
PHYSICAL REVIEW E 105, 025204 (2022)

Self-consistent relaxation theory of collective ion dynamics in Yukawa one-component plasmas
under intermediate screening regimes

Anatolii V. Mokshin ,1 Ilnaz I. Fairushin ,1 and Igor M. Tkachenko 2,3

1Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
2Departament de Matemàtica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

3Al-Farabi Kazakh National University, al-Farabi Av. 71, 050040 Almaty, Kazakhstan

(Received 13 October 2021; accepted 1 February 2022; published 18 February 2022)

The self-consistent relaxation theory is employed to describe the collective ion dynamics in strongly coupled
Yukawa classical one-component plasmas. The theory is applied to equilibrium states corresponding to inter-
mediate screening regimes with appropriate values of the structure and coupling parameters. The information
about the structure (the radial distribution function and the static structure factor) and the thermodynamics of
the system are sufficient to describe collective dynamics over a wide range of spatial scales, namely, from the
extended hydrodynamic to the microscopic dynamics scale. The main experimentally measurable characteristics
of the equilibrium collective dynamics of ions—the spectrum of the dynamic structure factor, the dispersion
parameters, the speed of sound, and the sound attenuation—are determined within the framework of the
theory without using any adjustable parameters. The results demonstrate agreement with molecular dynamics
simulations. Thus a direct realization is presented of the key idea of statistical mechanics: for the theoretical
description of the collective particle dynamics in equilibrium fluids it is sufficient to know the interparticle
interaction potential and the structural characteristics. Comparison with alternative or complementary theoretical
approaches is provided.
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I. INTRODUCTION

Collective dynamics determines essential physical proper-
ties of a many-particle system, including the sound propaga-
tion, the heat capacity, and the mass and heat transfer. If we
consider a crystalline solid as a system of interacting particles,
as it is customarily done in statistical mechanics, then the con-
cept of phonons is applied to describe the collective dynamics
of such systems [1], and qualitative results can be achieved if
the interparticle interaction potential and the structural charac-
teristics (the lattice type and the lattice constant) are initially
known. However, the extension of the concept of phonons to
collective particle dynamics in equilibrium classical liquids is
somewhat misleading or dubious. Instead of this, in the case of
liquids the time correlation function formalism appears to be
sufficiently efficient [2]. This formalism serves as a suitable
basis for various theories that are proposed for reproducing
collective and single-particle dynamics in liquids such as the
generalized hydrodynamics [3], the viscoelastic theory [4,5],
the mode-coupling theory [6], and others. Despite an im-
pressive progress in the theoretical interpretation of currently
available experimental results related to the collective dynam-
ics in liquids [7–9], an appropriate theory is still missing,
which could be based solely on an interaction potential and
structural characteristics as input parameters [10,11].

It is remarkable that a model of many-particle systems,
where particles interact through the Yukawa (screened-
Coulomb, or Debye-Hückel) potential,

φ(r) = Q2

r
exp

(
− r

λs

)
, (1)

is a very suitable for the advancement and testing of such
a theory. Here, Q is the effective particle charge and λs is
the Debye screening length [12]. The interparticle interac-
tion defined by Eq. (1) reproduces the repulsion of point
ions neutralized by the (electronic) background, and such
an interaction corresponds to the case of the classical one-
component plasma (OCP) called the Yukawa-OCP [13–16].
If the microscopic structure is known (for example, in
terms of the pair distribution function of the particles),
then the simple analytical form of the Yukawa potential
allows one to find expressions for the internal and free
energies, the internal pressure, the shear stress, and also
to determine the system virial equation of state [3]. Note
that the Yukawa-OCP is of interest not only from the
point of view of the fundamental issues of liquid matter
physics, but it has also remarkable applications in various
physical situations, including interiors of neutron stars and
white dwarfs, dusty plasmas, ultracold plasmas, and colloidal
suspensions [17–24].

The dynamic structure factor S(k, ω) (k being the wave
number and ω being the frequency) contains complete in-
formation about the collective particle movements in a
many-particle system. This quantity is experimentally mea-
surable by inelastic scattering of light, neutrons, and x rays.
On the other hand, the dynamic structure factor can be di-
rectly calculated from known particle trajectories, which were
initially determined by experimental methods or by means
of molecular dynamics (MD) simulations. In addition, the
quantity S(k, ω) is the Fourier transform in time of the
density-density correlation function F (k, t ) known also as
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the intermediate scattering function [3]. Therefore it is usu-
ally possible to compute S(k, ω) theoretically, and a direct
comparison of theoretical and experimental results for the
dynamic structure factor can verify the validity and quality
of a theory suggested to describe the collective dynamics of
system particles.

