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Abstract

Understanding the kinematics of the lower extremity movement allows us to quantitatively
assess performance changes, therefore being essential for proper diagnosis and rehabilitation
treatments. However, the gold standard procedures for human motion capturing cannot be
applied inside an Intensive Care Unit (ICU) scenario.
This work aims to validate a data-driven model for sagittal plane lower extremity angle mea-
surement from accelerometer data, based on a deep learning approach. A convolutional neural
network (CNN) was trained with ten and tested on two subjects, enabling the monitoring of
the hip, knee, and ankle joint angles during therapy. The application was tested on the VE-
MOTION, an assist-as-needed robotic rehabilitation device. An optical motion capture system
measured the reference joint angles.
The CNN model predictions deviated from the reference angles with a root mean squared error
(RMSE) on the range of motion of less than 3.03o, 4.60o, 9.99o, and 4.49o for the hip, knee,
ankle dorsiflexion, and ankle plantar flexion respectively.
This system has proven to be an easy and non-invasive way of estimating the behavior of the
lower limb joint angles during VEMOTION rehabilitation.
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1 Introduction

Over the last years, the cerebrovascular accident (stroke) incidence in most countries has more
than doubled [19]. Over half of all stroke survivors have continuing problems with mobility
[38]. However, movement rehabilitation requires a sustained and coordinated effort from a
large team. As a result, the interest in rehabilitation robotics is increasing steadily [23].
One of the latest rehabilitation devices for very early mobilization is the VEMOTION system
(Reactive Robotics GmbH, Munich, Germany). This device, among other things, solves the
large-scale implementation of very early mobilization in critical care and allows only one person
to perform early mobilization therapy even with severely affected patients, as they stay in the
same bed [33].
To be able to do individual therapy for each patient, with devices like the VEMOTION, un-
derstanding the kinematics of the lower extremity movement is essential for proper diagnosis
and rehabilitation treatments [2]. Also, the integration of clinical assessment with kinematic
evaluation appears to be useful for quantitatively assessing performance changes [5].
Movement restrictions could be recognized early by assessing the kinematics during the early
stages of rehabilitation. Especially stroke can lead to spasticity and restricted ankle range of
motion (ROM), which may be severely disabling. In chronic stroke patients, limited ankle ROM
is a common problem [1]. Nonetheless, during VEMOTION rehabilitation, only the hip angle
is tracked.
In later stages of rehabilitation, optical motion capture systems are the gold standard for
joint kinematics analysis [16] as well as for analyzing ROM of the ankle joint. However, it is
not feasible to implement them in a clinical setup, especially in Intensive Care Units (ICUs).
Therefore, other methods to estimate joint kinematics, like inertial sensors, must be employed
[28].
Aware of all the problems already mentioned, this thesis will develop a CNN-based estimation
of the lower extremity kinematics on the sagittal plane during treatment with the VEMOTION.
The input will be accelerometer data provided by sensors attached to the device.



2 Theoretical background

This thesis is the result of the convergence of multiple disciplines, such as mechanics, biology,
and deep learning. A few key fields will be addressed and explained in the following subsections
to understand the work done thoroughly.

2.1 Lower limb rehabilitation devices

Robotics will play a significant role in rehabilitation therapy activities. The interest in this
field has been growing exponentially over the last decade, mainly due to the success of the
early systems and the increasing number of stroke patients and their rehabilitation costs. As
a result, robot therapy systems have been developed worldwide to train both the upper and
lower extremities [7].
The main objective of rehabilitation exercises is to perform specific movements that produce
motor plasticity in the patient, improving motor recovery and minimizing functional deficits.
Movement rehabilitation is limb dependent. Hence, the affected limb has to be exercised [30].
One-third of surviving patients from stroke do not regain independent walking ability, and
those ambulatory walk asymmetrically [25]. Rehabilitation therapies are essential to recovery;
therefore, considerable research is ongoing.
The traditional rehabilitation process is very labor intensive, especially for gait rehabilitation,
and often involves more than three therapists. This fact imposes an enormous economic burden
on any country’s health care system, thus limiting its clinical acceptance [12].
Robotic systems allow precise measurement of movement kinematics and dynamics, which
should be used for assessing patient recovery ability and progress.
Rehabilitation robots can free doctors from heavy training tasks, analyze robot data during
training, and assess patients’ rehabilitation progress. Rehabilitating stroke victims or patients
recovering from surgery can benefit from rehabilitation robots due to their accuracy and relia-
bility [41].
However, there is a need to develop standard protocols and procedures to obtain reliable assess-
ment data. Currently, clinical measures such as the Barthel index [34] usually quantify patient
recovery of walking ability.
It is important to note that passive robotic rehabilitation devices, although less complex and
cheaper, cannot supply energy to the affected limbs, which limits their effectiveness compared
with active rehabilitation devices.
A variety of lower-limb rehabilitation robots have been developed in recent years to enhance the
motor function of paralyzed limbs in stroke patients. There are two general categories of robots
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for lower-limb rehabilitation: exoskeleton robots and end-effector robots [40]. For example,
Lokomat [9], BLEEX [18], and LOPES [37] are typical exoskeleton robots, while Rutgers Ankle
[15] and Haptic Walker [17] are end-effector robots.
In this thesis, the VEMOTION (Reactive Robotics) device was used. Therefore, the imple-
mentation is specific to this device, although it could be transferred to other rehabilitation
strategies with similar movement patterns.
The VEMOTION (Fig. 2.1), by Reactive Robotics, consists of a patient mobilization robotic
device that implements an assist-as-needed rehabilitation strategy. It adapts the amount of
force applied depending on the patient participation. This device solves the large-scale imple-
mentation of Very Early Mobilization in critical care since it allows only one person to perform
early mobilization therapy even with severely affected patients, as they stay in the same bed
[33].

