ON FINITE MINIMAL NON-NILPOTENT GROUPS

A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO, AND DEREK J. S. ROBINSON

(Communicated by Jonathan I. Hall)

ABSTRACT. A critical group for a class of groups \(\mathfrak{X}\) is a minimal non-\(\mathfrak{X}\)-group. The critical groups are determined for various classes of finite groups. As a consequence, a classification of the minimal non-nilpotent groups (also called Schmidt groups) is given, together with a complete proof of Gol’fand’s theorem on maximal Schmidt groups.

1. Introduction

Given a class of groups \(\mathfrak{X}\), we say that a group \(G\) is a minimal non-\(\mathfrak{X}\)-group, or an \(\mathfrak{X}\)-critical group, if \(G \not\in \mathfrak{X}\), but all proper subgroups of \(G\) belong to \(\mathfrak{X}\). It is clear that detailed knowledge of the structure of minimal non-\(\mathfrak{X}\)-groups can provide insight into what makes a group belong to \(\mathfrak{X}\). All groups considered in this paper are finite.

Minimal non-\(\mathfrak{X}\)-groups have been studied for various classes of groups \(\mathfrak{X}\). For instance, minimal non-abelian groups were analysed by Miller and Moreno [10], while Schmidt [14] studied minimal non-nilpotent groups. The latter are now known as Schmidt groups. Itô [9] considered the minimal non-\(p\)-nilpotent groups for \(p\) a prime, which turn out to be just the Schmidt groups. Finally, the third author [12] characterised the minimal non-\(T\)-groups (\(T\)-groups are groups in which normality is a transitive relation). He also characterised in [13] the minimal non-\(PST\)-groups, where a \(PST\)-group is a group in which Sylow permutability is a transitive relation.

The aim of this paper is to give more precise information about the structure of Schmidt groups and show how to construct them in an efficient way. As a consequence of our study, a new proof of a classical theorem of Gol’fand is given.

Our approach depends on the classification of critical groups for the class of \(PST\)-groups given in [13]. Recall that a subgroup \(H\) is said to be Sylow-permutable, or S-permutable, in a group \(G\) if \(H\) permutes with every Sylow subgroup of \(G\). We mention a similar class \(\mathfrak{Y}_p\), which was introduced in [2]. If \(p\) is a prime, a group \(G\) belongs to the class \(\mathfrak{Y}_p\) if \(G\) enjoys the following property: if \(H\) and \(K\) are \(p\)-subgroups of \(G\) such that \(H\) is contained in \(K\), then \(H\) is S-permutable in \(N_G(K)\).

Clearly every \(PST\)-group is a \(\mathfrak{Y}_p\)-group.

There is a close relation between the class of groups just introduced and \(p\)-nilpotence, as shown by the following result, which was proved in [2, Theorem 5].
Theorem 1. A group G is a \mathcal{Y}_p-group if and only if either it is p-nilpotent or it has an abelian Sylow p-subgroup P and every subgroup of P is normal in $N_G(P)$.

Our first main result is:

Theorem 2. The minimal non-\mathcal{Y}_p-groups are just the minimal non-PST-groups with a non-trivial normal Sylow p-subgroup. Such groups are of the types described in 1 to IV below. Let p and q be distinct primes.

Type I: $G = [P]Q$, where $P = \langle a,b \rangle$ is an elementary abelian group of order p^2, $Q = \langle z \rangle$ is cyclic of order q^r, with q a prime such that q^r divides $p-1$, $q^f > 1$ and $r \geq f$, and $a^z = a^i$, $b^z = b^i$, where i is the least positive primitive q^f-th root of unity modulo p and $j = 1 + kq^f-1$, with $0 < k < q$.

Type II: $G = [P]Q$, where $Q = \langle z \rangle$ is cyclic of order $q^r > 1$, with q a prime not dividing $p-1$ and P an irreducible Q-module over the field of p elements with centralizer $\langle z^f \rangle$ in Q.

Type III: $G = [P]Q$, where $P = \langle a_0, a_1, \ldots, a_{q-1} \rangle$ is an elementary abelian p-group of order p^q, $Q = \langle z \rangle$ is cyclic of order q^r, with q a prime such that q^f is the highest power of q dividing $p-1$ and $r > f$. Define $a_{j+1}^z = a_{j+1}$ for $0 \leq j < q - 1$ and $a_{q-1}^z = a_0$, where i is a primitive q^f-th root of unity modulo p.

