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subgroups of finite groups
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Abstract

A subgroup H of a finite group G is a partial CAP-subgroup of G if
there is a chief series of G such that H either covers or avoids its chief
factors. Partial cover and avoidance property has turned out to be very
useful to clear up the group structure. In this paper, finite groups in
which the second minimal subgroups of their Sylow p-subgroups, p a
fixed prime, are partial CAP-subgroups are completely classified.
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1 Introduction
All groups considered in this paper are finite. Arguably, the study of sub-
group embedding properties has been one of the most efficient methods to
clear up the structure of the groups. In particular, the embedding properties
of 2-maximal and 2-minimal subgroups tend to give additional information
about the group ([4, 17, 23, 27]). During the past four decades, the sub-
group property known as the cover-avoidance property has gained more and
more currency, first in the context of soluble groups ([8–10,12,24,25] and [2,
Chapter 4]), and more recently as a way of describing certain classes of soluble
and supersoluble groups and their local versions ([3, 7, 11,13–16,20–22,26]).
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Let A be a subgroup of a group G and H/K a section of G. We say that
A covers H/K if HA = KA and A avoids H/K if A∩H = A∩K. If A either
covers or avoids every chief factor of G, then we say that A has the cover and
avoidance property in G or A is a CAP-subgroup of G. Unfortunately the
cover and avoidance property is not hereditary in intermediate subgroups,
that is, if A is a CAP-subgroup of G and A is contained in a subgroup B of
G, it does not follow in general that A has the cover and avoidance property
in B (see [4, Example 3]). The failure of the cover and avoidance property to
hold in intermediate subgroups leads to the following weaker property, which
is persistent in subgroups and is also extremely useful in the structural study
of the groups:

Definition 1.1. A subgroup A of a group G is called a partial CAP-subgroup
of G if there exists a chief series ΓA of G such that A either covers or avoids
each factor of ΓA (see [11, 21] for alternative terminologies).

Clearly, every CAP-subgroup is a partial CAP-subgroup, but the converse
does not hold ([4, Example 3]). In [4], the authors considered the effect of
imposing the partial cover and avoidance property to the second maximal
subgroups of the Sylow p-subgroups, p a fixed prime. In the present paper
the emphasis is on second minimal subgroups, and we consider what might
be considered an opposite extreme, where the second minimal subgroups
(2-minimal subgroups for short) of the Sylow p-subgroups are partial CAP-
subgroups. In one result, we characterise the groups with this property,
identifying a remarkable analogy between the partial cover and avoidance
property of the subgroups of index p2 and the partial cover and avoidance
property of the subgroups of order p2.

Main theorem. Let p be a prime number, let G be a group, and let G+ =
G/Op′(G). Then every subgroup of G of order p2 is a partial CAP-subgroup
of G if and only if one of the following statements holds:

1. the order of the Sylow p-subgroups of G is at most p;

2. G is a p-supersoluble group;

3. Φ(G+) = 1 and, if P is a Sylow p-subgroup of G, P+ = Soc(G+) = V1×
· · · × Vr, where V1, . . . , Vr are minimal normal subgroups of G+ which
are G+-isomorphic to a 2-dimensional irreducible G+-module V over
the Galois field GF(p). Furthermore, V is not an absolutely irreducible
G+-module when r > 1.

It seems desirable now to give an example of a group satisfying condition 3
of our main theorem. Existence of such groups was already shown in [1]. For
the sake of completeness, we reproduce here the example of that paper.
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Example 1.2. Consider an elementary abelian group

H = 〈a, b | a5 = b5 = 1, ab = ba〉

of order 25 and let α be an automorphism of H of order 3 satisfying that
aα = b, bα = a−1b−1. Let H1 = H, H2 = 〈a′, b′〉 be a copy of H1 and
G = [H1 × H2]〈α〉. For any subgroup A of G of order 25, there exists a
minimal normal subgroup N such that A ∩N = 1. Then A covers or avoids
the factors of the chief series of G

1 < N < AN < G.

In other words, A is a partial CAP-subgroup of G. However, G is not 5-
supersoluble. Note that H is not an absolutely irreducible G-module over
the Galois field of 5 elements.

This example also shows that a group in which the second minimal sub-
groups of the Sylow subgroups are partial CAP-subgroups is not supersoluble
in general. The best we are able to say is the following:

Corollary 1.3. A group in which the second minimal subgroups of the Sylow
subgroups are partial CAP-subgroups is soluble.

2 Preliminaries
We begin with some preparatory lemmas before coming to the main result
of the paper. The main basic properties of partial CAP-subgroups are listed
in the following result appeared in [11]. They are particularly useful when
induction arguments are applied.

Lemma 2.1. Let S be a partial CAP-subgroup of a group G.

1. If S ≤ K ≤ G, then S is a partial CAP-subgroup of K.

2. If N ≤ S and N E G, then S/N is a partial CAP-subgroup of G/N .

3. If N E G and (|S|, |N |) = 1, then SN/N is a partial CAP-subgroup of
G/N .

The information given in the following lemma comes in extremely useful
when studying the partial cover and avoidance property.

Lemma 2.2 ([1, Lemma 2.2]). Let H be a partial CAP-subgroup of a group
G. Suppose that Q is a normal subgroup of G such that H is contained in
Q. Then there exists a chief series ΩH of G passing through Q such that H
either covers or avoids each chief factor in ΩH .
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Let r be a positive integer and let H be a subgroup of G. Then H is
called an r-minimal (respectively r-maximal) subgroup of G if there exists
a subgroup chain 1 = H0 < H1 < · · · < Hr = H (respectively H = H0 <
H1 < · · · < Hr = G) such that Hi is a maximal subgroup of Hi+1 for all
0 ≤ i ≤ r − 1.

In the present paper we investigate the effect of imposing the partial cover
and avoidance property on the 2-minimal subgroups of the Sylow subgroups,
and once more we get a sense of why the partial cover and avoidance property
has such bearing in the study of soluble groups. In fact, we use a local
approach and characterise the groups G enjoying the following property:

(†) Every 2-minimal subgroup of every Sylow p-subgroup of G is
a partial CAP-subgroup of G, p a fixed prime.

