{PF=SPI_project} = y(x)_{AC_project} + (BAC - y(x)_{EV_project}) / y(x)_{SPI_project}$	Eq. 32
405	$EAC(\$)_{PF=SPI(t)_project} = y(x)_{AC_project} + (BAC - y(x)_{EV_project}) / y(x)_{SPI(t)_project}$	Eq. 33
406	$EAC(\$)_{PF=CSI_project} = y(x)_{AC_project} + (BAC - y(x)_{EV_project}) / y(x)_{CSI_project}$	Eq. 34
407	$EAC(\$)_{PF=CSI(t)_project} = y(x)_{AC_project} + (BAC - y(x)_{EV_project}) / y(x)_{CSI(t)_project}$	Eq. 35
408	$EAC(t) (x)_{PV1_project} = PD - (PD / BAC) \cdot y(x)_{SV_project}$	Eq. 36
409	$EAC(t) (x)_{PV2_project} = PD / y(x)_{SPI_project}$	Eq. 37
410	$EAC(t) (x)_{PV3_project} = PD / y(x)_{CSI_project}$	Eq. 38
411	$EAC(t) (x)_{ED1_project} = \max(PD, x) + AT \cdot (1 - y(x)_{SPI_project})$	Eq. 39
412	$EAC(t) (x)_{ED2_project} = \max(PD, x) / y(x)_{SPI_project}$	Eq. 40
413	$EAC(t) (x)_{ED3_project} = \max(PD, x) / y(x)_{CSI_project} + x \cdot (1 - 1 / y(x)_{CPI_project})$	Eq. 41
414	$EAC(t) (x)_{ES1_project} = x + PD - y(x)_{ES_project}$	Eq. 42
415	$EAC(t) (x)_{ES2_project} = x + (PD - y(x)_{ES_project}) / y(x)_{SPI(t)_project}$	Eq. 43
416	$EAC(t) (x)_{ES3_{project}} = x + (PD - y(x)_{ES_{project}}) / y(x)_{CSI(t)_{project}}$	Eq. 44

- 417 These equations only use information until a specific date; the remaining project (cost or time)
- 418 progress is estimated by assuming that its trend continues by a project factor (PF). The key
- 419 difference among these EAC(\$) and EAC(t) formulas lies in chosing PF by whether it is expected
- 420 that the remaining work rate, cost trend, time trend, both, or a mixture of both will be dominant.
- 421

422 **5. Validation**

423 We analyze a real-world project involving the installation and implementation of a modern 424 telecommunication system in Agnes located in Egmond aan Zee (The Netherlands). It can be 425 found in the datafile 'C2011-05 Telecom System Agnes' from the Empirical Project Data listings of the Operations Research and Scheduling Research Group at Ghent University [57]. Broader 426 427 details about this empirical dataset of projects are described in [1] and [2]. The Agnes project 428 was selected due to the availability of its as-planned baseline schedule plus several as-built 429 updates, including PV, AC, percent complete, and EV. In this paper a single example provides a 430 proper validation, because we contrast the discrete model with our continuous one. By showing

how short-term forecasting capabilities are incorporated, we are able to prove how a continuous

432 EVM model with SF offers significant advantages that make it worth adopting in other projects.

433 **Appendix 2** lists inputs, calculations, and outputs in the same order as **Appendix 1**. Its 21 434 activities generate a project planned duration of 43 worksdays at eight work hours daily from 435 5/18/2011 to 7/15/2011 without holidays. Project planned cost was €180,485, the sum of 436 resource-specific plus fixed activity costs. The longest activities were 9, 15, and 16 (delivery, 437 assembly, installation). The project was eventually completed in 53 workdays without incurring 438 a cost overrun. Updates existed on five unevenly spaced dates, 5/24, 6/20, 6/27, 7/12, and 7/29439 (planned workdays **5**, **24**, **29**, **40**, **and 53**).

440 Traditional EVM employs tracking periods (here irregularly timed) after whom a snapshot of 441 the progress until that update is captured. Thus by definition EVM is blind between updates [58]. 442 It must assume straight-line planned or actual progress within tracking periods as bold lines show 443 in Figure 4. This is extremely inaccurate, as project-level PV or EV change whenever an activity 444 starts or finishes at that time. Yet this is correctly expressed by the SF as thin lines in Figure 4. 445 Curves for AC are omitted in Figure 4, since according to its tracking data, this real project did 446 not incur any cost overruns, so that AC and EV happened to coincide throughout its duration.

Figure 4: Project Planned Value (Dashed) and Earned Value (Solid) Curves for Traditional Earned Value Method (Thick) and Singularity Functions (Thin)

447 In the tracking periods until workday 24, the discrete EVM grossly overestimates values, as 448 the true ones are lower and more detailed with SF (difference marked gray). Only after workday 449 24 does EVM detect deviations: EV is significantly lower than PV for its remaining duration, 450 which was planned at 43 workdays, but actually became 53. Yet its piecemeal approach causes 451 inaccuracies in EV after workday 24, whereas the thin EV line with SF tracks all data precisely. 452 Only the SF model visualizes the plateau in PV after the project planned finish of day 43, which 453 discrete EVM ignores entirely. Worse, it failed to obtain an update at this project planned finish 454 date. Worst, it was unable to incorporate the known holiday, which the EV with SF has captured.

Figure 4 also illustrates the short-term forecasting abilities of the new continuous SF for *EV*: Whenever such SF receives new information – activity starts and finishes or performance records from the field – its slope is updated by a change term, which then remains active until newer data are added. Thus the SF always provides a forecast that explicitly incorporates all data until that time. Note especially that times can be fractional, as all SF equations are continous for all inputs.

460 To demonstrate the short-term prediction ability of SF, consider the questions On day 15 461 what is the forecasted EV for day 20; on day 29 what is the forecasted EV for day 33; or on day 462 40 what it the EV forecast for day 47? The answers are calculated by evaluating $y(x)_{EV \text{ project}}$ using only all terms that are known until the date on which the forecast is made. For the first 463 464 question it is $y(20)_{\text{EV_project on day 15}} = \text{€800/d} \cdot 20\text{d} - \text{€352/1d} \cdot 16\text{d} + \text{€19764/1d} \cdot 15.875\text{d} - \text{€352/1d} \cdot 16\text{d}$ €19772/1d · 15.375d + €8387/1d · 15d - €7674.22/1d · 14d + €1376.50/1d · 11d + €1332/1d · 10d 465 466 - \in 1332/1d \cdot 5d = \$60,294.42. This value is impossible to calculate with discrete EVM until the 467 ongoing tracking period ends. With day 17 and 18 events recorded, the accuracy of this forecast can be compared to $y(20)_{\text{EV_project}}$, which differs only in two newly known terms + $\notin 2588.50/1\text{d}$. 468 469 $3d - \text{\&}800/1d \cdot 2d = \text{\&}6165.50$, by which the short-term forecast underestimated the achieved EV.

470 Analogously, $y(33)_{\text{EV}_{\text{project on day }29}} = $140,004.64$ (details are left to the reader) is as accurate 471 as the data allow, since no further activities start or finish from days 29 to 33. Forecasting on day 472 40 should incorporate the known 3-day-long holiday break by subtracting the cumulative slope 473 (\$640/1d) when the break starts on day 44 (and re-adding it when the break ends again). This is 474 $y(47)_{\text{EV}_{\text{project on day }40}} = $169,180.04$, which again is extremely close to the actual value. This has 475 demonstrated that short-term progress can be forecasted while incorporating upcoming events.

476 To demonstrate the *long-term* prediction ability of SF, we study What is the day 15, day 30, 477 and (after the project exceeded its deadline already) day 47 forecast for the project finish? These 478 are calculated with the earned schedule SF (listed in Appendix 2-G), using only terms up to the 479 cutoff 15 (or 30 or 47) and evaluating them for the x-value of 43. The forecasted project duration 480 z(x) that is expected at any AT (from all data that are known until then) is derived as follows. The 481 horizontal axis is x = AT when the forecast is made. Cutoffs are identical to the cutoffs in $z(x)_{ES}$. 482 The forecasted project duration – is calculated as AT plus the remaining ES (until PV = 43) that 483 will be produced at the current cumulative slope. For Equation 30, these cumulative slopes are 484 found in Appendix 2-G. Whenever a slope change occurs in $z(x)_{ES}$, a step is added in $z(x)_{forecasted}$ 485 project duration. Such step has the oppositive sign as the slope, because if the slope (i.e. productivity) 486 is updated to be lower, then the newly forecasted project duration will be higher, and vice versa. This is accomplished by the '1 -'. Step height is a difference of slopes. This elegantly shortens 487 488 the expression for pairwise slope differences, because their cumulative sum cancels all duplicate 489 terms (with opposite signs) except for just the first (index 0) and last one (index i) single terms.

490 $z(x)_{\text{forecasted project duration}} = x + (PV - z(x)_{\text{ES}}) / (1 - \{[\Delta z(y_i)/\Delta x(y_i)_{\text{EV_project}}] - [\Delta z(y_0)/\Delta x(y_0)_{\text{EV_project}}]\})$ Eq. 45

491 Thus $z(15)_{\text{forecasted project duration}} = 15 + (43-15) / (1 - \{0/2 - 0\} = 43 \text{ days}$. On day 15 the project 492 is still expected to finish on time. But this forecast changes as more information is created from 493 the actual progress. By day 37 more terms are added into the *ES* equation, so $z(37)_{\text{forecasted project}}$ 494 $duration = 37 + (43-33.3786) / (1 - \{0.2119-0\}) = 49.21 \text{ days}$. The project has been falling behind. 495 The terms incorporate productivity increases and decreases that have been recorded until then. 496 Directly after the holiday break on day 47, $z(47)_{\text{forecasted project duration}} = 53 \text{ days per Appendix 2-G}.$

497 Overall, SF offer a unique new forecasting capability – for the first time it is possible to plot 498 exactly how the forecasted end date of the project evolves at any point of time as in Figure 5.

Figure 5: Earned Schedule and Project Forecasted Duration over Actual Time

Figure 5 shows at what times the project is acutely behind of schedule and how effectively the corrective actions that are taken may bring it back on track. This new continuous model remedies prior discrete inaccuracies by automatically incorporating all known data into the SF. This means the project manager will not have to wait until the contractor issues a new invoice to the client to inform the EVM model with project progress information gathered so far. In other words, its resolution will always be as fine as the data allow and there is no need to be tied to pre-specified tracking periods to extract information from the proposed continuous EVM model.

507 **6.** Conclusions

508 This paper contributes to the body of knowledge in performance measurement of construction 509 projects in three ways. First, the new continuous model for the full range of EVM metrics creates 510 the opportunity to track a project over its entire lifespan, rather than only at occasional tracking 511 periods. Project managers can finally know their project status as accurately as is possible, rather 512 than navigating blindly between formal updates. Second, data can be added at any fractional 513 time, and queries can be made equally freely. Its efficiency is evidenced by the compact 514 expressions, notwithstanding that SF should be handled by a computer implementation for real 515 projects, especially if they encompass many activities and SF expressions will become long. 516 Third, the continuous formulation of the model has the theoretical advantage that an entire equation can be transposed, which allows *exact calculation* of metrics like ES. Its insightfulness 517 518 has been tested on a real-world example, which has demonstrated the new short-term duration 519 and cost forecasting capability of the continuous model.

520 Applying the continuous EVM model will work on any project type. It is particularly interesting 521 for projects whose work resources need to be frequently reallocated to optimize production. This 522 is the case in repetitive projects, which are characterized by repeating relatively similar units of 523 construction (e.g. buildings with several floors, long pipelines or ducts, or precast elements in 524 prefabricated plants). Keeping their resources balanced and busy is necessary so that all parts of 525 the project can progress at a rather uniform pace. But this can only be achieved if the project 526 manager gets instant feedback about the project and its activities' (time and cost) productivities [59]. This is difficult with discrete distant tracking periods, and time-consuming with tracking 527 528 periods that are close to each other (daily or weekly, for example). The continuous EVM model 529 in this paper overcomes this limitation by showing how project progress can be monitored in real 530 time as activities start and finish. As a result, the project manager can take action immediately, if 531 need be. Further exploration of integrating this model with scheduling methods (e.g. the Critical

532 Path Method or the Linear Scheduling Method) and its implications is left for future research.

533 While this paper has created new theory for the complete set of EVM metrics and forecasting 534 with its continuous model, its limitations are both conceptual and integrational in nature. First, its approach could be expanded still further to develop novel analytical capabilities that do not yet 535 536 even exist in EVM. The continuity, accuracy, flexibility, and integratability and differentiability 537 of SF enable more uses toward construction projects. Second, for length limitations the scope of 538 this paper has had to exclude integrating the new model with various scheduling methods. Such 539 methods could benefit in novel ways from EVM-style time and cost performance measurements 540 being directly embedded into them. Promising items that future research should address thus are:

- Since SF are integratable and differentiable, it could be investigated what beneficial trend 542 metrics or forecasts could be derived from such rates of change.
- Adapt the *AT-ES* plot (where perfect performance is the diagonal) to EDM that uses activity durations as 'money' rather than cost.
- Decision-makers can benefit from the ability for direct *what-if* analyses by changing a single parameter within a SF, or perform sensitivity studies towards multi-objective optimization.
- Explore merging risking management with optimization by retaining time and cost variables in the equations (especially activity dates), and adding resource variables into productivities.

- Merge the continuous EVM with linear scheduling, resource management, and cash flows that have already been expressed as SF to enable an integrated approach for optimization.
- 551

552 Acknowledgements

- 553 The first author was supported by Undergraduate Internship Funds, School of Engineering
- 554 Executive Committee, Catholic University of America, September 28, 2020 December 31,
- 555 2020 / January 1, 2021 April 30, 2021 / May 16 August 15, 2021.
- 556

557 **References**

- J. Batselier, M. Vanhoucke, Construction and evaluation framework for a real-life project database, International Journal of Project Management 33 (2015) pp. 697–710.
 https://doi.org/10.1016/J.IJPROMAN.2014.09.004
- 561[2]M. Vanhoucke, J. Coelho, J. Batselier, An Overview of Project Data Management and562Control, Journal of Modern Project Management 7 (2016) pp. 6–21.563https://doi.org/10.2062/JMDM V212.158
- 563 https://doi.org/10.3963/JMPM.V3I3.158.
- 564[3]R.J. Hickson, T.L. Owen, Project Management for Mining: Handbook for Delivering565Project Success, Englewood, Colorado, 2015. ISBN: 0873354036
- 566 [4] Y. Kwak, F. Anbari, History, practices, and future of earned value management in
 567 government: Perspectives from NASA, Project Management Journal 43 (2012) pp. 77–
 568 90. https://doi.org/10.1002/pmj.20272.
- 569[5]M. Vanhoucke, On the dynamic use of project performance and schedule risk information570during project tracking, Omega. 39 (2011) pp. 416–426.
- 571 https://doi.org/10.1016/j.omega.2010.09.006.
- A. Barrientos-Orellana, P. Ballesteros-Pérez, D. Mora, M.C. González-Cruz, M.
 Vanhoucke, Stability and accuracy of deterministic project duration forecasting method
 in Earned Value Management, Engineering, Construction and Architectural Management
 29 (2021) pp. 1449–1469. https://doi.org/10.1108/ECAM-12-2020-1045.
- 576 [7] M. Vanhoucke, Project Management with Dynamic Scheduling, Springer Berlin
 577 Heidelberg, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-40.
- 578 [8] R. Chudley, R. Greeno, Building Construction Handbook, 11th ed., Routledge.
 579 Abingdon, Oxon (UK), 2016. ISBN: 113890709X.
- P. Ballesteros-Pérez, E. Sanz-Ablanedo, A. Cerezo-Narváez, G. Lucko, A. PastorFernández, M. Otero-Mateo, J.P. Contreras-Samper, Forecasting accuracy of in-progress
 activity duration and cost estimates, Journal of Construction Engineering and
 Management 146 (2020) pp. 1–13. https://doi.org/10.1061/(ASCE)CO.19437862.0001900.
- V. Aramali, G.E. Gibson Jr., M. El Asmar, N. Cho, Earned Value Management System
 State of Practice : Identifying Critical Subprocesses , Challenges , and Environment
 Factors of a High-Performing EVMS, Journal of Management in Engineering 37(4)
 (2021) pp. 1–14. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000925.
- 589 [11] M. Vanhoucke, Measuring Time Improving Project Performance Using Earned Value
 590 Management, Springer, International Series in Operations Research & Management
 591 Science, 2010. https://doi.org/10.1007/978-1-4419-1014-1.
- 592 [12] W. Lipke, Schedule is different, Measurable News. Summer (2003) pp. 31–34. Accessed

593		Sepember 1 st , 2022:
594		https://www.researchgate.net/publication/284761017_Schedule_is_different
595	[13]	P. Ballesteros-Pérez, E. Sanz-Ablanedo, D. Mora-Melià, M.C. González-Cruz, J.L.
596		Fuentes-Bargues, E. Pellicer, Earned Schedule min-max: Two new EVM metrics for
597		monitoring and controlling projects, Automation in Construction 103 (2019) pp. 279–
598		290. https://doi.org/10.1016/j.autcon.2019.03.016.
599	[14]	O. Zwikael, S. Globerson, T. Raz, Evaluation of models for forecasting the final cost of a
600	[]	project. Project Management Journal 31(1) (2000) pp. 53-57.
601		https://doi.org/10.1177/875697280003100108.
602	[15]	M. Picornell, E. Pellicer, C. Torres-Machí, M. Sutrisna, Implementation of Earned Value
603	[]	Management in Unit-Price Payment Contracts, Journal of Management in Engineering 33
604		(2017) 06016001. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000500
605	[16]	P. Ballesteros-Pérez, E. Sanz-Ablanedo, R. Soetanto, M.C. González-Cruz, G.D. Larsen.
606	[10]	A. Cerezo-Narváez, Duration and cost variability of construction activities: an empirical
607		study. Journal of Construction Engineering and Management 146 (2020) 04019093.
608		https://doi.org/10.1061/(ASCE)CO.1943-7862.0001739.
609	[17]	P. Ballesteros-Pérez, K.M. Elamrousy. On the limitations of the Earned Value
610	L .]	Management technique to anticipate project delays, in: EURO MED SEC 2 - Second Eur.
611		Mediterr. Struct. Eng. Constr. Conf. Responsible Des. Deliv. Constr. Proj. Ed. by Abdul-
612		Malak, M., Khoury, H., Singh, A., Yazdani, S., 2018; pp. 1-6, ISEC Press, ISBN: 978-0-
613		9960437-5-5. https://doi.org/10.14455/ISEC.res.2018.43.
614	[18]	P. Pontrandolfo. Project duration in stochastic networks by the PERT-path technique.
615		International Journal of Project management 18 (2000) pp. 215–222.
616		https://doi.org/10.1016/S0263-7863(99)00015-0.
617	[19]	H. Khamooshi, D.F. Cioffi, Uncertainty in Task Duration and Cost Estimates: Fusion of
618		Probabilistic Forecasts and Deterministic Scheduling, Journal of Construction
619		Engineering and Management 139 (2013) pp. 488–497.
620		https://doi.org/10.1061/(ASCE)CO.1943-7862.0000616.
621	[20]	M. Lu, Enhancing Project Evaluation and Review Technique Simulation through
622		Artificial Neural Network-based Input Modeling, Journal of Construction Engineering
623		and Management 128 (2002) pp. 438-445. https://doi.org/10.1061/(ASCE)0733-
624		9364(2002)128:5(438).
625	[21]	M.Y. Cheng, Y.H. Chang, D. Korir, Novel Approach to Estimating Schedule to
626		Completion in Construction Projects Using Sequence and Nonsequence Learning, Journal
627		of Construction Engineering and Management 145 (2019) pp. 1–17.
628		https://doi.org/10.1061/(ASCE)CO.1943-7862.0001697.
629	[22]	SP. Chen, Analysis of critical paths in a project network with fuzzy activity times,
630		European Journal of Operational Research 183 (2007) pp. 442–459.
631		https://doi.org/10.1016/j.ejor.2006.06.053.
632	[23]	L.M. Naeni, S. Shadrokh, A. Salehipour, A fuzzy approach for the earned value
633		management, International Journal of Project management 29 (2011) pp. 764–772.
634		https://doi.org/10.1016/j.ijproman.2010.07.012.
635	[24]	BC. Kim, K.F. Reinschmidt, Probabilistic forecasting of project duration using Kalman
636		filter and the earned value method, Journal of Construction Engineering and Management
637		136 (2010) pp. 834-843. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000192.
638	[25]	M. Wauters, M. Vanhoucke, A comparative study of Artificial Intelligence methods for

