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Abstract

Finite groups G for which for every subgroup H and for all primes
g dividing the index |G : H| there exists a subgroup K of G such that
H is contained in K and |K : H| = q are called Y-groups. Groups
in which subnormal subgroups permute with all Sylow subgroups are
called PST-groups. In this paper a local version of the )-property
leading to a local characterisation of )-groups, from which the classi-
cal characterisation emerges, is introduced. The relationship between
PST-groups and Y-groups is also analysed.

1 Introduction and statement of results

In this paper, only finite groups will be taken into account.

A well-known theorem of Lagrange (see [11, I, 2.7]) states that given a
subgroup H of a group G, the order of G is the product of the order |H|
of H and the index |G : H| of H in G. In particular, the order of any
subgroup divides the order of the group. The converse, namely, if d divides
the order of a group G, then G has a subgroup of order d, is not true in
general. Groups satisfying this condition are often called CLT-groups. The
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alternating group of order 12, having no subgroups of order 6, is an example
of a non-CLT-group.

On the other hand, abelian groups contain subgroups of every possible
order, and it is not difficult to prove that a group is nilpotent if and only if it
contains a normal subgroup of each possible order [10]. Ore [13] and Zappa
[16] obtained a similar characterisation for supersoluble groups:

Theorem 1. A group G is supersoluble if and only if each subgroup H < G
contains a subgroup of order d for each divisor d of |H|.

Of course, we can state Theorem 1 in the following equivalent way, more
easily treated:

Theorem 2. A group G is supersoluble if and only if each subgroup H < G
contains a subgroup of index p for each prime divisor p of |H]|.

A proof of this theorem can be found in [14, Chapter 1, 4.3|. It must be
noted that CLT-groups are not necessarily supersoluble, as the symmetric
group of order 4 shows.

The condition on a group G given in Theorem 2, namely

for all H < G and for all primes ¢ dividing |H|, there exists a
subgroup K of G such that K < H and |H : K| = g,

has a dual formulation:

for all H < G and for all primes ¢ dividing |G : H|, there exists
a subgroup K of G such that H < K and |K : H| = q.

Groups satisfying the latter condition have been studied by some authors.
Following [14, Chapter 1, 4], we will call them )-groups.

Definition 3. A group G is said to be a Y-group if for all subgroups H of G
and all primes ¢ dividing the index |G : H| of H in GG, there exists a subgroup
K of G with H < K and |K : H| =q.

Note that a group G is a Y-group if and only if for every subgroup H of
G and for every natural number d dividing |G : H| there exists a subgroup
K of G such that H < K and |K : H| = d. The following characterisation
of Y-groups appears in [14, Chapter 1, 4.3].

Theorem 4. Let L = G™ be the nilpotent residual of the group G. Then G
1s a Y-group if and only if L is a nilpotent Hall subgroup of G such that for
all subgroups H of L, G = LNg(H).



From Theorem 4, we see that if G € ) and X is a normal subgroup of L,
then X is normal in GG. In particular, Y-groups are supersoluble. Moreover,
if G € ), then L must have odd order.

Further results on Y-groups can be found in [14, Chapter 6, 6.1|. For
example, a soluble group G is a Y-group if and only if every subgroup of GG
can be written as an intersection of subgroups of GG of coprime prime-power
indices.

On the other hand, we say that a subgroup H of a group G is S-permutable
in G when it permutes with every Sylow subgroup of G. According to [12],
S-permutable subgroups are subnormal and the set of all S-permutable sub-
groups of a group G is a sublattice of the lattice of all subnormal subgroups
of G.

A group G is said to be a PST-group when every subnormal subgroup
of G is S-permutable, that is, when S-permutability is a transitive relation.
Some interesting subclasses of the class of all PST-groups are the class of
PT-groups or groups in which permutability is a transitive relation and the
class of T-groups or groups in which normality is a transitive relation.

Soluble PST-groups were studied by Agrawal 1], and, more recently, by
Alejandre, the first author, and Pedraza-Aguilera in [2|, by the first and the
last author [3, 4], and by the second author and Heineken [6], among others.
The approach followed in these papers began with a paper of Bryce and
Cossey |7] in which a local version of some of the results on T-groups was
presented.