In the following p will be a fixed prime.
Since 2-minimal subgroups of p-groups have order p2, every group with

Sylow p-subgroups of order p satisfies property (†). All p-supersoluble groups,
or p-soluble groups whose p-chief factors have order p, also satisfy (†). There-
fore we must think about groups whose order is divisible by p2 which are not
p-supersoluble.

An interesting special case is when the Sylow p-subgroups of G have order
p2. In this case, the structure of G is quite restricted as the following lemma
shows.

Lemma 2.3. Let G be a group whose Sylow p-subgroups have order p2. Sup-
pose that G satisfies property (†). Then G is p-soluble and either G is p-
supersoluble or Soc(G/Op′(G)) = POp′(G)/Op′(G) is an elementary abelian
group of order p2 for each Sylow p-subgroup P of G.

Proof. We can assume without loss of generality that Op′(G) = 1. Suppose
that G is not p-soluble. Then every minimal normal subgroup of G is non-
abelian and its order is divisible by p by [4, Theorem 7]. It is clear then that
a Sylow p-subgroup P of G neither covers nor avoids any minimal normal
subgroup of G, a contradiction which shows that G is p-soluble. In that
case, S = Soc(G) is a minimal normal subgroup of G contained in P by
[4, Theorem 7]. Consequently, either S is of order p and G is p-supersoluble
or S = P is the Sylow p-subgroup of G.

The next lemmas will be applied to the consideration of groups satisfying
property (†).

Lemma 2.4 ([5, Proposition 1]). Let F be a saturated formation. Assume
that G is group such that G does not belong to F and there exists a maximal
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subgroup M of G such that M ∈ F and G = MF(G). Then GF/(GF)′ is a
chief factor of G, GF is a p-group for some prime p, GF has exponent p if
p > 2 and exponent at most 4 if p = 2. Moreover, either GF is elementary
abelian or (GF)′ = Z(GF) = Φ(GF).

As an important deduction we have the

Lemma 2.5 ([5, Theorem 6]). Let F be a saturated formation and G a group
with a normal subgroup K such that G/K ∈ F. If for some prime p, every
subgroup of order p of K is contained in the F-hypercentre ZF(G) of G, then
G/Op′(K) ∈ F.

There are some places where we use a known criterion for a normal p-
subgroup to be contained in the hypercentre. For convenience, this is stated
here as:

Lemma 2.6. Suppose that P is a normal p-subgroup of G. Then P ≤ Z∞(G)
if and only if Op(G) ≤ CG(P ).

3 Main results
In this section we analyse the structure of the groups satisfying property (†),
and prepare the way for the proof of the main result. We begin with a theorem
about the minimal normal subgroups of the groups satisfying property (†).

Theorem 3.1. Let G be a group satisfying property (†) whose order is di-
visible by p2. Then every minimal normal subgroup of G is either a p′-group
or a p-group. The minimal normal p-subgroups of G are of the same order,
and it is at most p2.

Proof. Let N be a minimal normal subgroup of G, and suppose that N is
not a p′-group. Let 1 6= Np be a Sylow p-subgroup of N , and let Q be a
subgroup of G of order p2 such that Q ∩Np 6= 1. We consider a chief series
of G

(Γ) : 1 = G0 < · · · < Gi < · · · < Gj < Gj+1 < · · · < Gm = G

such that Q either covers of avoids each chief factor of G in (Γ). Then there
exists an index i ∈ {1, . . . ,m} such that N ∩Gi−1 = 1 and Gi = Gi−1N . In
that case, Gi/Gi−1 is G-isomorphic to N . Suppose that Q avoids Gi+1/Gi,
then Q ∩ Np ≤ Q ∩ Gi ∩ N = Q ∩ Gi−1 ∩ N = 1, against the choice of Q.
Consequently, Q covers Gi/Gi−1. Then Gi/Gi−1 is of order at most p2 and
N is a p-group of order at most p2.
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Next we prove that all minimal normal p-subgroups of G are of the same
order. Suppose, arguing by contradiction, that G has two minimal normal
p-subgroups, N1 and N2 say, such that |N1| = p and |N2| = p2. Let H be a
subgroup of N2 of order p. Then N1H is a subgroup of G of order p2 which
is a partial CAP-subgroup of G. By Lemma 2.2, there exists a chief series
of G,

(∆) : 1 ≤ N3 ≤ N1N2 ≤ · · · ≤ G,

passing through N1N2 such that N1H either covers or avoids each chief factor
of G in (∆). In addition, the order of N3 is p or p2. Assume that N3 is of
order p. If N1H ∩ N3 = 1, then N1HN3 = N1N2 and N2 = H(N2 ∩ N1N3).
It means that either N2 = H or N2 = HN1N3. This contradiction shows
that N3 is a subgroup of N1H. In particular, N1H cannot cover N1N2/N3.
Hence N1H = N1N2 ∩N1H = N1H ∩N3 = N3, a contradiction which shows
that N3 must be of order p2. Since N1N2 is of order p3 and N1H is of order
p2, it follows that N1H covers N3. Thus N1H = N3, which contradicts the
fact that N1 and N3 are two different minimal normal subgroups of G. This
proves the result.

We now touch the question of the p-length of p-soluble groups satisfying
property (†). We prove that these groups belong to the saturated formation
F of all p-soluble groups whose p-length is at most one.

Theorem 3.2. Let G be a p-soluble group satisfying property (†). Then the
p-length of G is at most 1.

Proof. We will obtain a contradiction by supposing that the result is false
and choosing a counterexample G of least order. For the ease of reading, we
break the argument into separately-stated steps.

1. Op′(G) = 1.

Assume that Op′(G) 6= 1. By Lemma 2.1 the hypothesis holds in the
group G/Op′(G). The minimal choice of G implies that G/Op′(G) be-
longs to F. Hence G is an F-group, against the choice of G. Thus
Op′(G) = 1.