639		project duration forecasting Expert Systems with Application 46 (2016) pp. 249-261
640		https://doi.org/10.1016/j.eswa 2015.10.008
641	[26]	M Wauters M Vanhoucke A Nearest Neighbour extension to project duration
642	[20]	forecasting with Artificial Intelligence European Journal of Operational Research 259
643		(2017) np 1097–1111 https://doi.org/10.1016/j.ejor.2016.11.018
644	[27]	E Acebes M Pereda D Poza I Pajares IM Galán Stochastic earned value analysis
645	[27]	using Monte Carlo simulation and statistical learning techniques. International Journal of
646		Project Management 33 (2015) pp. 1507–1609
647		https://doi.org/10.1016/i.jiproman.2015.06.012
648	[28]	S A Abdel Azeem H E Hosny A H Ibrahim Forecasting project schedule performance
0 4 8 640	[20]	using probabilistic and deterministic models. HPPC Journal 10 (2014) pp. 25-42
049 650		https://doi.org/10.1016/j.bbroj.2012.00.002
651	[20]	D. Dellastoros Dároz, M. DEDT. A manual project duration estimation technique for
652	[29]	P. Danesteros-Perez, M-PERT. A manual project duration estimation technique for teaching scheduling basics. Journal of Construction Engineering and Management 142
052 652		(2017) 04017062, https://doi.org/10.1061/(ASCE)CO.1042.7862.0001258
000	[20]	(2017) 0401/005. https://doi.org/10.1001/(ASCE)CO.1945-7802.0001558.
054	[30]	A.A.B. Philsker, GERT: Graphical Evaluation and Review Technique, RWI-49/5-NASA.
655		National Aeronautics and Space Administration under Contract No. NAST-21 (1966).
000	[21]	Accessed September 1 ^{ar} , 2022: http://www.rand.org/pubs/researcn_memoranda/RM4975.
657	[31]	R.F. AZIZ, RPERT: Repetitive-Projects Evaluation and Review Technique, Alexandria
658	[20]	Engineering Journal 53 (2014) pp. 81–93. https://doi.org/10.1016/j.aej.2013.08.003.
639	[32]	D. Gong, R. Hugsted, Time-uncertainty analysis in project networks with a new merge-
660		event time-estimation technique, International Journal of Project Management 11 (1993)
661	[22]	pp. 165–173. https://doi.org/10.1016/0263-7863(93)90049-S.
662	[33]	M. Cox, Simple normal approximation to the completion time distribution for a PERI
663		network, International Journal of Project Management 13 (1995) pp. 265–270.
664	50.43	https://doi.org/10.1016/0263-7863(95)00026-M.
665	[34]	K. Mehrotra, J. Chai, S. Pillutla, A study of approximating the moments of the job
666		completion time in PERT networks, Journal of Operations Management 14 (1996) pp.
667	[0.5]	277–289. https://doi.org/10.1016/0272-6963(96)00002-2.
668	[35]	P. Ballesteros-Pérez, A. Cerezo-Narváez, M. Otero-Mateo, A. Pastor-Fernández, M.
669		Vanhoucke, Forecasting the Project Duration Average and Standard Deviation from
670		Deterministic Schedule Information, Applied Sciences 10(2) (2020) 654.
671	50.07	https://doi.org/10.3390/app10020654.
672	[36]	J. Colin, M. Vanhoucke, A comparison of the performance of various project control
673		methods using earned value management systems, Expert Systems with Applications 42
674		(2015) pp. 3159–3175. https://doi.org/10.1016/j.eswa.2014.12.007.
675	[37]	H.K. Chang, W. Der Yu, T.M. Cheng, A Quantity-Based Method to Predict More
676		Accurate Project Completion Time, KSCE Journal of Civil Engineering (2020) pp. 2861–
677		2875. https://doi.org/10.1007/s12205-020-1924-y.
678	[38]	W. Lipke, Testing Earned Schedule Forecasting Reliability, CrossTalk 28(4) (2015) pp.
679		32 - 371 pp. 31–34. Accessed September 1 st 2022:
680		https://www.researchgate.net/publication/286124841_Testing_Earned_Schedule_Forecas
681		ting_Reliability
682	[39]	W. Lipke, Connecting earned value to the schedule, Measurable News, Winter (2004) pp.
683		6–16. Accessed September 1 st , 2022:
684		https://www.researchgate.net/publication/298442585_Connecting_Earned_Value_to_the

685		_Schedule
686	[40]	H. Khamooshi, H. Golafshani, EDM: Earned Duration Management, a new approach to
687		schedule performance management and measurement, International Journal of Project
688		Management 32 (2014) pp. 1019–1041. https://doi.org/10.1016/j.ijproman.2013.11.002.
689	[41]	J. Batselier, M. Vanhoucke, Empirical Evaluation of Earned Value Management
690		Forecasting Accuracy for Time and Cost, Journal of Construction Engineering and
691		Management 141 (2015) 05015010. https://doi.org/10.1061/(ASCE)CO.1943-
692		7862.0001008.
693	[42]	P.A. de Andrade, M. Vanhoucke, Combining EDM and EVM: ap proposed simplification
694		for project time and cost management, Journal of Modern Project Management (2017)
695		pp. 94–106. https://doi.org/10.19255/JMPM01410.
696	[43]	F.T. Anbari, Earned value project management method and extensions, Project
697		Management Journal 34(4) (2003) pp. 12–23.
698		https://doi.org/10.1177/875697280303400403.
699	[44]	D.S. Jacob, Forecasting project schedule completion with earned value metrics,
700		Measurable News 1 (2003) pp. 7–9. No longer available online.
701	[45]	W. Lipke, Schedule Adherence and Rework, PM World Today. 13 (2011) pp. 1–13. Last
702		accessed September 1 st , 2022: https://pmworldlibrary.net/wp-
703		content/uploads/2019/07/pmwj83-Jul2019-Lipke-Schedule-Adherence-and-Rework.pdf
704	[46]	H. Khamooshi, A. Abdi, Project Duration Forecasting Using Earned Duration
705		Management with Exponential Smoothing Techniques, Journal of Management in
706		Engineering 33 (2017) 04016032. https://doi.org/10.1061/(ASCE)ME.1943-
707		5479.0000475.
708	[47]	J. Batselier, M. Vanhoucke, Improving project forecast accuracy by integrating earned
709		value management with exponential smoothing and reference class forecasting,
710		International Journal of Project Management 35 (2017) pp. 28-43.
711		https://doi.org/10.1016/j.ijproman.2016.10.003.
712	[48]	J. Batselier, M. Vanhoucke, Evaluation of deterministic state-of-the-art forecasting
713		approaches for project duration based on earned value management, International Journal
714		of Project Management 33 (2015) pp. 1588–1596.
715		https://doi.org/10.1016/j.ijproman.2015.04.003.
716	[49]	R. Elshaer, Impact of sensitivity information on the prediction of project's duration using
717		earned schedule method, International Journal of Project management 31 (2013) pp. 579-
718		588. https://doi.org/10.1016/J.IJPROMAN.2012.10.006.
719	[50]	A. O. Föppl Vorlesungen über Technische Mechanik. Dritter Band: Festigkeitslehre.
720		[Lectures on technical mechanics. Third volume: Strength of materials.], 10 th ed., B. G.
721		Teubner, Leipzig, Germany, (1927). ISBN: 0364480203
722	[51]	W. H. Macaulay, Note on the deflection of beams. <i>Messenger of Mathematics</i> 48(9)
723		(1919) pp. 129-130. <i>No DOI available</i> .
724	[52]	G. Lucko, Productivity Scheduling Method: Linear Schedule Analysis with Singularity
725		Functions. Journal of Construction Engineering and Management 135(4) (2009) pp. 246-
726		253. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:4(246).
727	[53]	F. T. Anbari, The earned schedule. Paper presented at PMI® Research and Education
728		Conference, Limerick, Munster, Ireland. Newtown Square, PA: Project Management
729		Institute, (2012).
730	[54]	G. Lucko, Integrating Efficient Resource Optimization and Linear Schedule Analysis

731		with Singularity Functions. Journal of Construction Engineering and Management 137(1)
732		(2011) pp. 45-55. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000244
733	[55]	A. M. Hamzeh, S. M. Mousavi, H. Gitinavard, Imprecise earned duration model for time
734		evaluation of construction projects with risk considerations, Automation in Construction
735		111 (2020) article 102993. https://doi.org/10.1016/j.autcon.2019.102993
736	[56]	C.P. Schimanski, N.L. Pradhan, D. Chaltsev, G.P. Monizza, D.T. Matt, Integrating BIM
737		with Lean Construction approach: Functional requirements and production management
738		software, Automation in Construction 132 (2021) article 103969.
739		https://doi.org/10.1016/j.autcon.2021.103969
740	[57]	M. Vanhoucke, Project Data. Website, Operations Research and Scheduling Research
741		Group, Ghent University, Belgium. Accessed 1st September 2022:
742		https://www.projectmanagement.ugent.be/research/data/realdata
743	[58]	P. Ballesteros-Pérez, Modelling the boundaries of project fast-tracking, Automation in
744		Construction 87 (2017) pp. 231-241. https://doi.org/10.1016/j.autcon.2017.09.006
745	[59]	P. Ballesteros-Pérez, Mª.C. González-Cruz, J.P. Pastor-Ferrrando, M. Fernández-Diego,
746		The iso-Score Curve Graph. A new tool for competitive bidding, Automation in
747		Construction 22 (2012) pp. 481–490. https://doi.org/10.1016/j.autcon.2011.11.007
748		

749 Appendix Part 1: Development Example

750 Appendix 1-A.1: Activity Planned Value

Activity	PC	PS	PD	Ratio	Output							
Α	\$210	0	2d	\$210/2d	$y(x)_{\rm PV_A} = \$105/1d \cdot [\langle x-0 \rangle^1 - \langle x-2 \rangle^1]$							
В	\$360	2	3d	\$360/3d	$y(x)_{\rm PV_B} = \$120/1d \cdot [\langle x-2 \rangle^1 - \langle x-5 \rangle^1]$							
С	\$345	2	3d	\$345/3d	$y(x)_{\text{PV}_{\text{C}}} = \$115/1\text{d} \cdot [\langle x-2 \rangle^1 - \langle x-5 \rangle^1]$							
D	\$300	5	4d	\$300/4d	$y(x)_{\rm PV_D} = \$75/1d \cdot [\langle x-5 \rangle^1 - \langle x-9 \rangle^1]$							

751 752

Appendix 1-A.2: Planned Cash Flow

FF													
Planned	A	\overline{AT}								PD			
Activity	PD	РС	0	1	2	3	4	5	6	7	8	9	10
Α	2d	\$210	0	105	105								
В	3d	\$360				120	120	120					
С	3d	\$345				115	115	115					
D	4d	\$300							75	75	75	75	
Planned Cas	h Flov	v (PCF)	0	105	105	235	235	235	75	75	75	75	0
PV (cun	nulativ	ve PCF)	0	105	210	445	680	915	990	1065	1140	1215	1215
												BAC	

753 754

Appendix 1-B.1: Activity Actual Cost

Activity	AC	AD	AS	Output
Α	\$210	3d	0	$y(x)_{AC_A} = \$210/3d \cdot [\langle x-0 \rangle^1 - \langle x-3 \rangle^1]$
В	\$390	3d	3	$y(x)_{AC_B} = \$390/3d \cdot [\langle x-3 \rangle^1 - \langle x-6 \rangle^1]$
С	\$300	4d	3	$y(x)_{AC_C} = \$300/4d \cdot [\langle x-3 \rangle^1 - \langle x-7 \rangle^1]$
D	\$240	3d	7	$y(x)_{\text{AC}_{\text{D}}} = \$240/3\text{d} \cdot [\langle x-7 \rangle^1 - \langle x-10 \rangle^1]$

755 756

Appendix 1-B.2: Actual Cash Flow

Actual	A	$AT \rightarrow$									RD		
Activity	AD	AC	0	1	2	3	4	5	6	7	8	9	10
Α	3d	\$210	0	70	70	70							
В	3d	\$390					130	130	130				
С	4d	\$300					75	75	75	75			
D	3d	\$240									80	80	80
Actual Cash	0	70	70	70	205	205	205	75	80	80	80		
AC (cum	0	70	140	210	415	620	825	900	980	1060	1140		
													RAC

757 758

Appendix 1-C: Activity Actual Percent Table

	-				· · · · ·						
Activity	0	1	2	3	4	5	6	7	8	9	10
Α		1/3	2/3	1	1	1	1	1	1	1	1
В					1/3	2/3	1	1	1	1	1
С					1/4	2/4	3/4	1	1	1	1
D									1/3	2/3	1

760 Appendix 1-D: Activity Actual Percent Differences Table

Activity	0	1	2	3	4	5	6	7	8	9	10
Α	1/3	•		-1/3							
В				1/3			-1/3				
С				1/4				-1/4			
D								1/3			-1/3

Appendix 1-E.1: Activity Actual Percent and Earned Value

Activity	Actual Percent (AP)	PC	Earned Value (EV)
Α	$y(x)_{AP_A} = \frac{1}{3}/d \cdot \langle x \cdot 0 \rangle^1 - \frac{1}{3}/d \cdot \langle x \cdot 3 \rangle^1$	\$210	$y(x)_{\text{EV}_1} = \$70/d \cdot \langle x - 0 \rangle^1 - 70/d \cdot \langle x - 3 \rangle^1$
В	$y(x)_{\text{AP}_{B}} = \frac{1}{3}/d \cdot \langle x-3 \rangle^{1} - \frac{1}{3}/d \cdot \langle x-6 \rangle^{1}$	\$360	$y(x)_{\text{EV}_2} = \$120/\text{d} \cdot \langle x-3 \rangle^1 - \$120/\text{d} \cdot \langle x-6 \rangle^1$
С	$y(x)_{\text{AP}_{\text{C}}} = \frac{1}{4} d \cdot \langle x-3 \rangle^1 - \frac{1}{4} d \cdot \langle x-7 \rangle^1$	\$345	$y(x)_{\text{EV}_3} = \$86.25/\text{d} \cdot \langle x-3 \rangle^1 - \$86.25/\text{d} \cdot \langle x-7 \rangle^1$
D	$y(x)_{AP_D} = \frac{1}{3}/d \cdot \langle x-7 \rangle^1 - \frac{1}{3}/d \cdot \langle x-10 \rangle^1$	\$300	$y(x)_{\text{EV}_4} = \$100/\text{d} \cdot \langle x-7 \rangle^1 - \$100/\text{d} \cdot \langle x-10 \rangle^1$

Appendix 1-E.2: Earned Value Table

			A	T—	>								
Activity	AD	PC	0	1	2	3	4	5	6	7	8	9	10
Α	3d	\$210	0	70	140	210	210	210	210	210	210	210	210
В	3d	\$360					120	240	360	360	360	360	360
С	4d	\$345					86.25	172.50	258.75	345	345	345	345
D	3d	\$300									100	200	300
Sum	N/A	EV	0	70	140	210	416.25	622.5	828.75	915	1015	1115	1215

Appendix 1-F.1: Differences for Transposition (Planned Value)

Time Cutoff	0d	Σ	2d	Σ	5d	Σ	9d	Σ
Slope Change	+\$105/d		+\$130d		-\$160/d		-\$75/d	
Total Slope		\$105/d		\$235/d		\$75/d		0
Cost Cutoff	\$0		\$210		\$915		\$1215	
Inverted Slope		1d/\$105		1d/\$235		1d/\$75		0
	+1d/\$105		+1/235-1/105		1/75-1/235		-1d/\$75	
Slope Change			= -130/24675		= 160/17625			
			= -26d/\$4935		= 32d/\$3525			

Non-Cumulative, Cumulative

 $x(y)_{PV_project} = 1d/\$105 \cdot \langle y-\$0 \rangle^1 - 26d/\$4935 \cdot \langle y-\$210 \rangle^1 + 32d/\$3525 \cdot \langle y-\$915 \rangle^1 - 1d/\$75 \cdot \langle y-769$ $\$1215 \rangle^1$

771 Appendix 1-F.2: Differences for Transposition (Earned Value)

Time Cutoff	0d	Σ	3d	Σ	6d	Σ	7d	Σ	10d	Σ
Slope Change	+\$70/d		+\$136.25/d		-\$120/d		+\$13.75/d		-\$100/d	
Total Slope		\$70/d		\$206.25/d		\$86.25/d		\$100/d		0
Cost Cutoff	\$0		\$210		\$828.75		\$915		\$1215	
Inverted Slope		1d/\$70		1d/\$206.25 = 4d/\$825		1d/\$86.25 = 4d/\$345		1d/\$100		0

Slana +	-1d/\$70	+4/825-1/70	+4/345-4/825	+1/100-1/86.25	-1d/\$100
Change		= -545/57750	= 1920/284625	= -13.75/8625	
Change		= -109d/\$11550	= 128d/\$18975	= -11d/\$6900	

Non-Cumulative, *Cumulative*

 $x(y)_{\text{EV_project}} = \frac{1d}{970} \cdot \frac{y}{90}^{1} - \frac{109d}{11550} \cdot \frac{y}{90}^{1} + \frac{128d}{18975} \cdot \frac{y}{900}^{1} - \frac{109d}{1000} + \frac{1000}{1000} + \frac{1000}{$ 773

774 $11d/\$6900 \cdot \langle v-\$915 \rangle^1 - 1d/\$100 \cdot \langle v-\$1215 \rangle^1$

775

776 Appendix 1-G: Earned Schedule Derivation

Get rises $z_i(y_i)$ from transposed difference $z(y) = x(y)_{\text{EV}_{\text{project}}} - x(y)_{\text{PV}_{\text{project}}} = 1d/\$210 \cdot \langle y-\$0 \rangle^1$ -777 $2263d/\$542850 \cdot \langle y-\$210 \rangle^{1} + 128d/\$18975 \cdot \langle y-\$828.75 \rangle^{1} - 3461d/\$324300 \cdot \langle y-\$915 \rangle^{1} + 128d/\$18975 \cdot \langle y-\$828.75 \rangle^{1} - 3461d/\$324300 \cdot \langle y-\$915 \rangle^{1} + 128d/\$18975 \cdot \langle y-\$828.75 \rangle^{1} + 128d/\$1895 \cdot \langle y-\$888.75 \rangle^{1} + 128d/\$1895 \cdot \langle y-888.75 \rangle^{1} + 128d/\$186 \cdot \langle y-8885 \rangle^{1} + 128d/\$186 \cdot \langle y-8885$ 778 779 $1d/\$300 \cdot \langle y-\$1215 \rangle^{1}$

Evaluate it at each cutoff to get its absolute height z there in days. And evaluate $x(y)_{EV}$ project at 780 781 any y_i-cutoffs from both EV and PV as new cutoffs for $z(x)_{ES_{project}}$

yi	$z_i(y_i)$	x(yi)EV_project
\$0	0d	Od
\$210	1d	210/70 = 3d
\$828.75	221/56 - 6789/2632	663/56 - 327/56
	$= 257/188 \approx 1.3670 d$	= 6d
\$915	61/14 - 2263/770 + 32/55	183/14 - 5123/770 + 32/55
	= 1540/770 = 2d	= 5390/770 = 7d
\$1215	81/14 - 151621/36190 + 3296/1265	243/14 - 7303/770 + 3296/1265
	-3461/1081 = 832370/832370 = 1d	- 11/23 = 7700/770 = 10d

782

783 Determine runs $\Delta x(y_i)$ as distances between new cutoffs and compose updated slopes

Cutoff	Run	Verticals	Rise	Slope	ΔSlope	Diagonal	New Slope
$x(y_i)_{EV_project}$	$\Delta x(y_i)_{\mathrm{EV_project}}$	$z_i(y_i)$ $\Delta z(y_i)$		Rise/Run	$y(x_i)_{SV(t)}$	Linear	$z(x_i)_{\rm ES}$
0d	+3d	0d	+1d	1/3d/d	+1/3d/d	1d/d	2/3d/d
3d	+3d	1d	+69/188d	23/188d/d	-119/564d/d	1d/d	119/564d/d
6d	+1d	257/188d	+119/188d	119/188d/d	+24/47d/d	1d/d	-24/47d/d
7d	+3d	2d	-1d	-1/3d/d	-545/564d/d	1d/d	545/564d/d
10d	N/A	1d	N/A	0d/d	1/3d/d	1d/d	-1/3d/d
Checksum	10d	N/A	1d	N/A	0d/d	N/A	1d/d

This gives schedule variance in time units $y(x)_{SV(t)} = 1/3 \cdot \langle x-0 \rangle^1 - 119/564 \cdot \langle x-3d \rangle^1 + 24/47 \cdot \langle x-3d \rangle^2 + 24/47 \cdot \langle x-3$ 784

 $(6d)^{1} - 545/564 \cdot (x-7d)^{1} + 1/3 \cdot (x-10d)^{1}$ 785

Write $z(x)_{\text{ES}}$ as diagonal $1d/1d \cdot \langle x \cdot 0d \rangle^1$ minus $y(x)_{\text{SV(t)}}$ as earned schedule $z(x)_{\text{ES}} = 2/3 \cdot \langle x \cdot 0d \rangle^1 + 1$ 786 $119/564 \cdot \langle x-3d \rangle^1 - 24/47 \cdot \langle x-6d \rangle^1 + 545/564 \cdot \langle x-7d \rangle^1 - 1/3 \cdot \langle x-10d \rangle^1$ 787

AT	0	1	2	3	4	5	6	7	8	9	10
FS	Δ	2/3 ≈	4/3 ≈	2	1623/564 ≈	2118/564 ≈	2613/564 ≈	5	19/3 ≈	23/3 ≈	0
ES	U	0.67	1.33	2	2.88	3.76	4.63	5	6.33	7.67	9

Appendix 1-H.1: Activity	Earned Schedule	Minimum T	able (AP < 100%)

Activity	PES	PLS	PD	AD	0	1	2	3	4	5	6	7	8	9	10
Α	0	0	2d	3d	0	2/3	4/3								
B	2	2	3d	3d	2	2	2	2	3	4					
С	2	2	3d	4d	2	2	2	2	11/4	14/4	17/4				
D	5	5	4d	3d	5	5	5	5	5	5	5	15/3	19/3	23/3	
Minimum	N/A	N/A	N/A	N/A	0	0.67	1.33	2	2.75	3.5	4.25	5	6.33	7.67	

Minima are **bold**. Asterisk is excluded value.

792 Appendix 1-H.2: Activity Earned Schedule Maximum Table (AP > 0%)

пррепии 1	-11.2.	Асш	ruy E	an ne	ur	JUNE	inie I	v I U	літи	<i>m</i> 10	1010 (1		/0	/0/	
Activity	PES	PLS	PD	AD	0	1	2	3	4	5	6	7	8	9	10
Α	0	0	2d	3d		2/3	4/3	2	2	2	2	2	2	2	2
В	2	2	3d	3d			•		3	4	5	5	5	5	5
С	2	2	3d	4d			•		11/4	14/4	17/4	5	5	5	5
D	5	5	4d	3d			•				•		19/3	23/3	27/3
Maximum	N/A	N/A	N/A	N/A		0.67	1.33	2	3	4	5	5	6.33	7.67	9
Maxima are bold . Asterisk is excluded value.															

