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Abstract 14 

The use of pump working as turbine (PAT) instead of the traditional pressure regulation systems could 15 

allow for a recovery of the excess hydraulic energy to reduce the energy footprint of the water supply 16 

industry and at the same time control the water losses by an effective reduction in pressure induced by the 17 

turbine head drop. This research aims to explore the option of applying multiple recovery systems in a water 18 

network with an integrated multi-objective optimization using genetic algorithms. The objective of the 19 

optimization is to ensure a better use and effectiveness in the implementation of these solutions. A 20 

methodology to approach this multi-objective solution and the interface between components of the 21 

optimization is developed and presented. The evolutionary capacities of the optimization is analysed and 22 

the effects of the general convergence of the Pareto surface front with the adaptation of the final solutions 23 

to the available PATs. 24 

Keywords: pump-as-turbines (PATs), genetic algorithm (GA), multi-objective optimization, water losses, 25 

micro-hydro production, water-energy nexus 26 

mailto:helena.ramos@tecnico.ulisboa.pt
mailto:hramos.ist@gmail.com
mailto:website@rss-engenharia.com
mailto:mopesan1@upv.es
mailto:palopez@upv.es
mailto:mopesan1@upv.es


2 
 

1 Introduction 27 

Micro-hydro can be a valuable answer to the need for low-cost and long-life electrical energy 28 

production, using natural or artificial waterfalls, which do not harm the environment. Unconventional 29 

solutions are at the forefront of many developing countries to achieve energy self-sufficiency (Ramos and 30 

Borga 1999). The reduction of the water leakages should be considered as a new chalengue using the 31 

recovery systems (Giustolisi, Savic, and Kapelan 2008). Water distribution networks are low-energy 32 

efficiency systems since they need high energy levels to satisfy consumption in terms of available pressure, 33 

increasing the water leakage volume, the consumed energy by the system and the decrease of the 34 

sustainability indexes (Morani et al. 2020).  35 

A major consequence of climate change is the drastic change in weather patterns and the rise in 36 

global temperatures. Therefore, it creates more stress on the already scarce natural water resources. Multiple 37 

regions, especially in Europe in the Mediterranean latitudes, are already suffering from water scarcity, some 38 

even already produce artificial water with the use of desalination methods which is a very expensive and 39 

energy-dependent process (2.5kW/h/m3) that goes against the motivation of reducing and managing the 40 

natural resources (Bartels and Andes 2013). The worldwide excess of pressure in the water supply systems, 41 

and their level of deterioration, create an estimated average water loss of around 35%, being possible in 42 

extreme pressure regions and very deteriorated systems this level can reach up 60% (Kizilöz and Şişman 43 

2021).  44 

There is a direct correlation between excessive pressure and water losses due to leakage in a 45 

network. Therefore, good pressure management is essential to regulate water losses (Parra and Krause 46 

2017). The excess pressure, which is recovered by the machines can be transformed into energy and 47 

consequently, it gets an efficiency improvement of the system using renewable energies (Moazeni, Khazaei, 48 

and Pera Mendes 2020). PATs is one of them and its analysis was considered by modeling the system. The 49 

use of PATs has been thoroughly studied, from the prediction of the behaviour of the turbomachine in 50 

inverse mode by analytical methods to the use of Computer Fluid Dynamics (CFDs) (Binama et al. 2017). 51 

The location and definition of an energy recovery system that uses PATs as the main elements are an 52 

extremely complex problem to solve, although some research were published to search for the best solution 53 

when there are multiple variables (Tapia, Reina, and Millán 2020). Different researchers have shown the 54 

feasibility of these micro-hydro systems to get an advantage from the excess pressure in a water system 55 

(Novara et al. 2019). These machines operate in reverse mode and they proposed an unconventional 56 
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solution to reduce the pressure (Ramos and Borga 1999). Due to the reduced investment, corrective 57 

interventions, better customer service by the water supply companies and savings in energy necessary to 58 

pump or treat the water, this type of water losses management can be one of the most economical key 59 