2. Any proper subgroup of G belongs to F.

Let H be a proper subgroup of G. If a Sylow p-subgroup Hp of H is of
order at most p, we have that H ∈ F by [3, Lemma 3.1]. Assume that
p2 divides |Hp| and let L be a subgroup of H of order p2. Then L is a
partial CAP-subgroup of H by Lemma 2.1, and so H satisfies property
(†). The minimality of G yields H ∈ F. This confirms Step 2.
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LetGF denote the F-residual ofG, that is, the smallest normal subgroup
of G with quotient in F.

3. There exists a maximal subgroup M of G such that M ∈ F and G =
MGF. Moreover, GF/Φ(GF) is a chief factor of G, and the exponent of
GF is p or at most 4 if p = 2.

Since G is not an F-group and F is saturated, it follows that G/Φ(G)
does not belong to F. Let N/Φ(G) a non-trivial normal subgroup of
G/Φ(G). Then N/Φ(G) is supplemented in G/Φ(G). By Step 2, G/N
belongs to F. Therefore, since F is a formation, G/Φ(G) has a unique
minimal normal subgroup, T/Φ(G) say. Moreover, T/Φ(G) is not a
p′-group. Since G is p-soluble, it follows that T/Φ(G) is an abelian
p-chief factor of G which is complemented in G by a maximal subgroup
M of G. Then G = MF(G) and T = GFΦ(G). Step 2 implies that
M ∈ F and so GF/Φ(GF) is a chief factor of G, and the exponent of GF

is p or at most 4 if p = 2 by Lemma 2.4. This proves our claim.

4. Φ(GF) = 1 and |GF| = p2.

Suppose that GF/Φ(GF) has order p. Since GF/Φ(GF) is G-isomorphic
to Soc(G/MG), it follows that G/MG is in F. This contradiction shows
that GF/Φ(GF) has order greater than p. Let H be a subgroup of GF

of order p2 such that H 6≤ Φ(GF). Then H is a partial CAP-subgroup
of G and, by Lemma 2.2, there exists a chief series of G,

(Γ1) : 1 = G0 ≤ G1 ≤ · · · ≤ K ≤ GF ≤ · · · ≤ Gn = G,

passing through GF such that H either covers or avoids each G-chief
factor in (Γ1). Since GF/Φ(GF) is a chief factor of G by Step 3, it follows
that either KΦ(GF) = Φ(GF) or KΦ(GF) = GF. If KΦ(GF) = GF,
then K = GF, contrary to assumption. Thus K ≤ Φ(GF). Since GF/K
is a chief factor of G, we have K = Φ(GF) and so GF/Φ(GF) is a
chief factor of G in (Γ). It therefore follows that H either covers or
avoids GF/Φ(GF). If H avoids GF/Φ(GF), then H = H ∩GF ≤ Φ(GF),
contrary to the choice of H. Hence we have that H covers GF/Φ(GF).
Consequently GF = HΦ(GF) = H, GF is of order p2 and Φ(GF) = 1.

5. G is not a primitive group. In particular MG 6= 1.

Suppose, arguing by contradiction, that G is primitive. Then GF is the
unique minimal normal subgroup of G. Since G has p-length greater
than 1 and GF is a p-group, it follows that p divides |M |. Then we can
choose an element a ∈ GF and an element b ∈ M such that 〈a, b〉 is a
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subgroup of G of order p2. Obviously 〈a, b〉 neither covers nor avoids
GF, a contradiction which proves Step 5.

6. The final contradiction.

By Step 5, MG 6= 1. Let N be a minimal normal subgroup of G
contained in MG. Then N is a p-group by Step 1, and N ∩GF = 1. Let
us choose an element a ∈ GF and an element b ∈ N such that 〈a, b〉 is
a group of order p2. By hypothesis, 〈a, b〉 is a partial CAP-subgroup of
G. Applying Lemma 2.2, there exists a chief series of G,

(Γ2) : 1 = G0 ≤ K ≤ GFN ≤ · · · ≤ Gn = G,

passing through GFN such that 〈a, b〉 either covers or avoids each chief
factor of G in (Γ2).

It is clear that 〈a, b〉 neither covers nor avoidsGF. HenceK 6= GF. Then
K is an F-central chief factor of G. Since M is an F-normaliser of G by
[2, Theorem 4.2.17], we can apply [2, Theorem 4.2.4] to conclude that
K ≤M . Assume that 〈a, b〉 avoids K. Then 〈a, b〉 must cover GFN/K,
and so GFN ≤ 〈a, b〉K. We therefore have that GF = GF ∩ (〈a, b〉K) =
〈a〉(GF ∩ 〈b〉K) = 〈a〉, contrary to Step 4. Hence 〈a, b〉 must cover K.
Thus K = M ∩ 〈a, b〉 = 〈b〉.
Now 〈a, b〉 either covers or avoids GFN/K. If 〈a, b〉 covers GFN/K,
then GFN ≤ 〈a, b〉K = 〈a, b〉. Then GF is of order p, against Step 4.
Thus 〈a, b〉 avoids GFN/K. This gives the final contradiction 〈a, b〉 =
GFN ∩ 〈a, b〉 = 〈a, b〉 ∩K = K.

Our next result shows that a group satisfying property (†) whose order is
divisible by p2 must be p-soluble.

Theorem 3.3. Let G be a group satisfying property (†). Then either the
Sylow p-subgroups of G are of order p or G is a p-soluble group.

Proof. Suppose the result false, and let the group G provide a counter-
example of least possible order. Then p2 divides the order of G. According
to Lemma 2.1, the property of G is inherited by G∗ = G/Op′(G). Hence the
minimality of G implies that Op′(G) = 1. We reach a contradiction after the
following steps.