Appendix 1-I.1: Activity Earned Schedule Minimum

Activity	Output
Α	$z(x)_{\text{ES}_{A}_{\min}} = [1 - \langle 0 - \frac{1}{3}/d \cdot \langle x - 0 \rangle^{1} + \frac{1}{3}/d \cdot \langle x - 3 \rangle^{1} - 1 \rangle^{0}]_{\min} \cdot [0 + \frac{2}{3}/d \cdot \langle x - 0 \rangle^{1} - \frac{2}{3}/d \cdot \langle x - 3 \rangle^{1}]$
В	$z(x)_{\text{ES}_B_\min} = [1 - \langle 0 - \frac{1}{3}/d \cdot \langle x - 3 \rangle^1 + \frac{1}{3}/d \cdot \langle x - 6 \rangle^1 - 1 \rangle^0]_{\min} \cdot [2 + \frac{1}{d} \cdot \langle x - 3 \rangle^1 - \frac{1}{d} \cdot \langle x - 6 \rangle^1]$
С	$z(x)_{\text{ES}_{\text{C}_{\min}}} = [1 - \langle 0 - \frac{1}{4}/d \cdot \langle x - 3 \rangle^1 + \frac{1}{4}/d \cdot \langle x - 7 \rangle^1 - 1 \rangle^0]_{\min} \cdot [2 + \frac{3}{4}/d \cdot \langle x - 3 \rangle^1 - \frac{3}{4}/d \cdot \langle x - 7 \rangle^1]$
D	$z(x)_{\text{ES}_\text{D}_\text{min}} = [1 - \langle 0 - \frac{1}{3}/d \cdot \langle x - 7 \rangle^1 + \frac{1}{3}/d \cdot \langle x - 10 \rangle^1 - 1 \rangle^0]_{\text{min}} \cdot [5 + \frac{4}{3}/d \cdot \langle x - 7 \rangle^1 - \frac{4}{3}/d \cdot \langle x - 10 \rangle^1]$

Appendix 1-I.2: Activity Earned Schedule Maximum

Activity	Output
Α	$z(x)_{\text{ES}_{A_{\text{max}}}} = [1 - \langle \frac{1}{3}/d \cdot \langle x - 0 \rangle^1 - \frac{1}{3}/d \cdot \langle x - 3 \rangle^1 \rangle^0]_{\text{min}} \cdot [0 + \frac{2}{3}/d \cdot \langle x - 0 \rangle^1 - \frac{2}{3}/d \cdot \langle x - 3 \rangle^1]$
В	$z(x)_{\text{ES}_{B}_{\text{max}}} = [1 - \langle \frac{1}{3}/d \cdot \langle x-3 \rangle^1 - \frac{1}{3}/d \cdot \langle x-6 \rangle^1 \rangle^0]_{\text{min}} \cdot [2 + 1/d \cdot \langle x-3 \rangle^1 - 1/d \cdot \langle x-6 \rangle^1]$
С	$z(x)_{\text{ES}_{\text{C}_{\text{max}}}} = [1 - \langle \frac{1}{4}/d \cdot \langle x-3 \rangle^1 - \frac{1}{4}/d \cdot \langle x-7 \rangle^1 \rangle^0]_{\text{min}} \cdot [2 + \frac{3}{4}/d \cdot \langle x-3 \rangle^1 - \frac{3}{4}/d \cdot \langle x-7 \rangle^1]$
D	$z(x)_{\text{ES}_{\text{D}_{\text{max}}}} = [1 - \langle \frac{1}{3}/d \cdot \langle x - 7 \rangle^1 - \frac{1}{3}/d \cdot \langle x - 10 \rangle^1 \rangle^0]_{\text{min}} \cdot [5 + \frac{4}{3}/d \cdot \langle x - 7 \rangle^1 - \frac{4}{3}/d \cdot \langle x - 10 \rangle^1]$

799 Appendix 1-J: Variances and Indices

Index	Unit	0	1	2	3	4	5	6	7	8	9	10
SV	\$	0	35	70	235	263.75	292.50	161.25	150	125	1000	0
SV(t)	d	0	-1/3 ≈ - 0.33	-2/3 ≈ -0.67	-1	-211/188 ≈ -1.12	-117/94 ≈ -1.24	-257/188 ≈ -1.37	-2	-5/3 ≈ - 1.67	-4/3 ≈ -1.33	-1
CV	\$	0	0	0	0	1.25	2.50	3.75	15	35	55	75
SPI	-	1	2/3 ≈ 0.67	2/3 ≈ 0.67	42/89 ≈ 0.47	333/544 ≈ 0.61	83/122 ≈ 0.68	$221/264 \approx 0.84$	61/71 ≈ 0.86	203/228 ≈ 0.89	223/243 ≈ 0.92	1
SPI(t)	-	1	2/3 ≈ 0.67	2/3 ≈ 0.67	2/3 ≈ 0.67	$541/752 \approx 0.72$	353/470 ≈ 0.75	871/1128 ≈ 0.77	$5/7 \approx 0.71$	19/24 ≈ 0.79	23/27 ≈ 0.85	9/10
CPI	-	1	1	1	1	333/332 ≈ 1.00	249/248 ≈ 1.00	$221/220\approx 1.00$	61/60 ≈ 1.02	29/28 ≈ 1.04	223/212 ≈ 1.05	81/76 ≈ 1.07
CSI	-	1	2/3 ≈ 0.67	2/3 ≈ 0.67	42/89 ≈ 0.47	110889/180608 ≈ 0.61	20667/30256 ≈ 0.68	$48841/58080 \approx 0.84$	3721/4260 ≈ 0.87	841/912 ≈ 0.92	49729/5151 $6 \approx 0.96$	81/76 ≈ 1.07
CSI(t)	-	1	2/3 ≈ 0.67	2/3 ≈ 0.67	2/3 ≈ 0.67	180153/249664 ≈ 0.72	87897/116560 ≈ 0.75	$\begin{array}{c} 192491/248160 \\ \approx 0.78 \end{array}$	61/84 ≈ 0.73	551/672 ≈ 0.82	5129/5724 ≈ 0.90	$\begin{array}{l} 729/760\\ \approx 0.96 \end{array}$
Percent Complete	%	0	5.76%	11.52%	17.28%	34.26%	51.23%	68.21%	75.31%	83.54%	91.77%	100%
Percent Money Spent	%	0	5.76%	11.52%	17.28%	34.16%	51.03%	67.90%	74.07%	80.66%	87.24%	93.83%

Appendix 1-K: Forecasts

Index	Unit	0	1	2	3	4	5	6	7	8	9	10
EAC(\$)PF=1_project	\$	1215	1215	1215	1215	1213.75	1212.5	1211.25	1200	1180	1160	1140
EAC(\$) _{PF=CPI_project}	\$	1215	1215	1215	1215	1211.35	1210.12	1209.50	1195.08	1173.10	1155.07	1140
EAC(\$)PF=SPI_project	\$	1215	1787.5	1752.5	2339.64	1719.86	1490.90	1286.40	1249.18	1204.63	1168.97	1140
EAC(\$) _{PF=SPI(t)_project}	\$	1215	1787.5	1752.5	1717.50	1525.28	1408.88	1325.22	1320.00	1232.63	1177.39	1140
EAC(\$) _{PF=CSI_project}	\$	1215	1787.5	1752.5	2339.64	1715.95	1487.41	1284.31	1243.46	1196.88	1163.59	1140
EAC(\$) _{PF=CSI(t)_project}	\$	1215	1787.5	1752.5	1717.50	1521.94	1405.71	1322.95	1313.11	1223.92	1171.60	1140
$EAC(t) (x)_{PV1_project}$	d	9	9.26	9.52	10.74	10.95	11.17	10.19	10.11	9.93	9.74	9
$EAC(t) (x)_{PV2_project}$	d	9	13.50	13.50	19.07	14.70	13.23	10.75	10.48	10.11	9.81	9
$EAC(t) (x)_{PV3_project}$	d	9	13.50	13.50	19.07	14.66	13.18	10.70	10.30	9.76	9.32	8.44
$EAC(t) (x)_{ED1_project}$	d	9	9.33	9.67	10.58	10.55	10.60	9.98	9.99	9.88	9.74	10
$EAC(t) (x)_{ED2_project}$	d	9	13.50	13.50	19.07	14.70	13.23	10.75	10.48	10.11	9.81	10
$EAC(t) (x)_{ED3_project}$	d	9	13.50	13.50	19.07	14.67	13.20	10.73	10.42	10.04	9.77	10
$EAC(t) (x)_{ES1_project}$	d	9	9.33	9.67	10.00	10.12	10.24	10.37	11.00	10.67	10.33	10

$EAC(t) (x)_{ES2_project}$	d	9	13.50	13.50	13.50	12.51	11.98	11.66	12.60	11.37	10.57	10
$EAC(t) (x)_{ES3_{project}}$	d	9	13.50	13.50	13.50	12.48	11.95	11.63	12.51	11.25	10.49	10

804

Appendix Part 2: Validation Example (Telecom Agnes)

Appendix 2-A: Activity Planned Value

Activity	РС	PS	PD	Ratio	Output
1	€2400	0	3d	€2400/3d	$y(x)_{\rm PV_1} = \pounds 800/1d \cdot [\langle x - 0d \rangle^1 - \langle x - 3d \rangle^1]$
2	€800	3	1d	€800/1d	$y(x)_{\rm PV_2} = \pounds 800/1d \cdot [\langle x-3d \rangle^1 - \langle x-4d \rangle^1]$
3	€440	4	1d	€440/1d	$y(x)_{\rm PV_3} = \pounds 440/1d \cdot [\langle x-4d \rangle^1 - \langle x-5d \rangle^1]$
4	€800	17	1d	€800/1d	$y(x)_{\rm PV_4} = \pounds 800/1d \cdot [\langle x-17d \rangle^1 - \langle x-18d \rangle^1]$
5	€1	4	0.125d	€8/1d	$y(x)_{\text{PV}_5} = \text{\&8/1d} \cdot [\langle x\text{-}4d \rangle^1 - \langle x\text{-}4.125d \rangle^1]$
6	€800	27	1d	€800/1d	$y(x)_{\rm PV_6} = \pounds 800/1 d \cdot [\langle x - 27d \rangle^1 - \langle x - 28d \rangle^1]$
7	€9886	4.125	0.5d	€19772/1d	$y(x)_{PV_7} = \notin 19772/1d \cdot [\langle x-4.125d \rangle^1 - \langle x-4.625d \rangle^1]$
8	€8827	5	1d	€8827/1d	$y(x)_{\rm PV_8} = \pounds 8827/1d \cdot [\langle x-5d \rangle^1 \cdot \langle x-6d \rangle^1]$
9	€20750	6	18d	€10375/9d	$y(x)_{\text{PV}_9} = \text{\textcircled{10375}/9d} \cdot [\langle x\text{-}6d \rangle^1 - \langle x\text{-}24d \rangle^1]$
10	€11012	9	8d	€11012/8d	$y(x)_{PV_{10}} = \pounds 1376.50/1d \cdot [\langle x-9d \rangle^1 - \langle x-17d \rangle^1]$
11	€6660	10	5d	€6660/5d	$y(x)_{\text{PV}_{11}} = \pounds 1332/1\text{d} \cdot [\langle x - 10\text{d} \rangle^1 - \langle x - 15\text{d} \rangle^1]$
12	€14027	24	5d	€14027/5d	$y(x)_{PV_{12}} = \pounds 2805.40/1d \cdot [\langle x - 24d \rangle^1 - \langle x - 29d \rangle^1]$
13	€4550	29	5d	€4550/5d	$y(x)_{\text{PV}_{13}} = \pounds 910/1\text{d} \cdot [\langle x - 29\text{d} \rangle^1 \cdot \langle x - 34\text{d} \rangle^1]$
14	€15825	17	5d	€15825/5d	$y(x)_{\rm PV_14} = \pounds 3165/1d \cdot [\langle x-17d \rangle^1 - \langle x-22d \rangle^1]$
15	€42642	22	15d	€42642/15d	$y(x)_{\text{PV}_{15}} = \pounds 2842.80/1\text{d} \cdot [\langle x-22d \rangle^1 - \langle x-37d \rangle^1]$
16	€29760	22	15d	€29760/15d	$y(x)_{\mathrm{PV}_{16}} = \pounds 1984/1\mathrm{d} \cdot [\langle x - 22\mathrm{d} \rangle^1 - \langle x - 37\mathrm{d} \rangle^1]$
17	€5881	37	2d	€5881/2d	$y(x)_{PV_{17}} = \pounds 2940.50/1d \cdot [\langle x-37d \rangle^1 - \langle x-39d \rangle^1]$
18	€1008	39	1d	€1008/1d	$y(x)_{\mathrm{PV}_{18}} = \underbrace{\epsilon_1 \overline{008/1d} \cdot \left[\langle x - 39d \rangle^1 - \langle x - 40d \rangle^1 \right]}_{1}$
19	€1280	40	2d	€1280/2d	$y(x)_{PV_{19}} = \pounds 640/1d \cdot \left[\langle x - 40d \rangle^1 \cdot \langle x - 42d \rangle^1 \right]$
20	€2336	40	2d	€2336/2d	$y(x)_{\text{PV}_{20}} = \text{\pounds}1168/1\text{d} \cdot [\langle x\text{-}40\text{d} \rangle^1 - \langle x\text{-}42\text{d} \rangle^1]$
21	€800	42	1d	€800/1d	$y(x)_{\text{PV}_{21}} = \underbrace{\in 800/1d \cdot \left[\langle x - 42d \rangle^1 \cdot \langle x - 43d \rangle^1 \right]}_{\text{VV}_{21}}$

805 806

Appendix 2-B: Activity Actual Cost

Activity	AC	AD	AS	Output
1	€2400	3d	0	$y(x)_{AC_1} = \pounds 800/1d \cdot [\langle x - 0d \rangle^1 - \langle x - 3d \rangle^1]$

Activity	AC	AD	AS	Output
2	€800	1d	3	$y(x)_{AC_2} = \pounds 800/1d \cdot [\langle x-3d \rangle^1 - \langle x-4d \rangle^1]$
3	€440	1d	4	$y(x)_{AC_3} = \pounds 440/1d \cdot [\langle x-4d \rangle^1 - \langle x-5d \rangle^1]$
4	€800	1d	17	$y(x)_{AC_4} = \text{\&}800/1d \cdot [\langle x-17d \rangle^1 - \langle x-18d \rangle^1]$
5	€1	0.125d	4	$y(x)_{AC_5} = \pounds 8/1d \cdot [\langle x-4d \rangle^1 - \langle x-4.125d \rangle^1]$
6	€800	1d	27	$y(x)_{AC_6} = \text{\&}800/1\text{d} \cdot [\langle x-27\text{d} \rangle^1 - \langle x-28\text{d} \rangle^1]$
7	€9886	0.5d	4.125	$y(x)_{AC_7} = \text{\ensuremath{\in}} 19772 \ /1d \cdot [\langle x - 4.125d \rangle^1 - \langle x - 4.625d \rangle^1]$
8	€8827	1d	5	$y(x)_{AC_8} = \text{\&8827/1d} \cdot [\langle x-5d \rangle^1 - \langle x-6d \rangle^1]$
9	€20750	18d	6	$y(x)_{AC_9} = \pounds 1152.78/1d \cdot [\langle x-6d \rangle^1 - \langle x-24d \rangle^1]$
10	€11012	8d	9	$y(x)_{AC_{10}} = \pounds 1376.50/1d \cdot [\langle x-9d \rangle^1 - \langle x-17d \rangle^1]$
11	€6660	5d	10	$y(x)_{AC_{11}} = \pounds 1332/1d \cdot [\langle x-10d \rangle^1 - \langle x-15d \rangle^1]$
12	€14027	5d	34	$y(x)_{AC_{12}} = \pounds 2805.46/1d \cdot [\langle x-34d \rangle^1 - \langle x-39d \rangle^1]$
13	€4550	5d	32	$y(x)_{AC_{13}} = \pounds 1990/1d \cdot \langle x-39d \rangle^1 - \pounds 1350/1d \cdot \langle x-40d \rangle^1 - \pounds 640/1d \cdot \langle x-44d \rangle^1$
14	€15825	5d	17	$y(x)_{AC_{14}} = \pounds 3165/1d \cdot [\langle x-17d \rangle^1 - \langle x-22d \rangle^1]$
15	€42642	15d	22	$y(x)_{AC_{15}} = \pounds 12709.80 \cdot \langle x-22d \rangle^1 - \pounds 11385/1d \cdot \langle x-24d \rangle^1 - \pounds 1324.8/1d \cdot \langle x-37d \rangle^1$
16	€29760	15d	22	$y(x)_{AC_{16}} = \pounds 6268.80 \cdot \langle x-22d \rangle^1 - \pounds 4944/1d \cdot \langle x-24d \rangle^1 - \pounds 1324.80/1d \cdot \langle x-37d \rangle^1$
17	€5881	2d	47	$y(x)_{AC_{17}} = \pounds 2940.50/1d \cdot [\langle x-47d \rangle^1 - \langle x-49d \rangle^1]$
18	€1008	1d	49	$y(x)_{AC_{18}} = \pounds 1008/1d \cdot [\langle x-49d \rangle^1 - \langle x-50d \rangle^1]$
19	€1280	2d	50	$y(x)_{AC_{19}} = \pounds 640/1d \cdot [\langle x-50d \rangle^1 - \langle x-52d \rangle^1]$
20	€2336	2d	50	$y(x)_{AC_{20}} = \pounds 1168/1d \cdot [\langle x-50d \rangle^1 - \langle x-52d \rangle^1]$
21	€800	1d	52	$y(x)_{AC 21} = \text{(800/1d)} [\langle x-52d \rangle^1 - \langle x-53d \rangle^1]$

Appendix 2-C: Activity Actual Percent Table

Activity	0	1	1	2	34	4.125	4.25	4.375	5 4.5	4.625	4.75	4.875	56	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	0	1/3	3 2/	/3	11	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				() 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3					0	1/8	2/8	3/8	4/8	5/8	6/8	7/8	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4																									1	1	1	1	1
6					0	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5																													
7						0	1/4	2/4	3/4	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8													01	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9													0	1/18	2/18	3/18	4/18	5/18	6/18	7/18	8/18	9/18	10/18	11/18	12/18	13/18	14/18	15/18	16/17

10 11 12											0	1/8 0	2/8 1/5	3/8 2/5	4/8 3/5	5/8 4/5	8 6 5	5/8 1	7/8 1		1 1	1 1		1 1		1 1	1 1		1 1	
12	_																													
14	_																				0	1/	5	2/5		3/5	4/	5	1	
15	_																				0	1/.	0	2,0		5,5	•,	0	0	
16																													0	
17																														
18																														
19																														
20																														
21																														
(Cont	inue	es)																												
23	24	25	26	27	28	29	30	31	32	33	34	3	5	36	37	38	39	40	41 4	1 2	43	44 4	54	6 47	7 48	49	50 5	51 5	2 53	;
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1 1	1 1	1	1	1	1 1	. 1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	ļ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	. 1	ļ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	. 1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	. 1	
				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	ļ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
17/18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
											0	1/	/5	2/5	3/5	4/5	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
																	0	1/5 2	2/5 3	8/5 4	1/5	1 1	1	1	1	1	1	1 1	1	ļ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	l 1	1	1	1	1 1	1	
13/200	13/100) 99/500	133/500	0 167/500	201/500	47/100	429/800	241/400	107/160	147/200	641/80	00 347	/400 7	47/800) 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	ļ
13/200	13/100) 99/500	133/500	0 167/500	201/500	47/100	429/800	241/400	107/160	147/200	641/80	00 347/	/400 7	47/800) 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	
																								0	1⁄2	1	1	1 1	1	
																										0	1	1 1	1	
																											0 1	/2 1	1	
																											0 1	/2 1	1	
																												() 1	ļ

 Appendix 2-D: Activity Actual Percent Differences Table

 Activity
 0
 12
 3
 4
 4.125
 4.375
 4.50
 4.625
 4.75
 4.875
 5
 6
 78
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

