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A B S T R A C T   

Climate change can significantly affect water systems with negative impacts on many facets of 
society and ecosystems. Therefore, significant attention must be devoted to the development of 
efficient adaptation strategies. More specifically, the reoperation of water resources systems to 
keep the overall performance within acceptable limits should be prioritized to avoid, or at least 
delay as much as possible, costly infrastructural investments. This manuscript presents a 
hydrologically-driven approach to support the reoperation of multipurpose multireservoir sys
tems. The approach is organized around 1) the use of a large ensemble of GCM hydro-climate 
projections to drive a climate stress test; 2) the bottom-up clustering of those hydrologic pro
jections based on hydrologic attributes that are both relevant to the region of interest and 
interpretable by the operators; and finally, 3) the identification of adaptation measures for each 
cluster after developing a one-way coupling of an optimization model with a simulation model. 
The climate impact assessment is illustrated with the multipurpose multireservoir system of the 
Lievre River basin in Quebec (Canada). Results show that cluster-specific, adapted, operating 
rules can improve the performance of the system and reveal its operational flexibility with respect 
to the different operating objectives.   

1. Introduction 

1.1. Background and context 

The pivotal role played by water in mitigating climate change impacts in the other sectors such as food, energy or health, implies 
that significant attention must be devoted to the development of adaptation strategies for our water resources systems (Rogers, 2011). 
More specifically, the reoperation of water resources systems to keep the overall performance within acceptable limits should be 
prioritized in order to avoid, or at least delay as much as possible, costly infrastructural investments (Gleick, 2018). When dealing with 
multireservoir systems, the question of when and how to reoperate the system has been studied, for example, by Giuliani et al. (2016) 
and Quinn et al., 2019. Climate impact studies have also been used for infrastructural investment planning (Gersonius et al., 2013; Beh 
et al., 2017), flood management (Poff et al., 2016), urban water supply (Brown et al., 2012; Turner et al., 2014; Mukundan et al., 
2019), and irrigation (Jones, 2001; Rajagopalan et al., 2018). 

Climate impact assessments in water resources initially attempted to use a limited number of scenarios derived from global or 
regional climate models through a top-down approach. Those climatic scenarios were downscaled to match the scale of the 

* Corresponding author. 

Contents lists available at ScienceDirect 

Climate Risk Management 

journal homepage: www.elsevier.com/locate/crm 

https://doi.org/10.1016/j.crm.2022.100427 
Received 10 June 2021; Received in revised form 17 March 2022; Accepted 22 March 2022   

www.sciencedirect.com/science/journal/22120963
https://www.elsevier.com/locate/crm
https://doi.org/10.1016/j.crm.2022.100427
https://doi.org/10.1016/j.crm.2022.100427
https://doi.org/10.1016/j.crm.2022.100427
http://creativecommons.org/licenses/by/4.0/


Climate Risk Management 36 (2022) 100427

2

hydrological model, whose output would then be processed by an impact model (e.g. river basin management model.) (Fortin et al., 
2007; Brekke et al., 2009; Vicuna et al., 2010). The rationale was to assess the impacts on the most likely futures, an approach 
consistent with the predict-then-act decision-making paradigm for which a prior characterization of the problem’s uncertainty is a 
prerequisite (Weaver et al., 2013). 

However, uncertainties related to climate change lie in the realm of deep uncertainty since scientists or decision-makers do not 
know or cannot agree on (i) society’s social and technological developments that will drive future greenhouse gas emissions; (ii) the 
best climatic model describing the underlying phenomena behind the chaotic nature of global climate and (iii) the prior probability 
distributions of climatic variables and their interdependencies. This makes the traditional decision-making framework based on 
predictions ill-suited to deal with climate change (Lempert et al., 2004). 

To address the challenges posed by the difficulty in providing climate predictions with well-characterized probability distributions, 
one may seek robust solutions; that is, solutions that hedge effectively against the risks associated with the various sources of un
certainty. The idea is to exhaustively explore the climate-related exposure space and assess the corresponding performances of the 
water resources system by considering the different sources of uncertainty in the climate change problem (Brown et al., 2019). This is 
equivalent to a climate stress test to support the construction of a climate response function linking climate information to performance 
indicators. The rationale is to identify all combinations of hydroclimatic stressors, typically changes in temperature and precipitation, 
that cause the water system to fail, and then propose potential interventions to these vulnerabilities (Brown et al., 2012). One 
advantage of those bottom-up, vulnerability assessment approaches is that they also directly involve stakeholders in the development 
of a shared vision of the system performance and the definition of critical thresholds to identify system failures, so that we can evalute 
the impact of climate change and assess different adaptation strategies. This involvement is key to facilitate the uptake of climate 
information and to engage stakeholders in climate-related decision-making (Kuang and Liao, 2020; Poff et al., 2016; Pahl-Wostl, 
2007). 

To construct the climate response function, bottom-up vulnerability stress tests require hundreds to thousands of synthetically- 
generated hydro-climatic scenarios to exhaustively explore the exposure space. One of the techniques consists in modifying statisti
cal properties of historical data to capture the envelopes of natural, GCM climate or paleoclimate variability. Prudhomme et al. (2010) 
and Culley et al., 2016 generate the exposure space by making incremental changes to attributes (e.g. mean, 7-day maximum, etc.) of 
resampled historic series of hydrological variables. Keylock (2012) makes use of a wavelet-based method to generate synthetic flow 
series that preserve the non-linear properties of the original data. Borgomeo et al. (2015) rather generate streamflow sequences 
through a nonparametric and data driven method, which uses a simulated annealing algorithm to impose desired statistical properties. 