1. If K is a proper subgroup of G and p2 divides |K|, then K is p-soluble.
If, in addition, K is normal in G, then a Sylow p-subgroup of K is also
normal in G.
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Assume that K is a proper subgroup of G such that p2 divides |K|, and
let L be a subgroup ofK of order p2. Then L is a partial CAP-subgroup
of G and so is in K by Lemma 2.1. Hence K satisfies property (†). The
minimal choice of G implies that K is p-soluble. Suppose that K is
normal in G. Since Op′(K) ≤ Op′(G) = 1, we conclude that Op(K) is
a Sylow p-subgroup of K by virtue of Theorem 3.2.

2. G has a unique maximal normal subgroup, M say. In particular, the
chief factor G/M appears in every chief series of G.

Suppose that G has two different maximal normal subgroups,M and N
say. Then G = MN . If the Sylow p-subgroups of M and N are normal
in G, then G has a normal Sylow p-subgroup and so G is p-soluble,
contradicting the choice of G. Hence, by Step 1, we may assume that
the order of the Sylow p-subgroups of M is at most p. If the order of
the Sylow p-subgroups of N is also at most p, then the order of the
Sylow p-subgroups of G is at most p2. Applying Lemma 2.3, it follows
that either p2 does not divide the order of G or G is p-soluble, contrary
to assumption. Hence, we may assume that p2 divides |N | and a Sylow
p-subgroup Np of N is normal in G. In that case NpM is a normal
subgroup of G containing M . Hence G = NpM . Then G/M is a cyclic
group of order p. This implies that the Sylow p-subgroups have order
p2. Applying Lemma 2.3, G is p-soluble. This contradiction proves our
claim.

3. A Sylow p-subgroup of M is a non-trivial normal subgroup of G and M
is p-soluble. Furthermore, G = Op(G).

Assume that the order of a Sylow p-subgroup Mp of M is at most p.
Let H be a subgroup of G of order p2 containing Mp. Then H is a
partial CAP-subgroup of G and so H either covers or avoids G/M . If
H avoids G/M , then H = H ∩G = H ∩M = Mp. This contradiction
implies that H covers G/M . Then G = HM and so the Sylow p-
subgroups of G are of order p2. By Lemma 2.3, G is p-soluble, contrary
to supposition. It therefore follows that Mp is of order greater or equal
than p2. By Step 1, we conclude that Mp is normal in G and M is
p-soluble. If Op(G) 6= G, then Op(G) ≤ M by Step 2. Thus Op(G) is
p-soluble. Since G/Op(G) is a p-group, we have that G is a p-soluble,
contradicting again our assumption. Hence G = Op(G).

4. Every subgroup of G of order p or p2 is contained in M .

Let 1 6= Mp be the Sylow p-subgroup of M and let Gp be a Sylow p-
subgroup of G containingMp. Let T be a subgroup of order p contained
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in Mp ∩ Z(Gp). Assume that H is a subgroup of order p which is not
contained in M . Then HT is a subgroup of G of order p2 which either
covers or avoids G/M . If G/M were avoided by HT , then we would
have HT = HT ∩G = HT ∩M = T , and if G/M were covered by HT ,
it would follow that G = HTM = HM . This would mean that G/M
had to be cyclic of order p and then G had to be p-soluble. In both
cases, we get a contradiction. Hence every subgroup of order p has to
be contained inM . Assume now that X is a subgroup of order p2 which
is not contained in M . Exactly similar reasoning shows that X neither
covers nor avoids G/M . This however contradicts the hypothesis that
X is a partial CAP-subgroup of G.

5. M = Φ(G) = Op(G).

Since Op′(G) = 1, it follows that Φ(G) is a p-group. We want to show
that M is contained in Φ(G). Suppose to the contrary that M is not
contained in Φ(G), and therefore that there exists a proper subgroup
X of G such that G = MX. Since every subgroup of order p and p2 of
G has to be contained in M by Step 4, then G/M would be a p′-group
if p2 did not divide the order of X, and so G would be p-soluble, in
contradiction to our assumption. Therefore p2 divides the order of X
and X is p-soluble by Step 1. Hence G/M is p-soluble and so is G.
This contradiction shows that M ≤ Φ(G) and M = Φ(G) = Op(G).

6. No chief factor of G below M has order p2.

Let us denote S = G/M . Let H/K be a chief factor of G below
M . Then H/K is an elementary abelian p-group and H/K has the
structure of an irreducible and faithful G/CG(H/K)-module over the
Galois field GF(p). Since M = Op(G) ≤ CG(H/K) by [6, A, 13.8] and
CG(H/K) 6= G, we have M = CG(H/K). Assume now that the order
ofH/K is p2. Then S can be regarded as a subgroup of GL2(p). Since S
is a non-abelian simple group, it follows that S ≤ (GL2(p))

′ = SL2(p),
and S ∩ Z

(
SL2(p)

)
= 1. Hence S can be regarded as a subgroup of

PSL2(p). According to the subgroup structure of PSL2(p) (see [18,
II, 8.27]), either S ∼= A5, where p = 5 or p2 − 1 ≡ 0 (mod 5) or
S ∼= PSL2(p). Suppose that S ∼= A5. Since p is a prime divisor of
Φ(G), p ∈ π

(
(G/Φ(G)

)
= π(G/M) = π(A5) = {2, 3, 5}, and so we

must have p = 5. This is contrary to the fact that the dimensions of
the irreducible and faithful representations of A5 over GF(5) are 3 and
5 (see [19, VII, 3.10]). Hence S must be isomorphic to PSL2(p). In
that case, p ≥ 5 and since the index of S in SL2(p) is 2 and SL2(p)
is perfect, it therefore follows that SL2(p) =

(
SL2(p)

)′ ≤ S. In this
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case we are also led to a contradiction, and therefore conclude that the
result as stated is true.

7. Every chief factor of G of order p is central in G.

Suppose thatH/K is a chief factor ofG of order p. Then, by [6, A, 13.8],
M = Op(G) ≤ CG(H/K) ≤ G, and consequently we have that either
CG(H/K) = M or G. If CG(H/K) = M , then G/M = G/CG(H/K) is
a p′-group and G is p-soluble. This is in contradiction to the choice of
G. Hence CG(H/K) = G, that is, H/K is central in G.