Let us recall the classical theorem of Agrawal:

Theorem 5. A group G is a soluble PST-group if and only if G has an
abelian normal Hall subgroup N of odd order such that G /N is nilpotent and
the elements of G induce power automorphisms in N.

i

If we add in this result “G/N nilpotent modular group,” we obtain the
characterisation of soluble PT-groups given by Zacher [15]|, and if we put
“G/N Dedekind,” we get Gaschiitz’s characterisation of soluble T-groups [9].

Agrawal’s theorem has the virtue of showing that the class of soluble
PST-groups is closed under taking subgroups. A consequence of Theorems 4
and 5, Gaschiitz’s characterisation, and Dedekind theorem [11, III, 7.12] is:

Corollary 6. Let G be a group.
1. If G is a soluble PST-group, then G is a Y-group.

2. Assume that G € Y. Then G is a soluble PST-group if and only if the
nilpotent residual of G is abelian.



3. Assume that G € Y. Then G is a soluble T-group if and only if all
Sylow subgroups of G are Dedekind.

For a prime p, Bryce and Cossey [7] defined the class T, of all soluble
groups GG for which every subnormal p’-perfect subgroup of G is normal.
They proved:

Theorem 7. A soluble group is a T-group if and only if it is a T,-group for
all primes p.

In [2], Alejandre, the first author, and Pedraza-Aguilera introduced in
the soluble universe the class PST, of all soluble groups G in which every
p’-perfect subnormal subgroup in G permutes with every Hall p’-subgroup of
G. This condition is equivalent to G being p-supersoluble and having all its
p-chief factors isomorphic when regarded as modules over G (see |2]). This
result not only holds in the soluble universe, but also in the p-soluble one.

Theorem 8. A soluble group G is a PST-group if and only if G is a PST,-
group for all primes p.

The second author and Heineken defined in [6] the class Tg, for a prime
p, of all soluble groups G in which every p/-perfect subnormal subgroup of G
is S-permutable in G and proved:

Theorem 9. A soluble group G is a PST-group if and only if it is a Tg-group
for all primes p.

A similar result holds for PT-groups replacing S-permutability by per-
mutability.

In [3, Theorem A], the following local version of Agrawal’s result was
obtained. For each group X and every prime p, X (p) denotes the p-nilpotent
residual of X, that is, the smallest normal subgroup N of X such that X/N
is p-nilpotent, while O,/(X) denotes the largest normal p’-subgroup of X.

Theorem 10. A p-soluble group G is a PST,-group if, and only if, one of
the following two conditions holds:

1. G is p-nilpotent, or

2. the subgroup G(p)/ Oy (G(p)) is an abelian normal Sylow p-subgroup
of G/ O, (G(p)) in which the elements of G/ Oy (G(p)) induce power
automorphisms.



Theorem 5 follows from Theorems 8 and 10, as shown in [3].

These local results, together with Corollary 6, encourages us for the search
of local versions of the )-property, leading to a local characterisation of )-
groups, running parallel to the characterisations for PST)-groups, p a prime.
This is the aim of the present paper.

In the sequel, p will denote a fixed prime number.

Definition 11. We say that G satisfies Z, when for every p-subgroup X of
G and for every power of a prime ¢, ¢", dividing |G : X O,/ (G)|, there exists
a subgroup K of G containing X O,/(G) such that |K : X Oy (G)| = ¢".

Note that if ¢ = p, the condition is obviously satisfied in every group.

Definition 12. Let G be a group. We say that G satisfies Z), if G satisfies
either of the following conditions:

1. G is p-nilpotent, or

2. G(p)/ O, (G(p)) is a Sylow p-subgroup of G/ O, (G(p)) and for every
p-subgroup H of G(p), we have that G = G(p) Ng(H).

Our first main result can be regarded as the analogue of Theorem 10:

Theorem 13. Let G be a p-soluble group. Then G satisfies Z, if and only
if G satisfies Z,,.

Combining Theorems 10 and 13, we have:

Theorem 14. A p-soluble group G satisfies PST, if and only if G satisfies
Z, and G has an abelian Sylow p-subgroup.

Our second main result is the analogue of Theorem 8.

Theorem 15. Let G be a soluble group. G satisfies Y if and only if G
satisfies Z, for every prime p.

