
RoMa at HAHA-2021: Deep Reinforcement
Learning to Improve a Transformed-based

Model for Humor Detection

Mariano Rodriguez1, Reynier Ortega-Bueno2, and Paolo Rosso2

1 Universidad de Oriente, Cuba
mjasoncuba@gmail.com

2 PRHLT Research Center, Universitat Politècnica de València, Valencia Spain
{rortega,prosso}@prhlt.upv.es

Abstract. In this paper, we describe our system we participated in the
shared task “Humor Analysis based on Human Annotation (HAHA) at
IberLEF-2021 with. Our system relies on data representations learned
through fine-tuned neural language models. The representations are used
to train a Siamese Neural Network (SNN) which learns to verify whether
or not a pair of tweets belong to the same or distinct classes. A key point
in our model is the heuristic used to create the pair of messages in the
training and test phases. For that, we used a Deep Reinforcement Learn-
ing (DRL) strategy that aims at identifying a set of optimal prototypes
in each class. In general, the results achieved are encouraging and give
us a starting point for further improvements.

Keywords: Humor recognition · Deep Reinforcement Learning · Siamese
Neural Networks

1 Introduction

Humor is an important part of human communication. Time ago a philosopher
had a conception establishing that humor, deep down, is a type of catharsis that
makes existence more bearable, like art. He said:

Perhaps I know best why it is man alone who laughs; he alone suffers so
deeply that he had to invent laughter. (Nietzsche, 1888)

Humor comes from a variety of sources, making it a real challenge to design a
computational model for addressing its automatic recognition on texts. Some-
times humorous texts use wordplays as an engine to provoke laughter, in other
cases they appeal to social, cultural, and commonsense backgrounds to produce

IberLEF 2021, September 2021, Málaga, Spain.
Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



funny response. In other cases it makes use of irony, satire, hyperbole and other
figurative devices to achieve its goals. The difficulty of the task increases when
language is short and informal like the one used in Twitter. All this raises in-
terest in humor recognition tasks within Natural Language Processing (NLP)
and Human-Computer Interaction (HCI). On this line, the HAHA Task: Humor
Analysis based on Human Annotation at IberLEF-2021 aims at computationally
recognizing humor in Spanish tweets [4].

In this paper, we adapt and re-evaluate the RoMa system [14] that we em-
ployed int Task 7 at SemEval21 [10] for addressing the task of humor recognition
in Spanish tweets. This architecture combines learned representations with an
SNN [1] to learn a metric for discriminating whether or not a pair of tweets
belong to the same class (i.e., humorous tweets and not humorous tweets). Also,
we considered applying a variation by introducing Deep Reinforcement Learning
[9] within its structure. We bring empirical evidence through experiments on the
human-annotated datasets that the DRL-based strategy outperforms the origi-
nal version of the RoMa system. The source code of the work is public available
on GitHub: https://github.com/mjason98/haha21

The paper is organized as follows: in Section 2 we briefly introduce the pro-
posed task and the main ideas that motivated our proposal. Section 3 presents
our proposed architecture and gives details about their modules. The experi-
ments and results are described in Section 4. Finally, in Section 5 we present our
conclusions and interesting directions for future work.

2 Background

The 2021 edition of the HAHA shared task, as part of IberLEF-2021, aims at
classifying humorous tweets written in Spanish. The first subtask is about Humor
Detection and proposes the problem of determining whether a tweet is funny or
not. An annotated corpus of tweets in Spanish was provided to carry out this
task. The dataset is composed of 24000 tweets, 9253 labeled as humor, and 14747
as not humor. In this work, we focused only on this subtask.

In previous works, specifically in HaHakathon at Semeval21, with the team
named RoMa, we presented a system to address the problem of humor detection,
based on SNN. The Siamese model (SiaNet) required a pair of messages as input
in both training and test phases. In that work, we transformed the classification
problem into a verification one, in which data is classified by comparisons with
two reference sets employing the SiaNet model. This algorithm can be split into
three main steps:

1) A Pretrained Language Model (PLM) was used to represent the tweets as
vectors. We used a transformer model [15] as PLM and fine-tune it on the
humor dataset to achieve a target-dependent representation of the data.

2) Vectors are separated into two classes: the first one contains the vectors
corresponding to tweets annotated as humorous, and the second contains
the opposite set. Then, a clustering algorithm is applied and a prototype set
is extracted for each class.