8. M is contained in the hypercentre Z∞(G) of G.

From Step 7, it suffices to prove that every chief factor of G below M
has order p. Assume to the contrary that there exists a chief factor A/B
of G below M whose order is greater than p. We choose A of minimal
order. Then every chief factor H/K of G below M with |H| < |A| is
of order p. Let L be a subgroup of A of order p2. Then L is a partial
CAP-subgroup of G. Applying Lemma 2.2, there exists a chief series
of G

1 ≤ · · · ≤ T < A < · · · < G

passing through A such that L either covers or avoids each chief factor
of this series. The choice of A implies that every chief factor of G below
T is of order p. Consequently, T ≤ Z∞(G) by Step 7. If the order of
A/T were p, then A would be contained in Z∞(G). This would imply
that |A/B| = p, in contradiction to the hypothesis that A/B has order
greater than p. Therefore the order of A/T is greater than p2 by Step 6,
and so L cannot cover A/T . Hence L avoids A/T . Then L ≤ T ≤
Z∞(G). We therefore conclude that every subgroup of A of order p2 is
contained in Z∞(G). By Lemma 2.6, G = Op(G) ≤ CG

(
Ω2(A)

)
, that

is, Ω2(A) ≤ Z(G). Therefore every p′-element of G centralises every
element of A of order p or p2. Applying [18, IV, 5.12], every p′-element
of G centralises A. It therefore follows that G = Op(G) ≤ CG(A).
Consequently A/B must be of order p, contrary to the choice of A/B.

9. Final contradiction.

From Step 8 and Lemma 2.6, we have that M ≤ Z(G). Therefore,
by Step 4, every element of G of order p or p2 is contained in Z(G).
Applying [18, IV, 5.5], we have G is p-nilpotent. This last contradiction
establishes the theorem.

Theorem 3.4. Let G be a p-soluble group satisfying property (†). Then
either G is p-supersoluble or G satisfies the following two conditions:
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1. all non-cyclic p-chief factors of G are G-isomorphic and have order p2;

2. all complemented p-chief factors of G are not cyclic.

Proof. We proceed by induction on |G|. We may assume without loss of
generality that Op′(G) = 1. Then F(G) = Op(G) is a Sylow p-subgroup of G
by Theorem 3.2. According to [6, A, 10.6], F(G)/Φ(G) = N1/Φ(G) × · · · ×
Nr/Φ(G), where Ni/Φ(G) is a minimal normal subgroup of G/Φ(G) which
is complemented in G for all i.

Suppose first that r = 1, that is, F(G)/Φ(G) is a chief factor of G.
If F(G)/Φ(G) has order p, it can be seen without difficulty that G is p-
supersoluble, as desired. Hence we can assume that F(G)/Φ(G) has order
at least p2. Let us denote M = Φ(G)Gp′ . Then G = F(G)M , and F(G) ∩
M = Φ(G). Let A be a normal subgroup of G such that F(G)/A is a
chief factor of G. If A were not contained in Φ(G), it would follow that
F(G) = AΦ(G). This would mean that G = F(G)Gp′ = AΦ(G)Gp′ = AGp′ .
Consequently, F(G) = A. This is in contradiction to the definition of A.
Therefore F(G)/Φ(G) is a chief factor of G which appears in every chief
series of G passing through F(G).

Suppose we have an element x of F(G) of order p which is not in Φ(G).
Let y be an element of Φ(G) of order p such that H = 〈x, y〉 has order
p2. Then H either covers or avoids F(G)/Φ(G) by Lemma 2.2. If H covers
F(G)/Φ(G), then F(G) = HΦ(G) = 〈x〉Φ(G). Then F(G)/Φ(G) is of order
p, and if H avoids F(G)/Φ(G), it follows H = H ∩ F(G) = H ∩ Φ(G). In
each case we are led to a contradiction, and therefore conclude that Φ(G)
contains every element of order p of F(G).

If Φ(G) ≤ ZUp(G), the p-supersoluble hypercentre of G, we can apply
Lemma 2.5 to the saturated formation Up of all p-supersoluble groups to
conclude that G is p-supersoluble. This contradicts that F(G)/Φ(G) is a
chief factor of G of order at least p2.

Therefore Φ(G) 6≤ ZUp(G). Hence we have a chief series of G passing
through Φ(G):

(∗) : 1 = L0 ≤ L1 ≤ · · · ≤ Lk−1 ≤ Lk ≤ · · · ≤ Ln = Φ(G) ≤ · · · ≤ G

such that all chief factors of G below Lk−1 are of order p and Lk/Lk−1 has
order greater than p. Since F(G) centralises every chief factor of G, it fol-
lows that Lk/Lk−1 is a non-cyclic chief factor of LkGp′ . Hence LkGp′ is not
p-supersoluble and Lk−1 is contained in the p-supersoluble hypercentre of
LkGp′ . By Lemma 2.5, there exists an element x of Lk of order p such that
x does not belong to Lk−1. Then, as above, we can consider an element y of
Lk−1 such that H = 〈x, y〉 is of order p2. The hypothesis on G implies that
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H is a partial CAP-subgroup of G. Applying Lemma 2.2, we know there
exists a chief series of G,

(∗∗) : 1 ≤ · · · ≤ T ≤ Lk ≤ · · · ≤ G,

passing through Lk such that H either covers or avoids each chief factor of
G in (∗∗). If T ≤ Lk−1, then T = Lk−1 and H neither covers nor avoids
Lk/Lk−1. Hence T 6≤ Lk−1. Then Lk = TLk−1, and Lk/T ∼= Lk−1/Lk−1 ∩
T . Since Lk−1 ≤ ZUp(G), we have Lk/T is of order p. Moreover T/T ∩
Lk−1 ∼= Lk/Lk−1 is of order p2. Therefore (∗∗) has a unique chief factor
of order greater than p below T . In particular, TGp′ is not p-supersoluble,
T ∩ Lk−1 is contained in the p-supersoluble hypercentre of TGp′ and |T | <
|Lk|. Repeating this argument, we finally get a chief series of G,

(∆) : 1 ≤ R ≤ · · · ≤ G,

such that the minimal normal subgroup R of G is of order greater than p.
By Theorem 3.1, we have every minimal normal subgroup of G is of order p2.
However L1 is a minimal normal subgroup of G of order p. This contradiction
yields Lk−1 = 1. In particular, ZUp(G) = 1.