Figure 2.1: VEMOTION robotic system, Reactive Robotics [33].

The movement of the VEMOTION consists of a cyclic motion composed of a series of motorized
joints and a passive joint. The footplate has both freedom of rotation with a revolute joint and
freedom of translation with a sliding rail. During the rehabilitation, the patient can choose
whether to move the sliding rail or not. Thus, causing that the treatment might not be as
effective if not. This influences the joint kinematics of the ankle. Therefore, being of interest
to estimate the joint angles during this movement.

2.2 Motion Capture Systems

Motion capture is the process of recording the movement of objects or people. It involves
measuring the position as well as the orientation of the objects or people in physical space [27].
Motion capture systems are the gold standard for gait analysis. There are different methods of
motion capture systems, mainly distinguishing between marker-based and marker-less tracking.
Marker-based tracking uses four different approaches to determine the position of the markers,
those being acoustic, magnetic, mechanic, and optical [27].
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The most common systems used in the last decade for motion capturing were optical systems
(such as VICON, PHASESPASE, or QUALISYS). The optical motion capture system utilizes
data from image sensors to triangulate the 3D position of the body segments using several
cameras. Body segments are identified in the image with reflective or infra-red markers attached
to the body [16].
Their high sampling rate and the freedom of not having the restrains of cables or limited
workspace allows the capture of fast movements. There are a few systems on the market [27].
The VICON System (VICON Motion Systems Ltd., Oxford, United Kingdom) works using
passive infrared markers that get recorded by specialized cameras distributed in the room
pointing at the set origin. The cameras make use of a technology that collects the reflected
infrared lights’ position on the markers’ surface. From the images of every camera, a 2-D vector
with the marker’s position is calculated. Using Nexus, adding up the computed 2-D coordinates
with the synchronized placement of the cameras, it is possible to create a 3-D vector. Through
this process, the position of the markers in a dynamic motion can be determined with high
precision. Another positive factor about Nexus is that it allows the data to be converted into
various file formats [35].
This system allows the determination of biomechanical variables (angular velocity, linear accel-
eration, or orientation) by tracking the markers. Although the performer moves freely without
any restrictions, as there are no cables connecting the body to the system, the system is re-
stricted to be used inside a specific camera setup, which is expensive and complicated to install
[16].
The spread of cheaper systems needs validation studies that compare the accuracy of new
systems with scientific gold standard systems, representing an approach to which researchers
can relate. Other critical technical aspects of adequacy in a specific application are capture
volume, minimum detectable marker size, frequency, and resolution of the motion capture
system. Sometimes in biomechanical studies, the selection of the motion analysis system is
questioned when a system different from the gold standard Vicon system is used [26].
Recently, wearable sensors have gained attention as an unobtrusive method. Therefore, Con-
volutional Networks for signal processing problems have shown promising results in human
motion estimation [14].
"Inertial sensors" refer to a family of sensors represented by linear acceleration sensors (ac-
celerometers) and angular rate sensors (gyroscopes). Accelerometers and gyroscopes measure
linear acceleration and angular velocity along and about a so-called "sensitive axis," respectively
[28].
There are three main approaches to measuring human kinematics using inertial-based sensors.
1. Using IMUs placed on the distal and proximal segments and calculating their relative
orientation.
2. Using kinematic constraints for model-based measurements.
3. Data-driven methods that employ supervised learning models.
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2.2.1 IMUs

Inertial sensors, also known as inertial measurement units (IMUs), quantify acceleration, angu-
lar rate and the magnetic field vector in their own three-dimensional local coordinate system
[32].
The orientation-based method has traditionally been used to compute human kinematics but
has some limitations, being the sensor-to-segment alignment the main one [13].
As the anatomical orientation of the bone differs from the local reference frame of the IMUs, it
requires a calibration step to calculate the relative orientation of the IMU and the anatomical
reference frame. However, the precision of the calibration also relies on performing predefined
movements correctly, which may not be reliable, especially in injured populations [32] .
In any case, this thesis aims to estimate the joint kinematics with sensors exclusively attached
to the device, so the IMU approach would not be suitable.

2.2.2 Model-based

Kinematic or musculoskeletal model-based approaches take into account the kinematic con-
straints of the human body to deal with the limitations of sensors, such as drift and sensor-to-
segment alignment [22].
However, implementing this would require a large number of sensors and a complex kinematic
reconstruction to get results with the precision required [8].