Recall that class of groups which is closed under taking epimorphic images
and subdirect products is called a formation. In [5] it has been proved that
the largest formation contained in the class PST, is the class €,&, of all
p-nilpotent groups. As a consequence, the class of all nilpotent groups is the
largest formation contained in the class of all PST-groups. A similar result
can be obtained for the class of all groups satisfying Z,,:

Theorem 16. The class of all p-nilpotent groups is the largest formation
contained in the class Z,.



As a consequence:

Corollary 17. The class of all nilpotent groups is the largest formation con-
tained in the class ).

We bring the paper to a close by giving an alternative proof of Theorem 4
which is based on our local approach. We also show that the class ) is a
proper subclass of the class of all supersoluble groups and that the classes
Z, are not subgroup-closed in general.

The notation used in this paper is standard. For notation not explained,
we address the reader to the book [8].

2 Proofs

The following lemmas turn out to be crucial in the proofs of our main results.
The first and second ones are very useful in induction arguments. The proof
of the first lemma is a routine check.

Lemma 18. Let G be a group and let N be a normal subgroup of G. Then:

1. If N is a p'-subgroup, then G satisfies Z, if and only if G/N satisfies
Z

-
2. If N is a p-group and G satisfies Z,, then G/N satisfies Z,,.

3. If G is a group, G is not p-nilpotent, and N is a normal subgroup of
G contained in O, (G(p)), then G is satisfies Z, if and only if G/N
satisfies Z,,.

4. If G is a group satisfying Z, and N is a normal p-subgroup of G, then
G/N satisfies Z,,.

Lemma 19. If G is a group and N is a normal p'-subgroup of G, then G
satisfies Z, if and only if G/N satisfies Z.

Proof. Assume that G satisfies Z,. If G is p-nilpotent, then G/N is also
p-nilpotent and so G//N satisfies Z/. Suppose that G is not p-nilpotent.
According to Lemma 18, we can suppose that O, (G(p)) = 1 by changing
N by NOy(G(p))/ Oy (G(p)) if needed. Then (G/N)(p) = G(p)N/N is
a Sylow p-subgroup of G/N. It is clear that G/N = Ng(H)G(p)/N =
Ne/n(HN/N)(G/N)(p) for every p-subgroup HN/N of G//N.

Conversely, assume that there exists a group G having a normal p'-
subgroup NV such that G/N satisfies Z, but G' does not satisfy Z/. We
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choose G of minimal order. We can suppose that N is a minimal normal
subgroup of G and N is not contained in G(p). In this case, (G/N)(p) =

(G(p)N)/N. Moreover, O, ((G/N)(p)) = (Op/ (G(p))N) /N. Tt follows that

G(p)/ O, (G(p)) is a Sylow p-subgroup of G/Oy(G(p)). Let H be a p-
subgroup of G. Then

G/N =Ngn(HN/N)((G/N)(p)) = (Na(H)N/N)(G(p)N/N).

This implies that G = Ng(H)G(p)N. But N centralises G(p) and so H. It
follows that G = Ng(H)G(p), and G satisfies condition Z. O

Lemma 20. Let G be a p-soluble group satisfying Z,. Then G is p-super-
soluble.

Proof. Assume that the result is false. Consider a p-soluble group G of
minimal order such that G satisfies Z,, but G is not p-supersoluble. From
the p-solubility of G, we can assume that G has a unique minimal normal
subgroup, N say, and that N is a non-cyclic p-group. Moreover O,/ (G) = 1.
Let Z be a subgroup of N of order p contained in the centre of a Sylow
p-subgroup P of G. Let ¢ be a prime different from p dividing n = |G : Z|
and let ¢™ be the largest power of ¢ dividing n. Since G has property Z,,
there exists a subgroup K of G such that |K : Z| = ¢™. Moreover Z is
a Sylow p-subgroup of K and is subnormal in . This implies that 7 is
normal in K. In particular, Z is normalised by a Sylow ¢-subgroup of G.
Since this happens for all primes ¢ # p and Z is normal in P, we have that
Z is a normal subgroup of GG. Hence N = Z because N is a minimal normal
subgroup of G and so N has order p. This contradiction shows that no such
counterexample exists and the result is proved. O]

Lemma 21. If G is p-soluble and satisfies Z,, then G is p-supersoluble.

