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ABSTRACT
The incorrect analysis of the flow distribution through HVAC

duct-networks has an economical and environmental impact.
The existence of negative head loss coefficients at branched junc-
tions poses a difficulty. However the dissipated energy is inher-
ently positive and simplifies the solution. The paper explores
the use of a variational method based on the minimization of the
dissipated mechanical energy to find the actual steady-state flow
distribution through a network. To our knowledge, Robert Niven
was the first to propose/explore this idea but unfortunately dis-
carded the method. The paper begins with a short explanation,
afterwards extends previous outcomes [1] and ends with an ex-
ample.

INTRODUCTION
The Minimum Entropy Production principle (MinEP) is an

approximate variational characterization of steady states for ther-
modynamically open systems maintained out of equilibrium.
Originally formulated within the framework of linear irreversible
thermodynamics [2]. Along the years afterwards, many authors
have tried to apply it to different fields of science. In concrete,
much more recently, Robert Niven focused on its application to
flow networks. He arrived close to our proposal in [3], but unfor-
tunately discarded it as general method.

Our approach is very practical and stems from computation
difficulties with traditional methods, mainly in HVAC return
networks. The cause of the difficulties is the possible appear-
ance of negative head loss coefficients in branched junctions (see
Schmandt and Herwig [4] or [5]). This phenomena also occurs
in other flow systems [6].

The operating point of a duct-network usually is found by in-
tersecting the fan curve with the equivalent resistance curve of
the network system. During iteration, while trying to find the
latter, it may happen that the resistance at some section becomes
negative [5] and therefore a special search algorithm must be de-
vised. The method proposed was devoted, among other purposes,
to simplify this.

NOMENCLATURE

ṁ [kg/s] Mass flow rate
w [J/kg] Work transfer per unit of mass
em [J/kg] Mechanical energy per unit of mass
PT [W] Power
Ṡ [W/K] Entropy rate
p [Pa] Pressure
T [K] Temperature
u [J/kg] Internal energy por unit of mass
v̄ [m/s] Mean velocity
z [m] Height
g [m/s2] Gravitational acceleration
L [m] Length
D [m] Diameter
nsect [-] Number of network sections
sign() [-] Sign function

Special characters
α [-] Correction factor for the kinetic energy (laminar = 2, turbulent≈ 1)
ϕ [J/kg] Mechanical energy dissipation per unit of mass
ϕ̂ [J/m3] Mechanical energy dissipation per unit of volume
Φ̇ [W ] Dissipation rate
ψ j [-] Volume flow ratio V̇j/V̇T at section j
li [-] Volume flow ratio V̇li/V̇T at loop i
ρ [kg/m3] Density
ε [-] Roughness
φ [-] Roughness scale
◦ [-] Function composition
D [-] Total derivative

Subscripts
sh Shaft
gen Generated
h Hydraulic
f it Fit value

THE ENERGY DISSIPATION
It is well known that the energy balance from point 1 to 2 in a

conduit can be expressed per unit of mass, for an incompressible
fluid, as:

(u2−u1)+

(
p2

ρ
− p1

ρ

)
+

(
α2 · v̄2

2
2
− α1 · v̄2

1
2

)
+(g · z2−g · z1) =

=−wsh,12 +q12

(1)



where wsh,12 and q12 are the shaft work and the heat transferred
between both points, respectively. In this case the internal energy
u changes due to the heat transfer and/or the irreversible conver-
sion of mechanical energy into internal energy, which we call
energy dissipation. Following Herwig et al. [7] equation (1) can
be rewritten in a split form as:

(
p2

ρ
− p1

ρ

)
+

(
α2 · v̄2

2
2
− α1 · v̄2

1
2

)
+(g · z2−g · z1) = ∆em,21 =

=−wsh,12−ϕ12

(u2−u1) = q12 +ϕ12

(2)

where em = p/ρ+αv̄2/2+ g · z. Equation (2), makes more ex-
plicit the previous statement by using the ϕ symbol for the dissi-
pated energy. It is the extended Bernoulli’s equation. Notice that
ϕ > 0. The rate of energy dissipation is given by:

Φ̇ = ϕ · ṁ (3)

Without lossing generality, we assume that the fluid and the sur-
roundings remain at the same temperature. Therefore ϕ and Φ̇

are related to the entropy generation as:

ϕ = T · Ṡgen/ṁ

Φ̇ = T · Ṡgen = ṁ ·ϕ = V̇ ·ρ ·ϕ = V̇ · ϕ̂
(4)

Herwig et al. in [8] proposed to relate the dissipation inside
straight conduits to the Darcy-Weisbach friction factor fD as:

ϕ12 = fD ·
L12

Dh︸ ︷︷ ︸
C

· v̄
2

2
, ϕ̂12 = fD ·

L12

Dh
· ρv̄2

2
(5)

Finally, it can be shown (see [8] or [1]), that the pressure drop is
related to the dissipation as:

∆p12 = p1− p2 = ϕ̂12 = ϕ12 ·ρ (6)

which corresponds, although written differently, to equation
(3.12) in [9].

THE ENERGY DISSIPATION MINIMISATION
Tree-shaped networks

The methods employed in finding the steady-state of a net-
work, make explicit use of the energy and mass conservation.
On one hand, the energy must be conserved along any path join-
ing two points. It is usually stated: “the head change (energy
per unit of fluid weight) in a closed loop must be zero”. On the

other, at each node the ingoing mass flows must be equal to the
outgoing ones.

Assuming that all the components of the network are passive
(i.e. wsh = 0 see equation (2)) ∆em,21 = −ϕ12. For the loop
shown in figure (1), the energy conservation is written just as:

1

2
3

4

5
6

Figure 1. Example of a network loop.

0 = ϕ12 +ϕ23 +ϕ34−{ϕ54 +ϕ65 +ϕ16} (7)

The following question arises: how could eq.(7) be also obtained
for each independent loop of a flow network but using the energy
dissipation minimisation? The detailed answer for tree shaped-
networks can be found in [1]. Here we summarise the main ideas.

The network energy dissipation rate can be computed as:

Φ̇ = (ϕT ·ρ) ·V̇T = ϕ̂ j ·V̇T =
nsect

∑
j=1

(ϕ j ·ρ) ·V̇j =
nsect

∑
j=1

ϕ̂ j ·V̇j (8)

where V̇T is a constant reference volume flow rate. Dividing
equation (8) by V̇T we get (note: assuming all V̇ are positive):

F(ψ1,ψ2, . . . ,ψnsect) = ϕ̂T =
nsect

∑
j=1

ϕ̂ j ·ψ j (9)

However, the ψ j are not independent in equation (9). In what
follows we use xi for the independent variables. Usually one or
more flow rates are imposed or fixed as a constraint. The problem
is finding the steady-state distribution of this forced flow through
the network. For instance, tree-shaped duct networks like the
one in figure (2) were analysed in [1]. In this case V̇T represents
the design supply or return total flow rate. The independent vari-
ables are x1 and x2, since the mass conservation is included as a
constraint x1 +x2 +(x3) = 1. One may take instead, another two
variables: l3 = x1 and l2 = x2 + l3 (since l1 = 1)1. For HVAC
duct networks the xi, defined so, are meaningful since are also
the required supply or return flow rates at the grilles. In any case,
eq.(9) can be written as:

(F ◦g)(x1,x2, . . .) = F(ψ1(x1,x2, . . .), . . . ,ψnsect(x1,x2, . . .))
(10)

1Notice the linear relationship between the variables x and the loop ones l
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Figure 2. HVAC tree-shaped duct network. A: supply or return
fan. B: room air. Dotted lines indicate pseudo-loops. White
circles mean air grilles.

where g is the linear map g :~x→ ~ψ. For instance, in figure (2)
the map is given by:


ψ1
ψ2
ψ3
ψ4
ψ5

=


1 1 1
1 1 0
0 0 1
1 0 0
0 1 0

 ·
0

0
1

+
 1 0

0 1
−1 −1

 ·[ x1
x2

] (11)

The stationarity condition of the scalar equation (10) with respect
~x, is written by using the chain rule as:

D(F ◦g) = (DF ◦g) ·Dg =~0 (12)

For the network of figure (2), Dg can be easily obtained from
equation (11) and it is shown in eq.(13).