2.2.3 Data driven

The third lower extremity joint angle monitoring method is a data-driven approach that relies
on machine learning algorithms [10] [39]. This method feeds the raw signal into a machine
learning model. This model takes care of the sensor-to-segment calibration and calculates the
joint angles. The main limitation of the data-driven method is the dependency on the supplied
dataset and generalizability to other subjects or populations.
Gholami et al. [13] used a shoe-mounted accelerometer for sagittal plane lower extremity angle
measurement during running based on a deep learning approach. They reported an average
root mean squared value for hip, knee, and ankle angles greater than 0.97, while the RMSE and
NRMSE were lower than 3.4◦ and 4.6 %, respectively. The study demonstrated the potential
of kinematic parameter estimation during dynamic movement using data-driven methods.
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2.3 Joint Kinematics

The study of human motion is a branch of biomechanics known as kinematics. A complete and
accurate quantitative description of even the simplest movement requires large volumes of data
and variables in the kinematic analysis. The complete kinematics of any body segment in a
three-dimensional spatial system requires 15 data variables [2]. Nonetheless, this thesis aims
to measure only the angles during the motion.
A kinematic model of the joint should be created when the motion of an anatomic joint,
specifically a diarthrodial joint, is to be measured. The shape and contour of the contact
surfaces, as well as restrictions imposed by the surrounding soft tissue are the main factors
affecting joint function. All anatomic joints actually contain six degrees of freedom (DOF),
meaning that in order to determine the relative locations of the attached body segments, six
independent characteristics must be measured and reported. However, depending on the goals
of the research and the required level of accuracy, simplified models are typically employed [2].
This thesis focuses on the sagittal plane, as there is little to no movement on the other axis
during VEMOTION rehabilitation. The results will look similar to the ones in figure 2.2,
which shows the sagittal plane joint angles while walking, but applied to the VEMOTION
rehabilitation device.

Figure 2.2: Sagittal plane joint angles while walking. Hip flexion/extension (a), knee flex-
ion/extension (b), ankle dorsi/plantar flexion (c)[11] .
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The angles between two or more body segments are called joint angles. Figure 2.3 shows the
different joint movements of the lower limb in the sagittal plane. The angle formed by the
projected transverse thigh and transverse pelvic axes is known as hip extension and flexion.
When the knee is posterior to the body, the flexion value is positive. The angle formed by
the transverse axes of the transverse thigh and the transverse shank is the knee extension and
flexion. The knee is flexed in the direction that is positive. The angle between the sagittal
foot axis and the transverse shank axis in platingrad position is known as the ankle dorsi and
plantar flexion. Plantar is the negative direction, and dorsi is the positive direction [31].

Figure 2.3: Hip flexion/extension (a), knee flexion/extension (b), ankle dorsi/plantar flexion
(c) [20].

Impaired function of the ankle joint can decrease mobility in older adults [36]. During a
rehabilitation procedure, especially during early mobilization, it is vital to be conscious of this
dorsiflexion movement. Otherwise, we can find changes in function such as increased passive
resistance of the elastic tissue in opposing muscles, tendons, and articular structures, weakened
agonist muscles, and impaired proprioceptive control [36]. As demonstrated by Alamer et al.[1],
ankle joint mobilization with movement therapy could improve ankle ROM, balance, and spatial
gait parameters in chronic stroke survivors.

2.4 Deeep learning

Deep learning allows computational models composed of multiple processing layers to learn
data representations with multiple levels of abstraction. By employing the backpropagation
technique to suggest how a machine should modify its internal parameters, it can find complex
structures in huge data sets. This is used to compute the representation in each layer from the
representation in the previous layer [24].
A collection of techniques called representation learning enables a computer to be fed with
unstructured data and automatically find the representations required for detection or clas-
sification. Deep learning techniques are representation-learning techniques that use multiple
levels of representation. They are created by combining simple but non-linear modules that
convert the representation at one level (beginning with the raw input) into a representation at
a higher, slightly more abstract level. Very complex functions can be learned if enough of these
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transformations are combined [24].
Convolutional Neural Networks (CNNs) have emerged as the de facto standard for many
Computer Vision and Machine Learning operations over the past decade. CNNs are feed-
forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling
layers [21].
CNNs are designed to process data that come in the form of multiple arrays [24]. Deep CNNs
with many hidden layers and millions of parameters can learn complex objects and patterns
and be trained on a massive visual database with ground-truth labels [21].
Recently, 1D CNNs(fig. 2.4) attained state-of-the-art performance levels in several applications,
including the classification and early diagnosis of personalized biomedical data, the monitoring
of structural health, the identification and detection of anomalies in power electronics, and
the detection of electrical motor faults. Another key benefit is that a real-time and affordable
hardware implementation is possible because of the simple and compact configuration of 1D
CNNs, which only perform 1D convolutions (scalar multiplications and additions)[21].

Figure 2.4: A sample 1D CNN configuration with 3 CNN and 2 Multilayer Perceptron layers[21].



3 Methods

For this study, 12 subjects (Tab. 3.1) (7 male ,5 female; age 30.00±3.54 years, height 172, 92±
11, 06 cm, and weight 74, 25 ± 14, 64 kg) were tested in the VEMOTION device.

