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a b s t r a c t

For input delayed systems, the sequential subpredictor (SSP) control scheme has the advantage
that arbitrarily large delays can be tolerated in the control loop by introducing more and more
subpredictors. However, an exact delay compensation is not possible in the presence of time-varying
delay mismatches, and larger delays cannot therefore be obtained by increasing the number of subpre-
dictors. To alleviate this limitation and enhance robustness against time-varying delay uncertainties, a
generalized sequential subpredictor (SSP) control scheme is proposed by introducing new observer
parameters that can be designed via Linear Matrix Inequalities (LMI) and Cone-Complementarity
Linearization (CCL) algorithm. Finally, the effectiveness of the proposed method is illustrated by a
simulation example.

© 2022 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is well known that the presence of input delays may jeop-
rdize the closed-loop stability of the control system if they are
ot taken into account in control synthesis. Among other tech-
iques, such as those based on classical Smith predictor (Smith,
959) and Finite Spectrum Assignment (FSA) (Manitius & Olbrot,
979), the sequential subpredictor (SSP) method (Hernández-
érez, Fragoso-Rubio, Velasco-Villa, del Muro-Cuéllar, Márquez-
ubio, & Puebla, 2020; Najafi, Hosseinnia, Sheikholeslam, & Kari-
adini, 2013) was conceived to increase the maximum allowable
elay in the control loop. SSP consists of a set of coupled sub-
redictors for a certain number of small pieces of a long delay,
uch that the convergence of each prediction error is driven to
ero. Hence, SSP has the advantage that arbitrarily large delays
an be allowed by introducing more and more subpredictors.
his feature has recently motivated some notable works aimed at
xtending SSP to time-varying systems (Mazenc & Malisoff, 2017),
iscrete-time systems (Hao, Liu, & Zhou, 2019; Mazenc, Malisoff,
Bhogaraju, 2020), aperiodic sampled-data systems (Weston &
alisoff, 2018) and networked-control systems (Zhu & Fridman,
021). However, to the best of author’s knowledge, the design
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of SSP under time-varying delay uncertainties has not been fully
investigated, which motivates the present work.

This note proposes a novel SSP control scheme with a more
general structure in comparison to previous SSP methods. The
objective is to increase the maximum allowable delay and ro-
bustness in the presence of time-varying delay mismatches by
introducing more observer parameters whose design can effi-
ciently be addressed via Linear Matrix Inequalities (LMI) and
Cone-Complementarity Linearization (CCL) algorithm (El Ghaoui,
Oustry, & AitRami, 1997).

2. Problem statement and preliminaries

Consider the following linear system:

˙(t) = Ax(t) + Bu(t − h(t)),

(t) = Cx(t) (1)

here x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq are the state variable,
he control input and the measured output, and h1 ≤ h(t) ≤ h2
epresents any unknown, unmeasurable and bounded arbitrarily
ast time-varying delay with known bounds 0 < h1 ≤ h2. To deal
ith time-varying delay mismatches for robust stability analysis,
he following preliminary result is presented:

emma 1. Given any arbitrary signal z1(t) ∈ Rn and any time-
arying delay function h(t) ∈ R satisfying h1 ≤ h(t) ≤ h2,
efine

h(t) =
2

(
z1(t − h(t)) −

1
(z1(t − h1) + z1(t − h2))

)
,

τ 2

cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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here τ = h2 − h1 is the delay interval. Then, the time-varying
operator ∆h(t) : ż1 → wh : Rn

→ Rn renders:

h(t) =
1
τ

∫ t−h1

t−h2

φd(s)ż1(s)ds,

φd(s) =

{
1 if s < t − h(t),
−1 otherwise.

Moreover, ∆h(t) satisfies ∥S∆h(t)S−1
∥∞ ≤ 1 for any invertible

matrix S ∈ Rn.

Proof. The proof can be obtained by a straightforward adaptation
of a similar result given in Li and Gao (2011, Lemma 2) for
continuous-time case.