(Girard and Stewart 2007). Different analytical methods were proposed based on deep experimental 60 

campaigns (Novara et al. 2019), which enabled the development of operational curves estimation (head, 61 

efficiency and power) when the machines operate under variable rotational speeds (Ávila et al. 2021). When 62 

the optimization procedure is analyzed, different published researches considered the challenge. A new 63 

mixed integer non-linear model was developed to locate PAT and pressure reduction valves (PRV) in water 64 

systems (Morani et al. 2021). (Fernández García and Mc Nabola 2020) proposed a methodology that was 65 

focused on the detection of the optimal location and number of PATs to maximize hydropower generation 66 

in gravity water distribution networks. It used a nonlinear programming based on sequential addition of 67 

devices. In this line, a method based on a highly parallelized evolutionary algorithm, employing a hydraulic 68 

solver to evaluate hydraulic constraints (Tricarico et al. 2018). A case study was shown, applying a bi-69 

objective optimization for the installation of PATs. It showed solutions able to recover hydropower up to 70 

83 kW in Catania, Italy (Creaco et al. 2020). Previous case studies show the search of solutions for the 71 

improvement of the energy efficiency in the water systems using genetic algorithms (GA). 72 

Genetic Algorithms (GAs) are a heuristic search method, which is highly used in the resolution of 73 

problems in different scientific domains (Baños et al. 2011). GAs are based on the dynamic system that 74 

makes the theory of evolution in the natural world. They consist in the survival of the fittest solution and 75 

its development to become even better adapted, with the possibility of surpassing the original fittest 76 

solution, becoming itself the fittest (Goldberg 1989). (Baños et al. 2011) developed a deep review of 77 

different computational optimization methods, which can be used when renewable systems (e.g., solar, 78 

wind, hydro, among others) want to be applied. Different meta-heuristics methods were used last years. 79 

Some of them are: (i) Pareto envelope-based selection algorithm (PESA/PESA-II) (Corne, Knowles, and 80 

Oates 2000); (ii) Population-based meta-heuristics which include the multi-objective tabu search (MOTS) 81 

(Baños et al. 2007); (iii) Pareto archived evolution strategy (PAES) (Knowles and Corne 2000); (iv) non-82 

dominated sorting genetic algorithm (NSGA/NSGA-II) (Miriam, Saminathan, and Chakaravarthi 2020); 83 

(v) Pareto simulated annealing (PSA) (Czyzç and Jaszkiewicz 1998); (vi) metamodeling-based simulation 84 

optimization (MBSO) (Soares do Amaral et al. 2022) as well as other combinations of previous methods, 85 

such as multi-objective simulated annealing and tabu search (MOSATS) (Alcayde et al. 2010). 86 



4 
 

In line with this research, there were multiple studies and progresses in the use of genetic 87 

algorithms in a multi-objective problem (Liu and Rodriguez 2021). The analysis of sizing networks was 88 

developed by (Palod, Prasad, and Khare 2021), pump systems (Piri et al. 2021), demand analysis (Bouach 89 

and Benmamar 2021), pressure reduction valves to reduce leakage by the reduction of pressure in the water 90 

system (Bouach and Benmamar 2021). The solution to this problem is usually approached by creating a 91 

fitness function that evaluates simultaneously multiple criteria to improve the solution, especially in multi-92 

variable problems when it does not know the correct relative importance of every objective (Katoch, 93 

Chauhan, and Kumar 2020), in which the Pareto solution is a good tool to choose the optimum and non-94 

dominated solution, being introduced by (Chankong, V., & Haimes 1983).  95 

The purpose of this research is to study the effects of the application of a GA in a  multi-variable 96 

approach to the implementation of an energy recovery system, with the use of PATs. The goal is to apply 97 

all the variables in one compact genetic procedure. The variables used are power curves and characteristic 98 

curves for multiple rotational speeds, implicating the use of electric regulation of the system conditions, 99 

and different demand patterns, throughout the day. Although this work is focused on the application of a 100 

system in the short term, it opens the way to a long-term approach that could include as a variable the 101 

progression of the demand pattern throughout the life cycle of each system. The developed optimization is 102 

based on the NSGA-II (Deb et al. 2002) and it was applied using a MATLAB programming language in 103 

the correspondent computer software (Chapman 2015). It is intended to evaluate the use of the EPANET-104 