Subject number Gender Height (cm) Age (years) Weight (kg)
1 Male 176 28 96
2 Male 170 31 70
3 Male 173 34 70
4 Male 183 29 81
5 Male 186 28 92
6 Male 185 38 90
7 Female 155 30 55
8 Female 163 32 82
9 Female 169 27 60
10 Male 189 25 80
11 Female 160 27 55
12 Female 166 31 60

Table 3.1: Gender, height, age and weight of the subjects tested.

Every subject performed two trials of 90 seconds with a speed of 30 steps per minute and a
verticalization angle of the bed of 50 degrees. During the first half of the trial, the subject was
asked to actively lift the sliding rail of the VEMOTION device, making the ankle joint angle
larger during the motion. On the other hand, for the second half of the trial, the subject did
not perform any movement on the sliding rail, only tilting the footplate on the rotation axis.
In figure 3.1 the position of the joints at the top part of the motion can be appreciated in both
cases.

Figure 3.1: Overlay picture of Vicon Nexus and Video during maximum hip angle and two
different options of moving the ankle joint: (a) only rotation and (b) actively lifting
the sliding rail
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The reasoning behind these instructions is that the network needed to be trained with both
possible case scenarios, with an equal dataset for each, avoiding overfitting.
The training of the network was made with the first ten subjects. This network was applied to
the unseen data from the remaining two subjects.

3.1 Experimental setup and data collection

To develop the custom CNN network, ground truth data was captured with the Vicon motion
capture system (Vicon Motion Systems Ltd, Oxford, UK), and the final input for the network
was measured with accelerometer sensors (Mini Wave Infinity, Cometa Systems, Italy). They
will be explained in detail in the following subsections. In figure 3.2 a half of the setup with
the VEMOTION system and cameras can be seen.

Figure 3.2: Experimental setup of the subject testing in the laboratory.

3.1.1 Vicon system

The kinematic data of the lower limbs were captured with the Vicon motion system (Nexus
2.12.1) with 17 cameras (16x Vicon Vero 2.2, 1x Vicon Vue) at 200Hz.
Regarding the placement of the markers, the Plug-in Gait lower body (Fig. 3.3) model provided
by Vicon Nexus was used. All Plug-in Gait marker sets are designed for the Newington-Helen
Hayes model [3] on which Plug-in Gait is based. The marker set for Plug-in Gait lower body
modeling includes markers for the pelvis and the lower limbs. Specifically, the two posterior
superior iliac spine (PSIS) markers for the pelvis variation were employed.
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Figure 3.3: Front, back, and right side view of the marker placement for Plug-in Gait lower
body model [35]

However, due to the subject’s position on the bed, the RPSI, LPSI, LHEE, and RHEE markers
were impossible to track. Therefore, reconstruction after the measurements was necessary.
First, new markers were added to the subject in the following positions:

• Iliac crest (RPEL and LPEL).
• Medial part of the knee (RKNEMedial and LKNEMedial)
• Medial malleolus (RANKMedial and LANKMedial)
• Hallux (RTOEMedial and LTOEMedial)

The exact location of the new added markers can be appreciated in figures 3.4 and 3.5.
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Figure 3.4: Back view of marker placement for the experiment, with the extra markers added

Figure 3.5: Front view of marker placement for the experiment, with the extra markers added

Afterwards, a calibration capture was made with the subject standing, using all the markers
shown on figure 3.3 and the new ones showed in figures 3.4 and 3.5 , as can be seen in 3.6.
Then, the RPSI, LPSI, LHEE, and RHEE markers were removed, the subject was placed on
the bed, and the movement measurements were taken, as seen in figure 3.7.
During the trials, there were some issues detecting the RANK and LANK markers. Conse-
quently, the "Replace 4 Macro" (Nev Pires – Vicon Motion Systems, Inc.) script was used.
This code recovers those markers on a rigid body segment that are missing for a few frames in
the trial. However, if two or more markers on the rigid body segment are missing in the same
frame/s, they will not be replaced.
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On the other hand, the reconstruction process was made using the Replace Missing Maker
script (Nev Pires – Vicon Motion Systems, Inc.). This script replaces a marker missing on
a four-marker rigid body cluster during a dynamic trial but is present in a static trial. The
previously made calibration was used as a static trial for the recreation of RPSI, LPSI, LHEE,
and RHEE, using the markers that belong to the same rigid body. The results can be seen in
figures 3.8 and 3.9

Figure 3.6: Screenshot of the Vicon Nexus Plug and Gait model template after calibration

Figure 3.7: Photo of one subject during the study in the VEMOTION with attached sensors
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(a) (b)

Figure 3.8: Front view of the labeling template (a) before and (b) after the reconstruction

(a) (b)

Figure 3.9: Side view of the labeling template (a) before and (b) after the reconstruction

3.1.2 Accelerometer data

The accelerometer data was measured with the Mini Wave Infinity (Cometa Systems). This
device is the state of the art of wireless data loggers on the market. Although it has been
developed to measure EMG data, it also provides accelerometer data with a sampling rate of
2KHz.
As explained in the introduction, the footplate has both freedom of rotation with a revolute
joint and freedom of translation with a sliding rail (fig. 3.10). During the rehabilitation, the
patient can choose whether to move the sliding rail or not, which is why these two types of
movements have to be distinguished.
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Figure 3.10: Translation with sliding rail (a), rotation with revolute joint (b)

One accelerometer sensor was placed on the sliding rail, capturing the translation movement,
and the other was placed on the edge of the posterior part of the footplate, capturing the
rotation movement, as demonstrated in figure 3.11. The exact layout was used on both legs.
The output of the accelerometer sensor is divided into the three dimensional axes.