3. Generalized SSP control scheme

This section presents the generalized SSP for robust stabiliza-
tion of system (1). Let us introduce the control law:

u(t) = Kz1(t) (2)

where K ∈ Rm×n is the controller gain, and z1(t) is an ob-
server SSP state variable, which is obtained through the following
generalized SSP with N ≥ 1 subpredictors:

żi(t) =

i∑
j=1

Fi,jzj(t − (i − j)h̃1) (3)

+

i∑
j=1

Gi,jvj(t − (i − j)h̃1), 1 ≤ i ≤ N − 1,

· · ·

żN (t) =

N∑
j=1

FN,jzj(t − (N − j)h̃1)

+

N−1∑
j=1

GN,jvj(t − (N − j)h̃1)

+ L
(
CzN (t − h̃1) + CzN (t − h̃1 − τ ) − 2y(t)

)
,

where h̃1 = h1/N , τ is the delay interval defined in Lemma 1, Fi,j,
Gi,j ∈ Rn, L ∈ Rn×q are the observer gains to be designed, and

vi(t) = zi(t − h̃1) − zi+1(t), 1 ≤ i ≤ N − 1. (4)

The following lemma gives an equivalent interconnected closed-
loop model for system (1) and the control law (2) where delay
uncertainties are put in a feedback system ∆ in order to allow
stability analysis via small gain theory:

Lemma 2. Let h̃2 = h̃1 + τ . The closed-loop system formed
by (1) and the control law (2) can be described by the following
interconnected system:

M :

⎧⎨⎩
˙̄x(t) = Ax̄(t) + A1ē(t − h̃1) + A2eN (t − h̃2)
+τBhwh(t),
yh(t) = Cx̄(t) + C1ē(t − h̃1)

(5)

∆ :
{
wh(t) = ∆(t)yh(t)

where ∆(t) is a time-varying operator satisfying ∥S∆(t)S−1
∥∞ ≤ 1

for any invertible matrix S ∈ Rn, and

x̄(t) =
[
xT (t) ēT (t)

]T
, ē(t) =

[
eT1(t) · · · eTN (t)

]T
,

A =

[
A + BK U1 ⊗ BK

¯

]
,
F − 11,N ⊗ (A + BK ) F − 11,N ⊗ (U1 ⊗ BK )

2

A1 =

[
0
GV

]
, A2 =

[
0
LC

]
, Bh =

[ 1
2BK

−1N,1 ⊗
1
2BK

]
,

C = Ū1
[
F̄ F

]
, C1 = Ū1GV, Ū1 = U1 ⊗ In,

U1 =
[
1 0 · · · 0

]  
N

, V = W1 − W2, F̄ = F
(
1N,1 ⊗ In

)
,

1 =
[
InN 0nN×n

]
, W2 =

[
0nN×n InN

]
, (6)

F =

⎡⎢⎣F1,1 0 · · · 0
F2,1 F2,2 · · · 0
· · · · · · · · · · · ·

FN,1 FN,2 · · · FN,N

⎤⎥⎦ , G =

⎡⎢⎣G1,1 0 · · · 0
G2,1 G2,2 · · · 0
· · · · · · · · · · · ·

GN,1 GN,2 · · · LC

⎤⎥⎦ ,

where 1m,n denotes a m × n matrix with all entries equal to 1, and
ei(t) are the observer errors defined as:

ei(t) =
1
2
zi(t − h1 + (i − 1)h̃1) (7)

+
1
2
zi(t − h1 − τ + (i − 1)h̃1) − x(t), 1 ≤ i ≤ N

roof. Let us reformulate ẋ(t) in (1) to deal with
ime-varying delay mismatches as:

˙(t) = Ax(t) +
BK
2

(z1(t − h1) + z1(t − h2) + τwh(t))

here wh(t) (defined in Lemma 1) is useful to deal with time-
arying delay mismatches by virtue of Lemma 1, as shown later
n (9). From ei(t) given in (7), it can be seen that e1(t)
atisfies:
BK
2

(z1(t − h1) + z1(t − h2)) = BK (x(t) + e1(t)) .