Proof. Assume that there exist p-soluble groups satisfying Z which is not p-
supersoluble, and among them we choose a group GG of minimal order. Clearly
G is not p-nilpotent. By Lemma 19, we have that O, (G) = 1. Thus G(p)
is a normal Sylow p-subgroup of G. Let N be a minimal normal subgroup
of G, then N is a p-group and N cannot be cyclic, by Lemma 18 and the
minimality of G. Let M be a minimal normal subgroup of G(p) contained
in N. We have that G = Ng(M)G(p) = Ng(M). Therefore M is normal in
G. This contradiction shows that no such counterexample can exist and the
lemma is proved. 0

The following lemma is fundamental to understand the class ) and its
local versions.



Lemma 22. Let G be a p-soluble group satisfying Z, and let H be a subgroup
of O,(G). Then H is normalised by a Hall p'-subgroup of G.

Proof. Consider a prime ¢ different from p. There exists a subgroup K of G
such that H O, (G) < K and |K : HO,(G)| = ¢, where ¢ is the largest
power of ¢ dividing |K : H O,(G)|. A Sylow g-subgroup K, of K is a Sylow
g-subgroup of G and H is a subnormal Sylow p-subgroup of K. Therefore H
is normal in K and, in particular, K, normalises H. Since this happens for
every q # p, we have that (K, | ¢ # p) normalises H. In particular, there
exists a Hall p’-subgroup of G normalising H. O

Proof of Theorem 13. Assume that G satisfies Z,. We show that G also
satisfies Z). Since p-nilpotent groups satisfy Z, there is no loss of generality
in supposing that G is not p-nilpotent. By Lemma 20, we have that G is
p-supersoluble. In particular, the derived subgroup G’ of G is p-nilpotent
by [11, VI, 9.1(a)]. Since G(p) < G’, we have that G(p) is p-nilpotent, too.
Moreover, by Lemma 19, we can assume that O, (G) = 1. It is clear then
that G(p) is a p-group.

We prove that G(p) is a Sylow p-subgroup of G. Assume that this is false
and derive a contradiction. In this case, G has both central and non-central
p-chief factors. Bearing in mind that G’ is p-nilpotent and O, (G’') = 1, we
obtain that G’ is a p-group. Hence G has a normal Sylow p-subgroup, L
say. Consider a chief series of G passing through L and G(p), and consider
two chief factors of that series, K/G(p) and G(p)/M, say. Then K/G(p) is
central in G and G(p)/M is not central in G. Applying [8, IV, 6.7|, K/G(p)
is not cyclic. Therefore K/M is a p-elementary abelian group of order p?,
because G is p-supersoluble.

Let H be a Hall p’-subgroup of G. It is clear that K/M is an H-module
over GF(p). By Maschke’s theorem [8, A, 11.4|, K/M = G(p)/M x C/M,
where C'/M is normalised by H. Let G(p)/M = (aM) and C/M = (bM).
Note that C'/M is H-isomorphic to K/G(p), and so C'//M is in fact centralised
by H. Consider D = M ((ab). By Lemma 18, we have that G/M satisfies Z,.
By Lemma 22, there exists a Hall p’-subgroup H; of G normalising D.

Since all Hall p/-subgroups are conjugate by [11, VI, 1.7|, there exists an
element g € G such that H; = HY. Moreover, G = HL and so g = hx with
he€ H and ¢ € L. Hence H; = H* with z € L.

Let y be an element of H such that e M # aM. Then a?M = a'M,
for some natural number i > 2. Note that K = (a,b)M and K* = K.
Consequently (a,b)M = (az_l,bx_l>M and, bearing in mind that K/M =
C, x C,, there exist two natural numbers m and n with 1 <m <p —1 and
1<n<p-—1and (ab)* 'M = a™b"M. Since ((ab)” )M is normalised by



H, we have that ((ab)fl)yM = ((ab)fl)]M for a natural number j with
1 <j<p-1. Then (a™b")YM = (a™b")? M, and so (a"b")M = (a’™b"™) M.
It follows that ¢ = j = 1. This contradiction proves that G(p) is a Sylow
p-subgroup of G.

Now we prove that G = G(p) Ng(H) for all p-subgroups H of G. Note
that if H is a p-subgroup of GG, then H is subnormal in G and then H is nor-
malised by a Hall p’-subgroup of G by Lemma 22. Hence G = G(p) Ng(H).