The dynamic properties of the Yukawa-OCP in the in-
termediate screening regime, i.e., with the finite screening
lengths in interparticle interactions, are characterized by the
presence of propagating waves, manifested in the dynamic
structure factor spectra as a shifted-frequency doublet. This
feature is symmetric and typical for dense classical liquids.
The dispersion of these collective excitations is similar to that
usually observed in equilibrium dense liquids and is com-
pletely different from those characteristic for the Coulomb
systems, i.e., when in Eq. (1) the screening length λs tends
to infinity. A remarkable feature of the collective dynamics
of the Yukawa-OCP is the practically absent zero-frequency
Rayleigh mode in the extended hydrodynamic wave-
number range. This mode is associated with the nonpropa-
gating isobaric entropy fluctuations [1]. In the present paper
we wish to demonstrate that all main characteristics of the
classical Yukawa-liquid collective dynamics for the whole
wave-number range and in the intermediate screening regime
can be determined in a self-consistent manner within the re-
laxation (microscopic) theory.

II. THEORETICAL FORMALISM

The simplest way to treat an experimental scattering law
S(k, ω) is to fit this spectrum by a linear combination of some
model functions whose parameters are identified with some
physical parameters. However, physically justified reasons for
such a fit can be given for two limiting cases only: the low-
k (long-range) hydrodynamic and the high-k (short-range)
free-particle dynamics limits. There is an alternative to these
fittings.

Any scattering law S(k, ω) at a fixed k can be characterized
by a set of its frequency moments

〈ω(l )(k)〉 = 1

ρ

∫ ∞

−∞
ωl S(k, ω) dω, l = 0, 1, 2, . . . , (2)

usually called the sum rules, where ρ is the particle concen-
tration. The dimension of the lth-order frequency moment
depends on its order l and it is (frequency)l . Therefore, it
is more convenient to use the set of frequency parameters
defined by the ratios of the moments:

�1(k) = 〈ω(2)(k)〉
〈ω(0)(k)〉 , �2(k) = 〈ω(4)(k)〉

〈ω(2)(k)〉 − 〈ω(2)(k)〉
〈ω(0)(k)〉 ,

�3(k) = [〈ω(6)(k)〉〈ω(2)(k)〉 − (〈ω(4)(k)〉)2]〈ω(0)(k)〉
〈ω(4)(k)〉〈ω(2)(k)〉〈ω(0)(k)〉 − (〈ω(2)(k)〉)3 ,

. . . , (3)

all having the same dimensions of the frequency squared. In
a classical system the dynamic structure factor is an even
function of frequency so that its odd-order moments vanish
and the nth-order frequency parameter �n(k), where n = 1, 2,
3, . . ., can be expressed in terms of only even-order moments

up to a 2nth-order one: 〈ω(2)(k)〉, 〈ω(4)(k)〉, . . ., 〈ω(2n)(k)〉. It is
remarkable that the frequency parameters can be determined
independently and exactly in terms of the microscopic char-
acteristics. In particular, for the first frequency parameter due
to the fluctuation-dissipation theorem one has that

�1(k) = ω2
p

3�

(ka)2

S(k)
, (4a)

while the second frequency parameter can be written as

�2(k) = �1(k)[3S(k) − 1] + ω2
p D(k), (4b)

with (some details are provided in the Supplemental Mate-
rial [25])

D(k) =
∫ ∞

0

exp(−κx)

3x
[(2(κx)2 + 6κx + 6) j2(kax)

+ (κx)2(1 − j0(kax))]g(x)dx,

where

S(k) ≡ 〈ω(0)(k)〉 = 1 + 4πρ

k

∫ ∞

0
r[g(r) − 1] sin(kr)dr

is the static structure factor, ωp =
√

4πQ2ρ/m is the plasma
frequency, a = 3

√
3/(4πρ) is the Wigner-Seitz radius, � =

Q2/(kBTa) is the coupling parameter, κ = a/λs is the struc-
ture parameter, x = r/a is the dimensionless spacial variable,
jn(x) are the spherical Bessel functions, and g(x) is the radial
distribution function. Generally speaking, the expression for
the nth-order frequency parameter �n(k) at n � 2 contains
an integral expression with the interparticle potential and the
distribution function for n particles.