1.2. Objective and motivations 

As an alternative to synthetically-generated scenarios, we propose a hydrologically-driven approach to support decision-making 
based on climate information. This approach is motivated by the fact that the availability and number of hydro-climate projections 
keep increasing (Hayhoe et al., 2017; Fournier et al., 2020) up to a point where they could directly be used in a vulnerability 
assessment framework. Our working hypothesis is that the explicit representation of the underlying physical processes associated with 
GCM projections, combined with the diversity captured by those projections, makes them as suitable candidates as synthetically- 
generated hydrologic sequences based on arbitrarily-chosen combinations of climate stressors. In this study, 828 thirty-year hydro
logic projections for a water resources system in Canada were generated considering uncertainties related to future emissions, as well 
as climate and hydrologic models. 

The second motivation for this hydrologically-driven approach comes from the fact that water operators are more familiar with the 
hydrologic characteristics of their system and less with the regional climate. To take advantage of this experiential knowledge, 
interpretable hydro-climatic descriptions are built after clustering the hydrologic projections based on a set of agreed-upon hydrologic 
attributes that are relevant for the region of interest. In other words, hydrologic projections are grouped based on their hydrologic 
properties, regardless of the combination of climate stressors or climate/hydrologic models. This clustering is a way to further involve 
water operators in the modeling exercise, a clear advantage shared by bottom-up approaches. The proposed approach therefore also 
contributes to a growing body of work on how to communicate climate information to policy makers, water managers and the public. 
As pointed by Marx et al. (2007), the communication of most climate-related information usually assumes that people process in
formation analytically, largely ignoring that they also rely heavily on an experiential processing system. For example, Karpudewan and 
Mohd Ali Khan (2017) show that experiential-based climate change activities was key to improve students’ knowledge on climate 
change and increase motivation towards caring for the environment. In fact, experiential learning tends to be more powerful than 
statistical results when the underlying process is both hard to perceive via everyday experience and is not the main concern in your 
daily life, which is typically the case with climate change (Myers et al., 2013). In their study, Kaufmann et al. (2017) demonstrate that 
public’s willingness to believe that global warming is happening in the US depends, to a certain extent, on the degree to which they 
personally experience a warmer or cooler climate. When it comes of reservoir operators, we argue that they can more easily relate to 
hydrologic than to climate projections, especially when the former are clustered using a set of familiar attributes that are used to 
characterize the flow regime in his/her region. For example, in our case study, operators immediately seek to associate the five clusters 
to past hydrologic conditions that resemble to their description, and how they coped with those conditions. Ultimately, the 
hydrologically-based clustering facilitates the uptake of climate information for the management of water resources systems because it 
triggers experiential processing therefore making the information more comprehensible and apprehensible. 

The third motivation for the proposed approach based on the clustering of GCM-based projections is more closely related to the 
internal processes of the water agency and preferences formulated by the staff; it is therefore highly dependent on the case study. Some 
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operators, and more generally some stakeholders, might not be comfortable with the use of arbitrarily generated hydrologic sequences 
to identify the conditions leading to adverse outcomes. Various reasons might explain this reluctance. First, some stakeholders are 
getting more and more acquainted with GCM-based projections, their strengths and weaknesses, and are therefore keen to fully exploit 
them. Second, institutional reasons may favor the use of GCM-based projections when, for example, they are already available and 
generated by another group within the same organization or by a trusted partner organization. 

The fourth motivation for the proposed approach is related to the limitations of response surfaces built exclusively from coarsely 
defined stressors such as mean annual precipitation and temperature. Since such stressors can only partially explain hydro-climatic 
uncertainties, they may lead to imprecise performance estimates (Lachaut and Tilmant, 2021). This paper proposes an alternative 
to response surfaces by presenting the impacts of climate change in the system’s performance using clusters built with multiple hy
drological stressors, better reflecting potential alterations of the flow regimes. The transcription of those clusters into linguistic de
scriptors allows to indirectly grasp the effects of multiple hydroclimatic stressors simultaneously by looking at overall patterns instead 
of assessing the combination of only two to three stressors at a time. As shown by Casale et al. (2021), applying a bottom-up approach 
that explores only changes in annual precipitation and temperature yields response surfaces that are not able to capture the mutual 
interactions between temperature and precipitation as well as changing seasonal patterns. 

Once the GCM-based projections are grouped according to their hydrologic characteristics, adaptation measures can be found for 
each cluster. First, an adapted operating policy is determined for a representative scenario within each cluster using a stochastic 
optimization model of the water resources system that captures the natural uncertainty of inflows. Then, the new policy is simulated 
across all scenarios belonging to the same cluster in order to assess its robustness vis-à-vis hydrologically similar projections. Since the 
clusters are mutually exclusive - there is no reason to suspect that the hydrological regime could switch from one cluster to another so 
rapidly that the operators would have no time to adapt - the robustness is determined locally. Performance indicators that have been 
interactively defined with the operators are then assessed from the simulation results. This exercise provides an indication of the 
flexibility of the water resources system, i.e. its operational adaptive capacity (Culley et al., 2016) to climate change, while focusing on 
the hydrologic properties that are meaningful to the operators instead of a small set of broad climate attributes, e.g. temperature and 
precipitation, or radiative forcings. 

The paper is organized as follows. It starts with a general presentation of the methodology, which is followed by a brief description 
of Lievre’s system. Section 2.2 introduces the climate information used for the case study and discusses its suitability for a stress test. 
Section 2.3 is devoted to the clustering of the scenario ensemble. Then, Section 2.4 presents the impact model formed by the combined 
use of optimization and simulation models. Next, Section 3 presents the simulation results for the current operating policy (3.1) and the 
portfolio of adapted operating policies (3.2). Finally, concluding remarks are given in Section 4. 