Type IV: $G = [P]Q$, where P is a non-abelian special p-group of rank $2m$, the order of p modulo q being $2m$, $Q = \langle z \rangle$ is cyclic of order $q^r > 1$, z induces an automorphism in P such that $P/\Phi(P)$ is a faithful irreducible Q-module, and z centralizes $\Phi(P)$. Furthermore, $|P/\Phi(P)| = p^{2m}$ and $|P| \leq p^m$.

Since a group is a soluble PST-group if and only if it belongs to \mathcal{Y}_p for all primes p [2 Theorem 4], Theorem 2 may be regarded as a local approach to the third author’s classification of minimal non-PST-groups [13].

An interesting consequence of Theorem 2 is the following classification of Schmidt groups. In order to describe the classification, we must introduce one further type of group:

Type V: $G = [P]Q$, where $P = \langle a \rangle$ is a normal subgroup of order p, $Q = \langle z \rangle$ is cyclic of order $q^r > 1$, and $a^z = a^i$, where i is the least primitive q-th root of unity modulo p.

Our main result can now be stated as:

Theorem 3. The Schmidt groups are exactly the groups of Type II, Type IV and Type V.

Our next result shows that p-soluble groups with Sylow p-subgroups isomorphic to a normal subgroup of a minimal non-\mathcal{Y}_p-group have a restricted structure.

Theorem 4. Let G be a p-soluble group with a Sylow p-subgroup P. If P is isomorphic to a non-trivial normal Sylow subgroup of a minimal non-\mathcal{Y}_p-group, then G has p-length 1.

In [4] Gol’fand stated the following result:

Theorem 5. Let p and q be distinct primes, let r be a given positive integer, and let a be the order of p modulo q. Then there is a unique minimal non-p-nilpotent group G_0 of order $p^a q^r$, where $a_0 = a$ if a is odd and $a_0 = 3a/2$ if a is even, such
that all minimal non-p-nilpotent groups of order p^iq^r are isomorphic to quotients of G_0 by central subgroups.

Only a sketch of a proof of this theorem is given in Golfand’s article. In Section 3 we show how to construct the Schmidt groups of Gol’fand, and we also give a complete proof of Theorem 5. We remark that Rédei [11] has given another construction of the Schmidt groups of maximum order.

2. PROOFS OF THEOREMS 2, 3 AND 4

Proof of Theorem 2. Assume that G is a minimal non-Y_p-group and let P be a Sylow p-subgroup of G. Since G does not belong to Y_p, there exist subgroups H and K of P such that $H \leq K$ and H is not S-permutable in $N_G(K)$. Consequently, there is an element $z \in N_G(K)$ such that z does not normalise H. Here it can be assumed that z has order q^r for some prime $q \neq p$. Then $G = K \langle z \rangle$ because G is a minimal non-Y_p-group. This implies that $K = P$ is a normal Sylow p-subgroup of G and $Q = \langle z \rangle$ is a cyclic Sylow q-subgroup of G. Then G is not a PST-group, yet every proper subgroup has Y_p and Y_q, and thus is a PST-group by [2].

Conversely, if G is a minimal non-PST-group, then G does not have Y_p for some prime p. Since all its proper subgroups satisfy Y_p, the group G is a minimal non-Y_p-group. The classification of minimal non-PST-groups given in [13] completes the proof. (Note that the groups of Types IV and V of [13] are both of Type IV above.)

Proof of Theorem 3. Let G be a minimal non-nilpotent group. Then G is a minimal non-p-nilpotent group for some prime p. Suppose that G is not a Y_p-group, so that G is a minimal non-Y_p-group. By Theorem 2, the group G is of one of Types I–IV. By examining the group structure, we see that groups of Type I and III are not minimal non-p-nilpotent. Therefore G must be of Type II or IV.