The higher the order of the frequency moment (or the
relaxation parameter), the more high-frequency properties of
the spectrum it captures. The set of these moments (and the
relaxation parameters) uniquely matches a specific spectrum
at a fixed k. Therefore it is reasonable to expect that the
scattering law can be expressed in terms of the relaxation
parameters as a functional. Based on the set of the dynamic
variables,

W(k) = {W0(k), W1(k), W2(k), W3(k), W4(k)}, (5)

interrelated by the following recurrent relations,

Wj+1(k) = dWj (k)

dt
+ � j (k)Wj−1(k),

� j (k) = 〈|Wj (k)|2〉
〈|Wj−1(k)|2〉 , W−1(k) ≡ 0, j = 0, 1, 2, . . . ,

where the initial variable W0(k) = ρk defines the
local density fluctuations, the self-consistent relaxation
theory provides the dynamic structure factor in terms
of the first four relaxation parameters, S(k, ω) ∝
F[S(k), �1(k), �2(k), �3(k), �4(k)], where F[. . .] means
an algebraic expression [34,35]. The exact equation for
the dynamic structure factor S(k, ω), obtained on the basis
of the self-consistent relaxation theory, can be found in
Refs. [31,36,37] (see, for example, Eq. (42) in Ref. [31]). We
notice that the relaxation theory belongs to the theoretical
schemes, where the known infinite chain of integrodifferential
equations for the time correlation functions of variables from
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FIG. 1. Wave-number dependence of some characteristics evalu-
ated by means of molecular dynamics simulations for the Yukawa-
OCP at the thermodynamic state with � = 50 and κ = 1. (a) Dots
connected by the solid line represent the static structure factor S(k),
where the location of the main peak is marked by kma; and kma/2
corresponds to the first pseudo-Brillouin zone boundary. (b) Reduced
frequency moments. (c) Frequency parameters scaled by ω2

p. Low-k
asymptotic forms shown by straight lines. For �1(k) it follows from
Eq. (4a), for �2(k) it can be obtained taking into account the results
of the quasilocalized charge approximation (QLCA) [48–52], and for
the parameters �3(k) and �4(k) they are obtained empirically.

the set W(k) is solved in a self-consistent way as, for example,
in the self-consistent mode-coupling theory [38–42], and no
approximations of these time correlation functions by any
model functions with free parameters are required [43]. This
also becomes possible when the entire infinite set of sum
rules (2) [or (3)] is known [31,36,44–46]. In the case we
consider here, the theoretical procedure is nonperturbative,
which is especially appropriate for the description of the
systems we are dealing with here. The main ideas of
the theory are to take advantage of the correspondence
between the timescales of a sequence of relaxation processes
associated with the dynamical variables from the set W(k)
and of the fact that the timescales themselves are evaluated
through the frequency parameters as τn(k) = �−1/2

n (k) [47].
The description is based solely on the assumption that
relaxation processes, determined by the energy flow, and by
more subtle physical effects that are determined through the
derivatives of the energy current with respect to time, occur on
higher-order timescales τn(k) which become asymptotically
equal at large n. In the case of classical equilibrium fluids
independently of the interaction range of the fluid particles,
this condition is sufficient to find the dynamic structure
factor as well as other characteristics of the collective
dynamics of particles. However, for specific systems one can
expect to find additional interrelations between frequency

FIG. 2. Wave-number dependence of the scaled frequency pa-
rameters �2(k)/ω2

p (yellow diamonds), �3(k)/ω2
p (green squares),

and �4(k)/ω2
p (dark blue circles) obtained by molecular dynamics

simulations of the Yukawa-OCP for nine thermodynamic states and
some combinations of � and κ . Solid and dashed lines correspond to
relations (6a) and (6b), respectively.

parameters, which will cause corresponding modifications in
the relaxation theory.

The equilibrium molecular dynamics simulations1 of the
Yukawa-OCP for � = 20, 50, 100 and κ = 1, 1.5, 2 reveal
no simple correlation between the frequency parameters
�1(k) and �2(k), and, therefore, it is not possible to simplify
Eq. (4b). Nevertheless, there is a correspondence between
�2(k), �3(k), and �4(k) for the extended range of the wave-
number variation, which is clearly seen from the defined k
dependence of these frequency parameters (Figs. 1 and 2):

�3(k) = 3
2�2(k) + ω2

0, (6a)

�4(k) = 4
3�3(k) = 2�2(k) + 4

3ω2
0, (6b)

with

ω2
0 = 2ω2

p√
�κ

.