Dg =


0 0
1 1
−1 −1

1 0
0 1

 (13)

But, what about the other term (DF ◦ g)?. Next section gives a
brief answer.

Energy minimisation and the fixed point problem2

It is clear that the information in g is just topological and
contains the mass conservation, while F contains also, the way
the net dissipates. Intuitively, one may see that each column of
eq.(13) takes into account the energy balance for two indepen-
dent loops (see figure (3))2. If by ϕ̂S j we mean the dissipation
within section j, then each component of equation (12) has the
form:

ϕ̂S2 + ϕ̂S4− ϕ̂S3 = 0
ϕ̂S2 + ϕ̂S5− ϕ̂S3 = 0

(14)
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Figure 3. Loop energy balances eqs.(13),(14) as solid lines.
Left: first column. Right: second column.

which are just the energy conservation equations (see eq.(7)).
However, in order to get this result, the dissipation function ϕ̂

must have a definite form. In other words, the equations (14)
are obtained from equation (12) if and only if the following is
fulfilled:

ϕ̂ j = K̂ j · |ψ j|m
K̂ j > 0, and constant
m ∈ {R− [−1,0]} and must be the same for all the network.

(15)
To our knowledge, Niven [3] was the first to deduce this. Un-
fortunately Niven discarded it as a generally applicable result.
However in [1] we proved that, in fact, this is a more far-reaching
outcome which, in our opinion, deserves a careful look. More-
over, if the previous conditions are fulfilled, then the stationary
point of eq.(12) is a minimum2.

Therefore equation (9) must have the form (note: ψ j > 0):

F(ψ1, . . . ,ψnsect) = (F ◦g)(x1, . . . ,xn) =
nsect

∑
j=1

K̂ j ·ψm+1
j > 0

(16)
After the maths: what is the physical interpretation of K̂ j?. To
gain insight, let us take the simplest (and most studied) network
component: a straight conduit. Figure (4) shows at the top, the
well-known Moody’s chart for the Darcy’s friction factor fD (ex-
tended for non-monotonical cases [10]). The fD is represented
versus the Reynolds number Re and the curves are parametrised
by the relative roughness ε/D. The bottom curve in the same
fig.(4), does represent the same Moody’s chart at its top (see de-
tails in [11] by Afzal)(although in a non-logarithmic scale). The
difference is that the x-axis is now what Afzal called roughness
Reynolds, Reφ = Re/φ. He called the bottom curve, the universal
relation for the friction factor in pipes. The φ was named rough-
ness scale and for completely smooth conduits, i.e. ε = 0, has
value: φ = 1. In short, φ indicates how rough is seen the con-
duit by the flow. The higher the Re the more rough the conduit.
The universal curve can be adjusted very accurately, for a wide
range of Reφ, to a power-law (for instance, Re∈ [15 ·103,6 ·105],
K f it = 0.185, m f it =−0.20, Rsquared = 0.998):

fD = K f it ·Re
m f it
φ

=
K f it

φ
m f it
·Rem f it (17)
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Figure 4. Darcy’s friction factor fD. Top: Modern Moody’s
chart by [10]. Bottom: Universal relation by Afzal [11].

Therefore equation (5) , assuming v̄ · (πD)/4 = V̇ , turns into:

ϕ̂12 =
K f it

φ
m f it
·
(

4
νπD

)m f it

·
(

8ρL
π2D5

)
·V̇ (2+m f it )

T · |ψ|(2+m f it ) (18)