Assume now that G belongs to Y_p. Then by [11] Theorem A and [3] VII, 6.18, the p-nilpotent residual P of G is an abelian minimal normal Sylow subgroup which is complemented in G by a cyclic Sylow q-subgroup Q. Moreover Q normalises each subgroup of P. This implies that P is cyclic of order p, say $P = \langle a \rangle$. In addition, $a^z = a^i$ for some $0 < i < p$ and z^q centralizes a. This implies that i must be a primitive q-th root of unity modulo p and, by taking a suitable power of z as a generator of Q, we can assume that i is the least such positive integer. Hence G is of Type V.

Proof of Theorem 4. Assume that G is a p-soluble group with p-length > 1 and G has least order subject to possessing a Sylow p-subgroup P which is isomorphic to a non-trivial normal Sylow subgroup of a Schmidt group. By [6] VI, 6.10], we conclude that P is not abelian. Thus P is a Sylow p-subgroup of a group of Type IV in Theorem 2. By minimality of order $O_p(G) = 1$ and $O^p(G) = G$. In addition, since the class of groups of p-length at most 1 is a saturated formation, we have $\Phi(G) = 1$ and hence G has a unique minimal normal subgroup which is an elementary abelian p-group. Let $D = O_p(G)$; then D is a non-trivial elementary abelian group and $C_G(D) = D$. Moreover $\Phi(P) = Z(P) \leq D$ and so P/D is elementary abelian.

Let T be the subgroup defined by $T/D = O_p(G/D)$. Since P/D is an elementary abelian p-group, G/D has p-length at most 1 by [6] VI, 6.10]. It follows that $(T/D)(P/D)$ is a normal subgroup of G/D. Therefore TP is a normal subgroup of
G. Assume that \(TP\) is a proper subgroup of \(G\). Now \(O_{p'}(TP) \leq O_{p'}(G) = 1\), so \(P\) is a normal subgroup of \(TP\) and hence of \(G\), a contradiction which shows that \(G = TP\).

Assume now that \(P/D\) is a non-cyclic elementary abelian group. By [8] X. 1.9, we have \(T/D = (C_{T/D}(xD))\) \(x \in P/D\). Let \(x \in P\). Since \(P/D\) centralizes \(x/D\), we have \(P/D \leq N_{G/D}(C_{T/D}(xD))\) and \(T_x/D = C_{T/D}(xD)\). Assume that \(PT_x = G\); then \(T_x = T\) is a normal subgroup of \(G\) and thus \(O_{p'}(G/D) = T_x/D\). This implies that \(\langle x \rangle D/D \leq Z(G/D)\) and \(\langle x \rangle D\) is a normal \(p\)-subgroup of \(G\), so \(\langle x \rangle D\) is contained in \(D\), a contradiction. Consequently \(PT_x\) is a proper subgroup of \(G\) for all \(1 \neq x \in P/D\). Hence \(PT_x\) has \(p\)-length at most 1 by minimality of \(G\). Since \(C_G(D) = D\) and \(O_{p'}(PT_x)\) centralizes \(D\), we conclude that \(O_{p'}(PT_x) = 1\). Therefore \(P\) is a normal subgroup of \(PT_x\), which shows that \(T\) normalizes \(P\) and thus \(P\) is a normal subgroup of \(G\). This contradiction shows that \(P/D\) is cyclic.

Since \(P\) has class 2, we see from [7] IX. 5.5 that, if \(p > 3\), then \(G\) has \(p\)-length at most 1. Therefore \(p \leq 3\). Let \(X\) be a minimal \(p\)-group such that \(P\) is a Sylow \(p\)-subgroup of \(X\). Note that \(P/\Phi(P)\) is an irreducible \(X\)-module. In particular \(D\), the subgroup of the previous paragraphs, is not normal in \(X\) and so \(P = DD^g\) for some \(g \in X\). Since \(D\) is abelian, \(D \cap D^g \leq Z(P) = \Phi(P)\), and it follows that \(P/\Phi(P)\) has order \(p^2\). This implies that \(P\) is an extra-special group of order \(p^3\). If \(p = 2\), then, since \(C_G(D) = D\), we see that \(G\) must be a symmetric group of degree 4. Hence \(P\) is dihedral of order 8, which cannot lead to a group of Type IV since \(\text{Aut}(P)\) is a 2-group. Hence \(p = 3\). But a non-abelian group of order \(3^3\) cannot occur as the normal Sylow 3-subgroup of a Schmidt group, because the only prime divisor of \(3^3 - 1\) is 2 and the order of 3 modulo 2 is 1. This contradiction completes the proof of the theorem. \(\square\)

3. The construction of Gol’fand’s groups and a proof of Gol’fand’s theorem

We begin by constructing groups of Type IV with a Sylow \(p\)-subgroup \(P\) of order \(p^{3m}\) and \(|P/\Phi(P)| = p^{2m}\). These groups were constructed in [13] by a different method, but the present approach is more convenient when \(p = 2\). We will use the following result on linear operators.