2. Material and method 

Fig. 2 provides an overview of the proposed approach to analyze the reoperation of multireservoir systems based on climate 
information. 

The approach begins with acquiring a large ensemble of GCM-based hydrologic projections, simulating reference (REF) and future 
(FUT) climates. The availability and number of hydro-climate projections keeps increasing, and so does our understanding of the 
underlying physical and biogeochemical processes at work in the climate system (Hayhoe et al., 2017; Fournier et al., 2020). 

Next, using the K-means clustering approach, those hydrologic projections are grouped based on their hydrologic properties. This 
clustering has two purposes: (i) it helps bridge the gap between the operators’ experience and the hydrologic projections and (ii) it 
reduces computational efforts related to the search of alternative operating policies through optimization, which appears to be the 
bottleneck in the impact modelling chain since it may require hundreds of thousands of runs (Giuliani et al., 2016; Quinn et al., 2019). 

Fig. 1. Overview with the main steps of the hydrologically-driven approach.  
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Then, the current reservoir operating policy is simulated over all hydrologic projections, and the performance indicators of the 
system are assessed. Depending on the operating objective, assessing the performance might require the input of relevant stakeholders 
to provide, for example, thresholds making the distinction between satisfactory and failure states (Poff et al., 2016; Lachaut and 
Tilmant, 2021), or their utility with respect to state/decision variables (Herman and Giuliani, 2018). 

Finally, a stochastic optimization model determines cluster-specific adapted operating policies, which are then used in simulation 
to update the performance indicators. More specifically, for each cluster, the optimization model generates new guide curves that are 
then used as inputs to the simulations model for more detailed simulations of the water resources system across all projections 
belonging to that cluster. The coupling of simulation and optimization models has already been widely applied in water resources 
management (Loucks et al., 2005; Lee et al., 2009). 

An ensemble of five adaptation scenarios (corresponding to the number of clusters) forms the portfolio of adapted operating 
policies, giving an indication of the adaptive capacity of the multireservoir system; that is, its ability to adapt to altered flow regimes 
identified from the statistical analysis of a large ensemble of GCM-based hydrologic projections. Fig. 1. 

The overall approach, summarized in Fig. 2, is implemented in the Lievre River Basin. 

2.1. Multipurpose multireservoir system of the Lievre River Basin 

The water system of the Lievre River includes three high-capacity reservoirs, Mitchinamecus, Kiamika, and Poisson Blanc (Fig. 2). 
The first two are located upstream and have a storage capacity of 533 and 435 hm3, respectively. Further downstream, we find Poisson 
Blanc, a 910 hm3 reservoir that controls a cascade of 5 hydropower plants with a combined capacity of 238 MW. Other critical 
operating objectives are flood control, recreation, and environmental flows. 

2.2. Generation of hydroclimatic scenarios 

For this case study, we have exploited an ensemble of 828 thirty-year GCM-derived hydrologic projections provided by the Quebec 
Water Agency (CEHQ, 2015) based on the Hydrotel model (Direction de l’expertise hydrique, 2018; Lachance-Cloutier et al., 2017). 

The projections consider four time horizons, 1970–2000, 2011–2040, 2041–2070 and 2071–2100. The first horizon is the reference 
period characterized by a stationary climate and a corresponding flow regime representative of the hydrologic conditions that pre
vailed during much of the XXth century. The water resources system was designed and the operating rules were developed for this 
reference flow regime. For the next three horizons, projections take four different social and technological trajectories called 

Fig. 2. Lievre River Basin [map produced in Qgis with data from ©OpenStreetMap (2020)].  
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Representative Concentration Pathways (RCPs). Tables 1,2 in the appendix lists all the herein used climatic models from the CMIP5 
experiment. 

A stress test must involve exploring a wide range of stressors to effectively capture the vulnerability domain, something challenging 
to achieve with a limited number of GCM-based projections. For instance, Brown and Wilby (2012) shows that GCM simulations of the 
historical period underestimate the diversity of hydrological states compared with resampled observed data. However, as the avail
ability and diversity of GCM-based projections increase (Hayhoe et al., 2017; Fournier et al., 2020), they explore a larger region of the 
hydrological conditions that may drive the future water resources systems’ performance. Moreover, the explicit representation of the 
underlying physical processes associated with GCM projections, combined with the diversity captured by those projections, makes 
them as suitable candidates as synthetically-generated hydrologic sequences based on arbitrarily chosen combinations of climate 
stressors. 

This assumption is tested after comparing the natural variability of relevant hydrological attributes with that associated with GCM- 
based hydrological projections. Fig. 3 shows 30-year averages of spring and annual inflow to Poisson Blanc to illustrate the extent of 
hydrologic states covered by the ensemble of 828 GCM-based projections. In Quebec, spring flow affects the reservoir systems’ overall 
performance, especially those refilled during spring. Each grey point corresponds to a different GCM projection, and the dashed line 
delineates the region defined by the natural variability of the reference, GCM-derived, climate. Black triangles represent stochastic 
simulations of natural variability, generated by the Kirsch-Nowak method (Quinn et al., 2017), made available online as a Matlab code 
by Quinn (2017). First, the region covered by the dashed line is similar to the one covered by the stochastic variability, indicating that 
GCMs can reproduce well current natural variability. Moreover, future GCM data covers a broader region of the space, illustrating the 
growing uncertainties related to future hydroclimatic conditions. 