 1
 1/3
 .
 -1/3

1/1 -1/1		I
1/2	1/2	
1/2	1/2	
	1/1 -1/1	Ĺ

4 Appendix 2-E.1: Activity Actual Percent and Earned Value

Activity	Actual Percent (AP)	PC	Earned Value (EV)
1	$y(x)_{AP_{1}} = \frac{1}{3}/d \cdot [\langle x - 0 \rangle^{1} - \langle x - 3 \rangle^{1}]$	€2400	$y(x)_{\rm EV_1} = \pounds 800/d \cdot [\langle x - 0d \rangle^1 - \langle x - 3d \rangle^1]$
2	$y(x)_{AP_2} = \frac{1}{1} d \cdot [\langle x-3 \rangle^1 - \langle x-4 \rangle^1]$	€800	$y(x)_{\text{EV}_2} = \text{\&} 800/\text{d} \cdot [\langle x-3\text{d} \rangle^1 - \langle x-4\text{d} \rangle^1]$
3	$y(x)_{AP_3} = \frac{1}{8}/d \cdot [\langle x-4 \rangle^1 - \langle x-5 \rangle^1]$	€440	$y(x)_{\rm EV_3} = \pounds 440/d \cdot [\langle x-4d \rangle^1 - \langle x-5d \rangle^1]$
4	$y(x)_{AP_4} = \frac{1}{1} d \cdot [\langle x - 17 \rangle^1 - \langle x - 18 \rangle^1]$	€800	$y(x)_{\rm EV_4} = \pounds 800/d \cdot [\langle x - 17d \rangle^1 - \langle x - 18d \rangle^1]$
6	$y(x)_{AP_6} = \frac{1}{1} d \cdot [\langle x-4 \rangle^1 - \langle x-4.125 \rangle^1]$	€1	$y(x)_{\rm EV_6} = \in 8/d \cdot [\langle x-4d \rangle^1 - \langle x-4.125d \rangle^1]$
5	$y(x)_{AP_5} = \frac{1}{1} d \cdot [\langle x - 27 \rangle^1 - \langle x - 28 \rangle^1]$	€800	$y(x)_{\rm EV_5} = \pounds 800/d \cdot [\langle x - 27d \rangle^1 - \langle x - 28d \rangle^1]$
7	$y(x)_{AP_7} = \frac{1}{4} d \cdot [\langle x-4.125 \rangle^1 - \langle x-4.625 \rangle^1]$	€9886	$y(x)_{EV_7} = \pounds 19772/d \cdot [\langle x - 4.125d \rangle^1 - \langle x - 4.625d \rangle^1]$
8	$y(x)_{AP_{-8}} = \frac{1}{1}/d \cdot [\langle x-5 \rangle^1 - \langle x-6 \rangle^1]$	€8827	$y(x)_{\rm EV_8} = \text{\ensuremath{\in}} 8827/\text{\ensuremath{d}} \cdot [\langle x-5\text{\ensuremath{d}} \rangle^1 - \langle x-6\text{\ensuremath{d}} \rangle^1]$
9	$y(x)_{AP_9} = \frac{1}{18}/d \cdot [\langle x-6 \rangle^1 - \langle x-24 \rangle^1]$	€20750	$y(x)_{\text{EV}_9} = \pounds 1152.78/\text{d} \cdot [\langle x - 6\text{d} \rangle^1 - \langle x - 24\text{d} \rangle^1]$
10	$y(x)_{AP_{-10}} = \frac{1}{8}/d \cdot [\langle x-9 \rangle^1 - \langle x-17 \rangle^1]$	€11012	$y(x)_{EV_{10}} = \pounds 1376.50/d \cdot [\langle x-9d \rangle^1 - \langle x-17d \rangle^1]$
11	$y(x)_{AP_{11}} = \frac{1}{5} d \cdot [\langle x - 10 \rangle^1 - \langle x - 15 \rangle^1]$	€6660	$y(x)_{\text{EV}_11} = \pounds 1332/\text{d} \cdot [\langle x-10d \rangle^1 - \langle x-15d \rangle^1]$
12	$y(x)_{AP_{12}} = \frac{1}{5} d \cdot [\langle x - 34 \rangle^1 - \langle x - 39 \rangle^1]$	€14027	$y(x)_{EV_{12}} = \pounds 2805.40/d \cdot [\langle x - 34d \rangle^1 - \langle x - 39d \rangle^1]$
13	$y(x)_{AP_{13}} = \frac{1}{5} d \cdot [\langle x - 39 \rangle^1 - \langle x - 44 \rangle^1]$	€4550	$y(x)_{\text{EV}_{13}} = \pounds 1990/\text{d} \cdot \langle x - 39\text{d} \rangle^1 - \pounds 1350/\text{d} \cdot \langle x - 40\text{d} \rangle^1 -$
			$\in 640/d \cdot \langle x-44d \rangle^1$
14	$y(x)_{AP_{14}} = \frac{1}{5} d \cdot [\langle x - 17 \rangle^1 - \langle x - 22 \rangle^1]$	€15825	$y(x)_{\text{EV}_{14}} = \text{€}3165/\text{d} \cdot [\langle x-17\text{d} \rangle^1 - \langle x-22\text{d} \rangle^1]$
15	$y(x)_{AP_{15}} = \frac{13}{200}/d \cdot \langle x-22 \rangle^1 + \frac{3}{1000}/d \cdot \langle x-24 \rangle^1 - \frac{7}{4000}/d \cdot$	€42642	$y(x)_{EV_{15}} = \pounds 12709.80/d \cdot \langle x-22d \rangle^1 - \pounds 11385/d \cdot \langle x-24d \rangle^1 - $
	$\langle x-28 \rangle^1 - \frac{53}{800}/d \cdot \langle x-37 \rangle^1$		$\in 1324.80/d \cdot \langle x-37d \rangle^1$
16	$y(x)_{AP_{16}} = \frac{13}{200}/d \cdot \langle x-22 \rangle^1 + \frac{3}{1000}/d \cdot \langle x-24 \rangle^1 - \frac{7}{4000}/d \cdot$	€29760	$y(x)_{EV_{16}} = \pounds 6268.80/d \cdot \langle x - 22d \rangle^1 - \pounds 4944/d \cdot \langle x - 24d \rangle^1 -$
	$\langle x-28 \rangle^1 - \frac{53}{800}/d \cdot \langle x-37 \rangle^1$		$\in 1324.80/\mathrm{d} \cdot \langle x\text{-}37\mathrm{d} \rangle^1$
17	$y(x)_{AP_{17}} = \frac{1}{2} d \cdot [\langle x - 47 \rangle^1 - \langle x - 49 \rangle^1]$	€5881	$y(x)_{\rm EV_{17}} = \pounds 2940.50/d \cdot [\langle x-47d \rangle^1 - \langle x-49d \rangle^1]$
18	$y(x)_{AP_{18}} = \frac{1}{1} d \cdot [\langle x - 49 \rangle^1 - \langle x - 50 \rangle^1]$	€1008	$y(x)_{\rm EV_{18}} = \pounds 1008/d \cdot [\langle x-49d \rangle^1 - \langle x-50d \rangle^1]$
19	$y(x)_{AP_{19}} = \frac{1}{2} d \cdot [\langle x-50 \rangle^1 - \langle x-52 \rangle^1]$	€1280	$y(x)_{\text{EV}_19} = \pounds 640/d \cdot [\langle x-50d \rangle^1 - \langle x-52d \rangle^1]$
20	$y(x)_{AP_{20}} = \frac{1}{2} d \cdot [\langle x-50 \rangle^1 - \langle x-52 \rangle^1]$	€2336	$y(x)_{\text{EV}_{20}} = \pounds 1168/d \cdot [\langle x-50d \rangle^1 - \langle x-52d \rangle^1]$
21	$y(x)_{AP_{21}} = \frac{1}{1} \sqrt{d \cdot [\langle x - 52 \rangle^1 - \langle x - 53 \rangle^1]}$	€800	$y(x)_{\text{EV}_{21}} = \text{\&800/d} \cdot [\langle x-52d \rangle^1 - \langle x-53d \rangle^1]$

816 Appendix 2-E.2: Earned Value Table

800 800

440 440

440 440

Acuvity0	J I Z	3 4	4.125 4.	4.3/5	4.50 4	.02514.	13 14 3/5			_										-	19
1	000 1 000	2400 2400	2400	100 2400	2400	2400 2	400 2400	3 0	2400	0	9	10	2400	2400	13	2400	13 10	00 0	100	2400	2400
2	800 1600	2400 2400	2400 1	2400 2400	2400	2400 24	400 2400	2400 240	0 2400	2400	2400	0 2400	2400	2400	2400	2400 .	2400 24	-00 24	+UU .	2400	2400
2		800) 800 55	800 800	800	800	800 800	800 80	0 800	800	800	0 800	800	800	800	800	800 8	40	500	800	800
3			55	110 165	220	275	330 385	440 44	0 440	440	44(0 440	440	440	440	440	440 4	40 4	140	440	44(
4				1 1	1	1	1 1	1	1 1	1		1 1	1	1	1	1	1	1	1	800	80
0			1	1 1	1	1	1 1	1	1 1	1		1 1	1	1	1	1	1	1	1	1	
5																					
7			0247	1.50 4943	7414.50	9886 9	886 9886	9886 988	6 9886	9886	9886	6 9886	9886	9886	9886	9886	9886 98	86 9	386	9886	988
8								882	7 8827	8827	8827	7 8827	8827	8827	8827	8827	8827 88	27 8	327	8827	882
9									0 1152.78	2305.56	3458.33	3 4611.11	5763.89	6916.67	8069.44	9222.22 1	0375 11527	78 12680	.56 1383	3.33 149	986.1
10											(0 1376.50	2753	4129.50	5506	6882.50	8259 9635	50 110	012 1	1012	1101
11												0	1332	2664	3996	5328	5660 60	60 6	560	6660	666
12																					
13																					
14																			0	3165	633
15																					
16																					
17																					
18																					
19																					
20																					
21																					
			2256570	2 50 8300	10835 50 1	3362 13	417 13472	13527 2235	423506.78	24659.56	25812.33	3 28341.61	32202.89	36064.173	9925.444	3786.724	7648 50177	28 52706	.56 5782	4.33 621	142.1
EV 0	800 1600	2400 3200	3230378	2.50 8509	10655.501	0000 10															
EV 0 (Cont	1600 1600 1600	2400 3200	1 3230578	2.50 8509	10855.50	000210															
EV 0 (Cont 21	1600 1600 tinues)	2400 3200 23	24	2.50 8509	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
EV 0 (Cont 21 2400	2800 1600 1600 1600 1600 1600 1600 1600 16	2400 3200 23 2400	24 2400	25 2400	26 2400	27 2400	28 2400	29 2400	30 2400	31 2400	32 2400	33 2400	34 2400	35 2400	36 2400	37 2400	38 2400	39 2400	40 2400	41 2400	4 2 24(
EV 0 (Cont 21 2400 800	22 2400 800 1600 20 2400 800	23 2400 23 2400 800	24 2400 800	25 2400 800	26 2400 800	27 2400 800	28 2400 800	29 2400 800	30 2400 800	31 2400 800	32 2400 800	33 2400 800	34 2400 800	35 2400 800	36 2400 800	37 2400 800	38 2400 800	39 2400 800	40 2400 800	41 2400 800	42 240 80
EV 0 (Cont 21 2400 800 440	2400 800 22 2400 800 440	23 23 2400 2400 800 440	24 2400 800 440	25 2400 800 440	26 2400 800 440	27 2400 800 440	28 2400 800 440	29 2400 800 440	30 2400 800 440	31 2400 800 440	32 2400 800 440	33 2400 800 440	34 2400 800 440	35 2400 800 440	36 2400 800 440	37 2400 800 440	38 2400 800 440	39 2400 800 440	40 2400 800 440	41 2400 800 440	4 240 80 44
EV 0 (Cont 21 2400 800 440 800	2400 800 22 2400 800 440 800	23 23 2400 800 440 800	24 2400 800 440 800	25 2400 800 440 800	26 2400 800 440 800	27 2400 800 440 800	28 2400 800 440 800	29 2400 800 440 800	30 2400 800 440 800	31 2400 800 440 800	32 2400 800 440 800	33 2400 800 440 800	34 2400 800 440 800	35 2400 800 440 800	36 2400 800 440 800	37 2400 800 440 800	38 2400 800 440 800	39 2400 800 440 800	40 2400 800 440 800	41 2400 800 440 800	4 240 80 44 80
ZI EV 0 EV 0 0 0 (Cont 2400 800 440 800 440 800 1	2400 800 22 2400 800 440 800 1	2400 3200 23 2400 800 440 800 1	24 2400 800 440 800 1	25 2400 800 440 800 1	26 2400 800 440 800 1	27 2400 800 440 800 1	28 2400 800 440 800 1	29 2400 800 440 800 1	30 2400 800 440 800 1	31 2400 800 440 800 1	32 2400 800 440 800 1	33 2400 800 440 800 1	34 2400 800 440 800 1	35 2400 800 440 800 1	36 2400 800 440 800 1	37 2400 800 440 800 1	38 2400 800 440 800 1	39 2400 800 440 800 1	40 2400 800 440 800 1	41 2400 800 440 800 1	4 2 240 80 44 80 1
EV 0 (Cont 21 2400 800 440 800 1	2400 2400 800 440 800 1	23 2400 23 2400 800 440 800 1	24 2400 800 440 800 1	25 2400 800 440 800 1	26 2400 800 440 800 1	27 2400 800 440 800 1	28 2400 800 440 800 1 800	29 2400 800 440 800 1 800	30 2400 800 440 800 1 800	31 2400 800 440 800 1 800	32 2400 800 440 800 1 800	33 2400 800 440 800 1 800	34 2400 800 440 800 1 800	35 2400 800 440 800 1 800	36 2400 800 440 800 1 800	37 2400 800 440 800 1 800	38 2400 800 440 800 1 800	39 2400 800 440 800 1 800	40 2400 800 440 800 1 800	41 2400 800 440 800 1 800	4 2 240 80 44 80 1 80
EV 0 (Cont 21 2400 800 440 800 1 9886	22 2400 800 440 800 1 9886	2400 3200 23 2400 800 440 800 1 9886	24 2400 800 440 800 1 9886	25 2400 800 440 800 1 9886	26 2400 800 440 800 1 9886	27 2400 800 440 800 1 9886	28 2400 800 440 800 1 800 9886	29 2400 800 440 800 1 800 9886	30 2400 800 440 800 1 800 9886	31 2400 800 440 800 1 800 9886	32 2400 800 440 800 1 800 9886	33 2400 800 440 800 1 800 9886	34 2400 800 440 800 1 800 9886	35 2400 800 440 800 1 800 9886	36 2400 800 440 800 1 800 9886	37 2400 800 440 800 1 800 9886	38 2400 800 440 800 1 800 9886	39 2400 800 440 800 1 800 9886	40 2400 800 440 800 1 800 9886	41 2400 800 440 800 1 800 9886	42 240 80 44 80 1 80 988
EV 0 (Cont 21 2400 800 440 800 1 9886 8827	8001600 22 2400 800 440 800 1 9886 8827	2400 3200 23 2400 800 440 800 1 9886 8827	24 2400 800 440 800 1 9886 8827	25 2400 800 440 800 1 9886 8827	26 2400 800 440 800 1 9886 8827	27 2400 800 440 800 1 9886 8827	28 2400 800 440 800 1 800 9886 8827	29 2400 800 440 800 1 800 9886 8827	30 2400 800 440 800 1 800 9886 8827	31 2400 800 440 800 1 800 9886 8827	32 2400 800 440 800 1 800 9886 8827	33 2400 800 440 800 1 800 9886 8827	34 2400 800 440 800 1 800 9886 8827	35 2400 800 440 800 1 800 9886 8827	36 2400 800 440 800 1 800 9886 8827	37 2400 800 440 800 1 800 9886 8827	38 2400 800 440 800 1 800 9886 8827	39 2400 800 440 800 1 800 9886 8827	40 2400 800 440 800 1 800 9886 8827	41 2400 800 440 800 1 800 9886 8827	4 2 240 80 44 80 1 80 988 882
EV 0 (Cont 21 2400 800 440 800 1 9886 8827 17291.67	8001600 22 2400 800 440 800 1 9886 8827 18444.44	23 23 2400 800 440 800 1 9886 8827 19597.22	24 2400 800 440 800 1 9886 8827 20750	25 2400 800 440 800 1 9886 8827 20750	26 2400 800 440 800 1 9886 8827 20750	27 2400 800 440 800 1 9886 8827 20750	28 2400 800 440 800 1 800 9886 8827 20750	29 2400 800 440 800 1 800 9886 8827 20750	30 2400 800 440 800 9886 8827 20750	31 2400 800 440 800 1 800 9886 8827 20750	32 2400 800 440 800 1 800 9886 8827 20750	33 2400 800 440 800 1 800 9886 8827 20750	34 2400 800 440 800 1 800 9886 8827 20750	35 2400 800 440 800 1 800 9886 8827 20750	36 2400 800 440 800 1 800 9886 8827 20750	37 2400 800 440 800 1 800 9886 8827 20750	38 2400 800 440 800 1 800 9886 8827 0 20750	39 2400 800 440 800 1 800 9886 8827 20750	40 2400 800 440 800 1 800 9886 8827 20750	41 2400 800 440 800 1 800 9886 8827 20750	4 2 240 80 44 80 1 80 988 882 207
EV 0 (Cont (Cont 2400 800 440 800 1 9886 8827 17291.67 11012 1	8001600 inues) 22 2400 800 440 800 1 9886 8827 18444.44 11012	23003200 23 2400 800 1 9886 8827 19597.22 11012	24 2400 800 440 800 1 9886 8827 20750 11012	25 2400 800 440 800 1 9886 8827 20750 11012	26 2400 800 440 800 1 9886 8827 20750 11012	27 2400 800 440 800 1 9886 8827 20750 11012	28 2400 800 440 800 1 800 9886 8827 20750 11012	29 2400 800 440 800 1 800 9886 8827 20750 11012	30 2400 800 440 800 9886 8827 20750 11012	31 2400 800 440 800 1 800 9886 8827 20750 11012	32 2400 800 440 800 1 800 9886 8827 20750 11012	33 2400 800 440 800 1 800 9886 8827 20750 11012	34 2400 800 440 800 1 800 9886 8827 20750 11012	35 2400 800 440 800 1 800 9886 8827 20750 11012	36 2400 800 440 800 1 800 9886 8827 20750 11012	37 2400 800 440 800 1 800 9886 8827 20750 11012	38 2400 800 440 800 1 800 9886 8827 0 20750 2 11012	39 2400 800 440 800 1 800 9886 8827 20750 11012	40 2400 800 440 800 1 800 9886 8827 20750 11012	41 2400 800 440 800 1 800 9886 8827 20750 11012	4 2 24(80 44 80 1 80 988 882 207 110
EV 0 (Cont 1 2400 800 440 800 1 9886 8827 17291.67 11012 6660	Bool 1600 tinues 22 2400 800 440 800 1 9886 8827 18444.44 11012 6660	2400 <u>3200</u> 23 2400 800 440 800 1 9886 8827 19597.22 11012 6660	24 2400 800 440 800 1 9886 8827 20750 11012 6660	25 2400 800 440 800 1 9886 8827 20750 11012 6660	26 2400 800 440 800 1 9886 8827 20750 11012 6660	27 2400 800 440 800 1 9886 8827 20750 11012 6660	28 2400 800 440 800 1 800 9886 8827 20750 11012 6660	29 2400 800 440 800 1 800 9886 8827 20750 11012 6660	30 2400 800 440 800 1 800 9886 8827 20750 11012 6660	31 2400 800 440 800 1 800 9886 8827 20750 11012 6660	32 2400 800 440 800 1 800 9886 8827 20750 11012 6660	33 2400 800 440 800 1 800 9886 8827 20750 11012 6660	34 2400 800 440 800 1 800 9886 8827 20750 11012 6660	35 2400 800 440 800 1 800 9886 8827 20750 11012 6660	36 2400 800 440 800 1 800 9886 8827 20750 11012 6660	37 2400 800 440 800 1 800 9886 8827 20750 11012 6660	38 2400 800 440 800 1 800 2 0 20750 2 1012 6660	39 2400 800 440 800 1 880 9886 8827 20750 11012 6660	40 2400 800 440 800 1 800 9886 8827 20750 11012 6660	41 2400 800 440 800 1 800 9886 8827 20750 11012 6660	42 240 80 44 80 988 882 207 110 666
EV 0 (Cont 1 2400 800 440 800 1 9886 8827 11012 6660 6660	2001600 22 2400 800 440 800 1 9886 8827 18444.44 1106660	2400 <u>3200</u> 23 2400 2400 2400 800 440 800 1 9886 8827 9597.22 11012 6660	24 2400 800 440 800 1 9886 8827 20750 11012 6660	25 2400 800 440 800 10 9886 8827 20750 11012 6660	26 2400 800 440 800 1 9886 8827 20750 11012 6660	27 2400 800 440 800 1 9886 8827 20750 11012 6660	28 2400 800 440 800 1 800 9886 8827 20750 11012 6660	29 2400 800 440 800 9886 8827 20750 11012 6660	30 2400 800 440 800 1 800 9886 8827 20750 11012 6660	31 2400 800 440 800 1 800 1 800 9886 8827 20750 11012 6660	32 2400 800 440 800 9886 8827 20750 11012 6660	33 2400 800 440 800 1 800 9886 8827 20750 11012 6660	34 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0	35 2400 800 440 800 1 800 9886 8827 20750 11012 6660 2805.40	36 2400 800 440 800 1 800 9886 8827 20750 11012 6660 5610.80	37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2	38 2400 800 440 800 1 800 9886 8827 0 20750 2 11012 6660 11221.0	39 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 14027	40 2400 800 440 800 9886 8827 20750 11012 6660 14027	41 2400 800 440 800 9886 8827 20750 11012 6660 14027 20750	4 2 240 80 44 80 1 80 988 882 207 110 660 140
EV 0 (Cont 1 2400 800 440 800 1 9886 8827 11012 6660 12660	Isoo Isoo <th< td=""><td>23 2400 23 2400 800 440 800 440 800 1 9886 8827 19597.22 1012 6660</td><td>24 2400 800 440 800 1 9886 8827 20750 11012 6660</td><td>25 2400 2400 800 440 800 1 9886 8827 20750 11012 6660</td><td>26 2400 800 440 800 1 9886 8827 20750 11012 6660 15025</td><td>27 2400 800 440 800 1 9886 8827 20750 11012 6660</td><td>28 2400 800 440 800 9886 8827 20750 11012 6660</td><td>29 2400 800 440 800 1 800 9886 8827 20750 11012 6660</td><td>30 2400 800 440 800 1 800 9886 8827 20750 11012 6660</td><td>31 2400 800 440 800 1 800 9886 8827 20750 11012 6660</td><td>32 2400 800 440 800 9886 8827 20750 11012 6660</td><td>33 2400 800 440 800 1 800 9886 8827 20750 11012 6660</td><td>34 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0</td><td>35 2400 800 440 800 9886 8827 20750 11012 6660 2805.40</td><td>36 2400 800 440 800 1 800 9886 8827 20750 11012 6660 5610.80</td><td>37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2</td><td>38 2400 800 440 800 1 800 9886 827 2 11012 6660 0 11221.</td><td>39 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 14027 0 15036</td><td>40 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 1990</td><td>41 2400 800 440 800 9886 8827 20750 11012 6660 14027 2630</td><td>42 240 80 44 80 1 80 988 882 207 110 666 140 327</td></th<>	23 2400 23 2400 800 440 800 440 800 1 9886 8827 19597.22 1012 6660	24 2400 800 440 800 1 9886 8827 20750 11012 6660	25 2400 2400 800 440 800 1 9886 8827 20750 11012 6660	26 2400 800 440 800 1 9886 8827 20750 11012 6660 15025	27 2400 800 440 800 1 9886 8827 20750 11012 6660	28 2400 800 440 800 9886 8827 20750 11012 6660	29 2400 800 440 800 1 800 9886 8827 20750 11012 6660	30 2400 800 440 800 1 800 9886 8827 20750 11012 6660	31 2400 800 440 800 1 800 9886 8827 20750 11012 6660	32 2400 800 440 800 9886 8827 20750 11012 6660	33 2400 800 440 800 1 800 9886 8827 20750 11012 6660	34 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0	35 2400 800 440 800 9886 8827 20750 11012 6660 2805.40	36 2400 800 440 800 1 800 9886 8827 20750 11012 6660 5610.80	37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2	38 2400 800 440 800 1 800 9886 827 2 11012 6660 0 11221.	39 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 14027 0 15036	40 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 1990	41 2400 800 440 800 9886 8827 20750 11012 6660 14027 2630	42 240 80 44 80 1 80 988 882 207 110 666 140 327
EV 0 Cont 1 2400 800 440 800 1 9886 8827 17291.67 11012 6660 12660 12660	Isoo Isoo <th< td=""><td>23 2400 23 2400 800 440 800 1 9886 8827 19597.22 11012 6660 15825 12700 80</td><td>24 2400 800 1 9886 8827 20750 11012 6660 15825 25410 60</td><td>25 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 2674440</td><td>26 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 28060 20</td><td>27 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 20204</td><td>28 2400 800 440 800 9886 8827 20750 11012 6660</td><td>29 2400 800 440 800 1 800 9886 8827 20750 11012 6660</td><td>30 2400 800 440 800 9886 8827 20750 11012 6660 15825</td><td>31 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825</td><td>32 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 26018</td><td>33 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825</td><td>34 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 15825 28667 60</td><td>35 2400 800 440 800 9886 8827 20750 11012 6660 2805.40</td><td>36 2400 800 440 800 9886 8827 20750 11012 6660 5610.80</td><td>37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2 8416.2</td><td>38 2400 800 440 800 1 800 9886 8827 20756 20756 211012 6660 00 11221. 5 15825</td><td>39 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 14027 0 15825 42643</td><td>40 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 1990 158252</td><td>41 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 2630 15825 42642</td><td>42 24(80 44 80 1 80 988 882 207 110 666 140 327 158</td></th<>	23 2400 23 2400 800 440 800 1 9886 8827 19597.22 11012 6660 15825 12700 80	24 2400 800 1 9886 8827 20750 11012 6660 15825 25410 60	25 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 2674440	26 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 28060 20	27 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 20204	28 2400 800 440 800 9886 8827 20750 11012 6660	29 2400 800 440 800 1 800 9886 8827 20750 11012 6660	30 2400 800 440 800 9886 8827 20750 11012 6660 15825	31 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825	32 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 26018	33 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825	34 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 15825 28667 60	35 2400 800 440 800 9886 8827 20750 11012 6660 2805.40	36 2400 800 440 800 9886 8827 20750 11012 6660 5610.80	37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2 8416.2	38 2400 800 440 800 1 800 9886 8827 20756 20756 211012 6660 00 11221. 5 15825	39 2400 800 440 800 1 800 9886 8827 20750 11012 6660 0 14027 0 15825 42643	40 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 1990 158252	41 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 2630 15825 42642	42 24(80 44 80 1 80 988 882 207 110 666 140 327 158
EV 0 EV 0 (Cont 1 2400 800 440 800 1 9886 8827 17291.67 11012 6660 12660 12660	Isoo Isoo <th< td=""><td>23003200 23 2400 800 440 800 1 9886 8827 19597.22 11012 6660 15825 12709.80 2269.80</td><td>24 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 25419.660</td><td>25 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 26744.40 12822</td><td>26 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 28069.20 15187.20</td><td>27 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 29394</td><td>28 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 30718.28 30718.28</td><td>29 2400 800 440 800 1800 9886 8827 20750 11012 6660 15825 32043.60</td><td>30 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 33368.40</td><td>31 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 34693.20</td><td>32 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 36018 20126</td><td>33 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 37342.80 37342.80</td><td>34 2400 800 440 800 9886 8827 20750 11012 6660 0 15825 38667.60 25785.67</td><td>35 2400 800 440 800 1 800 9886 8827 20750 11012 6660 2805.40 15825 39992.40</td><td>36 2400 800 440 800 9886 8827 20750 11012 6660 5610.80 15825 41317.20</td><td>37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2 15825 0 42642 0 20755 15825 0 20755 15825 0 207555</td><td>38 2400 800 440 800 1 800 9886 8827 0 20756 2 11012 6660 0 11221.0 5 15825 2 42642 0 20766</td><td>39 2400 800 440 800 1 800 9886 8827 20750 11012 66602 0 15825 42642 20750</td><td>40 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 1990 15825 42642 20756</td><td>41 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 2630 15825 42642 207560</td><td>4 244 80 44 80 1 80 988 882 207 110 660 140 32 158 4266</td></th<>	23003200 23 2400 800 440 800 1 9886 8827 19597.22 11012 6660 15825 12709.80 2269.80	24 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 2541 9.660	25 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 26744.40 12822	26 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 28069.20 15187.20	27 2400 800 440 800 1 9886 8827 20750 11012 6660 15825 29394	28 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 30718.28 30718.28	29 2400 800 440 800 1800 9886 8827 20750 11012 6660 15825 32043.60	30 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 33368.40	31 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 34693.20	32 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 36018 20126	33 2400 800 440 800 1 800 9886 8827 20750 11012 6660 15825 37342.80 37342.80	34 2400 800 440 800 9886 8827 20750 11012 6660 0 15825 38667.60 25785.67	35 2400 800 440 800 1 800 9886 8827 20750 11012 6660 2805.40 15825 39992.40	36 2400 800 440 800 9886 8827 20750 11012 6660 5610.80 15825 41317.20	37 2400 800 440 800 1 800 9886 8827 20755 11012 6660 8416.2 15825 0 42642 0 20755 15825 0 20755 15825 0 207555	38 2400 800 440 800 1 800 9886 8827 0 20756 2 11012 6660 0 11221.0 5 15825 2 42642 0 20766	39 2400 800 440 800 1 800 9886 8827 20750 11012 66602 0 15825 42642 20750	40 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 1990 15825 42642 20756	41 2400 800 440 800 1 800 9886 8827 20750 11012 6660 14027 2630 15825 42642 207560	4 244 80 44 80 1 80 988 882 207 110 660 140 32 158 4266