The above equivalence allows to remove from ẋ(t) the delayed
terms z1(t − h1) and z1(t − h2) by substitution, obtaining:

˙(t) = (A + BK) x(t) + BKe1(t) +
τ

2
BKwh(t) (8)

y defining the time-constant delay operator ∆δ(t) : ż1(t) →

ż1(t − δ) : Rn
→ Rn with δ ∈ R > 0, applying Lemma 1, one can

write wh(t) as

wh(t) = ∆(t)yh(t) (9)

where

yh(t) =
1
2
ż1(t − h1) +

1
2
ż1(t − h1 − τ ) (10)

= F1,1 (x(t) + e1(t)) + G1,1

(
e1(t − h̃1) − e2(t − h̃1)

)
nd ∆(t) is the composition of the time-varying delay operator
h(t) and the sum of two time-constant delay operators ∆δ(t)
eighted by 0.5 with δ = h1 and δ = h2. Hence, it can be
educed that ∥S∆(t)S−1

∥∞ ≤ 1 for any invertible matrix S ∈
n, in light of Lemma 1 and noting that ∆δ(t) is unitary norm-
ounded for any δ > 0. Also, from vi(t), ei(t) defined in (4) and (7)
espectively, the following equivalences can be deduced for 1 ≤ i
N − 1:

i(t − h̃1) − ei+1(t − h̃1) =
1
2
vi(t − h1 + (i − 1)h̃1)

+
1
2
vi(t − h1 − τ + (i − 1)h̃1), (11)

i(t − h̃2) − ei+1(t − h̃2) =
1
2
vi(t − h1 − τ + (i − 1)h̃1)

+
1
vi(t − h1 − 2τ + (i − 1)h̃1),
2
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rom the above equivalences, time-derivative of the observer
rrors ei(t) can be obtained as:

˙i(t) =

i∑
j=1

Fi,j
(
x(t) + ej(t)

)
(12)

+

i∑
j=1

Gi,j

(
ej(t − h̃1) − ej+1(t − h̃1)

)
− ẋ(t), 1 ≤ i ≤ N − 1,
· · · ,

ėN (t) =

N∑
j=1

FN,j
(
x(t) + ej(t)

)
+

N−1∑
j=1

GN,j

(
ej(t − h̃1) − ej+1(t − h̃1)

)
+ LCeN (t − h̃1) + LCeN (t − h̃2) − ẋ(t)

Finally, the interconnected system (5) can be obtained writing in
matrix form the expressions from (8), (10) and (12).

Remark 1. Notice that the particular choice for the SSP param-
eters Fi,j, Gi,j as:

Fi,j =

⎧⎪⎪⎨⎪⎪⎩
A + BK if i = 1 and j = 1,
A if i = j > 1,
BK if i > 1 and j = 1,
0 otherwise,

(13)

Gi,j =

{
LiC if i = j
0 otherwise

leads to the SSP structure (Zhou, Liu, & Mazenc, 2017) adapted for
systems with no state delay, and the SSP (Najafi et al., 2013; Zhu &
Fridman, 2021) choosing the same value for Li, i = 1, . . . ,N . Next
section addresses the control design of the observer parameters
Fi,j, Gi,j and L in (3).

4. Robust stabilization

The following theorem provides a sufficient condition for
closed-loop stability analysis given some delay bounds h1, h2 and
parameters Fi,j,Gi,j and L:

Theorem 1. System (5) is stable if there exist matrices Pi ∈ Rn >
0, i = 0, . . . ,N, Q1, Z1 ∈ RnN > 0, Q2, Z2, S ∈ Rn > 0 such that
he following LMI holds:⎡⎣Ξ1 Ξ T