MATLAB Toolkit in this kind of optimization (Lewis A. Rossman 1999). This toolkit creates an interface 105 

between both software, enabling the analysis from the hydraulic simulations in the EPANET model. As 106 

novel, the research applied the optimization procedure using modified affinity laws (Plua et al. 2021) and 107 

it was applied in a supply network in Lisbon (Portugal).  108 

2 Methodology 109 

The proposed optimization procedure is divided into six different stages, in which each one contains 110 

different steps. The methodology is based on routines specifically developed and presented in this study. It 111 

is important to note that every major variable that impacts the system performance in the short term was 112 

incorporated in this optimization process. Meaning that the GA must deal with a complete simulation that 113 

takes into consideration not only a demand pattern but also a multitude of options in the PAT library. With 114 

this procedure, a higher range of possible solutions exists and the difficulty to achieve good solutions is 115 
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also inherently higher. As previously described, the goal is to analyse an entire network and its 116 

characteristics in a robust system. The methodology is comprised of six steps (Figure 1) as follows:  117 

Step I is focused on the use of the input data and the establishment of the optimization setup. The inputs 118 

required at the beginning of the optimization cycle dictate the evolution of the system and at some level 119 

part of the system constraints. The elements that include the input data are as follow crossover ratio, 120 

mutation ratio, population size, the total number of generations, percentage of high-pressure tolerable 121 

region, reference of ideal pressure, the position of high pressure and the probability of not applying a PAT.  122 

Step II is dedicated to developing the initial random population to start the development of the hydraulic 123 

simulation. 124 

Step III is focused on the hydraulic simulation and network edition. As stated, the procedure bottleneck is 125 

the interface between the optimization procedure in MATLAB and the hydraulic simulation of the water 126 

network in EPANET. Two main components in the process should be noted: (i) the genetic optimization 127 

algorithm, and (ii) the hydraulic network edition and simulation (Figure 2). For an efficient interaction 128 

between the two simulation tools, the network morphology of each solution was comprised of one common 129 

matrix (Figure 2). The implementation of GPV valves from EPANET and their characteristics curves are 130 

the most critical step in this process because it is repeated multiple times (time steps . the number of valves 131 

per generation . the number of generations) along with every time step and PAT (in the general propose 132 

valve - GPV). Each link is evaluated for each PAT installation. The correspondent characteristics are 133 

implemented for the given time step. The results are contained in a similar matrix format as the population 134 

one (Figure 2).  135 

By having every element of the population encompassed in one matrix with a simple nomination of the 136 

characteristics, such as the binary or index connotation of the features to be stated in the network, not only 137 

it becomes easy to process the hydraulic network but allows for compatibility with simple evolution 138 

methods of mutation and crossover. Each level, in the (z) axis of the matrix, corresponds to a chromosome 139 

of each solution, meaning that the size of the matrix in this dimension depends on the number of elements 140 

in the initial population decided by the user. Inside of each (z) plane, there is a line in the (y) axis for each 141 

link of the network and every column, in the (x) axis, is responsible for a characteristic related to the 142 

possible PAT installed in the link (Figure 2). A PAT is then installed (On/Off) with the correspondent 143 

model of system regulation of hydraulic (HR) type, electric regulation for different rotational speeds (ER), 144 
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hydraulic and electric regulation (HER) simultaneously modes (Carravetta, Derakhshan, and Ramos 2018) 145 

or using different PATs installed in a single-serial-parallel (SSP) regulation types (Carravetta, Fecarotta, 146 

and Ramos 2018) (Figure 3) .  147 

 148 

 149 

Step IV is dedicated to the GA procedure. To select the best individuals in the solution space created by the 150 

genetic algorithm (GA) and the hydraulic simulation, a competition amid objectives must take place. The 151 

main objectives, which should be achieved from the installation of a PAT in a water distribution network 152 

and utilized in this study are: (i) the regulation of pressure in the network, (ii) the production of electricity 153 

and (iii) the feasibility of the system. 154 

Hence, for this methodology an optimization algorithm is used as represented in Figure 2.  155 

An initial approach to the pressure regulation function was made with an extrapolation of the methods used 156 

in multi-objective optimization of water networks with the implementation of Pressure Reducing Valves 157 