1	1	1	1	1	1	1	1	1	1	1
800	800	800	800	800	800	800	800	800	800	800
9886	9886	9886	9886	9886	9886	9886	9886	9886	9886	9886
8827	8827	8827	8827	8827	8827	8827	8827	8827	8827	8827
20750	20750	20750	20750	20750	20750	20750	20750	20750	20750	20750
11012	11012	11012	11012	11012	11012	11012	11012	11012	11012	11012
6660	6660	6660	6660	6660	6660	6660	6660	6660	6660	6660
14027	14027	14027	14027	14027	14027	14027	14027	14027	14027	14027
3910	4550	4550	4550	4550	4550	4550	4550	4550	4550	4550
15825	15825	15825	15825	15825	15825	15825	15825	15825	15825	15825
42642	42642	42642	42642	42642	42642	42642	42642	42642	42642	42642
29760	29760	29760	29760	29760	29760	29760	29760	29760	29760	29760
				0	2940.50	5881	5881	5881	5881	5881
							1008	1008	1008	1008
							0	640	1280	1280
							0	1168	2336	2336
										800
168540	169180	169180	169180	169180	172120.50	175061	176069	177877	179685	180485

 $y(x)_{\text{PV project}} = \text{\&} 800/1 \, \text{d} \cdot \langle x - 0 \text{d} \rangle^1 - \text{\&} 352/1 \, \text{d} \cdot \langle x - 4 \text{d} \rangle^1 + \text{\&} 19764/1 \, \text{d} \cdot \langle x - 4.125 \text{d} \rangle^1 - \text{\&} 19772/1 \, \text{d} \cdot \langle x - 4.625 \text{d} \rangle^1 + \text{\&} 8387/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 - \text{\&} 19772/1 \, \text{d} \cdot \langle x - 4.625 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 - \text{\&} 19772/1 \, \text{d} \cdot \langle x - 4.625 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 - \text{\&} 19772/1 \, \text{d} \cdot \langle x - 4.625 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 - \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1 + \text{\&} 19772/1 \, \text{d} \cdot \langle x - 5 \text{d} \rangle^1$

 $\mathbb{E}7674.22/1d \cdot \langle x-6d \rangle^1 + \mathbb{E}1376.5/1d \cdot \langle x-9d \rangle^1 + \mathbb{E}1332/1d \cdot \langle x-10d \rangle^1 - \mathbb{E}1332/1d \cdot \langle x-15d \rangle^1 + \mathbb{E}2588.50/1d \cdot \langle x-17d \rangle^1 - \mathbb{E}800/1d \cdot \langle x-12d \rangle^1 + \mathbb{E}1332/1d \cdot \langle x-12d \rangle^1 + \mathbb{E}133/1d \cdot \langle x-12d \rangle^1 + \mathbb{E}133/1d \cdot \langle x-12d \rangle^$

 $18d^{1} + \underbrace{15813.60/1d}{(x-22d)^{1}} - \underbrace{14676.3778/1d}{(x-24d)^{1}} + \underbrace{16800/1d}{(x-27d)^{1}} - \underbrace{1800/1d}{(x-28d)^{1}} - \underbrace{1895.40/1d}{(x-29d)^{1}} - \underbrace{189$

 $v(x)_{\text{EV, project}} = \text{\&} 800/\text{d} \cdot \langle x - 0\text{d} \rangle^1 - \text{\&} 352/1\text{d} \cdot \langle x - 4\text{d} \rangle^1 + \text{\&} 19764/1\text{d} \cdot \langle x - 4.125\text{d} \rangle^1 - \text{\&} 19772/1\text{d} \cdot \langle x - 4.625\text{d} \rangle^1 + \text{\&} 8387/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 - \text{\&} 19772/1\text{d} \cdot \langle x - 4.625\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 - \text{\&} 19772/1\text{d} \cdot \langle x - 4.625\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 - \text{\&} 19772/1\text{d} \cdot \langle x - 4.625\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 4.625\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&} 19772/1\text{d} \cdot \langle x - 5\text{d} \rangle^1 + \text{\&}$

 $(7674.22/1d \cdot \langle x-6d \rangle^{1} + (1376.50/1d \cdot \langle x-9d \rangle^{1} + (1332/1d \cdot \langle x-10d \rangle^{1} - (1332/1d \cdot \langle x-15d \rangle^{1} + (2588.50/1d \cdot \langle x-17d \rangle^{1} - (800/1d \cdot \langle x-12d \rangle^{1} + (1332/1d \cdot \langle$

 $18d^{1} + \underbrace{15813.60/1d}{(x-22d)^{1}} - \underbrace{17481.78/1d}{(x-24d)^{1}} + \underbrace{16800/1d}{(x-27d)^{1}} - \underbrace{16800/1d}{(x-28d)^{1}} + \underbrace{16805.40/1d}{(x-34d)^{1}} - \underbrace{16800/1d}{(x-28d)^{1}} + \underbrace{16800/1d}{(x-28d)^{1}} +$

 $\langle x-49d \rangle^1 + \notin 800/1d \cdot \langle x-50d \rangle^1 - \notin 1008/1d \cdot \langle x-52d \rangle^1 - \notin 800/1d \cdot \langle x-53d \rangle^1$

Appendix 2-F.1: Differences for Transposition (Planned Value)

_															
Time Cutoff	0d	Σ	3d		Σ	4d	Σ	4.125d	Σ		4.625d		Σ	5d	Σ
Slope Change	+€800/d		+€0/a	d		-€352/d		+€19764/1d			-€19772/1	d		+€8387/d	
Total Slope		€800/d		(€800/d		€448/d		€20212	2/d		€4	440/d		€8827/d
Cost Cutoff	€0		€2400	0		€3200		€3256			€13362			€13257	
Inverted		1d/€800		1	l d/€800		1d/€448		1d/€202	212		1d	l/€440		1d/€8827
Slope	11/0000		1.1/00/	0.0		1 1/04 40		1.1/020212			1.1/0440			1.1/00.027	·
Slope	+1d/€800		=1d/€80	00-		=1d/€448-		=1d/€20212-			=1d/€440-	-		=1d/€882/-	1
Change			1d/€80	00		1d/€800		1d/€448			1d/€20212	2		1d/€440	1
			=0d/€	21		=11d/€1120	0	=-4941d/€22637	44		=4943d/€222	320		=-838/a/€3883880	
(Continues)														
6d	Σ	9	d	Σ		10d	Σ	15d	Σ		17d	Σ		18d 5	2

-€69068/9d		+€2753/2d		+€1332/d		-€1332/1d		+€5177/2d		-€800/1d	
	€10375/9d		€45527/18d		€69503/18d		€45527/18d		€46060/9d		€38860/9d
€22354		€25812.33		€28341.61		€47648		€52706.556		€57824.33	
	9d/€10375		18d/€45527		18d/€69503		18d/€45527		9d/€46060		9d/€38860
=9d/€10375-		=18d/€45527-		=18d/€69503-		=18d/€45527-		=9d/€46060-		=9d/€38860-	
1d/€8827		9d/€10375		18d/€45527		18d/€69503		18d/€45527		9d/46060	
=205d/€271818		=-272d/€576149		=-199d/€1459071		=199d/€1459071		=-1126d/€5630775		=162d/€4474729	

833

(Continues)

(=											
22d	Σ	24d	Σ	34d	Σ	27d	Σ	28d	Σ	29d	Σ
+€79068/5d		-€660437/45d		-€910/1d		+€800/1d		-€800/1d		-€9477/5d	
	€905912/45d		€5455/1d		€13248/5d		€6255/1d		€5455/1d		€17798/5d
€75095.44		€115358.20		€161231.20		€131723.20		€137978.20		€143433.20	
	3d/60394		1d/€5455		5d/€13248		1d/€6255		1d/€5455		5d/€17798
=3d/€60394-		=1d/€5455-		=5d/€13248-		=1d/€6255-		=1d/€5455-		=5d/€17798-	
9d/€38860		3d/€60394		5d/€17798		1d/€5455		1d/€6255		1d/€5455	
=-1333d/€7327118		=680d/€5088131		=-547d/€5669274		=-32d/€1364841		=32d/€1364841		=600d/€6146761	

834 (Continues)

37d	Σ	39d	Σ	40d	Σ	42d	Σ	43d	Σ
+€2909/10d		-€3865/2d		+€800/1d		-€1008/1d		-€800/1d	
	€5881/2d		€1008/1d		€1808/d		€800/1d		€0/1d
€169180		€175061		€176069		€179685		€180485	
	2d/€5881		1d/€1008		1d/€1808		1d/€800		0d/€1
=2d/€5881-5d/€13248		=1d/€1008-2d/€5881		=1d/€1808-1d/€1008		=1d/€800-1d/€1808		=0d/€1-1d/€800	
=-146d/€3910305		=3865d/€5928048		=-25d/€56952		=63d/€90400		=-1d/€800	

835

Non-Cumulative, Cumulative

 $\begin{array}{lll} 836 & x(y)_{\mathrm{PV_project}} = 1d/ \in 800 \cdot \langle y - \notin 0 \rangle^{1} + 11d/ \in 11200 \cdot \langle y - \notin 3200 \rangle^{1} - 4941d/ \in 2263744 \cdot \langle y - \notin 3256 \rangle^{1} + 4943d/ \in 2223320 \cdot \langle y - \notin 13362 \rangle^{1} - \\ 837 & 8387d/ \in 3883880 \cdot \langle y - \notin 13527 \rangle^{1} + 205d/ \in 271818 \cdot \langle y - \notin 22354 \rangle^{1} - 272d/ \in 576149 \cdot \langle y - \pounds 25812.33 \rangle^{1} - 199d/ \in 1459071 \cdot \langle y - \pounds 28341.61 \rangle^{1} \\ & + 199d/ \in 1459071 \cdot \langle y - \pounds 47648 \rangle^{1} - 1126d/ \in 5630775 \cdot \langle y - \pounds 52706.56 \rangle^{1} + 162d/ \in 4474729 \cdot \langle y - \pounds 57824.33 \rangle^{1} - 1333d/ \in 7327118 \cdot \langle y - \pounds 75095.44 \rangle^{1} + 680d/ \in 5088131 \cdot \langle y - \pounds 115358.20 \rangle^{1} - 32d/ \in 1364841 \cdot \langle y - \pounds 131723.20 \rangle^{1} + 32d/ \in 1364841 \cdot \langle y - \pounds 137978 \rangle^{1} + \\ & 600d/ \in 6146761 \cdot \langle y - \pounds 143433.20 \rangle^{1} + 547d/ \in 5669274 \cdot \langle y - \pounds 161231 \rangle^{1} - 146d/ \in 3910305 \cdot \langle y - \pounds 169180 \rangle^{1} + 3865d/ \in 5928048 \cdot \langle y - \pounds 175061 \rangle^{1} - 25d/ \in 56952 \cdot \langle y - \pounds 176069 \rangle^{1} + 63d/ \in 90400 \cdot \langle y - \pounds 179685 \rangle^{1} - 1d/ \in 800 \cdot \langle y - \pounds 180485 \rangle^{1} \end{array}$

842

843 Appendix 2-F.2: Differences for Transposition (Earned Value)

			*									
Time Cutoff	0d	Σ	3d	Σ	4d	Σ	4.125d	Σ	4.625d	Σ	5d	Σ
Slope Change	+€800/d		+€0/d		-€352/d		+€19764/d		-€19772/d		+€8387/1d	
Total Slope		€800/d		€800/d		€448/d		€20212/d		€440/1d		€8827/1d
Cost Cutoff	€0		€2400		€3200		€3256		€13362		€13527	
Inverted Slope		1d/€800		1d/€800		1d/€448		1d/€20212		1d/€440		1d/€8827
Slone Change	14/6900		1/800-1/800		1/448-1/800		1/20212-1/448		1/440-1/20212		1/8827-1/440	
Stope Change	10/8800		=0d/€1		=11d/€11200		=-4941d/€2263744		=4943d/€2223320		=-8387d/€3883880	

844 (Continues)

6d	Σ	90	d	Σ		1	0d	Σ			15d	Σ		17	d	Σ	18d		Σ
-€7674.22/1d		+€1376	5.50/1d			+€13	332/1d			-€	€1332/d			+€2588	8.50/d		-€800/d		
4	€10375/9d			€45527/18	3d			€69503/	/18d			€4552	7/18d		4	€46060/9d		€38	860/9d
€22354		€2581	2.33			€283	341.61			€	€47648			€5270)6.56		€57824.3	3	
	9d/€10375			18d/€4552	27			18d/€69	9503			18d/€4	45527		1	9d/€46060		9d/(38860
9/10375-1/8827 =205d/€271818		18/45527- =-272d/€	-9/10375 576149		18. =-	/69503 -199d/	3-18/45527 €1459071			18/455 =199	527-18/69503 d/€1459071	3	:	9/46060-1 =-1126d/€	8/45527 5630775		9/38860-9/46 =162d/€4474	5060 1729	
(Continues)																			
22d		Σ	24	d	Σ	5	27d		Σ	5	28d		Σ		34d	Σ	37d		Σ
+€15813.60/	ď		-€1748	1.78/d			+€800/	'1d			-€800/1	d		+€2	805.40/1d		-€2649.6	0/1d	
	€905	912/45d			€1324	48/5d		1	€1724	48/5d		€	13248/	5d		€5455/10	1	€1	4027/5d
€75095.44			€1153	58.20			€1233	07			€126756	.60		€14	42654.20		€159019	.20	
	45d/(€905912			5d/€1	3248			5d/€1	7248		5	d/€132	48		1d/€5455	5	5d	€14027
45/905912-9/38 =-1333d/€7327	860 118	4	5/13248-4 =1089d/€	5/905912 3322738			5/17248-5/ =-625d/€71	13248 40672			5/13248-5/1 =625d/€714	17248 10672		1/545 =-324	55-5/13248 d/€166926	3 55	5/14027-1/ =289d/€166	/5455 69195	
(Continues)		·																	
39d	Σ	40d	Σ	2 44	d	Σ	47d	Σ	2		49d	Σ		50d	Σ	52d	Σ	53d	Σ
-€815.40/d		-€1350/	/d	-€64	0/d		+€2940.50	/d		-€1 <u>9</u>	932.50/d		+€	800/1d		-€1008/1	d	-€800/1	1
	€1990/1d		€640)/1d		€0/1d		€588	1/2d			€1008/1	d		€1808/1d		€800/1d		€0/1d
€164630		€16662	.0	€169	180		€169180			€1	75061		€1	76069		€179685	5	€18048	5
	1d/€1990		1d/€	640		0d/€1		2d/€5	5881			1d/€100	8		1d/€1808		1d/€800		0d/€1
1/1990-5/14027		1/640-1/1	990	0/1-1	/640		2/5881-0/	1		1/100	08-2/5881		1/180	8-1/1008		1/800-1/18	08	0/1-1/80)
=-115d/€787363		=27d/€254	472	=-1d/2	€640		=2d/€588		-	=3865	d/€5928048		=-25	d/€56952		=63d/€904	00	=-1/800	

847

855

845

846

Non-Cumulative, Cumulative

848 $x(y)_{\text{EV}_{\text{project}}} = 1d \neq 800 \cdot \langle y \neq 0 \rangle^{1} + 11d \neq 11200 \cdot \langle y \neq 3200 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} - 4941d \neq 2263744 \cdot \langle y \neq 3256 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13362 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13262 \rangle^{1} + 4943d \neq 2223320 \cdot \langle y \neq 13262 \rangle^{1} + 4943d \neq 223320 \cdot \langle y \neq 13262 \rangle^{1} + 4943d \neq 223320 \cdot \langle y \neq 13262 \rangle^{1} + 4943d \rangle^{1} + 4943d \wedge \langle y \neq 13262 \rangle^{1}$

849 $8387d/ \in 3883880 \cdot \langle y - \notin 13527 \rangle^1 + 205d/ \in 271818 \cdot \langle y - \notin 22354 \rangle^1 - 272d/ \in 576149 \cdot \langle y - \notin 25812.33 \rangle^1 - 199d/ \in 1459071 \cdot \langle y - \notin 28341.61 \rangle^1$

 $850 + 199d/ (1459071 \cdot (y - (47648)^1 - 1126d/ (5630775 \cdot (y - (52706.56)^1 + 162d/ (4474729 \cdot (y - (57824.33)^1 - 1333d) (7327118 \cdot (y - (147648)^1 - 1126d) (y - (14764$