Relations (6) express the higher-order relaxation parame-
ters �3(k) and �4(k) in terms of the parameter �2(k).
These relations are similar, in a sense, to the representa-
tion of the three- and four-particle distribution functions in
terms of the pair correlation function—the radial distribu-
tion function of particles. Further, relations (6) satisfy the

1The equilibrium molecular dynamics simulations of the Yukawa-
OCP for � = 20, 50, 100 and κ = 1, 1.5, 2 were carried out using the
computational package LAMMPS [S. Plimpton, J. Comput. Phys. 117,
1 (1995)]. The simulation cell contained 64 000 particles interacting
with the Yukawa potential, and periodic boundary conditions were
applied to the cell in all directions. The evolution of the system corre-
sponding to the NV T ensemble was monitored. The particle motion
equations were integrated in accordance with the Verlet algorithm
with a time integration step τ = 0.01/ωp.
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Cauchy-Bunyakovsky-Schwarz inequalities for the frequency
moments [29,30]:

〈ω(2)(k)〉
〈ω(0)(k)〉 � 〈ω(4)(k)〉

〈ω(2)(k)〉 ,
〈ω(4)(k)〉
〈ω(0)(k)〉 � 〈ω(8)(k)〉

〈ω(4)(k)〉 ,

〈ω(6)(k)〉
〈ω(4)(k)〉 � 〈ω(8)(k)〉

〈ω(6)(k)〉 . (7)

Notice that these inequalities warrant the correct mathematical
structure and properties of our results, e.g., the positiveness
of the dynamic structure factor and of the decrement of
the collective modes, etc. Besides, their fulfillment implies
the compliance of the present approach with the funda-
mental requirements. Taking relations (6) into account, the
self-consistent relaxation theory yields the dynamic structure
factor in the form

S(k, ω) = ρS(k)

π

2�2(k)
√

A3(k)

ω6 + A1(k)ω4 + A2(k)ω2 + A3(k)
, (8)

where

A1(k) = 3ω2
0 − �2(k)

2
− 2�1(k),

A2(k) = [�1(k) − 2�2(k)]2 − 6�1(k)ω2
0,

A3(k) = 3

2
�2

1(k)
[
3�2(k) + 2ω2

0

]
.

Some remarkable points associated with relations (6) and
Eq. (8) are to be pointed out. First, relations (6) can provide a
correct result for the high-k free-particle dynamics limit with
�2(k) � ω2

0 and the following recurrence relation:

�n+1(k) = n + 1

n
�n(k), n = 1, 2, 3, . . . , (9)

which exactly corresponds to the dynamic structure factor of
the Gaussian form,

Sfmp(k, ω) =
√

ρ2

2π�1(k)
exp

(
− ω2

2�1(k)

)
. (10)

Note that Eq. (10) reproduces the dynamic structure factor
spectrum for the regime of “a free-moving particle” [3]. Sec-
ond, according to Eq. (8), the shape of S(k, ω) at a fixed k is
determined by the bicubic polynomial in the variable ω. Anal-
ysis of (8) allows one to obtain the dispersion equation for the
high-frequency quasiacoustic mode:

s3 + B(k)s2 +
[
�1(k) + 8

5
�2(k)

]
s + B(k)�1(k) = 0,

B(k) = 4
√

A3(k)

5�1(k)
. (11)

Solution of this equation yields s(k) = ±iωc(k) − δ(k) with
the dispersion for the high-frequency peak of the dynamic
structure factor,

ωc(k) =
√

3
(

3
√

Z (k) − q(k) + 3
√

Z (k) + q(k)
)
, (12)

the low-k asymptotes of this dispersion,

vs k = lim
k→0

ωc(k)

= lim
k→0

√
6
[
(�1(k) + 2�2(k))2 − �1(k)ω2

0

]
4�1(k) + �2(k) − 6ω2

0

, (13)

and the dispersion for the sound decrement,

δ(k) = 3
√

Z (k) + q(k) − 3
√

Z (k) − q(k) − B(k)

3
, (14)

where

Z (k) =
√

p3(k) + q2(k),

p(k) = �1(k)

12
+ 4

75

[
�2(k) − ω2

0

]
,

q(k) = B(k)

600

[
25�1(k) − 12�2(k) + 16ω2

0

3

]
,

and vs is the sound velocity.
The spectral density CL(k, ω) for the longitudinal current

correlation function is also determined by the dynamic struc-
ture factor S(k, ω):

CL(k, ω) = ω2

S(k)�1(k)
S(k, ω). (15)

Then, taking into account relation (8), one can obtain directly
the analytical expression for the spectral density CL(k, ω) and
find the dispersion relation ωL(k) for the longitudinal acousti-
clike excitations:

ωL(k) =
√

C+(k) + C−(k) − A1(k)

6
(16)

with

C±(k) = 3

√√√√A3(k)

4
− A3

1(k)

216
±

√
A2

3(k)

16
− A3(k)A3

1(k)

432
.