(PRV), where the pressure function used was based on (Araujo, Ramos, and Coelho 2006) 158 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 → 𝑃𝑃𝑃𝑃𝑃𝑃 = [1
2
∑ (ℎ𝑗𝑗 − ℎ𝑟𝑟𝑟𝑟𝑟𝑟)2𝑛𝑛
𝑗𝑗=1 ]1/2   (1) 159 

where, ℎ𝑗𝑗 is the pressure at node (j) in a given time, n in the number of nodes in the networks and ℎ𝑟𝑟𝑟𝑟𝑟𝑟  is 160 

the reference pressure assigned for the network. In the approach used in this research, the convergence only 161 

can occur from the high-pressure region to the low-pressure, not allowing for convergence from both sides 162 

of the spectrum, and the low-pressure solutions are considered immediately out of bounds and they do not 163 

have a reproductive chance. 164 

The second fitness function is stated on the feasibility, analysing the cost-payback period. The energy 165 

production from PAT should not be viewed only as an alternative to PRVs since it has the possibility to 166 

generate some extra income over the years. A cost per kW of energy produced was calculated for the fitness 167 

function. The cost function come from a compilation of different values  associated with 301 radial and 42 168 

vertical multistage PATs (Novara et al. 2019). It was realized the function of the cost was broken into two 169 

regions:  170 

(i) from 0kW to 1kW;  171 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 → 𝐶𝐶𝐶𝐶𝐶𝐶1 � €
𝑘𝑘𝑘𝑘
� = −17512𝑃𝑃3  +  38193𝑃𝑃2  −  28846𝑃𝑃 +  9448,3  (2) 172 

(ii) for > 1kW. 173 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 → 𝐶𝐶𝐶𝐶𝐶𝐶2 � €
𝑘𝑘𝑘𝑘
� = 1498,4𝑃𝑃−0.686     (3) 174 

where P is the generated power in kW. 175 

The last fitness function measures the accumulated electric power produced in the network. To recover the 176 

hydraulic power in each PAT, the fitness function uses the power curve data that was already incorporated 177 

in the GA library. After locating the correct curves of the PAT model and rotational speed for a given time 178 

step, the fitness function defines the generated power by interpolating the PAT flow that came from the 179 

hydraulic simulation with the values on the power curve. The function fitness is defined by the following 180 

expression: 181 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 → 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑘𝑘𝑘𝑘) = 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾      (4) 182 

where 𝛾𝛾 is the specific weight of the fluid in (kN/m3); 𝑄𝑄 is the flow in m3/s; H is the recovered head in m 183 

w.c.; and 𝜂𝜂 is the global efficiency of the machine. 184 

As previously stated in the methodology, crossover and mutation are both critical elements in GA 185 

optimization. Both depend on a user input that defines them respectively by the Crossover and the Mutation 186 

ratios. The ratios are the equivalent probability of a certain characteristic in the chromosome of the solution 187 

to be modified when under the evolutionary processes to find a better-suited individual. During the 188 

Crossover operations, the respective ratio was used to define the actual solutions that should take part in 189 

the exchange of genetic material to create two new chromosomes. In the mutation operator, the ratio was 190 

used freely. Meaning that a random number is associated, coordinate wise, to every gene in every 191 

chromosome of the solutions to adapt. If it was inside the range of probability defined by the ratio a mutation 192 

would occur. The mutation operator intervenes only after the crossover operator. 193 

The effects of different ratios in the evolutionary operators is the topic of multiple studies (Hong, Wang, 194 

and Chen 2000). The different methods used to apply both evolutionary operators and the corresponding 195 

ratios can change the results and the convergence of the optimization. Usually, with the use of static ratios, 196 

meaning that remains the same during the whole duration of the optimization, the values of the mutation 197 

probability are very low when compared with the crossover probability. Mutation exists mainly, not 198 
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entirely, to guarantee the discovery of new regions of the solution space and crossover to optimise the 199 

individual solution in each local maximum.  200 

At the start of any GA, there must exist an initial population that is randomly generated (Step II). In many 201 

cases (e.g. as in the case of optimization function) it does not require special attention to the randomly 202 

generated variables. In this case, there is a physical implementation of a turbine, and it could be relevant to 203 

change the initial concentration of PAT, from the analysis perspective. A variable defined as 𝛿𝛿 was included 204 

in the input data and defines the probability of not having an installed PAT at a given link. In the creation 205 

of the new population if the randomly created variable exceeds 𝛿𝛿, then a PAT is considered active in that 206 

link. The population size and the total number of generations are also defined. The correlation between 207 

these two parameters is also difficult to correctly determine. The traditional approach is to maintain a 208 

constant population, but studies have concluded that for small searching spaces a small population is more 209 

effective, being the opposite true to find solutions in large search areas (Rajakumar and George 2013). The 210 

approach used in this research was to maintain the traditional constant population (Abdelaziz 2017). 211 