Figure 3.11: Placement of the accelerometer sensors
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3.2 Data preprocessing

Before feeding the data into the CNN model, it first went through some preprocessing. Both
signals were down-sampled to 100Hz. Afterward, a 20 Hz low-pass filter was used to reduce the
noise, following the recommendation of previous studies [14].
The input for the knee and hip angles consisted of the data provided by the accelerometers
placed on the sliding rail (numbers 1 and 4 on figure 3.11)
The values from the accelerometer’s signal (fig. 3.12) placed on the sliding rail (Z axis) below the
mean of the signal were replaced by the mean itself. This procedure removes noisy fluctuations
and improves data clarity.

Figure 3.12: Sample of preprocessed accelerometer signal

Regarding the ground truth data (Vicon Nexus export), an offset of +90 degrees was applied
to the ankle angle, changing the reference system. This was made because we required positive
values for the network, as ReLU layers were used.

3.3 Deep Learning Model

Convolutional neural networks (CNNs) have been recently applied to different signal processing
problems and have also shown promising results in human motion estimation using wearable
sensors [14].
As explained in the theoretical background, Gholami et al. [13] used a shoe-mounted ac-
celerometer for sagittal plane lower extremity angle measurement during running based on
a deep learning approach. The present thesis made a similar approach using accelerometers
placed on the VEMOTION device instead of the subject.
In this thesis, three different one-dimensional CNN (1D-CNN) were implemented in MATLAB
and Deep Learning Toolbox, Release 2022a (The MathWorks, Inc., Natick, Massachusetts,
United States)
Every CNN was designed for each of the predicted angles. The output consisted of the value
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of the angle itself in a specific moment. On the other hand, the CNN was fed a 40x4 matrix
with accelerometer data, using the sliding window principle, as follows:


a1x(n − t) ... a1x(n − 1) a1x(n) a1x(n + 1) ... a1x(n + t)
a1y(n − t) ... a1y(n − 1) a1y(n) a1y(n + 1) ... a1y(n + t)
a1z(n − t) ... a1z(n − 1) a1z(n) a1z(n + 1) ... a1z(n + t)
a2z(n − t) ... a2z(n − 2) a2z(n) a2z(n + 2) ... a2z(n + t)


a1 = Accelerometer 1 (Footplate)

a2 = Accelerometer 2 (Sliding rail)

See figure 3.11 for detailed positioning on the device.
A time window was moved over the signal with a length of t=200 ms that covered equal
samples of the past and the future time steps, thus making a window size of 400 ms that, after
the downsampling to 100 Hz, corresponds to 40 elements.
Although the input for the ankle joint estimation did not include the z-axis component of the
accelerometer placed on the footplate, since it did not supply any meaningful information for
this joint, the sliding window principle applied was the same.
The training was divided into three different networks for each joint (hip, knee, and ankle), as
they required different input preprocessing for optimal results. However, they all had the same
structure:
The 1D-CNN model had four convolutional (Conv) layers and a max-pooling layer. The number
of features at the first and second two Conv layers was 50 and 100, respectively. The architecture
and layer shapes are summarized in table 3.2. All the trainable layers were initialized with a
Xavier normal initializer. The Conv and fully connected layers were activated with a rectified
linear unit, while the output layer was activated with a linear function. The kernel size and
stride values were selected as 3 and 1, respectively. The parameters were optimized by an Adam
optimizer with a learning rate of 0.001. The batch size for training the model was selected to
be 512, and the number of epochs was fixed to 60.

Table 3.2: Convolutional neural network layers
Index Layer Output Shape Setting
0 Input (40,4)
1 1D-Conv (38,50) ReLU
2 1D-Conv (36,50) ReLU
3 MaxPool (18,50)
4 1D-Conv (16,100) ReLU
5 1D-Conv (14,100) ReLU
6 Flatten 1400 ReLU
7 Dense 100 ReLU
8 Dense 1 Linear
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3.4 Data Analysis

This network predicts the hip, knee and ankle range of motion during the movement. For
every subject, the minimum and maximum values of the angles vary, and this information is
impossible to extract from the accelerometer data.
Therefore, the main objective of this thesis is to estimate the difference between the capability
of a joint to go through its complete spectrum of movements, known as range of motion (ROM).
However, the RMSE results are also interesting to observe.
Four different evaluation metrics were considered in this study:

1. Root mean squared error (RMSE)
2. Normalized root mean squared error (NRMSE).
3. Root mean squared error of the range of motion (ROM-RMSE)
4. Root mean squared values (R2)