Let A/B be a chief factor of G with A ≤ Φ(G). Since the chief factors of
AGp′ are chief factors of G and AGp′ is not supersoluble because it contains
a minimal normal subgroup of order greater than p, by minimality of G the
complemented chief factors of AGp′ are non-cyclic and all non-cyclic chief
factors of AGp′ are AGp′-isomorphic and have order p2. Since A/B is a
complemented chief factor of AGp′ , it follows that |A/B| = p2 and then, by
taking A = Φ(G), all chief factors of G below Φ(G) are G-isomorphic and
have order p2. Assume now that Φ(G) 6= 1. Let c be an element of order p2
of F(G) and write S = 〈c〉. Applying Lemma 2.2, there exists a chief series
of G passing through F(G) such that every chief factor in this series is either
covered or avoided by S. But no chief factor of G below F(G) can be cyclic,
so that no chief factor of G below F(G) can be covered by S. It follows
that all such chief factors must be avoided by S, contrary to the choice of
S. Therefore the exponent of F(G) is p. Since all elements of F(G) of order
p must be contained in Φ(G), it follows F(G) = Φ(G). This contradiction
shows that Φ(G) = 1. Since F(G) is a minimal normal subgroup of G, it has
order p2 by Theorem 3.1. This completes the proof for r = 1.

Suppose now that r > 1. Let N/Φ(G) be an arbitrary abelian minimal
normal subgroup of G/Φ(G) and let M be a maximal subgroup of G such
that G = F(G)M and N ∩M = Φ(G). Consider a chief series of G passing
through Φ(G) and N :

(α) : 1 ≤ · · · ≤ Φ(G) ≤ N ≤ · · · ≤ G

13



The series (α)∩M which is obtained by intersecting the series (α) term-by-
term with M is, after deleting repetitions, a chief series of M . In particular,
every chief factor of G below Φ(G) is a chief factor of M . Let A/B a chief
factor of G in (α) such that N ≤ B. Then A ∩M/B ∩M is a chief factor
of M which is M -isomorphic to A/B. Moreover A/B is complemented in
G if and only if A ∩M/B ∩M is complemented in M (see [6, III, 6.5 and
6.6]). Since by Lemma 2.1, M inherits the property of G, we can apply the
induction hypothesis to M to conclude that either M is p-supersoluble or M
satisfies the properties enunciated in the statement of the theorem, that is,
all non-cyclic p-chief factors of M are M -isomorphic and have order p2 and
every complemented p-chief factor of M is non-cyclic.

Assume that r = 2. Then F(G)/Φ(G) = N1/Φ(G) × N2/Φ(G). Let Gp′

be a Hall p′-subgroup of G. Then G = N1N2Gp′ and Mi = N3−iGp′ is a
maximal subgroup of G complementing the chief factor Ni/Φ(G), i = 1, 2,
and X = Φ(G)Gp′ is a maximal subgroup of Mi, i = 1, 2. We distinguish
two possibilities:

1. Φ(G) = 1.
In this case, N1, N2 are two minimal normal subgroups of G. By The-
orem 3.1, the orders of N1, N2 are simultaneously p or p2. If N1, N2

are of order p, then it can be easily seen that G is p-supersoluble, as
desired. Assume that N1, N2 are of order p2. We shall prove that in
this case N1, N2 are G-isomorphic. Suppose that this is false and de-
rive a contradiction. If the number of the minimal normal subgroups
of G were 2, then N1 and N2 would be exactly the minimal normal
subgroups of G. Let a be an element of N1 of order p and let b and
element of N2 of order p. Then L = 〈a, b〉 is of order p2 and L either
covers or avoids every chief factor of a chief series of G passing through
F(G) by Lemma 2.2. But L neither covers nor avoid the minimal nor-
mal subgroups of G. This contradiction shows that the number of the
minimal normal subgroups of G is greater than 2. Let N be a minimal
normal subgroup of G different from N1 and N2. Consider the following
two chief series of G:

(β1) : 1 < N1 < N1N2 = F(G) < · · · < G,

(β2) : 1 < N < NN2 = F(G) < · · · < G.

By [2, 1.2.36], N1 is G-isomorphic to N as N1 is not G-isomorphic to
NN2/N . Similarly, if we consider the following two chief series of G:

(β′1) : 1 < N2 < N1N2 = F(G) < · · · < G,

(β2) : 1 < N < NN2 = F(G) < · · · < G,
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it follows that N is G-isomorphic to N2. Hence N1 is G-isomorphic to
N2. This contradiction, together with [2, 1.2.36], allow us to conclude
that all non-cyclic p-chief factors of G are G-isomorphic and of order
p2, and they are all complemented in G. The theorem holds in this
case.

2. Φ(G) 6= 1.

Consider the following two chief series of G:

(γ1) : 1 ≤ · · · ≤ Φ(G) ≤ N1 ≤ N1N2 ≤ · · · ≤ G,

(γ2) : 1 ≤ · · · ≤ Φ(G) ≤ N2 ≤ N1N2 ≤ · · · ≤ G.

Intersecting the series (γi) term-by-term withMi, i = 1, 2, and deleting
repetitions, we get the chief series of M1 and M2, respectively:

(γ1) ∩M1 : 1 ≤ · · · ≤ Φ(G) = N1 ∩M1 ≤ N2 = N1N2 ∩M1

≤ · · · ≤M1,

(γ2) ∩M2 : 1 ≤ · · · ≤ Φ(G) = N2 ∩M2 ≤ N1 = N1N2 ∩M2

≤ · · · ≤M2.