 $\$51 \qquad (75095.44)^{1} + 1089d/(3322738 \cdot (y-(115358.20)^{1} - 625d/(7140672 \cdot (y-(123307)^{1} + 625d/(7140672 \cdot (y-(126756.60)^{1} - 625d/(7140672 \cdot (y-(126756))^{1} -$

852 $324d/ \in 166915 \cdot \langle y - \notin 142654.20 \rangle^{1} + 289d/ \in 1669195 \cdot \langle y - \notin 159019.20 \rangle^{1} + 115d/ \in 787363 \cdot \langle y - \notin 164630 \rangle^{1} + 27d/ \in 25472 \cdot \langle y - \notin 166620 \rangle^{1}$

854 $(176069)^1 + 63d (90400 \cdot (y - (179685)^1 - 1d) (800 \cdot (y - (180485)^1)))$

856 Appendix 2-G: Earned Schedule Derivation

657 Get rises $z_i(y_i)$ from transposed difference equation $z(y) = x(y)_{\text{EV}_{\text{project}}} - x(y)_{\text{PV}_{\text{project}}} = (1d \neq 800 - 1d \neq 800) \cdot \langle y - \epsilon_0 \rangle^1 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1 - 0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 + (0d \neq 1) \cdot \langle y - \epsilon_0 \rangle^2 +$

- $\$58 \qquad \underbrace{\$2400}^{1} + \underbrace{0d}{\$1} \cdot \underbrace{\langle y \pounds 3200 \rangle^{1}}_{1} + \underbrace{0d}{\$1} \cdot \underbrace{\langle y \pounds 3256 \rangle^{1}}_{1} + \underbrace{0d}{\$1} \cdot \underbrace{\langle y \pounds 13362 \rangle^{1}}_{1} + \underbrace{0d}{\$1} \cdot \underbrace{\langle y \pounds 13527 \rangle^{1}}_{1} + \underbrace{0d}{\$1} \cdot \underbrace{\langle y \pounds 22354 \rangle^{1}}_{1} + \underbrace{0d}{\$1} \cdot \underbrace{\langle$
- $859 + 0d/(1 \cdot (y (28341.61)) + 0d/(1 \cdot (y (47648)) + 0d/(1 \cdot (y (52706.56)) + 0d/(1 \cdot (y (57824.33)) + 0d/(1 \cdot (y (75095.44)) + 324d/(1669265 \cdot (1669265 \cdot (1669265)$
- $860 \qquad \langle y \notin 115358.20 \rangle^1 625d / \notin 7140672 \cdot \langle y \notin 123307 \rangle^1 + 625d / \notin 7140672 \cdot \langle y \notin 126756.60 \rangle^1 + 32d / \notin 1364841 \cdot \langle y \notin 131723.20 \rangle^1 32d / \notin 1364841 \cdot \langle y \# 131723.20 \rangle^1 32d / \# 1364841 \cdot \langle y \# 1364841 \cdot$

861 $\\ \in 137978.20 \rangle^{1} - 324d / \\ \in 1669265 \cdot \langle y-142654.20 \rangle^{1} - 600d / \\ \in 6146761 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-159019.20 \rangle^{1} - 547d / \\ \in 5669274 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-159019.20 \rangle^{1} - 547d / \\ \in 5669274 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-159019.20 \rangle^{1} - 547d / \\ \in 5669274 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-159019.20 \rangle^{1} - 547d / \\ \in 5669274 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-159019.20 \rangle^{1} - 547d / \\ \in 5669274 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ \in 1669195 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} + 289d / \\ = 1669125 \cdot \langle y-143433.20 \rangle^{1} +$

 $161231.20\rangle^{1} + 115d/(-787363) \cdot (y-164630)^{1} + 27d/(-25472) \cdot (y-166620)^{1} - 2571d/(-8242399) \cdot (y-169180)^{1} + 2d/(-5881) \cdot (y-169180)^{1} + 3d/(-1) \cdot (y-169180)^{1} + 3d/(-$ 862 863 $\langle y - \text{€169180} \rangle^0 + 0 d/\text{€1} \cdot \langle y - \text{€175061} \rangle^1 + 0 d/\text{€1} \cdot \langle y - \text{€176069} \rangle^1 + 0 d/\text{€1} \cdot \langle y - \text{€179685} \rangle^1 + 0 d/\text{€1} \cdot \langle y - \text{€180485} \rangle^1$

Evaluate it at each cutoff to get its absolute height z there in days. And evaluate $x(y)_{EV_project}$ at any y_i-cutoffs from both EV and PV as 864 new cutoffs for $z(x)_{ES}$ project

865

		()_project						
Уi	zi(yi)	$x(y_i)_{EV_project}$	yi	zi(yi)	$x(y_i)_{EV_project}$	yi	zi(yi)	$x(y_i)_{EV_project}$
€0.00	0d	0d	€52,706.56	0d	17d	€159,019.20	3.6214d	37d
€2,400.00	0d	3d	€57,824.33	0d	18d	€161,231.20	3.7885d	37.7885d
€3,200.00	0d	4d	€75,095.44	0d	22d	€164,630.00	3.7172d	39d
€3,256.00	0d	4.125d	€115,358.20	0d	24d	€166,620.00	3.9662d	40d
€13,362.00	0d	4.625d	€123,307.00	1.5428d	27d	€169,180.00	7d	44d
€13,527.00	0d	5d	€126,756.60	1.9105d	28d	€169,180.00	10d	47d
€22,354.00	0d	6d	€131,723.20	2.8745d	29.8745d	€175,061.00	10d	49d
€25,812.33	0d	9d	€137,978.20	4.2352d	31.6393d	€176,069.00	10d	50d
€28,341.61	0d	10d	€142,654.20	5.1428d	34d	€179,685.00	10d	52d
€47,648.00	0d	15d	€143,433.20	5.1428d	36.8572d	€180,485.00	10d	53d

867 Determine runs $\Delta x(y_i)$ as distances between new cutoffs and compose updated slopes.

Cutoff	Run	Verticals	Rise	Slope	ΔSlope	Diagonal	New Slope
$x(y_i)_{EV_project}$	$\Delta x(y_i)_{\rm EV_project}$	zi(yi)	$\Delta z(y_i)$	Rise/Run	$y(x_i)_{SV(t)}$	Linear	$z(x_i)_{\rm ES}$
0	3d	0	0	0	0	1d/d	1
3	1d	0	0	0	0	0	0
4	0.125d	0	0	0	0	0	0
4.125	0.5d	0	0	0	0	0	0
4.625	0.375d	0	0	0	0	0	0
5	1d	0	0	0	0	0	0
6	3d	0	0	0	0	0	0
9	1d	0	0	0	0	0	0
10	5d	0	0	0	0	0	0
15	2d	0	0	0	0	0	0
17	1d	0	0	0	0	0	0
18	4d	0	0	0	0	0	0
22	2d	0	0	0	0	0	0
24	3d	0	-1.5428d	-0.5143d/d	0.5143d/d	0	-0.5143d/d

27	1d	1.5428d	-0.3676d	-0.3676d/d	-0.1467d/d	0	0.1467d/d
28	1.8745d	1.9105d	-0.9640d	-0.5143d/d	0.1467d/d	0	-0.1467d/d
29.8745	1.7648d	2.8745d	-1.3607d	-0.7710d/d	0.2568d/d	0	-0.2568d/d
31.6393	2.3607d	4.2352d	-0.9076d	-0.3845d/d	-0.3866d/d	0	0.3866d/d
34	2.8572d	5.1428d	0	0	-0.3845d/d	0	0.3845d/d
36.8572	0.1428d	5.1428d	1.5214d	10.6536d/d	-10.6536d/d	0	10.6536d/d
37	0.7885d	3.6214d	-0.1671d	-0.2119d/d	10.8655d/d	0	-10.8655d/d
37.7885	1.2115d	3.7885d	0.0712d	0.0588d/d	-0.2707d/d	0	0.2707d/d
39	1d	3.7172d	-0.2489d	-0.2489d/d	0.3077d/d	0	-0.3077d/d
40	4d	3.9662d	-3.0338d	-0.7585d/d	0.5095d/d	0	-0.5095d/d
44	3d	7d	-3d	-1d/d	0.2415d/d	0	-0.2415d/d
47	2d	10d	0	0	-1d/d	0	1d/d
49	1d	10d	0	0	0	0	0
50	2d	10d	0	0	0	0	0
52	1d	10d	0	0	0	0	0
53	0d	10d	N/A	0	N/A	0	N/A
Checksum	53d	N/A	-10d	N/A	0d/d	N/A	1d/d

868 This gives schedule variance in time units $y(x)_{SV(t)} = 0.5143/1 \cdot \langle x-24 \rangle^1 - 0.1467/1 \cdot \langle x-27 \rangle^1 + 0.1467/1 \cdot \langle x-28 \rangle^1 + 0.2568/1 \cdot \langle x$

 $869 \qquad 29.8745\rangle^{1} - 0.3866/1 \cdot \langle x-31.6393\rangle^{1} - 0.3845/1 \cdot \langle x-34\rangle^{1} - 10.6536/1 \cdot \langle x-36.8572\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} - 0.2707/1 \cdot \langle x-37.7885\rangle^{1} + 10.8655/1 \cdot \langle x-37\rangle^{1} + 10.865/1 \cdot \langle x-37\rangle^{1} + 10.8$

870 $0.3077/1 \cdot \langle x-39 \rangle^{1} + 0.5095/1 \cdot \langle x-40 \rangle^{1} + 0.2415/1 \cdot \langle x-44 \rangle^{1} - 1/1 \cdot \langle x-47 \rangle^{1}$

871 Write $z(x)_{ES}$ as diagonal $1d/1d \cdot \langle x-0d \rangle^1$ minus terms of updated slopes at new cutoffs.

872 Earned schedule $z(x)_{ES} = 1/1 \cdot \langle x-0 \rangle^1 - 0.5143/1 \cdot \langle x-24 \rangle^1 + 0.1467/1 \cdot \langle x-27 \rangle^1 - 0.1467/1 \cdot \langle x-28 \rangle^1 - 0.2568/1 \cdot \langle x-29.8745 \rangle^1 + 0.3866/1 \cdot \langle x-37.7885 \rangle^1 + 0.3845/1 \cdot \langle x-34 \rangle^1 + 10.6536/1 \cdot \langle x-36.8572 \rangle^1 - 10.8655/1 \cdot \langle x-37 \rangle^1 + 0.2707/1 \cdot \langle x-37.7885 \rangle^1 - 0.3077/1 \cdot \langle x-39 \rangle^1 - 0.30$

874 $0.5095/1 \cdot \langle x-40 \rangle^1 - 0.2415/1 \cdot \langle x-44 \rangle^1 + 1/1 \cdot \langle x-47 \rangle^1$

875 Evaluating this equation for growing *AT* gives the following tabulated values.

AT x	ES z(x)	AT x	ES z(x)	AT x	ES z(x)	AT x	ES z(x)	AT x	ES z(x)	AT x	ES z(x)
1d	1d	10d	10d	19d	19d	28d	26.09d	37d	33.38d	46d	37d
2d	2d	11d	11d	20d	20d	29d	26.5779d	38d	34.2222d	47d	37d
3d	3d	12d	12d	21d	21d	30d	27.0333d	39d	35.28d	48d	38d
4d	4d	13d	13d	22d	22d	31d	27.2626d	40d	36.03d	49d	39d
5d	5d	14d	14d	23d	23d	32d	27.6309d	41d	36.2725d	50d	40d
6d	6d	15d	15d	24d	24d	33d	28.2455d	42d	36.5150d	51d	41d
7d	7d	16d	16d	25d	24.4867d	34d	28.86d	43d	36.7575d	52d	42d

8d	8d	17d	17d	26d	24.9733d	35d	29.86d	44d	37d	53d	43d
9d	9d	18d	18d	27d	25.46d	36d	30.86d	45d	37d		•

876

877 Using the approach described in the paper allows deriving the equation for the forecasted project duration, which has these values.

Cutoff	Run	Rise	Slope	Value
$x(y_i)_{\text{EV_project}}$	$\Delta x(y_i)_{\mathrm{EV}_{\mathrm{project}}}$	$\Delta z(y_i)$	Rise/Run	z(x)forecast
0d	24d	0d	0	43d
24d	3d	1.5428d	0.5143	63.1172d
27d	1d	0.3676d	0.3676	54.7412d
28d	1.8745d	0.9640d	0.5143	62.8153d
29.8745d	1.7648d	1.3607d	0.7710	99.8798d
31.6393d	2.3607d	0.9076d	0.3845	56.8313d
34d	2.8572d	0d	0	48.1428d
36.8572d	0.1428d	-1.5214d	-10.6536	37.7137d
37d	0.7885d	0.1671d	0.2119	49.2080d
37.7885d	1.2115d	-0.0712d	-0.0588	46.2460d
39d	1d	0.2489d	0.2489	49.2752d
40d	4d	3.0338d	0.7585	68.8400d
44d	3d	3d	1	68.8400d
47d	2d	0d	0	53d
49d	1d	0d	0	53d
50d	2d	0d	0	53d
52d	1d	0d	0	53d
53d	0d	0d	0	53d
Checksum	53d	10	N/A	N/A

878 879

Appendix 2-H.1: Activity Earned Schedule Minimum Table (AP < 100%)

			•								•																		
Activity	PES	PLS	PD	AD	0	1	2	3	4	4.13	4.25	4.38	4.50	4.63	4.75	4.88	5	6	7	8	9 1	10 1	1 12	2 13	14	15	16 1	7 18	19 20
1	0	0	3	3	0	1	2																						
2	3	3	1	1	3	3	3	3																					
3	4	4	1	1	4	4	4	4	4	4.125	4.25	4.375	4.5	4.625	4.75	4.875													
4	17	30	1	1	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30 3	30 30	30) 30	30	30	30 3	0	
6	4	4.375	0.125	0.125	4.375	4.375	4.375	4.375	4.375																				
5	27	31	1	1	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31 3	31.3	1 31	1 31	31	31	31 3	1 31	31.3

					1													
7	4.125	4.5	0.5	0.5	4.5	4.5	4.5	4.5	4.5	4.5	4.625	4.75	4.875					
8	5	5	1	1	5	5	5	5	5	5	5	5	5	5	5	5	5	
9	6	6	18	18	6	6	6	6	6	6	6	6	6	6	6	6	6 6 7 8 9 10 11 12 13 14 15 16 17 18	\$ 19 20
10	9	9	8	8	9	9	9	9	9	9	9	9	9	9	9	9	9 9 9 9 9 10 11 12 13 14 15 16	
11	10	12	5	5	12	12	12	12	12	12	12	12	12	12	12	12	12 12 12 12 12 12 13 14 15 16	
12	24	17	5	5	17	17	17	17	17	17	17	17	17	17	17	17	17 17 17 17 17 17 17 17 17 17 17 17 17 1	/ 17 17
13	29	32	5	5	32	32	32	32	32	32	32	32	32	32	32	32	32 32 32 32 32 32 32 32 32 32 32 32 32 3	2 32 32
14	17	17	5	5	17	17	17	17	17	17	17	17	17	17	17	17	17 17 17 17 17 17 17 17 17 17 17 17 17 1	3 19 20
15	22	22	15	15	22	22	22	22	22	22	22	22	22	22	22	22	22 22 22 22 22 22 22 22 22 22 22 22 22	22 22
16	22	22	15	15	22	22	22	22	22	22	22	22	22	22	22	22	22 22 22 22 22 22 22 22 22 22 22 22 22	22 22
17	37	37	2	2	37	37	37	37	37	37	37	37	37	37	37	37	37 37 37 37 37 37 37 37 37 37 37 37 37 3	37 37
18	39	39	1	1	39	39	39	39	39	39	39	39	39	39	39	39	39 39 39 39 39 39 39 39 39 39 39 39 39 3) 39 39
19	40	40	2	2	40	40	40	40	40	40	40	40	40	40	40	40	40 40 40 40 40 40 40 40 40 40 40 40 40 4) 40 40
20	40	40	2	2	40	40	40	40	40	40	40	40	40	40	40	40	40 40 40 40 40 40 40 40 40 40 40 40 40 4) 40 40
21	42	42	1	1	42	42	42	42	42	42	42	42	42	42	42	42	42, 42, 42, 42, 42, 42, 42, 42, 42, 42,	2 42 42
Minimum	N/A	N/A	N/A	N/A	0	1	2	3	4	4.124	5 4.25	4.375	4.5	4.625	54.75	4.874	5 6 7 8 9 10 11 12 13 14 15 16 17 17	17 17
(Continu	ac)	1011		1 1/12	÷	-			1									11
(0)	Immum N/A N/A N/A N/A 0 1 2 3 4 4.125 4.25 4.375 4.5 4.625 4.75 5 6 7 8 9 10 11 12 13 14 15 16 17 <th></th>																	
31 31 31 31	1]22[23]24]23]24]27]20]27]20]31]32]33]34]33]31 31 31 31 31 31 31 31																	
21 22 23				15 15		10 10	20.21											
32 32 32 32 21	2 32 32	2 32 32	32 32	32 32	17 17 32 32	18 19 32 32	20 21 32 32	32 33	34 35	5 36								
22 22 23 24	4 25 26	5 27 28	29 30	31 32	33 34	35 36												
22 22 23 24	4 25 26	5 27 28	29 30	31 32	33 34	35 36												
37 37 37 37	7 37 37	37 37	37 37	37 37	37 37	37 37	37 37	37 37	37 37	7 37 3 ′	7 37 37	7 37 38	;					
39 39 39 39	9 39 39	39 39	39 39	39 39	39 39	39 39	39 39	39 39	39 39	9 39 39	9 39 39	39 39	39					
40 40 40 40	0 40 40	0 40 40	40 40	40 40	40 40	40 40	40 40	40 40	40 40) 40 40	0 40 40	0 40 40	40 4	0 41				
40 40 40 40	0 40 40	0 40 40	40 40	40 40	40 40	40 40	40 40	40 40	40 40) 40 40	0 40 40	0 40 40	40 40	0 41				
42 42 42 42	2 42 42	2 42 42	42 42	42 42	42 42	42 42	42 42	42 42	42 42	2 42 42	2 42 42	2 42 42	42 42	2 42 4	2			
17 17 17 17	7 17 17	17 17	17 17	17 17	17 17	18 19	20 21	32 33	34 35	5 36 3'	7 37 37	37 38	39 40	0 41 4	2			
								Min	ima (are b	old. A	Asteri	isk is	excl	ludec	l val	ue.	