In Step V the definition of the Pareto solution is done. The space of solutions to be analysed comes from a 212 

non-continuous function. A GA approach to a continuous function, where the changes in inputs can be 213 

smooth, offering a constant and gradual progression of results. In this kind of approach to non-continuous 214 

solution space, the resulting convergence is predicted to behave in a breakthrough-to-breakthrough 215 

evolution. The true Pareto front is not made of continuous points, and each Pareto solution may be very 216 

distinct from each other not only in terms of the fitness function output but also in the true characteristics 217 

of the chromosomes. A geometrically imperfect surface Pareto front is thereby expected in this 218 

multivariable non-continuous solution space. This means that when observing the Pareto front in a graphical 219 

representation it seems there would exist missing solutions in a certain region due to the distance between 220 

results. There is the possibility that the Pareto front with those apparent defects is a good approximation 221 

due to the discontinuity of values.  The procedure considered different strategies to apply penalization 222 

constraints for the different functions. When PF was analysed, the penal was applied by multiplying the 223 

difference between desired pressure and the actual pressure to the square, the result provides an automatic 224 

valorisation of smaller errors and a natural penalization of nodes that have very high pressure. CF 225 

considered the operation limits of the cost functions and the energy production considered the difference 226 

between rotational speed (n) and the nominal rotational speed (n0). 227 
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The final stage (Step VI) is focused on the adaptation and simulation of the water system using the best 228 

solution obtained by GA.  229 

 230 

3 Result and discussion 231 

3.1 Case study 232 

The analysed case study corresponds to one of the sectors of Funchal (Portugal) (Figure 4a) water network 233 

to reduce the number of pipes and to be possible to adapt the circulating flows to the available database of 234 

PATs. Hence this sector was divided into three different district metered areas (DMAs) being the minimum 235 

pressure in the consumption nodes equal to 30 m w.c. (Figure 4b). The restriction pressure was 15 m w.c. 236 

when non-consumption nodes were analysed. The consumption pattern, which was assigned to the base 237 

demand in each consumption node was shown in Figure 4c. The extended analysed period was 24 hours 238 

and it was simulated by using EPANET (L. A Rossman 2000). The hydraulic simulation (Step III of the 239 

methodology presented in Figure 4) considered the different PAT curves using the general propose valves 240 

(GPV) to analyse the recovered head and flow over time, and therefore, to develop the estimation of the 241 

generated energy. The proposed layout was considered an electro-hydraulic regulation using a parallel 242 

pressure reduction valve (Fontana et al. 2021), which operates when the machine is not able to recover 243 

energy due to the rotational speed being out of its operating range. The penalization was in the 244 

multiplication of the pressure fitness function result by a penalization constant. This constant was 245 

considered 100 in this study. It was applied for excess nodes with high pressure above the maximum value 246 

in the water system.  247 

The characteristic curves and the corresponding used PATs were from the pumps manufactured by KSB. 248 

The curves are already provided for the pump-as-turbine mode. A library of seven different real PATs was 249 

used as a variable for the system optimization. The different characteristic curves at the nominal rotation 250 

speed (n0 = 1520 rpm) are shown in Figure 5. The combination of the chosen PATs was made to ensure an 251 

evenly spread operation zone. To achieve it, selected pumps both with high head and low demand, and vice 252 

versa were chosen. For each point in each PAT, the turbomachine affinity laws were applied, defining the 253 

H-Q characteristic curves and providing the behaviour on the best operating point. Also, the power curve 254 

was calculated, in the same way, using the affinity laws of turbomachines. The operation range was defined 255 

between 0.5n0 and 1.5n0 when the modified affinity laws were applied in this analysis (Plua et al. 2021). 256 
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3.2 Optimization results 257 