The first three evaluation metrics reflect the measurement error, while the fourth reflects the
goodness of predicted values. To calculate the NRMSE, the RMSE was divided by the range
of angles in the test dataset. Equations of RMSE and NRMSE are as follows:

RMSE =
√√√√( 1

n
)

n∑
i=1

(yi − ŷi)2

NMRSE = (RMSE)
ymax − ymin

On the other hand, to calculate the ROM-RMSE, it was first necessary to get the values of the
joint range of motion during every movement of the trial for both predicted and ground truth
data.
Firstly, the peaks and local minima were found, as in the example in figure 3.13
Secondly, two markers were created before and after the peak or minimum, as seen in figure
3.14. The mean of the section between the marker that indicates the end of the movement and
the following one was calculated.
Finally, the difference between the peak or minimum value and the resting position resulted in
the value of the ROM.
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Figure 3.13: Peaks and local minima. Ankle angle prediction of subject 12, trial 1

Figure 3.14: Markers of beginning and end of the movement. Ankle angle prediction of subject
12, trial 1



4 Results

In this chapter, the results of the three CNNs predictions will be presented. The results
are divided into three sections for the three analyzed joints hip, knee, and ankle. In all three
sections, the results of the training for subject one to ten and the results of the CNN estimation
in subjects eleven and twelve are shown. To give a first overview, the results of the normalized
RMSE (NRMSE) as % of the maximal ROM of all three joints of the subject eleven and twelve
for trial one and two including the mean and standard deviation are displayed in figure 4.1.

Figure 4.1: Normalized RMSE in % of the hip, knee and ankle joint for the test subjects eleven
and twelve

4.1 Hip Joint

In table 4.1, the results of the hip angle predictions for the training data are displayed. The
average root mean squared value (R2) for ten participants was greater than 0.85, while the
RMSE and NRMSE were lower than 4.275o and 13.47 %, respectively. Regarding the range of
motion (ROM), the obtained value of the RMSE-ROM was 3.715o.
The outcome performance for the hip angle among subjects eleven and twelve, which are the
test results, are displayed in table 4.2. In this case, the R2 was 0,925, the RMSE and NRMSE
2.843o and 8.52% respectively, and the RMSE for the range of motion 3.025o.
Figure 4.2 displays the prediction and the ground truth for the hip angle, corresponding to
subject eleven during the first trial.
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Table 4.1: Training results of the hip joint with mean and standard deviation (STD)
Subject Trial RMSE (deg) NRMSE (%) R2 ROM-RMSE (deg)
1 1 4.397 17.79 0.810 7.723

2 5.199 18.79 0.750 8.139
2 1 3.743 10.16 0.912 4.833

2 3.620 10.30 0.945 2.921
3 1 2.664 9.22 0.963 1.006

2 2.495 8.99 0.971 0.826
4 1 3.907 14.87 0.836 4.478

2 4.338 15.33 0.808 3.942
5 1 3.829 12.45 0.939 1.957

2 3.329 10.90 0.934 3.482
6 1 4.145 15.47 0.956 1.678

2 3.450 12.77 0.953 1.076
7 1 5.590 13.63 0.746 5.489

2 5.284 13.15 0.783 4.434
8 1 5.006 15.38 0.717 2.070

2 5.059 14.55 0.763 2.688
9 1 6.565 17.27 0.726 6.789

2 6.764 17.66 0.718 6.644
10 1 3.069 10.21 0.903 1.833

2 3.048 10.54 0.882 2.301

Mean 4.275 13.47 0.851 3.715
STD 1.205 3.08 0.094 2.284

Table 4.2: Test results of the hip joint with mean and standard deviation (STD)
Subject Trial RMSE (deg) NRMSE (%) R2 ROM-RMSE (deg)
11 1 3.322 9.90 0.889 3.002

2 3.106 10.19 0.902 1.837
12 1 2.378 6.79 0.954 2.534

2 2.567 7.22 0.955 4.727

Mean 2.843 8.52 0.925 3.025
STD 0.444 1.77 0.035 1.232
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Figure 4.2: Estimated and reference hip angles of subject 11 during trial 1
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4.2 Knee Joint

Table 4.3 shows the results of the knee angle predictions for the training data. The average
root mean squared value (R2) for ten participants was greater than 0.85. The RMSE, NRMSE
and RMSE-ROM were 6.564o, 12.73 %, and 5.434o respectively.