2.3. Clustering of hydrologic projections 

Clustering allows one to group objects sharing features within the group but have dissimilarities with other groups. In this study, 
the clustering of all hydrologic projections based on their hydrologic properties aims at facilitating the intake of climate information by 
the operators and reduce the computational burden associated with the search for adapted operating policies. For the Lievre River 
Basin, the hydrological attributes are five hydrologic statistics commonly used by the Quebec Water Agency: winter, spring, summer, 
autumn, and annual flow averages taken over a 30-year period (CEHQ, 2015). The volume of the spring snowmelt is particularly 
important as it drives the refill phase of the reservoirs, and thus the satisfaction of the operating objectives during the rest of the year. 
As shown in CEHQ (2015), the spring snowmelt is likely to be affected by climate change, through changes in the snowmelt volume 
and/or timing with an onset taking place up to 3–4 weeks earlier than in the reference climate. 

The K-means clustering method is chosen for its simplicity and demonstrated ability to keep the inherent diversity of scenario 
ensembles (Houle et al., 2012; Lee and Kim, 2017). Initially, the Algorithm 1 randomly places the n centroids in the space defined by 
the objects to be clustered. Then, it 2) calculates the distances from each object to each centroid and assigns each object to the closest 
centroid. Finally, it 3) recalculates and replaces the previous centroids. Steps 2 and 3 are repeated until the objects no longer move 
(Breinl et al., 2015). In this method, the number of cluster n must be previously determined. 

A key issue with clustering is the number n of clusters needed to ensure the maximization of both the internal cohesion within each 
of the clusters and the dissociation between them. Various validation criteria are available in the literature to help identify the right 
number of clusters (see e.g. Hennig et al., 2015 for a review). Many criteria typically seek to find a balance between within-cluster 
homogeneity and cluster separation. However, for the same data set, the use of different criteria will likely yield different recom
mendations in terms of the number of clusters, so that the ultimate decision is left to the analyst/operator. In this study, the most 
common criteria give an optimal number of clusters between two (Calinski and Harabasz index) and ten (nearest neighbours index), 
with most of the values around 4 (average silhouette width, Pearson correlation, Dunn index). Here, the number of clusters (n = 5) was 
chosen because it was found to be a good compromise between the number of future hydrologic scenarios to be explored and their 
diversity in terms of altered flow regimes so that cluster-specific policies are clearly distinct to those of neighboring clusters. 

Fig. 4 shows the altered flow regime associated with each cluster by boxplots of seasonal and annual flows for intermediate inflow 
at Poisson Blanc, the same hydrological attributes used to cluster the scenarios. Each point in the graphs represents a flow average for a 
single scenario over a 30-year period. The reference lines were calculated by taking the average of all GCM reference simulations of 
historical observations, and thus represent current conditions. Cluster 1 is the closest to the reference values during all seasons, 
indicating that those scenarios are comparable to current conditions. For cluster 2, there is larger inflows during winter, spring and 
autumn, which explains the largest annual inflow among all clusters. Cluster 3 presents a wetter winter (like cluster 2), but the summer 
is drier, so that the total annual volume remains close to current conditions. Cluster 4 behaves similarly to current conditions for total 

Table 1 
Easily interpretable linguistic descriptions of the five clusters and analogous years.  

Clusters Descriptor Analogous years 

1 No change like every “normal” year 
2 Large annual volume 2006 and 2008 
3 Moderate seasonality 2002 and 2004 
4 Low annual volume 2000, 2007, 2010, and 2012 
5 Strong seasonality   
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volume during winter but shows lower flows for the rest of the year. Cluster 5 shows the highest shift in the seasonality pattern, with 
the largest increase of winter flows and more severe low flows during the summer. Relatively to cluster 1, clusters 2, 3 and 5 present 
larger volumes during winter, which, for the study region, points to an earlier snowmelt. 

The clusters can also be transcribed into hydroclimatic descriptors (Table 1) to help water operators interpret those changes. In our 
case study, operators immediately seek to associate the five clusters to similar past hydrologic conditions. For example, large annual 
volume scenarios (cluster 2) can be related to the atypical years of 2006 and 2008, marked by significant flood events in Southern 
Quebec, while low annual volume scenarios (cluster 4) could be associated with the 2012 drought in this region (Mayer-Jouanjean and 
Bleau, 2018). The years mentioned above provide guidelines for future adaptation since the operators had to modify their usual 
operating rules to cope with the hydrological anomalies. Some future hydrological states, like strong seasonality scenarios (cluster 5), 
cannot be related to past hydrologic conditions. Far from being a problem, it further motivates the determination of adapted operating 
policies and the understanding of the operational flexibility of the water resources system. 

Clustering also helps reduce the computational effort associated with the search of adapted operating policies, a computationally 
demanding task typically carried out with optimization models. Instead of identifying an optimal operating policy for each of the 828 
projections, we implement the optimization on each cluster’s representative projection, i.e. the projection closest to each cluster’s 
centroid. 

2.4. Performance assessment under current (REF) and future climates (FUT) 

Fig. 5 The performance of a water resource system can be synthesized by relating climate conditions to system behaviour for a set of 
attributes and specified thresholds. The current policy can be stress-tested using the ensemble of projections to identify the hydro
climatic conditions that may yield unsatisfactory results. Once the current operating policy vulnerabilities are revealed, the optimi
zation model determines an adapted operating policy for each cluster. The idea is to improve the system’s performance for those 
clusters where the current operating policy does not perform well (Fig. 2). 