The general methodology of the routines defined in the previous section was codified considering the 258 

complete simulation, such as demand patterns and a multitude of options in the PAT library. The 259 

simulations were made with an AMD Ryzen 7 3750H (2.3Ghz) CPU where only one core was dedicated 260 

to the processing. Taking into account the number of solution permutations possible with the 261 

chromosome/solution matrix, the multiple PATs and operating conditions available and the time steps, the 262 

total number of possible solutions is 4,12x1056. During the optimization, the Pareto front results for each 263 

generation and their conversion was registered and presented in the MATLAB interface as shown in Figure 264 

6.  265 

Figures from 7a to 7c only show better results at the respective selected generation. Solutions that remained 266 

dominant for multiple generations create a line made from constant points of the same pressure fitness. 267 

When a solution is no longer present in the next generation in the graph, it means it was surpassed by 268 

another solution created with the evolutionary operators. Figure 6a shows the generated power (kW) for 269 

each Pareto front solution in a certain generation. The fitness function results that represent the cost per 270 

power unit of each solution (C/kW) and the pressure fitness (PF) results are shown in Figures 7b and 7c 271 

respectively. Figure 6d shows the 3D current surface Pareto front updated for each generation of the GA. 272 

It enables an easy interpretation of possible relations between solutions and fitness functions.  273 

A rapid convergence took place in the initial generations of the optimization according to (Korejo et al. 274 

2013). This fast convergence is justified by the high initial variability of the solution which forces better 275 

results provided by the intersection of this genetic material with the use of the crossover operator. 276 

Simultaneously, a hard approach to the limits of the search space can also influence this original 277 

convergence. The tolerance for the low pressure in the nodes would be null, meaning that in the initial 278 

population the majority of the solutions did not show a competitive ranking since it was considered to be 279 

out of bounds. Therefore, the reproduction operator ended with few solutions, having those solutions more 280 

probability to produce offspring. The increase of mutation chances and crossover in the children’s pool 281 

adding to the already high probability of an alteration to the solution to create a better one, since very few 282 

good solutions had already been discovered that can provide a competitive dominance. When the electrical 283 

regulation was considered, the first interactions had also very small adaptability, only later in the phase 284 

were the solutions in the Pareto front became more stable the regulation of the appropriate rotational speed 285 

for each PAT and each hour of the day started to have a permanent effect. Before this phase, a regulation 286 
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in rotational speed can be very quickly surpassed by substitution in the PAT model or simply the domination 287 

of other solutions.  288 

A clear relation that can be previously expected is that with higher power generation the lower the fitness 289 

pressure is. It is a straightforward condition, that although simple, is a testimony of the correct behaviour 290 

of the optimization algorithm. The reduction of pressure is equivalent to the reduction of potential energy 291 

in the water network. When the excess potential energy is reduced using PAT, even in a scenario that the 292 

PATs would be working in undesirable efficiency conditions, the recovered energy recovered would tend 293 

to increase in the system, therefore improving the optimization procedure.  294 

The pressure fitness function was used as a reference to evaluate the convergence of the optimization in 295 

this research because it is the only quantifiable fitness function since the true Pareto front was unknown. 296 

The arbitrary average difference of 10 m w.c. in every node was used as a reference for pressure 297 

management. Using these pressure values, a final value of pressure fitness was got to compare the results. 298 

Other reference values were also obtained considering 20 and 30 m w.c.. If the Pareto front achieves the 299 

region of no penalization, an artificial drop in the pressure fitness value would happen on the scale of 100 300 

times inferior. In these reference values, the penalization is added to maintain the values on the same scale 301 

for comparison. 302 

A refinement post-optimization of the PAT characteristics was evaluated for the solution with the best 303 

pressure fitness. The pressure profile for the refined solution for each given time step is represented in 304 

Figure 7. The GA optimization seeks the overall best set of solutions to the water network, therefore, in the 305 

final stretch of optimization where the mutation operator is more important, the duration of the convergence 306 

may be slower. Fast refinement of the already simplified solution after the optimization process can improve 307 

the results that may take multiple generations to improve with the GA. Table 1 details the speeds referent 308 

to the pressure profile of Figure 7. This refinement was based on the use of the modified affinity laws to fit 309 

better the values of efficiency since the optimization procedure used the affinity laws. The best estimation 310 

of the efficiency curves enabled the improvement of the estimation of the recovered values compared to 311 

affinity laws, which considered the maximum value of the efficiency is constant for each value of rotational 312 

speed. This refinement was based on the equations published by (Plua et al. 2021). 313 