Now we intersect these two chief series with X and delete repetitions.

(γ1) ∩X = (γ2) ∩X : 1 ≤ · · · ≤ Φ(G) = N1 ∩X = N2 ∩X
≤ · · · ≤ X.

It is clear that (γ1)∩X = (γ2)∩X is a chief series of X and the X-chief
factors of this series below Φ(G) areMi-chief factors for all i = 1, 2. We
know that eitherMi is p-supersoluble or all non-cyclic p-chief factors of
Mi are Mi-isomorphic and have order p2, and every complemented Mi-
chief factor of Mi is non-cyclic, i = 1, 2. Hence the orders of N1/Φ(G)
and N2/Φ(G) are either p or p2. Suppose that |N1/Φ(G)| = p2 and
|N2/Φ(G)| = p. Since N2/Φ(G) is a cyclic complemented p-chief factor
of M1, it follows that M1 is p-supersoluble. Therefore every p-chief
factor of M1 in (γ1) ∩ M1 is of order p. Hence every G-chief factor
below Φ(G) in (γ1) is of order p. On the other hand, N1/Φ(G) is
a complemented chief factor of M2 of order p2. Hence M2 is not p-
supersoluble and so every non-cyclic chief factor of M2 is of order p2.
But every chief factor of M2 below Φ(G) is of order p. Consequently,
N1/Φ(G) is the unique complemented chief factor of M2 in the chief
series (γ2) ∩M2 of M2. It follows that Φ(G) ≤ Φ(M2). Since Φ(M2)
is a nilpotent group, we obtain by order considerations that Φ(G) =
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Op

(
Φ(M2)

)
. However, the same arguments of the proof for r = 1 show

now that Φ(G) = 1, contrary to supposition. Therefore N1/Φ(G) and
N2/Φ(G) have the same order. If |N1/Φ(G)| = |N2/Φ(G)| = p, then G
is p-supersoluble, and the theorem holds.

Assume that |N1/Φ(G)| = |N2/Φ(G)| = p2. Since N3−i/Φ(G) is a
chief factor of Mi, Mi is not p-supersoluble, i = 1, 2. Then all non-
cyclic chief factors of Mi are Mi-isomorphic and have order p2, and
every complemented chief factor of Mi is non-cyclic. Assume that X
is p-supersoluble. Then every chief factor of X below Φ(G) is cyc-
lic. Certainly these chief factors are also chief factors of G. Since Mi

has no cyclic complemented chief factors, exactly similar arguments to
those used above show that Φ(G) = Φ(Mi) = 1. This contradiction
shows that X is not p-supersoluble and so X satisfies the properties
enunciated in the statement of the theorem. In particular, Ni/Φ(G)
is Mi-isomorphic to an X-chief factor of the form Φ(G)/C, which is
also a G-chief factor. It implies that N1/Φ(G) and N2/Φ(G) are G-
isomorphic, and G satisfies properties 1 and 2 by [2, 1.2.36].

Suppose that r ≥ 3. Denote G = N1M1 = N2M2, where M1,M2 are
maximal subgroups of G such that N1 ∩M1 = N2 ∩M2 = Φ(G). Consider
the following two chief series of G:

(δ1) : 1 ≤ · · · ≤ Φ(G) ≤ N1 ≤ N1N2 ≤ N1N2N3 ≤ · · · ≤ G,

(δ2) : 1 ≤ · · · ≤ Φ(G) ≤ N2 ≤ N1N2 ≤ N1N2N3 ≤ · · · ≤ G.

Intersecting the series (δi) term-by-term with Mi, i = 1, 2, we get the series:

(δ1) ∩M1 : 1 ≤ · · · ≤ Φ(G) = N1 ∩M1 ≤ N2 = N1N2 ∩M1

≤ N2N3 = N1N2N3 ∩M1 ≤ · · · ≤M1,

(δ2) ∩M2 : 1 ≤ · · · ≤ Φ(G) = N2 ∩M2 ≤ N1 = N1N2 ∩M2

≤ N1N3 = N1N2N3 ∩M2 ≤ · · · ≤M2.

By induction, we have thatMi is p-supersoluble or all non-cyclic chief factors
of Mi are Mi-isomorphic and have order p2 and every complemented chief
factor of Mi is non-cyclic, i = 1, 2. We distinguish two possibilities:

1. M1 or M2 is p-supersoluble.

Assume that M1 is p-supersoluble. Then it follows that N2/Φ(G) and
N3/Φ(G) have order p. If M2 were not p-supersoluble, then it would
follow that all complemented p-chief factors of M2 are M2-isomorphic
and of order p2. In that case, N3/Φ(G) would have order p2. This
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contradiction yields that M2 is p-supersoluble. In that case, every
chief factor Ni/Φ(G) has order p, i = 1, . . . , r. In this case G is p-
supersoluble, and the result holds.

2. Neither M1 nor M2 is p-supersoluble.

Then all non-cyclic M1-chief factors are M1-isomorphic and have order
p2 and every complemented p-chief factor of M1 is non-cyclic. In par-
ticular, N2/Φ(G), N3/Φ(G), . . . , Nr/Φ(G) are M1-isomorphic (and so
G-isomorphic), and have order p2. SinceM2 is not p-supersoluble, it fol-
lows that N1/Φ(G), N3/Φ(G), . . . , Nr/Φ(G) are M1-isomorphic (and
so G-isomorphic). Consequently, N1/Φ(G), N2/Φ(G), . . . , Nr/Φ(G)
are G-isomorphic. Applying [2, 1.2.36], G satisfies the properties enun-
ciated in the statement of the theorem.

Therefore we conclude that the result as stated is true.