Lemma 6. Let \(p\) be a prime and let \(r\) be a positive integer such that gcd\((p, r) = 1\). Let \(\beta\) be a linear operator of order \(p^r\) on a vector space \(V\) over the field of \(p\)-elements, where \(u\) is a non-negative integer. If \(\beta\) has irreducible minimum polynomial \(f\), then \(\beta^u\) also has minimum polynomial \(f\).

Proof. Let \(g\) be the minimum polynomial of \(\beta^u\). Now \(f(\beta^u) = f(\beta)^u = 0\), so that \(g\) divides \(f\). Since \(f\) is irreducible, \(f = g\). \(\square\)

Construction 7. Let \(p\) and \(q\) be distinct primes such that the order of \(p\) modulo \(q\) is \(2m\), \(m \geq 1\). Let \(F\) be the free group with basis \(\{f_0, f_1, \ldots, f_{2m-1}\}\). Write \(R = F^r F^p\) and \(R^* = [F, R] R^p\). Then \(F/R\) is an elementary abelian \(p\)-group of order \(p^{2m}\) and \(H = F/R^*\) is a \(p\)-group such that \(R/R^* = \Phi(H)\) is an elementary abelian \(p\)-group contained in \(Z(H)\). Moreover \(H\) is a non-abelian group because an extra-special group of order \(p^{2m+1}\) is an epimorphic image of \(H\).

Denote by \(g_i\) the image of \(f_i\) under the natural epimorphism of \(F\) onto \(H = F/R^*, 0 \leq i \leq 2m - 1\). Since \(H\) has class 2, we know that \(\Phi(H)\) is generated by all \([g_i, g_j], \) with \(i < j\), and \(g_i^p\). Therefore \(\Phi(H)\) has dimension as \(GF(p)\)-vector space
at most $\frac{1}{2}(2m(2m-1)) + 2m = m(2m + 1)$. Then there exists an element

$$r = \prod_{j} (f_j^p)^{\lambda_j} \prod_{j < k} [f_j, f_k]^{\mu_{jk}} \in R^*$$

with some λ_j or μ_{jk} not divisible by p. It is clear that $p \mid \lambda_j$ for all j since $F^p F'/F'$ is a free abelian group with basis $\{f_j^p F' \mid 0 \leq j \leq 2m - 1\}$. Suppose that $p \nmid \mu_{jk}$ for some $i < k$ and let ρ_i be the endomorphism of F defined by $f_j^\rho_i = f_j^2$, $f_j^\rho_i = f_j$ for $l \neq i$. Then $r^\rho_i R^* = R^*$ and so $r^{\rho_i} r^{-1} R^* = R^*$. This implies that

$$w = \prod_{j < i} [f_j, f_i]^{\mu_{ji}} \prod_{i < l} [f_i, f_l]^{\mu_{il}} \in R^*.$$

On the other hand, by applying ρ_k we find that

$$w^{\rho_k} w^{-1} R^* = [f_i, f_k]^{\mu_{ik}} R^* = R^*.$$

Since $p \nmid \mu_{ik}$, it follows that μ_{ik} has an inverse modulo p. This means that $[f_i, f_k] \in R^*$. Now since permutations of the generators of F induce endomorphisms in F and R^* is fully invariant, it follows that $F' \leq R^*$ and H is abelian, a contradiction. Therefore $\Phi(H)$ has dimension $m(2m + 1)$ and so $|\Phi(H)| = p^{m(2m+1)}$.