Conversely, suppose that G satisfies Z/. Let us show that G satisfies Z,.
By Lemmas 18 and 19, we can assume that O,(G) = 1. If G is p-nilpotent,
then G is a p-group and G clearly satisfies Z,. Now assume that G is not
p-nilpotent. In this case, G(p) is a Sylow p-subgroup of G and for every
p-subgroup H of G, G = G(p) Ng(H). Let H be a p-subgroup of G. Then H
is normalised by a Hall p’-subgroup T of G. Let ¢" be a power of the prime
q dividing |G : H|. If ¢ = p, then H is clearly contained in a subgroup K
such that |K : H| = ¢". If ¢ # p, then the Sylow g-subgroup 7}, of T has a
subgroup X of order ¢". Hence |HX : H| = ¢". Therefore, G satisfies Z,. [

Proof of Theorem 15. Only the sufficiency of the condition is in doubt. We
argue by induction on |G|. Let G be a soluble group satisfying Z, for all
primes p, and assume that for all soluble groups 7" satisfying Z, for all primes
p with |T| < |G|, T satisfies Y. By Lemma 20, G is p-supersoluble for all
primes p. Therefore G is supersoluble.

Let g be the largest prime dividing |G|. Then G has a normal Sylow
g-subgroup . Since @) < Oy (G) for every prime p # ¢, we have that G/Q
satisfies Z, for every p # ¢ by Lemma 18. Clearly, G/Q satisfies Z,. The
induction hypothesis implies that G/@ is a Y-group. Consequently, if G, is
a Hall ¢’-subgroup of G, then G, being isomorphic to G/Q, satisfies ).

Let H be a subgroup of G and let r be a prime number dividing the
|G : H|. We prove that there exists a subgroup K of G such that H <
K and |K : H| = r. Consider a Hall ¢’-subgroup H, of G. It follows
that H = Hy(H N Q) and H N @ is a normal Sylow g-subgroup of H. In
particular, Hy < Ng(H N Q). On the other hand, since H N Q) < O,(G) and
G satisfies Z,, by Lemma 22, there exists a Hall ¢’-subgroup G, of G such
that Gy < Ng(HNQ). Since G is a Hall ¢’-subgroup of No(HNQ) and H,
is a ¢’-subgroup of Ng(H N @), there exists an element x € Ng(H N Q) such
that Hy < GY,. Since G, normalises H N @, there is no loss of generality in
assuming that Hy < Gy.

Suppose that r # ¢. Since G satisfies ), there exists a subgroup L of
Gy such that Hy < L and |L : Hy| = r. In this case, (H N Q)L : H| = r.
Assume that » = ¢. Consider a piece of chief series 1 = Ny < N; < Ny <
-+ < N,, = Q of G and let i be the first index such that NN; is not contained



in HNQ. It follows that |N;H : H| = q. Consequently, G is a )-group. This
completes the proof. n

Proof of Theorem 16. Let § be a formation contained in the class Z,. As-
sume that G is a group such that G € §, but G is not p-nilpotent. Since § is
a formation, we have that H = G/O, (G(p)) belongs to §. By Theorem 13,
H(p) is a normal Sylow p-subgroup of H such that for every subgroup X of
H(p), H= H(p) Ng(X). On the other hand, since § is a formation, we have
that H x H € §. Let D be a diagonal subgroup of H(p) x H(p). Since H x H
satisfies Z,, we have that D is normalised by a Hall p’-subgroup of H x H
by Lemma 22. This Hall p’-subgroup can be assumed to be equal to @ x @,
where () is a Hall p’-subgroup of H. But () does not centralise H(p) because
H is not p-nilpotent. Let y € H and hy € H(p) such that hy = hY{ # hy. We
have that (hy, h1)®¥) = (hy, hy) € D and so (hy, hy) " (hy, he) = (1, h] hy) is
a non-trivial element of D in the second factor of H(p) x H(p). This contra-
diction shows that § must consist only of p-nilpotent groups, as desired. [

Proof of Theorem 4. Assume that G satisfies ). It is clear that G is super-
soluble, because all maximal subgroups of G have prime index (see [11, VI,
9.5]). Moreover G satisfies Z, for all primes p by Theorem 15. By The-
orem 13, G satisfies Z, for all primes p. Then G is p-supersoluble for all
primes p. In particular, G is supersoluble. Hence the derived subgroup G’ of
G is nilpotent. In particular, G™ is nilpotent.