The selected machines were KSB65-160 for the location of PAT1 and PAT3 and KSB 80-200 for PAT2. 314 

Table 1 shows the different values of flow, head, efficiency and ratio of the rotational speed over time. At 315 
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each time, the optimization procedure considered the variation of the rotational speed applying the modified 316 

affinity laws (Plua et al. 2021).  317 

The theoretical analysis enabled the definition of an operative rotational speed to maximize the recovered 318 

energy according to the range of flow and considering the runaway curve. PAT1 was inactive seven hours 319 

between 0 and 7 am due to the low flow values of the night. The maximum generated power of PAT1 was 320 

1.61 kW and the daily recovered value was 16.83 kWh. The rotational speed changed between 0.5 and 1.02 321 

and its efficiency oscillated between 0.66 and 0.72 as a function of the flow over time. When PAT2 was 322 

analysed, the maximum generated power was 3.91 kW and the average daily recovered energy was 39.29 323 

kWh. PAT2 changed the rotational speed between 0.5 and 0.87 compared to the nominal rotational speed 324 

and the efficiency was between 0.73 and 0.78. PAT3 operated between 0.50 and 0.57n0 and its efficiency 325 

oscillated between 0.6 and 0.64. The maximum recovered power was 0.5 and the daily recovered energy 326 

was 2.81 kW. When the average energy values were extrapolated over a year, the annual recovered energy 327 

was 21507 kWh. When the PATs were not active, the installed parallel pressure reduction valve worked in 328 

other to dissipate the excess of energy. The dissipated head is indicated in Table 1, since this head is equal 329 

to the recovered head value of the PAT when the rotational speed is lower than 0.5n0. 330 

4 Conclusions 331 

The use of an integral approach, as the one used in this research, to optimize solutions with PATs as the 332 

base element in a multi-objective problem shows a feasible option that could allow for efficient 333 

optimization of large water networks. The fitness functions and restrict constraints showed a good 334 

convergence of the solutions, having nevertheless room for improvement by allowing solutions that are in 335 

the negative pressure region to improve the variability of the solutions in the Pareto front and possibly the 336 

speed of convergence. The proposed methodology of combining all the information in the proposed 337 

population matrix proved to be a robust option.  338 

The use of all fitness functions developed for this research showed an effective comparison between 339 

solutions and allowed for a competitive evolution of the Pareto front. The velocity of convergence 340 

diminished during the simulation. The lack of reproductive ability of the solutions due to the size of the 341 

population or the achievement of a very optimized surface Pareto front by the GA could be a cause for this 342 

observation. The optimization results demonstrate a clear improvement in the pressure conditions. Besides 343 

offering adequate solutions that respect the limits of what is the acceptable solution space, it offers a direct 344 
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improvement after the optimization to 78% of the original pressure. After refining the rotational velocities 345 

in the solution, pressure levels of 59% of the original pressure were achieved. With the use of PATs better 346 

adapted to the conditions present in the water network, it is possible to achieve even better results. 347 

The methodology, which was developed in this research showed the effectiveness in the convergence of 348 

the Pareto front and its adaptation using the evolutionary operators. The use of EPANET-MATLAB 349 

Toolkit, despite being a good solution to analyse data from water networks using powerful mathematical 350 

software like MATLAB, is not adequate in performance capabilities to the number of network editions and 351 

simulations needed to have results closer to adequate populations and generations in the optimization. 352 

The inherent probability associated with this optimization method to act and generate a better solution for 353 

a faster convergence creates the question of whether an adaptive mutation and crossover ratios could have 354 

an impact on the convergence of the resulting Pareto front. By using adaptive mutations ratios, either a 355 

predefined transformation according to the number of generations or the continuous adaptation to the 356 

modifications in the Pareto front, it was created an incentive by improving the mutation ratio when the 357 

Pareto front starts to stabilize. Hence, the variability is forced to be induced in the Pareto front and 358 

accelerated either the discovery of new regions in the solutions space, as to improve the tuning of the 359 

electrical regulation definitions for each time step. 360 

An approach to these results with a standard penalization, when it is applied for the case of a too big high-361 

pressure region may not be enough, since it may offer too much equality between solutions. In one case the 362 

solutions are viable, and in the other where there are small pressures in the pipe system, networks are not 363 

physically possible or adequate to the supply enough water.  364 
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