2 Z Ξ T
3 S

(∗) −Z 0
(∗) (∗) −S

⎤⎦ < 0 (14)

where

Ξ1 =

⎡⎢⎣Ξ1,1 Ξ1,2 Ξ1,3 Ξ1,4
(∗) −S 0 0
(∗) (∗) Ξ3,3 ŪT

2 Z2
(∗) (∗) (∗) Ξ4,4

⎤⎥⎦ , Ξ T
2 =

⎡⎢⎣ ATWT

τBT
hW

T

AT
1W

T

AT
2W

T

⎤⎥⎦ ,

Ξ3 =
[
C 0 C1 0

]
,

Ξ1,1 = ATP + PA (15)

+ WT (
Q1 + ŪT

2 Q2Ū2 − Z1 − ŪT
2 Z2Ū2

)
W,

Ξ1,2 = τPBh, Ū2 = U2 ⊗ In, U2 =
[
0 0 · · · 1

]  
N

,

= PA + WTZ , Ξ = PA ,
1,3 1 1 1,4 2 ∈

3

Ξ3,3 = −Q1 − Z1, Ξ4,4 = −Q2 − Z2,

Z = h̃2
1Z1 + τ 2 ŪT

2 Z2Ū2, W =
[
0nN×n InN

]
,

P = diag (P0, P) , P = diag (P1, · · · , PN) ,

Proof. The proof can be addressed by defining the Lyapunov–
Krasovskii Functional V (t) = V1(t) + V2(t) + V3(t) with

V1(t) = x̄T (t)P x̄(t), V2(t) =

∫ t

t−h̃1

ēT (s)Q1ē(s)ds

+

∫ t

t−h̃2

eTN (s)Q2eN (s), (16)

3(t) = h̃2
1

∫ 0

−h̃1

∫ t

t+θ

˙̄eT (s)Z1 ˙̄e(s)dsdθ

+ τ 2
∫

−h̃1

−h̃2

∫ t

t+θ

ėTN (s)Z2ėN (s)dsdθ

ime-derivative of V1(t), V2(t) and V3(t) yield:

˙1(t) = 2x̄T (t)P
(
Ax̄(t) (17)

+ A1ē(t − h̃1) + A2eN (t − h̃2) + τBhwh(t)
)
,

˙2(t) = ēT (t)Q1ē(t) − ēT (t − h̃1)Q1ē(t − h̃1)

+ eTN (t)Q2eN (t) − eTN (t − h̃2)Q2eN (t − h̃2),

˙3(t) = h̃2
1ē

T (t)Z1ē(t) − h̃1

∫ t

t−h̃1

˙̄eT (s)Z1 ˙̄e(s)ds

+ τ 2eTN (t)Z1eN (t) − τ

∫ t−h̃1

t−h̃2

eTN (s)Z2eN (s)ds

Applying Jensen’s inequality, we have that

− h̃1

∫ t

t−h̃1

˙̄eT (s)Z1 ˙̄e(s)ds (18)

≤

(
ē(t) − ē(t − h̃1)

)T
Z1

(
ē(t) − ē(t − h̃1)

)
,

− τ

∫ t−h̃1

t−h̃2

ėTN (s)Z2ėN (s)ds

≤

(
eN (t − h̃1) − eN (t − h̃2)

)T

× Z2
(
eN (t − h̃1) − eN (t − h̃2)

)
he interconnected system (5) is proved to be stable if V̇ (t) < 0

holds and ∥S∆(t)S−1
∥∞ ≤ 1 for any invertible matrix S and

the time-varying operator ∆(t) defined in (5). Applying small
ain theorem, and taking into account that ē(t) = W x̄(t) and

eN (t) = Ū2ē(t), both conditions are true if

V̇ (t) + yTh (t)Syh(t) − wT
h (t)Swh(t) (19)

≤ ξ̄ T (t)
(
Ξ1 + Ξ T

2 ZΞ2 + Ξ T
3 SΞ3

)
ξ̄ (t) < 0

here

¯ (t) =
[
xT (t) wT

h (t) ēT (t − h̃1) eTN (t − h̃2)
]T

(20)

inally, applying twice Schur Complement, the equivalence be-
ween (19) and (14) is proven ■