Now we prove that G™ is a Hall subgroup of G. Since G™' = (G(p) | p €
P), we have that G™* contains a Sylow p-subgroup of G for every prime p such
that G is not p-nilpotent. If G*' is not a Hall subgroup of G, there exists
a prime ¢ such that the Sylow g-subgroup of G is non-trivial and is not a
Sylow g-subgroup of GG. In particular, G is not g-nilpotent. This implies that
a Sylow g-subgroup of G is contained in G™, which is impossible. Therefore
G™ is a Hall subgroup of G. Let 7 be the set of primes dividing G™ and
consider a subgroup H of G™. Since G™ is nilpotent, we have that H is
nilpotent and H can be expressed as a direct product H = H,, X --- x H,
of its Sylow subgroups. We prove by induction on k that H, x ---x Hp,,
1 < k < r, is normalised by a Hall 7’-subgroup of G. The result is clear if
k = 1, because G = G(p;) Ng(H,,) = G"'Ng(H,,) inasmuch as G satisfies
Z, . Assume now that H, x---x H,, _ is normalised by a Hall 7’-subgroup
T of G. The subgroup H,, is normalised by a Hall 7’-subgroup 73 of G.
Since all Hall 7’-subgroups of G are conjugate and G = G™T, there exists
an element g € G” such that Ty = T9. Since G™ is nilpotent, g = g, * - * Gp,,

where t = |r|. Moreover, (Hp, X --- x H,_ )% = H, x ---x H, . and
—1
Hg};l — Hy?* . Consequently both H,, x ---x H,  and H, are normalised
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by the Hall 7'-subgroup 7%= . It follows that H,, x --- x H,, is normalised
by T9%. By induction, it follows that H is normalised by a Hall 7’-subgroup
of G and so G = G N¢g(H).

Conversely, assume that the nilpotent residual L of G is a nilpotent Hall
subgroup of G and that for all subgroups H of L, G = LNg(H). In this
case, it is clear that G is soluble. We prove that G satisfies Z), for all primes
p. Let p be a prime and suppose that G is not p-nilpotent. Then a Sylow
p-subgroup P of G is contained in L and so in the p-nilpotent residual G(p)
of GG, because otherwise G would have central p-chief factors. Let H be
a p-subgroup of G(p), then H is centralised by the Hall p’-subgroup X of
L. Clearly, G(p) = P because L is nilpotent. Therefore G = LNg(H) =
G(p)X Ng(H) = G(p) Ng(H). This shows that G satisfies 2 for all primes
p. Applying Theorems 13 and 15, it follows that G is a Y-group. The proof
of the theorem is now complete. O

3 Examples

The details of the following two examples can be found in [14, pages 201 and
202].

Example 23. Let G = (z,y,2 | 23 = 23 = ¢* = (2y)? = 1,22 = z2,y2 =

zy). G is isomorphic to S5 x C5, where Ss is the symmetric group of degree 3
and Cj is the cyclic group of order 3. Put H = (zz) and note that |G : H| = 6
but G does not contain a subgroup K such that |K : H| = 2. Thus G does
not satisfy Z,. In particular, G is not a Y-group.

Example 24. Let X = (a,b,c | a® =0 = = 1,[a,b] = ¢,ca = ac,bc =
cb) be the nonabelian group of order 27 of exponent 3. Then X has an
automorphism ¢ of order 2 such that a’ = a=!, b' = b7, and ¢! = c. Let
G = [X](t) be the semidirect product of X by (¢). Then G has order 54,
®(G) = Z(G) = (¢), and G is a Y-group. Also note that (a,t) = S, so that
(a,t) x {(c) is a subgroup of G which is isomorphic to S5 x C3 and hence is
not a Y-group. Note that G satisfies Z5, but (a,t) x (¢) does not satisfy
Z5. Then property Z5 is not inherited by subgroups. Moreover, subgroups
of Y-groups are not necessarily )-groups.
In particular, X is a Y-group which is not a PST-group.
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