Eq.(18) has the form ϕ̂ = K̂ · |ψ|m. Moreover, if the conduit is
smooth then K̂ is also a constant since φ = 1. This means that,
for a certain fluid, in order to achieve a certain K̂ we may take
the geometry as an external control {L, D}. Therefore for a flow
system made up of completely smooth conduits, minimisation
using eq.(18) would provide the flow distribution through the net.
However if the conduit is rough, then K̂ has also another internal
control φ which depends, in turn, on the flow rate. In practice, it
is not possible to keep K̂ constant by using L, D and φ. There-
fore the original minimisation problem turns into a fixed-point
one as follows: 1) A vector (K̂1, . . . , K̂nsect) is assumed. 2) Pro-
ceed with a minimisation of the dissipation function eq.(16). Its
output is a flow distribution through the network. 3) If the pre-
viously assumed K̂ j were not compatible or coherent with the
obtained flow rates then the vector (K̂1, . . . , K̂nsect) should be re-
computed for the new flow rates. The process is repeated from

step 2) until this vector does not change2. The solution to the
fixed-point problem, corresponds to the minimum of the dissipa-
tion function where each dissipation point is computed using the
assumed flow distribution at that point.

Another way to see the aforementioned, lies in changing the
point of view. Notice that if the power-law fit eq.(17) to the
Afzal’s universal relation, was not used, then:

K̂12 = fD ·
(

8ρL
π2D5

)
·V̇ 2

T , ϕ̂12 = K̂12 · |ψ|2 (19)

and in this case even for the case of smooth conduits, the energy
dissipation minimisation would become a fixed value problem.
However we know, by using the fitting, that the solution corre-
sponds to the minimum of the dissipation function.

Therefore, the role of eq.(16) seems to be that of a measure.
This measure can be calibrated or tuned by the exponent m. If the
physical dissipation mechanism through all the network compo-
nents, can be accurately tuned to a concrete value m∗, then the
steady-state flow distribution follows from just a minimisation
step. Otherwise the problem becomes a fixed-point one.

Next subsection generalises the previous result for general
flow networks.

General flow networks
Instead of using a general formulation, we will use an example

network like the one shown in figure (5). It has four independent
loops.

S1 S2

S4

S7

S9 S10
S8

S3 S5

S6

S11 S12

Figure 5. Example network.

Now they are going to be used as independent variables x in-
stead of the outlet/inlet flows at the grilles of a duct network. The
matrix M which maps column vector~l to ~ψ is :

MT =


1 0 1 1 0 1 0 0 0 0 0 0
0 1 0 −1 1 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 1 1 0 1 0
0 0 0 0 0 0 −1 0 −1 1 0 1

 (20)

Let us assume that the flow in section S6 is imposed and equal
to V̇6 = V̇T . That means that there exists a constraint between the

2For the details the reader is referred to [1]



volume flow rates of the loops: V̇6 = V̇l1 − V̇l3 . Divinding by V̇T
we get 1 = l1− l3 . Therefore:


ψ1
. . .

ψ6 = 1
. . .
ψ12

= M ·


1+ l3

l2
l3
l4

= M ·




1
0
0
0

+


l3
l2
l3
l4


 (21)

Now equation (21) can be rewritten, in a reduced form, as:

~ψ(6) = M(6) ·

 l2
l3
l4

+A(6) (22)

By~b(6) we mean that component 6 of vector~b has been removed.
Similarly, in case of matrix M the subscript (6) means that the 6-
row has been removed. Equation (22) explicitly has the form:



ψ1
ψ2
ψ3
ψ4
ψ5
ψ7
ψ8
ψ9
ψ10
ψ11
ψ12


=



0 1 0
1 0 0
0 1 0
−1 1 0

1 0 0
1 0 −1
0 1 0
0 1 −1
0 0 1
0 1 0
0 0 1

·



 l2
l3
l4

+



1
0
1
1
0
0
0
0
0
0
0


(23)

The second column of the matrix in equation (23) is obtained by
adding columns 1 and 3 of matrix M (eq. (20)). Taking l2 = x1,
l3 = x2 and l4 = x3 as independent variables, equation (23) is
now the linear map g :~x→~ψ. Its derivative Dg, similarly, shows
that now the minimisation of the dissipation (if conditions (15)
are valid) is equivalent to applying the energy conservation to the
three loops shown on the left in figure (6).