Table 4.3: Training results of the knee joint with mean and standard deviation (STD)
Subject Trial RMSE (deg) NRMSE (%) R2 ROM-RMSE (deg)
1 1 6.282 16.70 0.871 12.253

2 6.631 19.33 0.911 14.072
2 1 4.590 9.92 0.934 2.321

2 3.778 7.80 0.947 2.684
3 1 3.174 6.73 0.949 2.492

2 2.540 5.73 0.963 1.174
4 1 6.436 13.11 0.822 4.460

2 6.805 13.53 0.800 3.144
5 1 5.381 9.70 0.915 4.867

2 5.633 10.32 0.913 6.053
6 1 5.888 13.57 0.932 2.177

2 5.138 11.64 0.936 1.618
7 1 8.513 12.71 0.781 7.613

2 7.496 10.69 0.822 6.499
8 1 8.455 16.57 0.697 9.394

2 8.187 15.85 0.744 8.857
9 1 10.300 16.50 0.708 4.662

2 11.877 18.66 0.693 5.036
10 1 7.454 13.11 0.855 5.676

2 6.723 12.50 0.837 3.617

Mean 6.564 12.73 0.851 5.434
STD 2.273 3.79 0.090 3.514
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The test results for the knee are displayed in table 4.4. In this case, the R2 was 0.916, the
RMSE and NRMSE 4.692o and 8.84% respectively, and the RMSE for the range of motion of
4.597o. Figure 4.3 shows the knee angle’s prediction and ground truth, corresponding to subject
eleven during the first trial.

Table 4.4: Test results of the knee joint with mean and standard deviation (STD)
Subject Trial RMSE (deg) NRMSE (%) R2 ROM-RMSE (deg)
11 1 5.087 9.04 0.887 4.635

2 4.490 8.83 0.892 2.212
12 1 4.583 8.79 0.940 3.911

2 4.608 8.69 0.944 7.632

Mean 4.692 8.84 0.916 4.597
STD 0.268 0.15 0.031 2.264

Figure 4.3: Estimated and reference knee angles of subject 11 during trial 1
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4.3 Ankle Joint

In table 4.5 the results of the ankle angle predictions for the training data are displayed. The
average root mean squared value (R2) for ten participants was greater than 0.80, while the
RMSE and NRMSE were lower than 4.84o and 9.82 %, respectively.
The ROM-RMSE has been divided into dorsiflexion and plantar flexion movements for the
ankle results. We obtained a value of 5.542o for dorsiflexion and 7.609o for plantar flexion.

Table 4.5: Training results of the ankle joint with mean and standard deviation (STD)

Subject Trial RMSE (deg) NRMSE (%) R2 ROM-RMSE (deg)
(Dorsiflexion)

ROM-RMSE (deg)
(Plantar flexion)

1 1 3.320 12.45 0.937 3.907 8.121
2 3.786 8.48 0.843 7.136 8.552

2 1 6.206 9.88 0.741 6.296 1.356
2 4.500 9.22 0.925 6.282 2.992

3 1 4.369 9.06 0.908 4.930 11.367
2 3.853 8.62 0.879 5.121 10.114

4 1 4.839 7.00 0.902 9.447 4.894
2 4.864 8.10 0.892 6.116 6.114

5 1 3.850 10.27 0.752 2.140 3.460
2 3.946 9.96 0.721 1.211 2.865

6 1 2.915 6.44 0.939 7.507 7.591
2 2.929 6.29 0.934 8.651 6.670

7 1 6.384 11.85 0.653 5.160 8.870
2 6.609 11.19 0.613 5.159 9.693

8 1 4.536 9.10 0.804 6.894 4.101
2 6.763 15.11 0.532 9.405 16.853

9 1 8.248 11.85 0.892 7.107 16.103
2 9.417 13.91 0.818 4.198 16.758

10 1 2.987 8.97 0.727 2.111 3.717
2 2.322 8.73 0.761 2.067 1.979

Mean 4.832 9.82 0.809 5.542 7.609
STD 1.883 2.33 0.118 2.422 4.805
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The outcome performance for the ankle angle among subjects eleven and twelve, which are
the test results, are displayed in table 4.6. In this case, the R2 was 0.798, the RMSE and
NRMSE 3.706o and8.38% respectively. Concerning the range of motion, the RMSEs obtained
were 9.997o for dorsiflexion and 4.490o for plantar flexion. Figure 4.4 shows the prediction and
the reference angles of the ankle joint, corresponding to subject eleven during the first trial.

Table 4.6: Test results of the ankle joint with mean and standard deviation (STD)

Subject Trial RMSE (deg) NRMSE (%) R2 ROM-RMSE (deg)
(Dorsiflexion)

ROM-RMSE (deg)
(Plantar flexion)