The design of the SSP parameters Fi,j,Gi,j and L in (3) can be
ddressed via CCL on the basis of the following corollary:

orollary 1. System (5) is stable if there exist matrices Pi, P̃i ∈
n > 0, i = 0, . . . ,N, Q1, Z1, Z̃, X, X̃ ∈ RnN > 0, Q2, Z2, S, S̃, Y , Ỹ

n ˜ n
R > 0, and matrices Fi,j, ∈ R , i = 1, . . . ,N, j = 1, . . . ,N, j ≤
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, G̃i,j ∈ Rn, i = 1, . . . ,N, j = 1, . . . ,N − 1, j ≤ i, and L̃ ∈ Rn×q

such that the following constraints hold:⎡⎣Ξ̃1 Ξ̃ T
2 Ξ̃ T

3
(∗) −X 0
(∗) (∗) −Y

⎤⎦ < 0,
[
X̃ P̃
P̃ Z̃

]
≥ 0,

[
Ỹ P̃1
P̃1 S̃

]
≥ 0, (21)

PP̃ = I, ZZ̃ = I, SS̃ = I, XX̃ = I, Y Ỹ = I

where

Ξ̃1 =

⎡⎢⎣Ξ̃1,1 Ξ1,2 Ω1 + WTZ1 Ω2
(∗) −S 0 0
(∗) (∗) Ξ3,3 ŪT

2 Z2
(∗) (∗) (∗) Ξ4,4

⎤⎥⎦ , Ξ T
2 =

⎡⎢⎣ΩT
0W

T

τBT
hW

T

ΩT
1W

T

ΩT
2W

T

⎤⎥⎦ ,

Ξ̃3 =
[
C̃ 0 C̃1 0

]
, P̃ = diag

(
P̃1, . . . , P̃N

)
Ξ̃1,1 = Ω0 + ΩT

0 (22)

+ WT (
Q1 + ŪT

2 Q2Ū2 − Z1 − ŪT
2 Z2Ū2

)
W,

Ω0 =

[
P0A +

1
2P0BK

F̃
(
1N,1 ⊗ In

)
− P

(
11,N ⊗ (A +

1
2BK )

)
U1 ⊗

1
2P0BK

F̃ − P
(
11,N ⊗

(
U1 ⊗

1
2BK

))] ,

Ω1 =

[
0
G̃V

]
, Ω2 =

[
0
L̃C

]
,

C̃ = Ū1
[
F̃

(
1N,1 ⊗ In

)
F̃

]
, C̃1 = Ū1G̃V.

nd F̃ , G̃ are block-triangular matrices with the same structure as
, G in (6) by replacing Fi,j, Gi,j, L by F̃i,j, F̃i,j, L̃. Moreover, if a feasible

solution exists, the observer gains can be obtained as:

Fij = P−1
i F̃ij, Gij = P−1

i G̃ij, L = P−1
N L̃ (23)

Proof. The proof can be outlined by first pre-and post multiply
LMI (14) by

diag
(
I, I, I, I, Z−1P, S−1P1

)
(24)

nd further denoting F̃ij = PiFij, G̃ij = PiGij, L̃ = P̃NL. Then,
21) is obtained after replacing the diagonal entries −PZ−1P and
P1S−1P1 in the obtained LMI by terms −X and −Y , where X and
are matrices satisfying:

Z−1P − X ≥ 0, P1S−1P1 − Y ≥ 0 (25)

nd finally applying Schur Complement in (25), and denoting
˜i = P−1

i , Z̃ = Z−1, S̃ = S−1, X̃ = X−1, and Ỹ = Y−1.

emark 2. The equality constraints PP̃ = I , ZZ̃ = I , SS̃ = I ,
X̃ = I and Y Ỹ given in Corollary 1 can be treated applying
CL algorithm. The observer parameters can be obtained by (23),
nd the maximum bounds for h1, τ can be obtained by slightly in-
reasing their values at each CCL iteration starting from a feasible
SP controller with sufficiently small h1, τ (as discussed below in
emark 3) until no feasible solution for LMI (14) is found.