Since the parameters �1(k) and �2(k) can be calculated ana-
lytically by means of Eqs. (4a) and (4b), respectively, fitting is
not necessary to compute the dynamic structure factor S(k, ω)
and all other characteristics of the collective particle dynam-
ics.

III. NUMERICAL RESULTS

Now we check to which extent the theoretical formal-
ism is consistent with the molecular dynamics simulation
data and results of alternative theoretical approaches. Sev-
eral theoretical models are known that have been suggested
earlier to describe the collective dynamics of Yukawa classi-
cal one-component plasmas [10,27,29,30,53–56]. An accurate
theoretical description has been provided earlier by the theory
based on the method of frequency moments (FM’s)—the FM
theory (for details, see Refs. [10,30]). This FM theory yields
the expression for the dynamic structure factor S(k, ω) in the
form of a linear-fractional transformation of the Nevanlinna
parameter function (NPF) possessing specific mathematical
properties, which guarantee the satisfaction of an imposed set
of sum rules or power frequency moments automatically and
independently of the NPF model. In Refs. [10,30], the NPF
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FIG. 3. Dynamic structure factor vs wave number ka and fre-
quency ω/ωp at the thermodynamic state with � = 50 and κ = 1
evaluated from Eq. (8). Note that the radial distribution function g(r)
generated on the basis of independent molecular dynamics simu-
lations is used as a sole input parameter to compute the dynamic
structure factor via Eq. (8).

determined by the relaxation frequency parameters �1(k) and
�2(k) was found on the basis of physical considerations,
and it leads to an expression for S(k, ω), similar to Eq. (8).
Remarkably, at certain conditions, Eq. (8) transforms into
the dynamic structure factor S(k, ω) of FM theory given
in the above papers exactly. Details of the interrelation be-
tween the present relaxation and the moment self-consistent
theoretical approaches are provided in the Supplemental
Material [25].

For the thermodynamic state with � = 50 and κ = 1, the
first maximum of the static structure factor S(k) is located

at the wave number km = 4.3 a−1 [see Fig. 1(a)]. The ba-
sic features of the microscopic collective dynamics appear
at the wave numbers k ∈ (0; km). This can be seen from
Fig. 3, which presents the results predicted by Eq. (8) for
this thermodynamic state—the scaled dynamic structure fac-
tor ωpS(k, ω)/ρ as a function of the scaled wave number ka
and frequency ω/ωp. The Brillouin doublet in ωpS(k, ω)/ρ is
seen as symmetric maxima located at nonzero frequencies for
the wave numbers up to k � 4.0 a−1.

In Fig. 4 we show the scaled dynamic structure factor
ωpS(k, ω)/ρ computed within the self-consistent relaxation
theory with Eq. (8) for the fixed scaled wave numbers ka =
0.29, 2.53, and 4.28 at the thermodynamic conditions of the
Yukawa-OCP with � = 20 and 100, and κ = 1, 1.5, and 2.
For these thermodynamic conditions and wave numbers, the
self-consistent relaxation theory reproduces the MD simu-
lation results quite accurately and describes all the spectral
features. At small wave numbers k < km/2 corresponding
to an extended hydrodynamic range, the spectra of S(k, ω)
contain just a high-frequency Brillouin component. With the
wave number k increase starting from the values comparable
with km/2, the zero-frequency Rayleigh component emerges
and becomes pronounced, while the high-frequency Brillouin
component disappears. As it is seen, Eq. (8) provides some-
times even better agreement with the MD simulation results
than the FM theory. In Fig. 5 we present results charac-
terizing the capability of the theory to correctly reproduce
the high-frequency Yukawa-OCP dynamics. It stems from
Fig. 5 (top panel) that Eqs. (12) and (14) describe the MD
simulations results for the dispersions characteristics ωc(k)
and −δ(k) as well. From the low-k asymptotes ωc(k → 0) �
vsk and δ(k → 0) � −�sk2, it is possible to determine the
sound velocity vs and the sound attenuation coefficient �s.