The proof of Theorem 3.4 leads also to the following result:

Corollary 3.5. Let G be a p-soluble group satisfying property (†) such that
Op′(G) = 1. If G is not p-supersoluble and F(G)/Φ(G) is a chief factor of
G, then Φ(G) = 1.

As an interesting deduction we have the

Corollary 3.6. Let G be a p-soluble group satisfying property (†). Assume
that Op′(G) = 1. Then either G is p-supersoluble or Φ(G) = 1 and all
complemented p-chief factors of G are G-isomorphic and have order p2.

Proof. Applying Theorem 3.3, it follows that F(G) = Op(G) is the unique
Sylow p-subgroup of G. We shall proceed by induction on |G|. As usual,
we write F

(
G/Φ(G)

)
= N1/Φ(G) × · · · × Nr/Φ(G), where Ni/Φ(G) is a

minimal normal subgroup of G/Φ(G) for all i. According to [2, 1.2.36],
every complemented p-chief factor is G-isomorphic to Ni/Φ(G) for some i.
Certainly, we can assume that r ≥ 2 by Theorem 3.4 and Corollary 3.5.
Suppose that G is not p-supersoluble. According to Theorem 3.4, Ni/Φ(G)
has order p2 by Theorem 3.4. Let Mi be a maximal subgroup of G such
that G = NiMi and Ni ∩Mi = Φ(G), i = 1, 2, . . . , r. Since Nj/Φ(G) is a
p-chief factor of Mi for all j 6= i, it follows that Mi is not p-supersoluble.
We observe that CMi

(Nj/Φ(G)) is the Sylow p-subgroup of Mi for all j 6= i.
Therefore Op′(Mi) = 1. Consequently Φ

(
Mi

)
= 1 by induction. It therefore

follows that Φ(Ni) = 1 for all i and Ni is centralised by Nj for all j 6=
i. Then Ni is elementary abelian and so it has the structure of G-module
over the Galois field GF(p) as a natural way. Since Ni is centralised by
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F(G), Maschke’s theorem [6, A, 11.5] implies the complete reducibility of the
representation space. In particular, there exists a minimal normal subgroup
Ki of G of order p2 such that Ni = Φ(G)×Ki, i = 1, 2, . . . , r. Consequently,
G = N1 · · ·NrGp′ = K1 · · ·KrGp′ , F(G) = K1 · · ·Kr and Φ(G) = 1, as
required.

Proof of the main theorem. We prove the necessity of the condition by in-
duction on the order of G. Certainly, by Lemma 2.1, we may assume that
Op′(G) = 1. Let P be a Sylow p-subgroup of G. It may be supposed that
|P | is greater than p. Then, applying Theorem 3.3, G is p-soluble and, by
Theorem 3.2, the p-length of G is at most 1. Hence P = Op(G) = F(G)
is the Sylow p-subgroup of G. By Corollary 3.6, we have that either G is
p-supersoluble or Φ(G) = 1. Suppose that G is not p-supersoluble. Then
Φ(G) = 1, and F(G) is elementary abelian and it can be regarded as a com-
pletely reducible G-module over the Galois field GF(p) by [6, A, 11.5]. This
means that P is expressible as a direct product of minimal normal subgroups
of G, say P = V1× · · · × Vr, where Vi is an irreducible G-module over GF(p)
(i = 1, . . . , r). By Corollary 3.6, each |Vi| = p2, i = 1, . . . , r, and all of
them are G-isomorphic. Now we consider the case that r > 1. Consider the
submodule W = V1 × V2. Write K = GF(p) and V = V1. Suppose that V
is an absolutely irreducible G-module. Then E = EndKG(V ) = K and the
G-endomorphisms of V are exactly those defined by θt : V → V , given by
vθt = vt, v ∈ V, t ∈ K. According to [6, B, 8.2], the irreducible submodules of
W are V t = {(v, vt) : v ∈ V }, for t ∈ K, and V2 = {(1, v) : v ∈ V }. On the
other hand, V , as a vector K-space, has dimension 2. Let {a, b} be a basis of
V . With the obvious notation, consider the subgroupA = 〈(a1b1, 1), (1, a2b2)〉
of W . Then A has order p2 and so A is a partial CAP-subgroup of G. But
A ∩ V2 = 〈(1, a2b2)〉 and A ∩ V t = 〈(a1b1, (a2b2)t)〉 for any t ∈ K, that is,
A neither covers nor avoids any irreducible submodule of W , contrary to
Lemma 2.2. Hence V is not an absolutely G-module and the necessity of the
condition holds.

To prove the sufficiency, it may be assumed that G satisfies the condition
3 and Op′(G) 6= 1. Hence F(G) = Soc(G) = N1 × · · · ×Nr, where Ni

∼=G V
is a G-irreducible module over GF(p) of dimension 2, for every i = 1, . . . , r.
Moreover, F(G) is a Sylow p-subgroup of G. We may also assume that
r ≥ 2. Then V is not an absolutely irreducible G-module. Let Q = 〈a, b〉 be
a subgroup of G of order p2. We prove that Q is a partial CAP-subgroup of
G by induction on the order of G. Obviously, we can suppose that Q is not
a minimal normal subgroup of G. Let N be a minimal normal subgroup of
G. Then Q∩N is trivial or has order p. Assume that Q∩N is of order p for
all minimal normal subgroups N of G. Then two different minimal normal
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subgroups produce different subgroups of order p of Q. Since the number
of subgroups of order p of Q is exactly p + 1, it follows that G has exactly
p+ 1 minimal normal subgroups. However, according to [6, B, 8.2], G has at
least pk + 1 minimal normal subgroups, where pk is the number of elements
in EndKG(V ), and k ≥ 2 since V is not an absolutely irreducible G-module.
This contradiction implies that there exists a minimal normal subgroup A of
G such that Q ∩ A = 1. Since the group G/A satisfies the conditions of the
theorem, we have that QA/A is a partial CAP-subgroup of G/A. It is clear
then that Q is a partial CAP-subgroup of G. We conclude that G satisfies
property (†).
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