2.4.1. Simulating the multireservoir system 
Reservoir simulation models provide a realistic description of the operations of reservoir systems. They can test the current 

operating rules and the optimal, adapted ones across reference and future hydrologic projections. For the present case study, we have 
applied the simulation model HEC-ResSim, which is used by the Quebec Water Agency to manage the Lievre multireservoir system. In 
HEC-ResSim, the decisions (e.g. reservoir releases) are determined by the guide curve and other operating constraints. The guide curve 

Table 2 
Annual energy loss in GWh/yr and percentage values relative to mean annual production for each 
cluster under current operating policy.  

Cluster Lost energy (GWh/yr) Relative loss (%) 

1 313 20 
2 475 30 
3 403 30 
4 223 20 
5 529 40  

Fig. 3. Spring and annual daily averages of intermediate inflow at Poisson Blanc reservoir.  
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corresponds to the desired reservoir level at each time step under normal conditions. As an example, Fig. 6 depicts the guide curve for 
the Kiamika reservoir. HEC-ResSim will follow the guide curve as long as the physical and operational constraints are met. Those 
operating rules depend on several factors such as the season, the inflow, and the reservoirs’ water level. The guide curve typically 
subdivides the reservoir into at least three horizontal zones:  

• the dead storage, for which no operational rule can be applied;  
• the conservation zone, which is below the guide curve;  
• the flood control zone above the guide curve. 

Once the guide curve is defined and operation rules are developed for each zone, and for a specific time series of daily inflows, the 
model simulates daily releases, storages, withdrawals, spills and hydroelectric power generation (Alvarez, 2014). 

The performance indicators can be then assessed from the time series of daily water levels and flows throughout the system. For the 
Lievre system, we measure the performance in terms of the annual number of failures for flood control, recreational use and ecological 
flow, and in terms of annual energy production. A failure in one objective corresponds to a situation whereby the system crosses at least 
one of the relevant thresholds in the entire system. For example, a failure concerning the recreational objective occurs when the daily 
water level in at least one of the three reservoirs falls below the corresponding minimum acceptable level. 

Fig. 4. Boxplots of seasonal and annual flows for intermediate inflow at Poisson Blanc. The reference lines were calculated by taking the average of 
all GCM simulations of the historical, reference period (1970–2000). 
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2.4.2. Determining adapted operating policies 
The reoperation of a multireservoir system is a non structural adaptation measure designed to keep the overall performance within 

acceptable limits. In the case of the Lievre’s system, reoperating the system implies modifying the guide curves in the three reservoirs. 
Prescriptive methods like optimization are best suited to determine adapted operating policies and have been extensively used in 
climate change adaptation studies (Vicuna et al., 2010; Tariku et al., 2021). Various optimization models are available to solve 
reservoir operation problems and state-of-the-art reviews can be found in Labadie (2004) and in Rani and Moreira (2010). 

When dealing with water systems characterized by multiple, conflicting, objectives, trade-offs are inevitable. In that case, the main 
outcome of the optimization is an adapted, Pareto optimal, operating policy. In the objective space, the set of Pareto optimal solutions 
is a frontier - also called the Pareto front - between dominated and unfeasible solutions. Various approaches are available to trace out 
this Pareto front (Loucks et al., 2005). Here, the original multi-objective problem is transformed into many single objective problems 
that are solved independently using mathematical programming. Once the optimal, adapted, operating policy is identified, it must be 
translated into modified guide curves and rules to be processed by the simulation model HEC-ResSim. 

Fig. 5. Performance assessment for the Lievre River Basin.  
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The operation of the multireservoir system is optimized using stochastic dual dynamic programming (SDDP). The SDDP algorithm 
was first proposed by Pereira and Pinto (1991) to solve the hydro-thermal scheduling problem in Brazil. To achieve this, SDDP de
composes the original sequential decision-making problem into a sequence of one-stage problems that are solved recursively. Prior to 
moving from one stage to the next, a benefit-to-go function must be constructed, indicating how the aggregated future benefits change 
over the state-space domain. In SDDP, that benefit-to-go function is progressively constructed as the algorithm iterates between a 
backward optimization and a forward simulation phase. Due to space limitation, this section only provides an overview of the SDDP 
model; the reader should refer to (Tilmant and Kelman, 2007 and Goor et al., 2011) for a comprehensive description. 

Assuming that the state variables are the volumes in storage st at the beginning of stage t and the inflows qt− 1 observed during the 
previous stage, the one-stage SDDP optimization problem can be written as: 

Ft(st,qt− 1) = max
xt

{bt(st, qt, xt+1) + αt+1Ft+1} (1)  

where Ft is the benefit-to-go function at stage t, st is the vector of storage volumes at the beginning of stage t,xtis the vector of allocation 
decisions at stage t (here reservoir releases, spillage losses, end-of-period storages), qtis the vector of inflows at stage t, bt(.) is the net 
benefit function at stage t,αt+1 is a discount factor and Ft+1 is a variable representing future benefits. 

The immediate benefit function bt(.) of Eq. 1 aggregates in a single objective function the four operating objectives using a variant 
of the constraint method (Loucks et al., 2005) in which all objectives but one are treated as flexible constraints, that is, bt(.) is penalized 
when these constraints are not met. The immediate benefit function is, therefore, the sum of the benefits associated with hydropower 
generation (HP) minus penalties for not meeting target storage levels for recreation purposes, minimum flow requirement for 
ecological purposes and penalties for exceeding maximum water discharge to prevent flooding: 

bt(.) = HPt − ρT
t zt (2) 

Where zt is a vector of slack variables (unit surplus or deficit), and ρT
t is a vector of penalty coefficients. 