3) Finally, each element from the dataset is paired with a prototype generating
negative and positive examples (i.e., pairs from the same and opposite classes
respectively). These pairs are used for training the SiaNet model. When this
training process ends, the system is used to classify unlabeled tweets by
giving them the label of the closest prototype. The closeness of two messages
is measured by a distance function, in this case, the SiaNet.

The interest in Siamese architectures remains strong, so we decided to test
the performance of this algorithm (RoMa) in the HAHA humor task introducing
a variation in the second step.

The clustering algorithm used in RoMa was a graph-based method, and one
of the challenges with this approach was the threshold tuning in the graph con-
struction. In the RoMa system, we build a graph of β-distance, analogous to the
β-similarity graphs proposed in [6], for the humor and non-humor classes. The
nodes in the graphs represent the tweets from the training set and the edges join-
ing two nodes are weighted with the distance between them. In the β-distance’s
graph the edges with weights greater than the threshold β are removed, al-
lowing only the closest representations to be in the same connected subgraph.
Afterwards, communities are detected on the β-distance’s graphs employing the
InfoMap algorithm [5] which is based on the map equation [12]. This algorithm
reports a set of subgraphs whose nodes are paired with a flow value. For each
subgraph, the k nodes with the highest flow value are selected as prototypes.

The threshold is adjusted until the number of extracted prototypes lies within
a range. This interval is defined by two integers. In this work, as in RoMa, 200
and 300 were used. It is a fact that the performance of SiaNet in the task will be
linked to the quality and quantity of the extracted prototypes. A variation in the
threshold carries a different graph structure and, therefore, different prototypes.
We found out that the SiaNet model is very sensitive to these variations.

In this work we propose, to replace the clustering algorithm by a Deep Q-
Learning approach, where the number of prototypes is controlled by an upper
limit value set in advance. One advantage of this approach is that the rela-
tionships among tweets are learned, in contrast to the graph method where the
Euclidean distance was used to weigh the edges.

3 System Overview

We keep the first and third steps as well the modular schema of the RoMa archi-
tecture. This is the composition of an encoder module (Encoder) and a prediction
module (Classifier), which are trained independently. We replace the clustering-
based approach from the prototype selection phase by a Deep Q-Network (DQN)
method. In the following subsections we provide the most relevant details of our
system.

3.1 Encoder Module

The Encoder plays an important role because it is concerned with learning an
abstract representation that vanishes the colinearity between its features and



compresses the textual information on a single dense vector. The core of our
Encoder’s design is based on a Transformer model (TM). Our architecture differs
from RoMa system in the pretrained TM. Particularly, in this work we used
BETO [3] since HaHakathon was a challenge based on English tweets.

For fine-tuning the TM-based encoder we add an intermediate layer that
receives the vectors from the output sequence of the TM. On this sequence of
vectors, a normalized sum operation is applied. Then, an output layer makes
the final prediction for the targeted task. For each layer of the TM, a different
learning rate is set up, increasing it using a multiplier while the neural network
gets deeper. This multiplier increases 0.1 points from a layer Li to another Li+1.
We use this dynamic learning rate to keep most information from pre-training
at shallow layers and biasing the deeper ones to learn about the specific tasks.

3.2 Prototype Selection through Deep Q-Learning

The task of prototype selection is addressed using Deep Q-Learning [11], which is
a model-free reinforcement learning technique [13]. The reinforcement learning
algorithm, which is called the agent, learns by maximizing rewards in some
environment. At each time step t = (0, 1, 2, ..., n), the agent receives as input
data the state st, which is a snapshot of the environment. Then, the agent
evaluates that data and takes the action at, from a set of possible actions given
its current state. At the next time step, the environment gives a reward, rt+1,
to the agent and change itself to a new state st+1. The rewards are the only
learning signals the agent is given. Maximizing the total reward that the agent
receives is its goal.

Environment and States Our environment works with the vector represen-
tation of the tweets produced by the Transformer model. For every time step, it
gives to the agent the k-th vector vk and the currently candidate prototypes pti
in a list as state st:

st = (pt1 , pt2 , ..., ptM , vk) (1)

p0i = 0

where M is the total number of prototypes allowed, and k = 1 + (t mod T ) with
T the length of the training set.

Agent and Actions The agent was designed using two layers of Multi-head
Attention mechanism [15] and a feed-forward layer on top with the output size of
the total number of actions. We find the use of Multi-head Attention, in this case,
convenient since the state st is given by a list of vectors where the agent must
be related with all the current prototypes in order to learn relations allowing to
perform the best-rewarding action. We provide to the agent a total of M + 1
actions. In the first M actions ai we replace pti with the vector vt, and in the
last action aM+1 we ignore that vector.