Let $f(t) = c_0 + c_1 t + \cdots + c_{2m-1} t^{2m-1} + t^{2m}$ be an irreducible factor of the cyclotomic polynomial of order q over $GF(p)$ and let α be the endomorphism of F given by $f_j^\alpha = f_{j+1}$ for $0 \leq i \leq 2m - 2$, $f_0^\alpha = f_0 c_0 f_1^{-c_1} \cdots f_{2m-1}^{-c_{2m-1}}$. Since R^* is a fully invariant subgroup of F, it follows that α induces an endomorphism β on $H = F/R^*$. In turn, β induces an automorphism β of $H/\Phi(H)$. Since $H/\Phi(H) = (H/\Phi(H))/\beta \leq H^\beta \Phi(H)/\Phi(H)$, it follows that $H = H^\beta \Phi(H)$, whence $H = H^\beta$. Consequently β is an automorphism of H.

It is clear that β induces the linear automorphism β, with minimum polynomial f, on the vector space $H/\Phi(H)$. Now by [6, III.18], we conclude that β has order p^m for some u and hence β has order $p^m q$. By Lemma 6 there is a $GF(p)$-basis $\{g_0', g_1', \ldots, g_{2m-1}'\}$ of $H/\Phi(H)$, where $g_i' = g_i \Phi(H)$, such that $g_i^{\beta^m} = g_i^{c+1}$ for $0 \leq i \leq 2m - 2$ and $g_{2m-1}^{\beta^m} = g_0 c_0 g_1^{-c_1} \cdots g_{2m-1}^{-c_{2m-1}}$. Hence we can replace β by β^m and assume without loss of generality that β has order q.

It follows that $\Phi(H)$ is a $GF(p)T$-module, where $T = (\beta)$ is a cyclic group of order q. By Maschke’s Theorem $\Phi(H)$ is a direct sum of irreducible T-modules. Let N be the sum of all non-trivial irreducible submodules in the direct decomposition and write $P = H/N$. It is clear that N is β-invariant and therefore β induces an automorphism γ of order q in P. Let $Q = (z)$ be a cyclic group of order q^* acting on P via $z \mapsto \gamma$. Let $G = |P|Q$ be the corresponding semidirect product.

It is easily checked that G is a Schmidt group. Next we show that P has order p^{2m}. From Theorem 3 we see that $\Phi(P)$ has order at most p^m, where $|P/\Phi(P)| = p^{2m}$. On the other hand, $|\Phi(H)| = p^{m(2m+1)}$, and N has order a power of p^{2m} because every faithful irreducible (β)-module over $GF(p)$ has dimension $2m$. Therefore $|\Phi(P)| = p^m$.

Remark 8. In the group of Construction [7] we may assume that $g_{2m-1}^z = g_0^{-c_0} g_1^{-c_1} \cdots g_{2m-1}^{-c_{2m-1}}$, where $g_i = g_i N$.

Proof. We know that $g_{2m-1}^z = g_0^{-c_0} g_1^{-c_1} \cdots g_{2m-1}^{-c_{2m-1}} \bar{w}$, where $\bar{w} \in \Phi(P)$. Since $f(t)$ is irreducible, 1 is not a root of $f(t)$ and it follows that $c = c_0 + c_1 + \cdots + c_{2m-1} + 1 \neq 0$.
(mod \(p\)). Consequently there exists an integer \(d\) such that \(cd \equiv -1 \pmod{p}\). Put \(\bar{w}_0 = \bar{w}^d\) and consider the automorphism \(\delta\) of \(P\) defined by \(\bar{g}^i = \bar{g}_i \bar{w}_i\) for \(0 \leq i \leq 2m - 1\). If we write \(\gamma_0 = \delta \gamma \delta^{-1}\), it is easily checked by an elementary calculation that \(\bar{g}^i_0 = \bar{g}_{i+1}\) for \(0 \leq i \leq 2m - 2\), and \(\bar{g}_{2m-1} = \bar{g}_0^{-c_0} \bar{g}_1^{-c_1} \cdots \bar{g}_{2m-1}^{-c_{2m-1}}\). Let \(\langle z_0 \rangle\) be a cyclic group of order \(q^{'}\), with \(z_0\) acting on \(P\) via \(z_0 \mapsto \gamma_0\). Since \(\langle z_0 \rangle\) and \(\langle z \rangle\) are conjugate in \(\text{Aut}(P)\), it follows by [3, B, 12.1] that the groups \(P\langle z \rangle\) and \(P\langle z_0 \rangle\) are isomorphic. \(\square\)

Remark 9. The group in Construction [7] does not depend on the choice of irreducible factor \(f(t)\).