The main constraints are:  

• Water balance equations: 

st+1 − C(rt + lt)+ et(st) = st + qt(qt− 1, ξt) (3)  

where C is the connectivity matrix representing the topology of the system, and etis the vector of evaporation losses, ltis the vector 
of spillage losses, and qt(qt− 1, ξt) denotes the built-in autoregressive model of order one (AR(1)) with the stage-wise independent 
random vector ξt.  

• The outer approximation of the future benefits is given by the following inequalities: 

Ft+1 − φτ
t+1,lst+1⩽γτ

t+1,lqt + βt+1,l(l = 1, 2,…,L − 1) (4)  

where φt+1,land γt+1,l are the gradients of Ft+1 with respect to the state variables (st+1, qt), βt+1,l is the intercept, and L-1 is the 
number of iterations that have already been completed. More details on the procedure used to derive the gradients and the in
tercepts can be found in (Tilmant et al., 2008).  

• The other constraints are upper and lower bounds on storages, allocation decisions, as well as the convex hulls approximating the 
nonlinear hydropower production functions (Goor et al., 2011). 

Here, the planning horizon T is 5 years and the optimization problem is solved on a weekly time step (t = 1 …260). The main results 
are the 52 piecewise linear value functions extracted from the intermediate year (here year #3), i.e. (φt+1,l,γt+1,l,βt+1,l), t = (105, 106, 
…, 156) and l = (1, 2, …, L). The results for the first and last two years are ignored because they are influenced by the boundary 
conditions (initial and final storage volumes). Since these value functions indicate how the optimal benefits from system operation 
would change with respect to the storage level and the inflows, they encapsulate the operating policies adapted to the selected 

Fig. 6. Guide curve of the Kiamika Reservoir.  
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hydrologic projection/cluster processed by the algorithm. 
To determine the best values for the penalty coefficients ξ in Eq. 2, thousands of optimization instances were run, exhaustively 

exploring the penalty space ρ ∈ Rp− 1, where p is the number of operating objectives. For each run, the values of the p objectives Zj (j =

1,2...,p) are stored: net revenues from hydropower generation ($/year); the risk of not meeting the desired storage volume for rec
reational activities during the summer (–); the risk of not meeting the minimum ecological flows (–); and the risk of exceeding the 
maximum flow to prevent flooding (–). To select the best vector of penalty coefficients, a geometric notion of best was chosen; the 
vector must minimize the Euclidean distance d2 between the Zj and their corresponding ideal values Z*

j (Cohon, 1978): 

d2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑p

j=1
(Z*

j − Zj)
2

√
√
√
√ (5)  

2.4.3. Simulating optimal allocation policies 
Once the optimization model prescribes adapted operating policies for each cluster, the next step is to transcribe the adapted rules 

for application in the water management simulation model. To build the adapted guide curves required by HEC-ResSim, we must first 
reoptimize the operation of the system over the entire hydrologic projection, that is, over a 30-year period (as seen in Section 2.2), to 
obtain, for each reservoir and each week, a (30 × 1) vector of simulated storage volumes. Assuming that the desired storage volume in 
a given week and for a given reservoir is the expected value, the guide curve can be constructed after interpolating between the 52 
average storage volumes and finally disaggregating those volumes into daily values to fulfil the requirements of the simulation model. 

The reoptimization procedure employs the 52 piecewise linear value functions extracted from the intermediate year (here year #3) 
once the SDDP algorithm has converged. Mathematically, the benefit-to-go function at week w (Fw+1) is defined by the triplets (φw+1,l,

γw+1,l,βw+1,l). 
At time t (year y, week w), the reoptimization problem is: 

Z = max
xt

{
bt(st, qy,w, xt) + Fw+1

}
(6) 

Subject to 

st+1 − CR(rt + lt)+ et(st, st+1) = st +qy,w (7)  

Fw+1 − φτ
w+1,lst+1⩽γτ

w+1,lqy,w + βw+1,l(l = 1, 2,…,L − 1) (8) 

Note that the other constraints found in one-stage SDDP optimization problem are also applicable here. Once we have the solution 
to the reoptimization problem, the system moves to time t + 1 using the mass balance Eq. (7 and a new reoptimization problem is 
solved, and so on until we reach the end of the hydrologic projection. 

At the end of the reoptimization procedure, one of the main results are the simulated reservoir storages st, which can then processed 
to derive the desired storages so

t , i.e. the guide curve. Here, the desired storage in a given reservoir j at a given week w is the expected 
storage so

w(j) = 1
30
∑

sw(j). The corresponding guide curve associated with reservoir j is obtained after interpolating between 
consecutive so

w(j),w = 1…52. 
HEC-ResSim can then process the adapted guide curves to simulate the daily operation of the multireservoir system under the 

hydrologic conditions that prevailed in the cluster. The same performance indicators are again assessed and compared to those ob
tained with the current operating policy. This optimization-simulation procedure is repeated for all clusters. As an example, Fig. 7 
exemplifies the adapted guide curve for Kiamika’s reservoir for cluster 5 (strong seasonality scenarios), prescribed by the optimization 
model. We can see that the adaptation adjusts the drawdown-refill cycle to account for a stronger seasonality and earlier spring 
snowmelt. 

Fig. 7. Comparison of official and adapted guide curves at Kiamika Reservoir.  
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3. Results and discussion 

3.1. Current operating policy 

Fig. 8 shows the performances associated with the current operating policy for each cluster identified by its linguistic descriptor as 
listed in Table 1: no-change, large annual volume, moderate seasonality, low annual volume and strong seasonality. Each point corresponds 
to the performance achieved for each one of the 828 30-year future hydrologic projections. Since the hydrologic projections in the no- 
change cluster are characterized by a flow regime close to current conditions, the corresponding performances are the benchmark 
against which the other clusters are compared. 