FIG. 4. Dynamic structure factor spectra, multiplied by the plasma frequency, for the thermodynamic states at various values of � and κ

and at the various wave numbers. Here theoretical results from Eq. (8), shown by black solid lines, are compared with molecular dynamics
(MD) simulation data given by green circles and with results of the FM theory [10] presented by red dashes lines.
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FIG. 5. (Top panel) Dispersions of the Brillouin peak frequency
ωc(k) and of the sound dumping coefficient −δ(k) scaled by the
plasma frequency ωp; the results are given for the thermodynamic
states (� = 50, κ = 1) and (� = 100, κ = 2). Black solid lines are
theoretical results with Eq. (12) for ωc(k) and with Eq. (14) for
−δ(k); red dashed lines depict results of FM theory [10] and green
circles represent MD simulation data. Dash-dotted lines correspond
to the asymptotic results ωc(k) ∼ csk and −δ(k) ∼ �sk2. (Bottom
panel) Dispersion curves for longitudinal collective excitations eval-
uated from Eq. (16) (solid curves) and from MD simulations (green
circles) for nine various thermodynamic (�, κ) states. Straight lines
correspond to ωL (k) ∼ (a/

√
3�)k.

For the conditions pointed out in Fig. 5 (top panel), we found
vs/(ωpa) = 0.938 and �s/(ωpa2) = 0.078 for � = 50, κ =
1, and vs/(ωpa) = 0.39, and �s/(ωpa2) = 0.083 for � =
100, κ = 2. We can conclude that the theory with Eq. (16)
allows one to compute the dispersion curves ωL(k) for the
longitudinal collective excitations in a wide range of variation
of the system parameters. Full correspondence between the
theoretical and the MD simulation results for the dispersion
ωL(k) is seen in Fig. 5 (bottom panel), where our results for
nine different (�, κ) combinations are given. The proposed
theoretical description with Eq. (16) properly reproduces the
low-k asymptotic forms and the roton minima located at
ka � 4.3 under the above condition. In full agreement with
the simulation results, the theory indicates a smoothing of
the roton minimum with a decrease in the parameter � and
with an increase in κ , so that the roton minimum is practically
absent when � = 20 and κ = 2. The extremum condition for

the dispersion ωL(k) is
∂A3(k)

∂k
= ω4

L(k)
∂A1(k)

∂k
. (17)

Then, with the known static structure factor S(k) for a specific
combination (�, κ), it is possible to accurately predict the
location of the maximum and roton minimum on the dis-
persion curve ωL(k). For example, at � = 50 and κ = 1.5,
the maximum of ωL(k) is at ka = 1.95, whereas the mini-
mum is at ka = 4.3. Note that the position of the maximum
in the dispersion ωL(k) approximately coincides with the
first pseudo-Brillouin zone boundary k = km/2, which cor-
responds to the transition range from the collective particle
dynamics to the dynamics within an area formed by the
neighboring particles. Moreover, the dispersion law ωL(k) for
all considered pairs (�, κ) demonstrate correct asymptotic
forms at large wave numbers into the regime of a free-particle
dynamics: ωL(k) = √

2/(3�)ωpka.

IV. CONCLUSIONS

It is shown that the self-consistent relaxation theory can
be applied to describe the collective dynamics of ions in a
strongly coupled classical one-component Yukawa plasma.
For the intermediate screening regime of this system, when
the interparticle interaction is realized on a finite scale, a
correspondence between the sum rules is found which directly
gives analytical expressions for the main characteristics of
the collective dynamics, determined through the static struc-
ture factor and without any adjustment to the dynamic data.
The present approach generates correct results within the
range of parameters, where relations (6) are satisfied. Pre-
cisely, accurate results are produced for the Yukawa-OCP
states with the values of the coupling and structure parameters
varying in the ranges � ∈ [20; 100] and κ ∈ [1; 2], where the
central (Rayleigh) peak is not pronounced. We emphasize that
this study does not cover the states of the system correspond-
ing to the weak coupling regime with the coupling parameter
� ∼ 1 or smaller and to the Coulomb system with κ → 0.

The presented theory is an alternative to the FM theory
presented recently [10]. Both approaches are nonperturbative,
and a strong correspondence between them is elucidated. En-
ergy dissipation processes in the system under scrutiny are
taken into account in these two theoretical constructions so
that they might be considered generalizations of the quasilo-
calized charge approximation [49]. Conclusions with respect
to the analyticity of the system direct dielectric function en-
visaged in [32] and elaborated in [33] are confirmed (details
are provided in the Supplemental Material [25]).
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