Proof. Assume that the group \(G_1 = \langle P_1 \rangle \langle z_1 \rangle\) has been constructed by using another irreducible factor \(g(t)\) of the cyclotomic polynomial of order \(q\) over \(\text{GF}(p)\). Since \(G\) and \(G_1\) have the same order, it will be enough to find a set of generators of \(G_1\) for which the relations of \(G\) hold. Since \(z\) centralizes \(\Phi(P)\) and \(z_1\) centralizes \(\Phi(P_1)\), we have \(G/\Phi(P) \cong [P/\Phi(P)]/\langle z \rangle\) and \(G_1/\Phi(P_1) \cong [P_1/\Phi(P_1)]/\langle z_1 \rangle\). But \(P/\Phi(P)\) and \(P_1/\Phi(P_1)\) are faithful irreducible modules for a cyclic group of order \(q\). Therefore \([P/\Phi(P)]/\langle z \rangle\) is isomorphic to \([P_1/\Phi(P)]/\langle z_1 \rangle\) by [3, B, 12.4]. Let \(\phi\) be an isomorphism between these groups. Then it is clear that \(\phi\) induces an isomorphism \(\psi\) between \(G/\Phi(P)\) and \(G_1/\Phi(P_1)\).

Let \(\bar{k}_i = h_i \Phi(P), 0 \leq i \leq 2m - 1\). Put \(k_i = \bar{k}_i\) and \(\bar{u} = \bar{z}^\phi\). We show how to extend the isomorphism \(\psi\) to an isomorphism between \(G\) and \(G_1\). In order to do so, we choose representatives \(k_i\) of \(k_i\) and \(u\) of \(\bar{u}\) such that the order of \(u\) is \(q^{'}\). There is no loss of generality in assuming that \(k_i^u = k_{i+1}\) for \(0 \leq i \leq 2m - 2\). Indeed, if \(k_i^u = k_{i+1}w_{i+1}^{-1}\) with \(w_{i+1} \in \Phi(P_1)\), then \(k_i^u = k_i w_i \cdots w_1\) for \(1 \leq i \leq 2m - 1\), \(k_0^u = k_0\) are representatives of \(k_i\) and \(k_i^u = k_i^{u+1}\) for \(1 \leq i \leq 2m - 1\) because \(u\) centralizes \(\Phi(P_1)\). By using the same argument as in Remark [8], we may also assume that \(k_{2m-1}^u = k_0^{-c_0} k_1^{-c_1} \cdots k_{2m-1}^{-c_{2m-1}}\). Therefore \(G\) and \(G_1\) satisfy the same relations and by Von Dyck’s theorem they are isomorphic. \(\square\)

Remark 10. In Construction [7] it is not necessary to assume that \(\beta\) has order \(q\). Indeed, it can be proved that \(\beta^q\) fixes all elements of \(\Phi(H)\) and that the automorphism \(\gamma\) induced by \(\beta\) in \(H/N\) has order \(q\).

Gol’fand’s result (Theorem [5]) can be recovered with the help of Construction [7] and Theorem [3].

Proof of Theorem [5]. Let \(p\) and \(q\) be distinct primes and let \(a\) be the order of \(p\) modulo \(q\). Then \(a\) is the dimension of each non-trivial irreducible module for a cyclic group of order \(q\) over \(\text{GF}(p)\). Assume that \(a\) is odd. Then every Schmidt group \(G\) with a normal Sylow \(p\)-subgroup \(P\) such that \(|P/\Phi(P)| = p^a\) is of Type II or Type V. Then the theorem holds in this case because all Schmidt groups of the same type with isomorphic Sylow \(q\)-subgroups are actually isomorphic.