The performance regarding flood control is assessed in terms of an annual number of global failures. A global failure in flood control 
occurs when the maximum water level in one or more reservoirs is not respected or when the flow downstream reaches a critical level 
causing significant damages. We observe a slight increase of the flood risk for the clusters large annual volume and strong seasonality due 
to larger volumes of water during winter and spring. However, the median and the interquartile range of the boxplots remain close to 
zero, which indicates that the three main reservoirs are able to provide similar performances despite the potential alterations of the 
flow regime in the future. In other words, the large storage capacity can handle the projected increase in winter and spring flows. 

A failure in recreational use occurs when one or more reservoirs cannot provide the minimum level for recreational activities during 
summer. For the no change cluster, 75% of the scenarios present less than 20 failures/year. Large annual volume and moderate seasonality 
scenarios can keep the performance close to current conditions. However, low annual volume and strong seasonality scenarios present a 
risk increase of 300% and 100%, relatively to the median performance of the no change cluster. For low annual volume and strong 
seasonality scenarios, the early onset of the high flows season, together with lower flows during the summer, makes it difficult for the 
system to attain the expected level during summer when following the current guide curve which recommends the start of refilling the 
reservoir Poisson Blanc by the end of April. Fig. 9 illustrates the impact of the driest states of three plausible future hydrological 
regimes, no change, low annual volume, and strong seasonality scenarios, in Poisson Blanc reservoir, if there is no adjustment in the 
drawdown-refill cycle. The driest states are represented here by the first quartile of the interannual level and incremental inflow. For 
the current operating rule, the Poisson Blanc reservoir starts to be refilled by the end of April, which takes place at the end of the high- 
flows period induced by the seasonal ice melt for clusters low annual volume and strong seasonality. As a result, less water is available to 
refill the reservoir for these clusters. Besides, the low summer flow often lies below the minimum required ecological flow downstream, 
which means that the reservoir must be depleted even further. 

Failure in meeting minimum ecological flows occurs when one or more reservoirs do not release the minimum flow required to 
sustain ecosystems. The minimum flow is a top-priority constraint for the Lievre system, so the non-satisfaction of this operating 
objective only occurs when the reservoirs are depleted. The median is zero failure per year for all clusters, which points to the 
robustness of the multireservoir system regarding ecological flows. Strong seasonality scenarios present a slightly higher risk of failure 
since they have the lowest summer inflows and the most pronounced time shift for the snowmelt season among the clusters, as 

Fig. 8. Global performance for all clusters, represented here by their linguistic descriptors (Table 1), and considering four performance criteria, 
annual number of failures regarding flood control, recreational use and ecological flow, and annual en.ergy production. 
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illustrated in Figs. 4 and 9. 
Finally, regarding annual energy production, clusters moderate seasonality, strong seasonality and low annual volume scenarios 

present the lowest annual values, with a reduction of 8, 17 and 11% compared to the median of the no change cluster. For the large 
annual volume, we observe an increase of 7% compared to the same reference. Then, the large and low annual volume scenarios present 
the best and worst performances regarding energy production, which is expected since the annual flow is strongly correlated to energy 

Fig. 9. First quartile of interannual level (top) and intermediate basin inflow (bottom) of Poisson Blanc reservoir for the representative scenarios of 
no change, low annual volume and strong seasonality clusters. 

Fig. 10. Comparison of the current and adapted operating policies for large annual volume, moderate seasonality, low annual volume and strong 
seasonality scenarios. The graphs show the performance ranges between the 25th and 75th percentile, and the 100th percentile (worst scenarios). 
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production for regulated reservoirs. Also, Table 2 shows an increase in spillages losses, described here in terms of energy losses, for 
large annual volume, moderate seasonality, and strong seasonality scenarios, which suggests that the current operating policy might be 
sub-optimal for those clusters. Such increase is mostly explained by a shift in the seasonality patterns, i.e., earlier snowmelt. 

3.2. Portfolio of adaptation operating policies 

The last step of the proposed methodology yields a portfolio of cluster-specific, adapted, operating policies tailored to the hy
drologic characteristics shared by all the projections in the same cluster. Those adapted policies are determined by an optimization 
model and are then translated into new guide curves for the simulation model. From the simulation results, the performance indicators 
can be calculated and compared to those obtained with the current operating policy. 

For the no change scenarios, there is no need for adaptation measures since the current operating policy is already robust for current 
conditions. Besides, no alternative dominating the current operating policy could be found, indicating that the latter is already on the 
Pareto front regarding the four operating objectives. 

For the remaining clusters, Fig. 10 shows parallel-coordinate plots comparing the current and cluster-specific operating policies 
found with the help of the optimization model SDDP. To make sure that all the indicators point in the same direction (minimization), 
the performance of the energy sector is measured in terms of energy deficit, which is the difference between the energy generated by 
the most productive scenario and that corresponding to the cluster of interest. The performance indicators are listed on the X-axis, 
while the Y-axis indicates the direction of increasing preference. Here, the ideal – but infeasible – solution corresponds to the bottom 
horizontal axis. The average performances are represented by the interquartile range 25%–75%, and the 100th percentile represents 
the worst performances. The comparison between current policy and cluster-specific operating policies shows that the latter dominates 
the former considering the four operating objectives. 