<u>-ppc</u>		DEC	DIG		4.00	0 1 0		1 1 2		4.00		1 (2)		4.00	-		_	0	•	4.0		10	4.0		-
Acti	ivity	PES	PLS	PD	AD	012	234	4.13	4.25	4.38	4.50	4.63	4.75	4.88	5	6	7	8	9	10	11	12	13	14	1
1	1	0	0	30	30	1 2	23 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	2	3	3	10	10	_	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
3	3	4	4	10	10	_	4	4.125	4.25	4.375	4.5	4.625	4.75	4.875	5	5	5	5	5	5	5	5	5	5	
4	1	17	30	10	10																				
6	5	4	4.375	0.125	0.125			4.125	4.125	4.125	4.125	4.125	4.125	4.125	4.125	4.125	4.125	4.125	4.125	5 4.125	4.125	4.125	4.125	4.125	4.
5	5	27	31	10	10	_																			
7	7	4.125	4.5	0.500	0.500)			4.25	4.375	4.5	4.625	4.625	4.625	4.625	4.625	4.625	4.625	4.625	5 4.625	4.625	4.625	4.625	4.625	4.6
8	8	5	5	10	10											6	6	6	6	6	6	6	6	6	
9	Ð	6	6	180	180												7	8	9	10	11	12	13	14	1
10	0	9	9	80	80															10	11	12	13	14	1
1	1	10	12	50	50																11	12	13	14	1
12	2	24	17	50	50	1																			
1.	3	29	32	50	50	1																			
14	4	17	17	50	50	1																			
1:	5	22	22	150	150																				
10	6	22	22	150	150																				
1 /	_					_																			
1	7	37	37	20	20																				
1	7 8	37 39	37 39	20 10	20 10																				
	7 8 9	37 39 40	37 39 40	20 10 20	20 10 20	-																			
$ \begin{array}{c} 1\\ 1\\ 1\\ 2\\ 2 \end{array} $	7 8 9 0	37 39 40 40	37 39 40 40	20 10 20 20	20 10 20 20																				
$ \begin{array}{c} 1\\ 1\\ 1\\ 2\\ 2\\ 2 \end{array} $	7 8 9 0 1	37 39 40 40 42	37 39 40 40 42	20 10 20 20 10	20 10 20 20 10	-																			
1 1 2 2 Maxim	7 8 9 0 1 mum	37 39 40 40 40 42 N/A	37 39 40 40 40 42 N/A	20 10 20 20 10 N/A	20 10 20 20 10 N/A	012	2344	4.125	4.25	4.375	4.5	4.625	4.75	4.875	5	6	7	8	9	10	11	12	13	14	1
1 18 19 20 20 Maxim (Con	7 8 9 0 1 mum	37 39 40 40 42 N/A 2s	37 39 40 40 42 N/A	20 10 20 20 10 N/A	20 10 20 20 10 N/A	012	234	4.125	4.25	4.375	4.5	4.625	4.75	4.875	5	6	7	8	9	10	11	12	13	14	1
1 13 19 20 20 20 Maxim (Con 16	7 8 9 0 1 mum <i>tinue</i> 17	37 39 40 40 42 N/A 2s) 18	37 39 40 40 42 N/A 19	20 10 20 10 N/A 20	20 10 20 10 N/A 21	012	234	4.125	4.25	4.375	4.5	4.625	4.75	4.875	5	6	7	8	9	10 36	11 37	12 38	13 39	14 40	1 41
1 19 20 20 20 Maxin (Con 16 3	7 8 9 0 1 mum t <i>tinue</i> 17 3	37 39 40 40 42 N/A 25) 18 3	37 39 40 40 42 N/A 19 3	20 10 20 20 10 N/A 20 3	20 10 20 10 N/A 21 3	012 22 3	234 23 3	4.125 24	4.25 25 3	4.375	4.5 27 3	4.625 28 3	4.75 29 3	4.875 30	5 31 3	6 32 3	7 33 3	8 34 3	9 35 3	10 36 3	11 37 3	12 38 3	13 39 3	40 3	1 41 3
1 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 12 11 12 13 4	7 8 9 0 1 mum 17 3 4	37 39 40 40 42 N/A 2s) 18 3 4	37 39 40 40 42 N/A 19 3 4	20 10 20 20 10 N/A 20 3 4	20 10 20 20 10 N/A 21 3 4	012 012 3 4	234 233 233 233 3 4	4.125 24 3 4	4.25 25 3 4	4.375 26 3 4	4.5 27 3 4	4.625 28 3 4	4.75 29 3 4	4.875 30 3 4	5 31 3 4	6 32 3 4	7 33 4	8 34 3 4	9 35 3 4	10 36 3 4	11 37 3 4	12 38 3 4	13 39 3 4	40 3 4	1 41 3 4
1 11 19 20 2 Maxin (Con 16 3 4 5	7 8 9 0 1 mum ttinue 17 3 4 5	37 39 40 40 42 N/A 2s) 18 3 4 5	37 39 40 40 42 N/A 19 3 4 5	20 10 20 10 N/A 20 3 4 5	20 10 20 20 10 N/A 21 3 4 5	012 22 3 4 5	234 23 3 4 5	4.125 24 3 4 5	4.25 25 3 4 5	4.375	4.5 27 3 4 5	4.625 28 3 4 5	4.75 29 3 4 5	4.875 30 3 4 5	5 31 3 4 5	6 32 3 4 5	7 33 3 4 5	8 34 3 4 5	9 35 3 4 5	10 36 3 4 5	11 37 3 4 5	12 38 3 4 5	13 39 3 4 5	14 40 3 4 5	1 41 3 4 5
I 11 11 11 11 11 12 Maxin (Con 16 3 4 5	7 8 9 0 1 mum ttinue 17 3 4 5	37 39 40 40 42 N/A 25 18 3 4 5 18	37 39 40 40 42 N/A 19 3 4 5 18	20 10 20 10 N/A 20 3 4 5 18	20 10 20 10 N/A 21 3 4 5 18	012 3 4 5 18	2 3 4 5 18	4.125 24 3 4 5 18	4.25 25 3 4 5 18	4.375 26 3 4 5 18	4.5 27 3 4 5 18	4.625 28 3 4 5 18	4.75 29 3 4 5 18	4.875 30 3 4 5 18	5 31 3 4 5 18	6 32 3 4 5 18	7 33 3 4 5 18	8 34 5 18	9 35 3 4 5 18	10 36 3 4 5 18	11 37 3 4 5 18	12 38 3 4 5 18	39 3 4 5 18	40 3 4 5 18	41 3 4 5 18
1 1 1 1 1 2 Maxin (Con 16 3 4 5 4.125	7 8 9 0 1 mum 17 3 4 5 4.125	37 39 40 40 42 N/A es) 18 3 4 5 18 5 4.125	37 39 40 40 42 N/A 19 3 4 5 18 4.125	20 10 20 10 N/A 20 3 4 5 18 4.125	20 10 20 10 N/A 21 3 4 5 18 4.125	012 22 3 4 5 18 4.125	2 34 2 3 3 4 5 18 54.12	4.125 24 3 4 5 18 5 4.12	4.25 4.25 3 4 5 18 5 4.12	4.375 26 3 4 5 18 25 4.12	4.5 27 3 4 5 18 5 4.12	4.625 28 3 4 5 18 5 4.125	4.75 29 3 4 5 18 5 4.12	4.875 30 3 4 5 18 5 4.125	5 31 3 4 5 18 4.125	6 32 3 4 5 18 4.125	7 33 3 4 5 18 4.125	8 34 3 4 5 18 4.125	9 35 3 4 5 18 4.125	10 36 3 4 5 18 5 4.125	11 37 3 4 5 18 4.125	12 38 3 4 5 18 4.125	39 3 4 5 18 4.125 4	40 3 4 5 18 4.125 4	1 41 3 4 5 18 4.12
I 11 19 20 2 Maxim (Con 16 3 4 5 4.125	7 8 9 0 1 mum 1 tinue 3 4 5 4.125	37 39 40 40 42 N/A 25) 18 5 18 5 4.125	37 39 40 40 42 N/A 19 3 4 5 18 4.125	20 10 20 10 N/A 20 3 4 5 18 4.125	20 10 20 10 N/A 21 3 4 5 18 4.125	012 22 3 4 5 18 4.125	2 34 2 3 3 4 5 18 54.12	4.125 24 3 4 5 18 5 4.12	4.25 25 3 4 5 18 5 4.12	4.375 26 3 4 5 18 25 4.12	4.5 27 3 4 5 18 5 4.12	4.625 28 3 4 5 18 5 4.125 28	4.75 29 3 4 5 18 5 4.12 28	4.875 30 3 4 5 18 5 4.125 28	5 31 3 4 5 18 4.125 28	6 32 3 4 5 18 4.125 28	7 33 3 4 5 18 4.125 28	8 34 5 18 4.125 28	9 35 3 4 5 18 4.125 28	10 36 3 4 5 18 4.125 28	11 37 3 4 5 18 4.125 28	38 3 4 5 18 4.125 28	39 3 4 5 18 4.125 4 28	40 3 4 5 18 4.125 28	41 3 4 5 18 4.12 28
I 11 19 20 Q 19 20 Maxim (Con 16 3 4 5 4.125 4.625	7 8 9 0 1 mum trinue 17 3 4 5 4.125 4.625	37 39 40 40 42 N/A 25) 18 3 4 5 18 5 4.125 5 4.625	37 39 40 40 42 N/A 19 3 4 5 18 4.125 4.625	20 10 20 10 N/A 20 3 4 5 18 4.125 4.625	20 10 20 10 N/A 21 3 4 5 18 4.125 4.625	012 3 4 5 18 4.125 4.625	2 34 23 3 4 5 18 5 4.12 5 4.62	4.125 24 3 4 5 18 5 4.12 5 4.62	4.25 25 3 4 5 18 5 4.12 5 4.62	4.375 26 3 4 5 18 25 4.12 25 4.62	4.5 27 3 4 5 18 5 4.12 5 4.62	4.625 28 3 4 5 18 5 4.125 28 5 4.625	4.75 29 3 4 5 18 5 4.12: 28 5 4.62:	4.875 30 3 4 5 18 5 4.125 28 5 4.625	5 31 3 4 5 18 4.125 28 4.625	6 32 3 4 5 18 4.125 28 4.625	7 33 3 4 5 18 4.125 28 4.625	8 34 3 4 5 18 4.125 28 4.625	9 35 3 4 5 18 4.125 28 4.625	10 36 3 4 5 18 4.125 28 4.625	11 37 3 4 5 18 4.125 28 4.625	12 38 3 4 5 18 4.125 28 4.625	39 3 4 5 18 4.125 4 28 4.625 4	40 3 4 5 18 4.125 28 4.625	41 3 4 5 18 4.12 28 4.62
I 11 11 11 11 12 Maxim (Con 16 3 4 5 4.125 4.625 6	7 8 9 0 1 mum trinue 17 3 4 5 4.125 6	37 39 40 40 42 N/A 2s) 18 3 4 5 18 3 4 5 18 5 18 5 6	37 39 40 40 42 N/A 19 3 4 5 18 4.125 6 6	20 10 20 10 N/A 20 3 4 5 18 4.125 4.625 6	20 10 20 10 N/A 21 3 4 5 18 4.125 4.625 6	012 3 4 5 18 4.125 4.625 6	2 34 23 3 4 5 18 5 4.12 5 4.62 6	4.125 24 3 4 5 18 5 4.12 5 4.62 6	4.25 25 3 4 5 18 5 4.12 5 4.62 6	4.375 26 3 4 5 18 25 4.12 25 4.62 6	4.5 27 3 4 5 18 5 4.12 5 4.62 6	4.625 28 3 4 5 18 5 4.125 28 5 4.625 6	4.75 29 3 4 5 18 5 4.12: 28 5 4.62: 6	4.875 30 3 4 5 18 5 4.125 28 5 4.625 6	5 31 3 4 5 18 4.125 28 4.625 6	6 32 3 4 5 18 4.125 28 4.625 6	7 33 3 4 5 18 4.125 28 4.625 6	8 34 5 18 4.125 28 4.625 6	9 35 3 4 5 18 4.125 28 4.625 6	10 36 3 4 5 18 4.125 28 4.625 6	11 37 3 4 5 18 4.125 28 4.625 6	12 38 3 4 5 18 4.125 28 4.625 6	13 39 3 4 5 18 4.125 28 4.625 6	40 3 4 5 18 4.125 28 4.625 6	41 3 4 5 18 4.12 28 4.62 6
I 11 19 20 21 19 20 19 20 Maxim (Con 16 3 4 5 4.125 4.625 6 16	7 8 9 0 1 mum ttinue 17 3 4.125 4.625 6 17	37 39 40 40 42 N/A 25 18 3 4 5 18 5 4.125 5 4.625 6 18	37 39 40 40 42 N/A 19 3 4 5 18 4.125 6 4.625 6 19	20 10 20 10 N/A 20 3 4 5 18 4.125 4.625 6 20	20 10 20 10 N/A 21 3 4 5 18 4.125 4.625 6 21	012 22 3 4 5 18 4.125 4.625 6 22	2 34 23 3 4 5 18 5 4.12 5 4.62 6 23	4.125 24 3 4 5 18 5 4.12 5 4.62 6 24	4.25 25 3 4 5 18 5 4.12 5 4.62 6 24	4.375 26 3 4 5 18 25 4.12 25 4.62 6 24	4.5 27 3 4 5 18 5 4.12 5 4.62 6 24	4.625 28 3 4 5 18 5 4.125 28 5 4.625 6 24	4.75 29 3 4 5 18 5 4.12: 28 5 4.62: 6 24	4.875 30 3 4 5 18 5 4.125 28 5 4.625 6 24	5 31 3 4 5 18 4.125 28 4.625 6 24	6 32 3 4 5 18 4.125 28 4.625 6 24	7 33 3 4 5 18 4.125 28 4.625 6 24	8 34 5 18 4.125 28 4.625 6 24	9 35 3 4 5 18 4.125 28 4.625 6 24	10 36 3 4 5 18 4.125 28 4.625 6 24	11 37 3 4 5 18 4.125 28 4.625 6 24	12 38 3 4 5 18 4.125 28 4.625 6 24	39 3 4 5 18 4.125 4 28 4.625 4 6 24	40 3 4 5 18 4.125 4 28 4.625 4 6 24	1 3 4 5 18 4.12 28 4.62 6 24
1 19 20 2 Maxin (<i>Con</i> 16 3 4.125 4.625 6 16 16	7 8 9 0 1 mum ttinue 17 3 4.125 4.625 6 17 17	37 39 40 40 42 N/A 2s) 18 3 4 5 18 5 6 18 17	37 39 40 40 42 N/A 19 3 4 5 18 4.125 6 19 17	20 10 20 10 N/A 20 3 4 5 18 4.125 4.625 6 20 17	20 10 20 10 N/A 21 3 4 5 18 4.125 6 21 17	0 1 2 22 3 4 5 18 4.125 4.625 6 22 17	2 34 23 3 4 5 18 5 4.12 5 4.62 6 23 17	4.125 24 3 4 5 18 5 4.12 5 4.62 6 24 17	4.25 25 3 4 5 18 5 4.12 5 4.62 6 24 17	4.375 3 4 5 18 25 4.12 25 4.62 6 24 17	4.5 27 3 4 5 18 5 4.12 5 4.62 6 24 17	4.625 28 3 4 5 18 5 4.125 28 5 4.625 6 24 17	4.75 29 3 4 5 18 5 4.12: 28 5 4.62: 6 24 17	4.875 30 3 4 5 18 5 4.125 28 5 4.625 6 24 17	5 31 3 4 5 18 4.125 28 4.625 6 24 17	6 32 3 4 5 18 4.125 28 4.625 6 24 17	7 33 3 4 5 18 4.125 28 4.625 6 24 17	8 34 3 4 5 18 4.125 28 4.625 6 24 17	9 35 3 4 5 18 4.125 28 4.625 6 24 17	10 36 3 4 5 18 4.125 28 4.625 6 24 17	11 37 3 4 5 18 4.125 28 4.625 6 24 17	12 38 3 4 5 18 4.125 28 4.625 6 24 17	39 3 4 5 18 4.125 4 28 4.625 4 6 24 17	40 3 4 5 18 4.125 28 4.625 6 24 17	1 41 3 4 5 18 4.12 28 4.62 6 24 17
I 11 12 20 21 20 21 11 20 21 22 Maxin (Con 16 3 4.125 6 16 16 15	7 8 9 0 1 mum tinue 17 3 4 5 4.125 4.625 6 17 17 15	37 39 40 40 42 N/A 25) 18 3 4 5 18 5 6 18 17 15	37 39 40 40 42 N/A 19 3 4 5 18 4.125 6 4.625 6 19 17 15	20 10 20 10 N/A 20 3 4 5 18 4.125 4.625 6 20 17 15	20 10 20 10 N/A 21 3 4 5 18 4.125 4.625 6 21 17 15	0 1 2 22 3 4 5 18 4.125 4.625 6 22 17 15	2 34 23 3 4 5 18 5 4.12 5 4.62 6 23 17 15	4.125 24 3 4 5 18 5 4.12 5 4.62 6 24 17 15	4.25 25 3 4 5 18 5 4.12 6 24 17 15	4.375 26 3 4 5 18 25 4.12 25 4.62 6 24 17 15	4.5 27 3 4 5 18 5 4.12 5 4.62 6 24 17 15	4.625 28 3 4 5 18 5 4.125 28 5 4.625 6 24 17 15	4.75 29 3 4 5 18 5 4.123 28 5 4.623 6 24 17 15	30 30 3 4 5 18 5 4.125 28 5 4.625 6 24 17 15	5 31 3 4 5 18 4.125 28 4.625 6 24 17 15	6 32 3 4 5 18 4.125 28 4.625 6 24 17 15	7 33 3 4 5 18 4.125 28 4.625 6 24 17 15	8 34 3 4 5 18 4.125 28 4.625 6 24 17 15	9 35 3 4 5 18 4.125 28 4.625 6 24 17 15	10 36 3 4 5 18 4.125 28 4.625 6 24 17 15	11 37 3 4 5 18 4.125 28 4.625 6 24 17 15	38 3 4 5 18 4.125 28 4.625 6 24 17 15	39 3 4 5 18 4.125 4 28 4.625 4 6 24 17 15	14 40 3 4 5 18 4.125 28 4.625 6 24 17 15	41 3 4 5 18 4.12 28 4.62 6 24 17 15

		18	19	20	21	22	22 23	22 24	22 25	22 26	22 27	22 28	22 29	22 30	22 31	22 32	22 33	22 34	22 35	22 36	22 37	22 37	22 37	30 22 37	31 22 37
							23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	37	37	37	37
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	37	37	37	37
(Cor	tinues	5)							-		-	_													
42	43	44	45	46	47	48	49	50	51	52	53														
3	3	3	3	3	3	3	3	3	3	3	3														
4	4	4	4	4	4	4	4	4	4	4	4														
5	5	5	5	5	5	5	5	5	5	5	5														
10	10 5 / 124	10 5 / 124	10 5 / 124	10 5 / 124	10 5 / 125	10 5 / 125	10 3 / 124	10 5 / 124	10 5 / 124	10 5 / 124	10 5 / 124	~													
28	28	28	28	28	28	28	28	28	28	28	28														
4.62	5 4.625	5 4.625	5 4.62	5 4.625	5 4.625	5 4.625	5 4.625	5 4.625	5 4.62	5 4.625	5 4.62	5													
6	6	6	6	6	6	6	6	6	6	6	6														
24	24	24	24	24	24	24	24	24	24	24	24														
17	17	17	17	17	17	17	17	17	17	17	17														
15	15	15	15	15	15	15	15	15	15	15	15														
29	29	29	29	29	29	29	29	29	29	29	29														
32 22	33 22	34 22	34 22																						
37	37	37	37	37	37	37	37	37	37	37	37														
37	37	37	37	37	37	37	37	37	37	37	37														
			•		•	38	39	39	39	39	39														
								40	40	40	40														
									41	42	42														
									41	42	42														
27	27	27	27	27	27	20	20	40	41	10	43														
37	37	37	37	37	37	38	39	40	41	42	43			1	1.1	1									
								M	axima	i are l	901 a .	Astei	risk is	excli	uaed	vaiue	•								
Ann	mdin	2 7 1	· A ati		anno	d Sal	odul.	. Mi-		••															
App	muix.	2-1.1.	. Acll	vuy E	arne	u sch	euule		umun	n ()4	-4													

Activity	Output
1	$z(x)_{\text{ES}_1_{\min}} = [1 - \langle 0 - \frac{1}{3}/d \cdot \langle x - 0 \rangle^1 + \frac{1}{3}/d \cdot \langle x - 3 \rangle^1 \rangle^0]_{\min} \cdot [0 + \frac{1}{3}/d \cdot \langle x - 0 \rangle^1 - \frac{1}{3}/d \cdot \langle x - 3 \rangle^1]$

2	$z(x)_{\text{ES}_2_\min} = [1 - \langle 0 - \frac{1}{1}/d \cdot \langle x - 3 \rangle^1 + \frac{1}{1}/d \cdot \langle x - 4 \rangle^1 \rangle^0]_{\min} \cdot [3 + \frac{1}{1}/d \cdot \langle x - 3 \rangle^1 - \frac{1}{1}/d \cdot \langle x - 4 \rangle^1]$
3	$z(x)_{\text{ES}_3_\min} = [1 - \langle 0 - \frac{1}{8}/d \cdot \langle x - 4 \rangle^1 + \frac{1}{8}/d \cdot \langle x - 5 \rangle^1 \rangle^0]_{\min} \cdot [4 + \frac{1}{8}/d \cdot \langle x - 4 \rangle^1 - \frac{1}{8}/d \cdot \langle x - 5 \rangle^1]$
4	$z(x)_{\text{ES}_4_\min} = [1 - \langle 0 - \frac{1}{1}/d \cdot \langle x - 17 \rangle^1 + \frac{1}{1}/d \cdot \langle x - 18 \rangle^1 \rangle^0]_{\min} \cdot [30 + \frac{1}{1}/d \cdot \langle x - 17 \rangle^1 - \frac{1}{1}/d \cdot \langle x - 18 \rangle^1]$
6	$z(x)_{\text{ES}_6} = [1 - \langle 0 - \frac{1}{1}/d \cdot \langle x - 4 \rangle^1 + \frac{1}{1}/d \cdot \langle x - 4.125 \rangle^1 \rangle^0]_{\text{min}} \cdot [4.375 + \frac{1}{1}/d \cdot \langle x - 4 \rangle^1 - \frac{1}{1}/d \cdot \langle x - 4.125 \rangle^1]$
5	$z(x)_{\text{ES}_5} = [1 - \langle 0 - \frac{1}{1}/d \cdot \langle x - 27 \rangle^1 + \frac{1}{1}/d \cdot \langle x - 28 \rangle^1 \rangle^0]_{\text{min}} \cdot [31 + \frac{1}{1}/d \cdot \langle x - 27 \rangle^1 - \frac{1}{1}/d \cdot \langle x - 28 \rangle^1]$
7	$[z(x)_{\text{ES}_7_{\text{min}}} = [1 - \langle 0 - \frac{1}{4}/d \cdot \langle x - 4.125 \rangle^1 + \frac{1}{4}/d \cdot \langle x - 4.625 \rangle^1 \rangle^0]_{\text{min}} \cdot [4.5 + \frac{1}{4}/d \cdot \langle x - 4.125 \rangle^1 - \frac{1}{4}/d \cdot \langle x - 4.625 \rangle^1]_{\text{min}}$
8	$z(x)_{\text{ES}_8_\min} = [1 - \langle 0 - \frac{1}{1}/d \cdot \langle x-5 \rangle^1 + \frac{1}{1}/d \cdot \langle x-6 \rangle^1 \rangle^0]_{\min} \cdot [5 + \frac{1}{1}/d \cdot \langle x-5 \rangle^1 - \frac{1}{1}/d \cdot \langle x-6 \rangle^1]$
9	$z(x)_{\text{ES}_9_\min} = [1 - \langle 0 - \frac{1}{18}/d \cdot \langle x - 6 \rangle^1 + \frac{1}{18}/d \cdot \langle x - 24 \rangle^1 \rangle^0]_{\min} \cdot [6 + \frac{1}{18}/d \cdot \langle x - 6 \rangle^1 - \frac{1}{18}/d \cdot \langle x - 24 \rangle^1]$
10	$z(x)_{\text{ES}_10_\min} = [1 - \langle 0 - \frac{1}{8}/d \cdot \langle x - 9 \rangle^1 + \frac{1}{8}/d \cdot \langle x - 17 \rangle^1 \rangle^0]_{\min} \cdot [9 + \frac{1}{8}/d \cdot \langle x - 9 \rangle^1 - \frac{1}{8}/d \cdot \langle x - 17 \rangle^1]$
11	$z(x)_{\text{ES}_11_\min} = [1 - \langle 0 - \frac{1}{5}/d \cdot \langle x - 10 \rangle^1 + \frac{1}{5}/d \cdot \langle x - 15 \rangle^1 \rangle^0]_{\min} \cdot [12 + \frac{1}{5}/d \cdot \langle x - 10 \rangle^1 - \frac{1}{5}/d \cdot \langle x - 15 \rangle^1]$
12	$z(x)_{\text{ES}_{12}_{\min}} = [1 - \langle 0 - \frac{1}{5}/d \cdot \langle x - 34 \rangle^1 + \frac{1}{5}/d \cdot \langle x - 39 \rangle^1 \rangle^0]_{\min} \cdot [17 + \frac{1}{5}/d \cdot \langle x - 34 \rangle^1 - \frac{1}{5}/d \cdot \langle x - 39 \rangle^1]$
13	$z(x)_{\text{ES}_{13}_{\min}} = [1 - \langle 0 - \frac{1}{5}/d \cdot \langle x - 39 \rangle^1 + \frac{1}{5}/d \cdot \langle x - 44 \rangle^1 \rangle^0]_{\min} \cdot [32 + \frac{1}{5}/d \cdot \langle x - 39 \rangle^1 - \frac{1}{5}/d \cdot \langle x - 44 \rangle^1]$
14	$z(x)_{\text{ES}_14_\min} = [1 - \langle 0 - \frac{1}{5}/d \cdot \langle x - 17 \rangle^1 + \frac{1}{5}/d \cdot \langle x - 22 \rangle^1 \rangle^0]_{\min} \cdot [17 + \frac{1}{5}/d \cdot \langle x - 17 \rangle^1 - \frac{1}{5}/d \cdot \langle x - 22 \rangle^1]$
15	$z(x)_{\text{ES}_15_\min} = [1 - \langle 0 - \frac{1}{15}/d \cdot \langle x - 22 \rangle^1 + \frac{1}{15}/d \cdot \langle x - 37 \rangle^1 \rangle^0]_{\min} \cdot [22 + \frac{1}{15}/d \cdot \langle x - 22 \rangle^1 - \frac{1}{15}/d \cdot \langle x - 37 \rangle^1]$
16	$z(x)_{\text{ES}_16_\min} = [1 - \langle 0 - \frac{1}{15}/d \cdot \langle x - 22 \rangle^1 + \frac{1}{15}/d \cdot \langle x - 37 \rangle^1 \rangle^0]_{\min} \cdot [22 + \frac{1}{15}/d \cdot \langle x - 22 \rangle^1 - \frac{1}{15}/d \cdot \langle x - 37 \rangle^1]$
17	$z(x)_{\text{ES}_{17}_{\text{min}}} = [1 - \langle 0 - \frac{1}{2}/d \cdot \langle x - 47 \rangle^1 + \frac{1}{2}/d \cdot \langle x - 49 \rangle^1 \rangle^0]_{\text{min}} \cdot [37 + \frac{1}{2}/d \cdot \langle x - 47 \rangle^1 - \frac{1}{2}/d \cdot \langle x - 49 \rangle^1]$
18	$z(x)_{\text{ES}_{18}_{\min}} = [1 - \langle 0 - \frac{1}{1}/d \cdot \langle x - 49 \rangle^1 + \frac{1}{1}/d \cdot \langle x - 50 \rangle^1 \rangle^0]_{\min} \cdot [39 + \frac{1}{1}/d \cdot \langle x - 49 \rangle^1 - \frac{1}{1}/d \cdot \langle x - 50 \rangle^1]$
19	$z(x)_{\text{ES}_{19}_{\min}} = [1 - \langle 0 - \frac{1}{2}/d \cdot \langle x - 50 \rangle^1 + \frac{1}{2}/d \cdot \langle x - 52 \rangle^1 \rangle^0]_{\min} \cdot [40 + \frac{1}{2}/d \cdot \langle x - 50 \rangle^1 - \frac{1}{2}/d \cdot \langle x - 52 \rangle^1]$
20	$z(x)_{\text{ES}_20_\min} = [1 - \langle 0 - \frac{1}{2}/d \cdot \langle x-50 \rangle^1 + \frac{1}{2}/d \cdot \langle x-52 \rangle^1 \rangle^0]_{\min} \cdot [40 + \frac{1}{2}/d \cdot \langle x-50 \rangle^1 - \frac{1}{2}/d \cdot \langle x-52 \rangle^1]$
21	$z(x)_{\text{ES}_{21}_{\min}} = [1 - \langle 0 - \frac{1}{1} / \frac{1}{d} \cdot \langle x - 52 \rangle^1 + \frac{1}{1} / \frac{1}{d} \cdot \langle x - 53 \rangle^1 \rangle^0]_{\min} \cdot [42 + \frac{1}{1} / \frac{1}{d} \cdot \langle x - 52 \rangle^1 - \frac{1}{1} / \frac{1}{d} \cdot \langle x - 53 \rangle^1]$