Assume now that \(a\) is even, with say \(a = 2m\). Then we are dealing with Schmidt groups of Type II or Type IV. Let \(G_0\) be the group of Construction [7]. Then \(|G_0| = p^{3m} q^a\) and \(|P_0/\Phi(P_0)| = p^{3m}\), where \(P_0\) is a normal Sylow \(p\)-subgroup of \(G_0\). It is clear that \(G_0/\Phi(P_0)\) is a Schmidt group of Type II. Therefore, if \(G\) is a Schmidt group of Type II with order \(p^t q^r\) and a normal Sylow \(p\)-subgroup, then \(G \cong G_0/\Phi(P_0)\) and \(\Phi(P_0) \leq \text{Z}(G_0)\). Consequently, we need only show that all Schmidt groups of Type IV and order \(p^t q^r\), \(t \leq 3m\), which have a normal Sylow \(p\)-subgroup are isomorphic to quotients of \(G_0\) by central subgroups.
ON FINITE MINIMAL NON-NILPOTENT GROUPS

Let \mathcal{G} be a Schmidt group of Type IV and order p^jq^r with a normal Sylow p-subgroup P. Then $G_0/\Phi(P_0)$ and $\mathcal{G}/\Phi(\mathcal{P})$ are isomorphic. Let us choose generators z and \bar{z} of Sylow q-subgroups Q of G_0 and \mathcal{G} of \mathcal{G} such that the minimum polynomials of the actions of z on $P_0/\Phi(P_0)$ and \bar{z} on $\mathcal{P}/\Phi(\mathcal{P})$ coincide. Also choose generators $g_0, g_1, \ldots, g_{2m-1}$ of the Sylow p-subgroup P_0 of G_0 and generators $\bar{g}_0, \bar{g}_1, \ldots, \bar{g}_{2m-1}$ of the Sylow p-subgroup \mathcal{P} of \mathcal{G} such that $g_j^2 = g_{j+1}$ and $\bar{g}_j^2 = \bar{g}_{j+1}$ for $0 \leq j < 2m -2$. Since $\Phi(P_0) = P'_0$ and $\Phi(\mathcal{P}) = \mathcal{P}'$, and both P_0 and \mathcal{P} have class 2, the subgroup $\Phi(P_0)$ can be generated by the commutators $[g_i, g_j]$, while $\Phi(\mathcal{P})$ is generated by the commutators $[\bar{g}_i, \bar{g}_j]$. On the other hand, if $u_i = [g_0, g_i^s]$, we have $u_i = u_i^{-1} = [g_k, \bar{g}_k^s]$. It is easy to see that $u_i = [g_0, g_i^s] = [g_0, \bar{g}_0^s]$.

Observe that q is odd since $2q - 1$: write $q = 2s + 1$. By definition of the g_i and u_i, and use of the minimum polynomial of the action of z on $P_0/\Phi(P_0)$, it may be shown that for $l \geq 1$,

$$u_{s+m+l} = u_{s+m+l}^{-1} = u_{s-m+l}^{-1} \cdots u_{s-m+1}^{-1} u_{s+m+l}^{-1} \cdots u_{s+m+l}^{-1}.$$

Now this formula and the relations $u_i = u_i^{-1}$ allow us to show by induction that each u_{s+m+l} can be expressed in terms of elements of the set $B = \{u_{s-m+l}, u_{s-m+2}, \ldots, u_s\}$. Since $\Phi(P_0)$ has dimension m over $\text{GF}(p)$, this expression is unique. It follows that each u_i can be uniquely expressed in terms of the elements of B, and so this is also true for each generator of $\Phi(P_0)$. The same argument shows that the generators of $\Phi(\mathcal{P})$ have a similar unique expression subject to the same relations.

The arguments of Remark [3] allow us to assume that $g_{2m-1} = g_0^{-c_0} g_1^{-c_1} \cdots g_{2m-1}^{-c_2}$ and $\bar{g}_{2m-1} = \bar{g}_0^{-c_0} \bar{g}_1^{-c_1} \cdots \bar{g}_{2m-1}^{-c_2}$. Consequently, all relations of G_0 are satisfied by \mathcal{G}. By Von Dyck's theorem, it follows that \mathcal{G} is an epimorphic image of G_0 by a central subgroup of G_0.

References

Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain
E-mail address: Adolfo.Ballester@uv.es

Departament de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València, Spain
E-mail address: resteban@mat.upv.es

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
E-mail address: robinson@math.uiuc.edu