11 1 4.863 9.27 0.791 11.030 8.042
2 4.078 8.36 0.779 10.954 4.114

12 1 2.650 6.49 0.835 9.084 1.540
2 3.231 9.40 0.787 8.922 4.266

Mean 3.706 8.38 0.798 9.997 4.490
STD 0.969 1.34 0.025 1.151 2.678

Figure 4.4: Estimated and reference ankle angles of subject 11 during trial 1



5 Discussion

In the test subjects scenario, a R2 of 0.925 for the hip angle was obtained. These are surprisingly
good results. A ROM-RMSE of 3.025o is good enough to track patient data over rehabilitation
procedures quantitatively. Although we have access to this data directly from the VEMOTION
device, it is interesting to consider other methods to track it. The current method can be used
to verify the estimated hip angle by the VEMOTION.
Concerning the knee angles, we observe a significantly higher NRMSE (≈ 18%) in the predic-
tion for subject one. Due to their biomechanical structure, this subject performed shallower
movements, having the slightest difference between maximum and minimum values of the tested
subjects. A range of 39.47o compared to the mean of 48.08o.
In spite of presenting similar behaviours during the motion, the results for the hip angle esti-
mation are generally better than the knee. Specially with respect to the NRMSE. This can be
caused because the range of motion of the hip is typically wider than the knee, so the relative
error is smaller.
Regarding the ankle angle, the error of the range of motion estimation during dorsiflexion
movement was larger than the plantar flexion, with an NRMSE of 9.99 % and 4.49 % for the
test results, respectively. We hypothesize that this could be caused because the angle variation
during the plantar flexion movement is more profound, therefore capturing a stronger signal in
the accelerometer that results in a more meaningful input for the network and, consequently,
a better prediction.
Further, we observed that the ankle joint has the most variable inter-participant results. We
assume that the height, positioning, and length of the subject’s lower limbs directly affect the
values.
For the three joint angles, it is a generalized occurrence that, contrary to what was expected, the
test results are better than the training ones. The train/test split percentage most likely causes
this. Due to the limited number of subjects, it was impossible to implement a more balanced
data set for training and testing with extensive enough training data. Also, cross-validation,
due to computational costs, was not feasible.
In general, standard deviations are substantially more minor than average values. This indicates
that this approach performs consistently across all test individuals and is robust to inter-
participant differences.
The fact that the model was trained only with the right leg data has to be considered. Results
of left lower limb kinematics still need to be addressed, being a possible solution to create a
different model for the left side in case the current one does not work. Nonetheless, as the input
is a 400 ms window, the evaluated side (left or right) should not affect the performance. Since
left and right leg movements are frequently unequal, especially in people with disabilities, this
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problem must be addressed in the future.
All the trials were captured with a verticalization angle of 50o. No variability was introduced
regarding this parameter, so the method’s robustness concerning this subject is unknown. Nev-
ertheless, due to the positioning of the accelerometers, their system of reference would also
change with the verticalization angle. Therefore, this parameter’s variations should not affect
the model’s performance in any way.
Also, the different pattern movements of the ankle (dorsi and plantar flexion) were clearly
differentiated during the trials. In clinical application, the patients normally do not focus on a
specific pattern, therefore a test with no pattern instructions with a healthy subject should be
done to verify the network.
The present thesis is inspired by the Gholami et al. [13] research. In this study, the results
in the inter-participant scenario, the error of the ankle joint angle estimation was significant,
with an NRMSE of 11% and an R2 of 0.78. This may be caused because gait analysis has more
degrees of freedom, and the movement is less restricted. They also used only one accelerometer,
whereas we employed two of them.
Although the NRMSE values for the predictions might seem high, this project aimed to develop
an accessible, relatively cheap, and non-invasive method of collecting patient data in ICUs. So
the results obtained are helpful to get a general insight into the behavior of the lower limb
joint angles during VEMOTION rehabilitation. Principally being able to differentiate between
dorsiflexion and plantar flexion movements.



6 Conclusion

In this project, we investigated the performance of hip, knee, and ankle estimation on the
sagittal plane during VEMOTION rehabilitation procedure. The Gholami et al. [13] approach
to gait analysis was implemented in our particular case. A convolutional neural network was
used to estimate the joint angles.
The prediction was made using raw data from accelerometers positioned on the VEMOTION
device as input for the network. Hence, this project aimed at obtaining an easy, non-invasive
method of collecting patient data in ICUs.
Twelve subjects were tested in two different trials, performing plantar flexion and dorsiflexion
movements in every one of them. The network was trained with the ten first subjects and
tested on the remaining two. The ground truth data for verification was captured using the
Vicon System, the gold standard for human motion capture procedures.
Although the accuracy of the results could be better, this system has proven to help get a gen-
eral insight into the behavior of the lower limb joint angles during VEMOTION rehabilitation.
Especially being able to differentiate between dorsiflexion and plantar flexion movements. Con-
sequently, we can now quantitatively assess the performance changes in chronic stroke patients,
where limited ankle range of motion is a common issue.
The initial idea was to design only one network for which the output consists of simultaneously
predicting the three joint angles. Nevertheless, we realized that the performance was better
with a slightly different preprocessing for the ankle joint, thus splitting the system into three
different networks.
Further steps of this work could be including surface electromyography data for the ankle
movement and comparing how it changes during the different joint motion patterns. Using this
approach could tackle the inability to lift the foot during the swing phase of gait, a common
problem among post-stroke patients known as foot drop [29].
It could also be interesting to compare the performance of other deep learning models, like
feedforward neural network (FNN) [4], or Feedback Process Neural Networks [6] instead of the
convolutional approach employed.
Another possibility would be to implement a multi-input model, where extra parameters, like
the subject’s height, are incorporated into the network. Height plays an essential role in the
patient’s position on the bed, hence being a key factor for the maximum and minimum values
of the angles during the motion.
For better results, although being a more complex and expensive method due to the number of
sensors required, a model-based approximation to the problem would be another solution. In
this case, kinematic constraints of the human body are implemented to IMU’s collected data,
recreating the kinematic model from there [8].
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