Appendix 2-I.2: Activity Earned Schedule Maximum

Activity	Output
1	$z(x)_{\text{ES}_{1}_{\text{max}}} = [1 - \langle \frac{1}{3}/d \cdot \langle x - 0 \rangle^{1} - \frac{1}{3}/d \cdot \langle x - 3 \rangle^{1} - 1 \rangle^{0}]_{\text{max}} \cdot [0 + \frac{1}{1}/d \cdot \langle x - 0 \rangle^{1} - \frac{1}{1}/d \cdot \langle x - 3 \rangle^{1}]$
2	$z(x)_{\text{ES}_2_\text{max}} = [1 - \langle \frac{1}{1}/d \cdot \langle x-3 \rangle^1 - \frac{1}{1}/d \cdot \langle x-4 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [3 + \frac{1}{1}/d \cdot \langle x-3 \rangle^1 - \frac{1}{1}/d \cdot \langle x-4 \rangle^1]$
3	$z(x)_{\text{ES}_3_{\text{max}}} = [1 - \langle \frac{1}{8}/d \cdot \langle x-4 \rangle^1 - \frac{1}{8}/d \cdot \langle x-5 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [4 + \frac{1}{8}/d \cdot \langle x-4 \rangle^1 - \frac{1}{8}/d \cdot \langle x-5 \rangle^1]$
4	$z(x)_{\text{ES}_{4}_{\text{max}}} = [1 - \langle \frac{1}{1}/d \cdot \langle x-17 \rangle^{1} + \frac{1}{1}/d \cdot \langle x-18 \rangle^{1} - 1 \rangle^{0}]_{\text{max}} \cdot [17 + \frac{1}{8}/d \cdot \langle x-17 \rangle^{1} - \frac{1}{4}/d \cdot \langle x-18 \rangle^{1}]$
6	$z(x)_{\text{ES}_6_{\text{max}}} = [1 - \langle \frac{1}{1}/d \cdot \langle x-4 \rangle^1 - \frac{1}{1}/d \cdot \langle x-4.125 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [4 + \frac{1}{1}/d \cdot \langle x-4 \rangle^1 - \frac{1}{1}/d \cdot \langle x-4.125 \rangle^1]$
5	$z(x)_{\text{ES}_5_{\text{max}}} = [1 - \langle \frac{1}{1}/d \cdot \langle x-27 \rangle^1 - \frac{1}{1}/d \cdot \langle x-28 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [27 + \frac{1}{1}/d \cdot \langle x-27 \rangle^1 - \frac{1}{1}/d \cdot \langle x-28 \rangle^1]$
7	$z(x)_{\text{ES}_7_{\text{max}}} = [1 - \langle \frac{1}{4}/d \cdot \langle x-4.125 \rangle^1 - \frac{1}{4}/d \cdot \langle x-4.625 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [4.125 + \frac{1}{4}/d \cdot \langle x-4.125 \rangle^1 - \frac{1}{4}/d \cdot \langle x-4.625 \rangle^1]$
8	$z(x)_{\text{ES 8 max}} = [1 - \langle \frac{1}{1}/\frac{1}{4} \cdot \langle x-5 \rangle^1 - \frac{1}{1}/\frac{1}{4} \cdot \langle x-6 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [5 + \frac{1}{1}/\frac{1}{4} \cdot \langle x-5 \rangle^1 - \frac{1}{1}/\frac{1}{4} \cdot \langle x-6 \rangle^1]$

9	$z(x)_{\text{ES}_9_{\text{max}}} = [1 - \langle \frac{1}{18}/d \cdot \langle x-6 \rangle^1 - \frac{1}{18}/d \cdot \langle x-24 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [6 + \frac{1}{18}/d \cdot \langle x-6 \rangle^1 - \frac{1}{18}/d \cdot \langle x-24 \rangle^1]$
10	$z(x)_{\text{ES}_{10}_{\text{max}}} = [1 - \langle \frac{1}{8}/d \cdot \langle x-9 \rangle^1 - \frac{1}{8}/d \cdot \langle x-17 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [9 + \frac{1}{8}/d \cdot \langle x-9 \rangle^1 - \frac{1}{8}/d \cdot \langle x-17 \rangle^1]$
11	$z(x)_{\text{ES}_11_\text{max}} = [1 - \langle \frac{1}{5}/d \cdot \langle x-10 \rangle^1 - \frac{1}{5}/d \cdot \langle x-15 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [10 + \frac{1}{5}/d \cdot \langle x-10 \rangle^1 - \frac{1}{5}/d \cdot \langle x-15 \rangle^1]$
12	$z(x)_{\text{ES}_{12}_{\text{max}}} = [1 - \langle \frac{1}{5}/d \cdot \langle x - 34 \rangle^1 - \frac{1}{5}/d \cdot \langle x - 39 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [24 + \frac{1}{5}/d \cdot \langle x - 34 \rangle^1 - \frac{1}{5}/d \cdot \langle x - 39 \rangle^1]$
13	$z(x)_{\text{ES}_{13}_{\text{max}}} = [1 - \langle \frac{1}{5}/d \cdot \langle x-39 \rangle^1 - \frac{1}{5}/d \cdot \langle x-44 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [29 + \frac{1}{5}/d \cdot \langle x-39 \rangle^1 - \frac{1}{1}/d \cdot \langle x-44 \rangle^1]$
14	$z(x)_{\text{ES}_{14}_{\text{max}}} = [1 - \langle \frac{1}{5}/d \cdot \langle x-17 \rangle^1 - \frac{1}{5}/d \cdot \langle x-22 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [17 + \frac{1}{5}/d \cdot \langle x-17 \rangle^1 - \frac{1}{5}/d \cdot \langle x-22 \rangle^1]$
15	$z(x)_{\text{ES}_{15}_{\text{max}}} = [1 - \langle \frac{1}{15}/d \cdot \langle x-22 \rangle^{1} - \frac{1}{15}/d \cdot \langle x-37 \rangle^{1} - 1 \rangle^{0}]_{\text{max}} \cdot [22 + \frac{1}{15}/d \cdot \langle x-22 \rangle^{1} - \frac{1}{15}/d \cdot \langle x-37 \rangle^{1}]$
16	$z(x)_{\text{ES}_{16}_{\text{max}}} = [1 - \langle \frac{1}{15}/d \cdot \langle x-22 \rangle^{1} - \frac{1}{15}/d \cdot \langle x-37 \rangle^{1} - 1 \rangle^{0}]_{\text{max}} \cdot [22 + \frac{1}{15}/d \cdot \langle x-22 \rangle^{1} - \frac{1}{15}/d \cdot \langle x-37 \rangle^{1}]$
17	$z(x)_{\text{ES}_{17}_{\text{max}}} = [1 - \langle \frac{1}{2}/d \cdot \langle x - 47 \rangle^{1} - \frac{1}{2}/d \cdot \langle x - 49 \rangle^{1} - 1 \rangle^{0}]_{\text{max}} \cdot [37 + \frac{1}{2}/d \cdot \langle x - 47 \rangle^{1} - \frac{1}{2}/d \cdot \langle x - 49 \rangle^{1}]$
18	$z(x)_{\text{ES}_{18}_{\text{max}}} = [1 - \langle \frac{1}{1}/\frac{1}{4} \cdot \langle x-49 \rangle^1 - \frac{1}{1}/\frac{1}{4} \cdot \langle x-50 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [39 + \frac{1}{1}/\frac{1}{4} \cdot \langle x-49 \rangle^1 - \frac{1}{1}/\frac{1}{4} \cdot \langle x-50 \rangle^1]$
19	$z(x)_{\text{ES}_{19}_{\text{max}}} = [1 - \langle \frac{1}{2}/d \cdot \langle x-50 \rangle^1 - \frac{1}{2}/d \cdot \langle x-52 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [40 + \frac{1}{2}/d \cdot \langle x-50 \rangle^1 - \frac{1}{2}/d \cdot \langle x-52 \rangle^1]$
20	$z(x)_{\text{ES}_{20}_{\text{max}}} = [1 - \langle \frac{1}{2}/d \cdot \langle x-50 \rangle^1 - \frac{1}{2}/d \cdot \langle x-52 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [40 + \frac{1}{2}/d \cdot \langle x-50 \rangle^1 - \frac{1}{2}/d \cdot \langle x-52 \rangle^1]$
21	$z(x)_{\text{ES}_{21}_{\text{max}}} = [1 - \langle \frac{1}{1}/\frac{1}{4} \cdot \langle x-52 \rangle^1 - \frac{1}{1}/\frac{1}{4} \cdot \langle x-53 \rangle^1 - 1 \rangle^0]_{\text{max}} \cdot [42 + \frac{1}{1}/\frac{1}{4} \cdot \langle x-52 \rangle^1 - \frac{1}{1}/\frac{1}{4} \cdot \langle x-53 \rangle^1]$

892 Appendix 2-J: Variances and Indices

\$0 0 \$0 1 1 1	\$0 0 \$0 1 1	\$0 0 \$0 1 1	\$0 0 \$0 1	\$0 0 \$0 1	\$0 0 \$0	\$0 0 \$0	\$0 0 \$0	\$0 0 \$0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0	\$0 0
0 \$0 1 1	0 \$0 1 1	0 \$0 1 1	0 \$0 1	0 \$0 1	0 \$0	0 \$0	0 \$0	0	0	0	0	0	0	0	0	0	0	0	0	0
\$0 1 1 1	\$0 1 1	\$0 1 1	\$0 1	\$0 1	\$0	\$0	\$0	¢A												9
1 1 1	1 1	1 1	1	1	1			\$ 0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
1 1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0.44	0.89	1.33	1.77	7.49	12.39	13.02	13.66	14.30	15.70	17.84	19.98	22.12	24.26	26.40	27.80	29.20	32.04	34.43	36.82
0	0.44	0.89	1.33	1.77	7.49	12.39	13.02	13.66	14.30	15.70	17.84	19.98	22.12	24.26	26.40	27.80	29.20	32.04	34.43	36.82
0)	0.44 0.44) 0.44 0.89) 0.44 0.89	0.44 0.89 1.330.44 0.89 1.33	 0.44 0.89 1.33 1.77 0.44 0.89 1.33 1.77 	0 0.44 0.89 1.33 1.77 7.49 0 0.44 0.89 1.33 1.77 7.49	0 0.44 0.89 1.33 1.77 7.49 12.39 0 0.44 0.89 1.33 1.77 7.49 12.39	0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02	0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66	0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84	0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 29.20 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 29.20	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 29.20 32.04 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 29.20 32.04	0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 29.20 32.04 34.43 0 0.44 0.89 1.33 1.77 7.49 12.39 13.02 13.66 14.30 15.70 17.84 19.98 22.12 24.26 26.40 27.80 29.20 32.04 34.43

(COn	inne	5)												
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
\$0	\$0	\$0	\$0	-\$2,805.40	-\$5,610.80	-\$8,416.20	-\$11,221.60	-\$14,027	-\$14,937	-\$15,847	-\$16,757	-\$17,667	-\$18,577	-\$15,771.60
0	0	0	0	-0.51	-1.03	-1.54	-1.91	-2.42	-2.97	-3.74	-4.37	-4.75	-5.14	-5.14
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
1	1	1	1	0.98	0.96	0.94	0.92	0.90	0.90	0.89	0.89	0.89	0.88	0.90
1	1	1	1	0.98	0.96	0.94	0.93	0.92	0.90	0.88	0.86	0.86	0.85	0.85

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0.98	0.96	0.94	0.92	0.90	0.90	0.89	0.89	0.89	0.88	0.90
1	1	1	1	0.98	0.96	0.94	0.92	0.90	0.90	0.89	0.89	0.89	0.88	0.90
39.22	41.61	52.76	63.92	65.38	66.85	68.32	70.23	71.70	73.17	74.64	76.10	77.57	79.04	82.06
39.22	41.61	52.76	63.92	65.38	66.85	68.32	70.23	71.70	73.17	74.64	76.10	77.57	79.04	82.06

(Continues	·)													
36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
-\$12,966.20	-\$10,160.80	-\$10,295.90	-\$10,431	-\$9,449	-\$10,617	-\$11,785	-\$11,945	-\$11,305	-\$11,305	-\$11,305	-\$11,305	-\$8,364.50	-\$5,424	-\$4,416
-5.14	-3.62	-3.78	-3.72	-3.97	-4.73	-5.49	-6.24	-7	-8	-9	-10	-10	-10	-10
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
0.92	0.94	0.94	0.94	0.95	0.94	0.93	0.93	0.94	0.94	0.94	0.94	0.95	0.97	0.98
0.86	0.90	0.90	0.90	0.90	0.88	0.87	0.85	0.84	0.82	0.80	0.79	0.79	0.80	0.80
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.92	0.94	0.94	0.94	0.95	0.94	0.93	0.93	0.94	0.94	0.94	0.94	0.95	0.97	0.98
0.92	0.94	0.94	0.94	0.95	0.94	0.93	0.93	0.94	0.94	0.94	0.94	0.95	0.97	0.98
85.08	88.11	89.66	91.22	92.32	92.67	93.03	93.38	93.74	93.74	93.74	93.74	95.37	96.99	97.55
85.08	88.11	89.66	91.22	92.32	92.67	93.03	93.38	93.74	93.74	93.74	93.74	95.37	96.99	97.55

(Continues)								
51	52	53						
-\$2,608	-\$800	\$0						
-10	-10	-10						
\$0	\$0	\$0						
0.99	1	1						
0.80	0.81	0.81						
1	1	1						
0.99	1	1						
0.99	1	1						
98.56	99.56	100						
98.56	99.56	100						

897 Appendix 2-K: Forecasts

- $y(47d)_{CPI_project} = y(47d)_{EV_project} / y(47d)_{AC_project} = €169180 / €169180 = 100\%$
- $y(47d)_{\text{SPI}_{\text{project}}} = y(47d)_{\text{EV}_{\text{project}}} / y(47d)_{\text{PV}_{\text{project}}} = \text{\pounds}169180/\text{\pounds}180485 = 93.74\%$
- $y(47d)_{SPI(t)_project} = y(47d)_{ES_project} / 47d = 37d/47d = 78.72\%$
- $y(47d)_{CSI_project} = y(47d)_{CPI_project} \times y(47d)_{SPI_project} = 100\% \times 93.74\% = 93.74\%$
- $y(47d)_{CSI(t)_project} = y(47d)_{CPI_project} \times y(47d)_{SPI(t)_project} = 100\% \times 78.72\% = 78.72\%$

Forecast	Calculation	Result
$EAC(\$) (47d)_{PF=1_project}$	$y(47d)_{AC_{project}} + (BAC - y(47d)_{EV_{project}}) / 1 = \pounds 169180 + \pounds 11305 / 1$	€180485.00

EAC(\$) (47d) _{PF=CPI_project}	$y(47d)_{AC_project} + (BAC - y(47d)_{EV_project}) / y(47)_{CPI_project} = €169180 + €11305 / 100\%$	€180485.00
EAC(\$) (47d) _{PF=SPI_project}	$y(47d)_{AC_project} + (BAC - y(47d)_{EV_project}) / y(47)_{SPI_project} = €169180 + €11305 / 93.74\%$	€181240.43
EAC(\$) (47d) _{PF=SPI(t)_project}	$y(47d)_{AC_project} + (BAC - y(47d)_{EV_project}) / y(47)_{SPI(t)_project} = €169179.97 + €11305 / 78.72\%$	€183540.41
EAC(\$) (47d) _{PF=CSI_project}	$y(47d)_{AC_{project}} + (BAC - y(47d)_{EV_{project}}) / y(47)_{CSI_{project}} = \text{\ensuremath{\in}} 169179.97 + \text{\ensuremath{\in}} 11305 / 93.74\%$	€183540.43
EAC(\$) (47d) _{PF=CSI(t)} project	$y(47d)_{AC \text{ project}} + (BAC - y(47d)_{EV \text{ project}}) / y(47)_{CSI(t) \text{ project}} = \text{\ensuremath{\in}} 169179.97 + \text{\ensuremath{\in}} 11305 / 78.72\%$	€183540.41

 $y(47d)_{CV_project} = y(47d)_{EV_project} - y(47d)_{AC_project} = €169180 - €169180 = €0$ The project incurs no cost overruns. $y(47d)_{SV_project} = y(47d)_{EV_project} - y(47d)_{PV_project} = €169180 - €180485 = -€11305$

906 907

Forecast	Calculation	Result
$EAC(t)$ (47d) _{PV1_project}	$43d - (43d / €180485) \times y(47d)_{SV_{project}} = 43d - (43d / €180485) \times -€11305$	45.6934d
$EAC(t)(x)_{PV2_project}$	$43d / y(47d)_{SPI_{project}} = 43d / 93.74\%$	45.8734d
$EAC(t) (x)_{PV3_project}$	$43d / y(47d)_{CSI_{project}} = 43d / 93.74\%$	45.8734d
$EAC(t) (x)_{ED1_project}$	$43d + 47d \times (1 - y(47d)_{SPI_project}) = 43d + 47d \times (1 - 93.74\%)$	45.9439d
$EAC(t) (x)_{ED2_project}$	$43d / y(47d)_{SPI_{project}} = 43d / 93.74\%$	45.8734d
$EAC(t) (x)_{ED3_project}$	$43d / y(47d)_{CSI_project} + 47d \times (1 - 1 / y(47d)_{CPI_project}) = 43d / 93.74\% + 47d \times (1 - 1 / 100\%)$	45.8734d
$EAC(t) (x)_{ES1_project}$	$47d + 43d - y(47d)_{\text{ES}_{\text{project}}} = 47d + 43d - 37$	53.0000d
$EAC(t) (x)_{ES2_project}$	$47d + (43d - y(47d)_{ES_{project}}) / y(47d)_{SPI(t)_{project}} = 47d + (43d - 37d) / 78.72\%$	54.6200d
$EAC(t) (x)_{ES3_project}$	$47d + (43d - y(47d)_{ES_{project}}) / y(47d)_{CSI(t)_{project}} = 47d + (43d - 37d) / 78.72\%$	54.6200d