Concerning flood control, the adapted policy for large annual volume scenarios slightly reduces the risk of flooding. For the other 
clusters, the flood risk remains as low as for the current operating policy. 

The cluster-specific adapted operating policies for moderate seasonality, low annual volume and strong seasonality scenarios improve 
the performance regarding recreational use by 97, 85, and 98%, respectively and relatively to the median performance. For ecological 
flow, the risk of failure is virtually absent with the operating policies of the portfolio. Moreover, the adaptation significantly reduces 
the performance variability for recreational use and ecological flow. The robustness of the cluster-specific policies is also highlighted 
by Fig. 11, which compares the driest states for the low annual volume (left) and strong seasonality (right) scenarios, under current and 
adapted operating policies. We observe that the cluster-specific operating policies manage to keep the reservoir level above the 
minimum level during summer, even for the driest states. Relatively to the current operating policy, the adapted operating policies for 
low annual volume and strong seasonality start refilling the reservoir earlier to take advantage of the anticipated snowmelt. 

The results of the portfolio of adapted policies with regards to energy production show a gain of 90, 102, 78 and 166 GWh (or 5, 7, 6 
and 11%), for clusters large annual volume, moderate seasonality, low annual volume and strong seasonality, respectively. To better un
derstand how the adapted policies increase energy production, Fig. 12 compares monthly energy production and energy loss through 
spillage for the clusters low annual volume and strong seasonality when applying the current and cluster-specific adapted policies. 
Additionally, it shows values for the no change cluster (dashed lines), serving as a reference for the expected outcome. For both cluster- 

Fig. 11. First quartile of interannual level of Poisson Blanc’s reservoir for the representative scenarios of low annual volume and strong seasonality 
clusters as a response of current policy (dashed lines) or cluster specific policies (dash-dotted lines). 
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specific operating policies shown in Fig. 12, we notice a reduction of the lost energy during the snowmelt season, and an increase in 
energy production for the rest of the year. However, the adapted rules reduce the energy production during winter for both clusters, 
relatively to the current policy. The reduction of energy production during winter is not problematic for strong seasonality scenarios 
since their adapted policy allows the same production levels during winter as current conditions. For the low annual volume cluster, the 
energy deficit during winter is a clear trade-off that has to be considered if applying the adapted operating policy. 

4. Conclusions 

Because of the expected impact of climate change on water availability and increase in drought episodes, and also considering the 
pivotal role of water in mitigating climate change impacts in the other sectors such as food, energy, or health, significant attention must 
be devoted to developing adaptation strategies for our water resources systems (Rogers, 2011). More specifically, the reoperation of 
water resources systems to keep the overall performance within acceptable limits should be prioritized to avoid, or at least delay as 
much as possible, costly infrastructural investments (Gleick, 2018). We propose an approach to support the reoperation of reservoirs 
based on the clustering of a large ensemble of hydrological projections, which is followed by the development of reservoir operating 
policies tailored to flow regime changes. The robustness of the identified adapted policies are then locally assessed after simulating the 
policies across all hydrologically-similar projections. 

The proposed approach is scenario neutral (Prudhomme et al., 2010) since the projections are grouped into clusters regardless of 
the climatic model or emission trajectories. The clustering of hydrologic projections is also compatible with a decision-scaling 
framework, which states that the climate information should be tailored to the best interest of their users (Brown et al., 2011). 
Here, the clusters are formed based on hydrologic attributes well known to the operators. This hydrologic-based clustering also helps 
triggering the experiential knowledge of the operators, which could be exploited to derive the adaptation measure while further 
involving them into the modelling exercise. Clearly, this clustering involves a loss of information which must be weighed against the 
benefits of more easily interpretable results since the adaptation policies are directly related to changes in the flow regime rather than 
changes in climate variables. Assessing that loss of information was beyond the scope of the present study; it would involve comparing 
the intrinsic variability of performance indicators within and across clusters. 

The proposed hydrologically driven approach to climate change adaptation does not replace well-established scenario discovery 
approaches. Instead, it addresses situations whereby a large ensemble of GCM-based projections is available, covering a range of 
uncertainty large enough so that the operators are comfortable using them in the stress test. Provided that condition is met, the 
proposed approach relies on a multi-dimensional stress test driven by changes in hydrologic attributes directly relevant to characterize 

Fig. 12. Annual averages of energy production and lost energy for low annual volume and strong seasonality scenarios, current (white bars) and 
adapted operating policies (grey bars). The dotted lines represent the average performance for no change scenarios to represent the expected 
outcome for current conditions. 
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the flow regime instead of a limited number of relatively broad climate variables. 
The final step of this approach produces a portfolio of operating policies tailored to potential alterations of the flow regime, 

revealing the operational flexibility of the multireservoir system; that is, its capacity to adapt to likely hydrological changes. The 
approach proposed in the manuscript does not intend to inform water operators on detecting hydrological regime shifts to support real- 
time operations. Instead, it provides an ex-ante assessment of a water resources system’s operational flexibility and should be regularly 
updated as new climate information becomes available. Those regular updates will also allow the operators to ”continuously” adjust 
the operating rules while the uncertainty regarding the direction of the hydrologic alteration gradually vanishes. 
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Québec. Can. J. Civ. Eng. 34, 934–945. 
Fournier, E., Lamy, A., Pineault, K., Braschi, L., Kornelsen, K., Hannart, A., Chartier, I., Tarel, G., Minville, M., Merleau, J., 2020. Valuation of Hydropower Assets and 

Climate Change Physical Impacts: A Guidebook to Integrate Climate Data in Energy Production for Value Modelling. Technical Report. Ouranos. Montréal. 
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