emark 3. One remarkable advantage of the CCL algorithm
s that a starting condition is always guaranteed by choosing a
ufficiently small value of h1, τ , and any K , L such that A+BK and
+LC are Hurwitz. This property comes from the block-triangular
tructure of the delay-free representation of system (5) with the
articular solution for F , G depicted in (13) (Najafi et al., 2013).
i,j i,j i

4

Table 1
Maximum delay bound h1 with τ = 0.3 and N = 2, . . . , 6.
N 2 3 4 5 6

h1 (SSP (Zhou et al., 2017)) 1.07 1.16 1.18 1.20 1.20
h1 (Generalized SSP) 1.28 1.46 1.59 1.67 1.72

Table 2
Maximum delay interval τ with h1 = 2 and N = 2, . . . , 6.
N 2 3 4 5 6

τ (SSP (Zhou et al., 2017)) 0.18 0.19 0.19 0.19 0.19
τ (Generalized SSP) 0.21 0.23 0.24 0.25 0.25

Remark 4. Corollary 1 can also be applied to design a SSP of the
structure given in Remark 1 (Zhou et al., 2017) by defining

F̃i,j =

⎧⎪⎪⎨⎪⎪⎩
PiA + PiBK if i = 1 and j = 1,
PiA if i = j > 1,
PiBK if i > 1 and j = 1,
0 otherwise,

G̃i,j =

{
L̃iC if i = j
0 otherwise

with decision variables L̃i, i = 1, . . . ,N , where the observer gains
can be designed as Li = P−1

i L̃i.

5. Example

Consider the open-loop unstable system (1) borrowed from
Zhu and Fridman (2021, Example 1) with matrices:

A =

[
0 1
0 −0.1

]
, B =

[
0
0.1

]
, C =

[
1 0

]
(26)

For comparative analysis, two designs have been carried out via
CCL algorithm for SSP (Zhou et al., 2017) and the generalized SSP
with the objective to maximize h1 assuming a time-varying delay
interval τ = 0.3. The maximum delay h1 is depicted in Table 1
(see below) for N = 2, . . . , 6. It can be appreciated that larger
delays are obtained with the generalized SSP in comparison to
SSP (Zhou et al., 2017) using the same number of subpredictors N .
Note also that SSP (Zhou et al., 2017) cannot stabilize the system
for delays larger than h1 = 1.20 by introducing more than N = 5
subpredictors, whereas the generalized SSP reaches h1 = 1.28
with N = 2, and even larger delays with N > 2. However, this is
at the expense of an increment in the computation time due to
the n2N2

+(n2
−np)N+(np−n2) extra number of decision variables

(NoV) corresponding to the new observer parameters Fi,j, Gij. For
instance, choosing N = 2, the average computation time at each
CCL iteration with the generalized SSP is 3.07 s, which is slightly
greater than 3.05 s with SSP (Zhou et al., 2017) due to the 18
extra NoV. With N = 6, the average computation time at each
CCL iteration is 4.95 s, greater than 4.43 s with SSP (Zhou et al.,
2017) due to the 154 extra NoV.

In order to compare the robustness against time-varying delay
mismatches, Table 2 shows the maximum delay interval τ for a
fixed delay h1 = 2 obtained with both SSP schemes, where it can
be seen that larger time-varying delay intervals are obtained for
a certain number of subpredictors N with the generalized SSP.

In both cases, the controller gain has been chosen as K =

[−3.75, −11.5], and the observer parameters Fi,j, Gi,j have been
nitialized as explained in Remark 1 with Li ≡ [−1.4, −0.36]T ,

= 1, . . . ,N and starting values τ = 0 and h1 = 0.01.
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. Conclusions and perspectives

This note has provided a novel control scheme based on se-
uential subpredictors for input delayed systems under time-
arying delay mismatches, where all observer parameters can
e designed via LMI and CCL algorithm. The generalized struc-
ure of the SSP has been shown to allow larger input delays
nd better robustness against time-varying delay uncertainties in
omparison to other SSP-based methods.
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