S1 S2

S4

S7

S9 S10
S8

S3 S5

S11 S12

S1 S2

S7

S9 S10
S8

S3 S5

S11 S12

Figure 6. Left: figure (5) but V̇6 = V̇T = constant. Right: addi-
tionally V̇4 = 0.5V̇T .

Let’s extend this. It is not necessary to fix just one volume
flow rate. For instance, if we additionally force that ψ4 = 0.5,

(i.e., V̇4 = 0.5 · V̇T = 0.5 · V̇6) then we must proceed as before.
Now the new constraint is l3− l2 +1 = ψ4 = 0.5 (see eq. (23)).
By substituting l2 = l3 +0.5 into equation (23), g becomes:



ψ1
ψ2
ψ3
ψ5
ψ7
ψ8
ψ9
ψ10
ψ11
ψ12


=



1 0
1 0
1 0
1 0
1 −1
1 0
1 −1
0 1
1 0
0 1

·



[
l3
l4

]
+



1
0.5
1

0.5
0.5
0
0
0
0
0


(24)

On the right of figure (6) the two independent loops are shown.
The dissipation minimisation with respect x1 = l3 and x2 = l4 is
equivalent to the energy conservation applied to both loops. As
a final remark, another map h is needed h :~ψ→ (|ψ1|, . . .). The
general form for eq.(16) thus becomes eq.(25):

(F ◦h◦g)(x1, . . . ,xn) =
nsect

∑
j=1

K̂ j · |ψ j|m+1 > 0 (25)

The latter corrects automatically a sign change of any term in the
energy conservation equations, when any flow sense is reversed.
For instance the first row in eq.(14) would become:

sign(ψ2)ϕ̂S2 + sign(ψ4)ϕ̂S4− sign(ψ3)ϕ̂S3 = 0 (26)

NUMERICAL EXAMPLE
Let us take the example on the right of figure (6). All sections

are straight conduits with the same roughness. The fluid is air:
ν = 1.49 · 10−5[m2/s] ρ = 1.21[kg/m3]. The V̇6 is fixed so that
v̄6 = 7[m/s]. Table (1) shows the sizes of the network shown in

S j: Section index j L[m]

1,2,3,5,8,10,11,12 10.0

7,9 14.2

S j: Section index j D[m]

1,3,8,11 0.6

2,5,10,12 0.4

7,9 0.3
Table 1. Sizes of the duct network shown in figure (7)

figure (7). Notice that the effect of the branched junctions on the
flow is neglected.

The minimisation method employed was the Nelder-Mead’s
algorithm (with a tolerance in the search space of 10−9). The



results are shown in table (2) Notice that since the dissipation
of a straight duct is symmetrical with respect to the flow sense,
reversing the sense of the flows has the same solution. The top
of table (2), shows the dissipation ϕ̂T and the total dissipated
power PT , under the imposed constraints. The results have been
obtained as a fixed-point problem. The exponent m used in the
dissipation function does not actually matter since the solution
is always the same. Figure (8) shows a 3D plot of the specific
dissipation ϕ̂T as a function of x1 and x2. It can be seen that the
dissipation of the network has a minimum at the solution of the
fixed-point problem.

ε = 0.14
x1 =−0.4125468
x2 =−0.1562525

ϕ̂T = 271.48[Pa]
PT = 537.315[W ]

Section index j ψ j Re

1 0.587453 163806.0

2 0.087453 36880.6

3 0.587453 165160.0

5 0.0874532 36880.6

7 0.243706 137034

8 -0.412547 115986

9 -0.256294 144112

10 -0.156252 65894.6

11 -0.412547 115986

12 -0.156252 65894.6
Table 2. Steady-state distribution of the flow for the air duct
network of fig.(7)

S1

S2

S7

S9

S10S8

S3
S5

S11 S12

Figure 7. Network made up of straight ducts exclusively.

CONCLUSION
A previous result [1] for tree-shaped networks has been ex-

tended to general flow networks. The new ideas of the method
have been introduced and, in our opinion, they could be of prac-
tical use. In the near future, it will be shown how the branched
junctions, which triggered this research, fit into this MinEP
method.

Top

Figure 8. Example. Views of ϕ̂T as a function of x1 and x2.
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