Reward The reward was designed as follow:

rt+1 =

{
0, t mod W 6= 0

ACC(pt+11 , pt+12 , ..., pt+1M ), t mod W = 0 or t mod T = 0
(2)

where W is a hyperparameter and ACC a metric that measures the accuracy of
predicting the humor class on the validation set using the prototypes {pt+1i}.
The prediction operation can be described by equation 3, using the Euclidean
distance as Df instead of the SiaNet model.

3.3 Training the DQN Model

It is well known, that the training phase of deep reinforcement learning al-
gorithms often is strongly time-consuming. For that reason, we introduce the
parameter W in the reward design. The algorithm starts with W equal to 10%
of the training data size. We model a reward schedule such that for a set of
iterations index, W is increased by itself unless is greater than T . When the
environment produces a reward different than 0, is conducted an environment
reset, that is all the candidate prototypes are erased.

The increasing behavior of W represents an increment in the learning diffi-
culty. In this way, we induce the agent to archive good results with few examples
instead of waiting until all vectors are processed to get a reward. Therefore, fewer
training iterations are needed.

Nevertheless, the number of zero rewards is still huge, which motivates us to
introduce an Intrinsic Curiosity Module (ICM) [2] in our system at training time.
This imbues the agent with a sense of curiosity, facing the sparse reward problem
since the rewards in the environment are sparsely distributed. The process for
training the agent uses the strategies proposed in [16] with initially ε-greedy
policy and then softmax function.

After the agent finishes its training and the environment reset, the schedule
of W is ignored and k takes zero value. Then, interactions between the agent and
the environment start over until all vectors from the training set are processed.
Finally, the prototypes within the last environment state are used by SiaNet in
the third step. Remark that in contrast to RoMa, we do not run our prototype
selection method separately in the humor and not humor classes. In this case, it
accepts both classes as input, letting it to decide the number of prototypes for
each group from the total number.

3.4 Classification Module

The classification module architecture lies on SiaNet. This network consists of
two input messages and one output that indicate how distant they are according
to their representation [1]. Both messages are encoded by using the fine-tuned
Transformers model (see Section. 3.1). Later, each input is passed through two
dense layers with 32 and 16 hidden neurons each. Then, the representations



of the messages are compared to each other through a distance metric. The
specific features the model learns to extract, make that message representations
corresponding to opposite classes have a distance greater than the threshold
defined in the loss function used. Particularly, we used the Contrastive Loss [7]
with an empirical value threshold of 0.85.

For training SiaNet, the dataset needs to be processed for constructing pairs
of messages from the same class and pairs of messages from distinct classes. The
process to compound the pairs used remains equal to the one in [14]. During the
test phase, given an unlabeled tweet, we obtain the encoding of z by using the
Encoder. After that, we predict its label using the next equation:

ŷ = argmin
i
{Df (z, xi,j)} (3)

where xi,j is the jth prototype in the class i, i ∈ {no humor, humor}, and Df

our SiaNet.

4 Experiments and Results

In this edition of HAHA, the contest had development and evaluation phases.
Submissions of system predictions were allowed in both phases, but the official
results of the competition were only those from the second one. We use a 10-fold
validation strategy for hyperparameters tuning during the whole contest.

An epoch in the training process of the agent finishes once an environment
reset arrives. In this work, we use 2000 epochs. All learnable parameters for the
PLM, the agent, the ICM and SiaNet were trained using Adam [8]. As part of
the experiments, our system was tested on the classification tasks in previous
editions of HAHA. In Table 1 can be observed the performance of our system
in the 2018 and 2019 competitions, where F1 was used as evaluation metric.
Columns prototypes and icm represent the maximum number of prototypes and
the use of the ICM strategy. The last row shows the results using the graph-based
clustering algorithm (GBC) used by the RoMa system.

Table 1. Results of our systems in HAHA’18 and HAHA’19

system prototypes icm F1-(2018) F1-(2019)

DQN 100 yes 0.8256 0.8007
100 no 0.8256 0.8005
52 yes 0.8615 0.8201
52 no 0.8614 0.8201

GBC 276 - 0.8478 0.7982

Looking at Table 1, the results using ICM are similar as when it is omitted.
We hypothesize that W and the schedule over this parameter mitigates the ma-
licious consequences of the sparse reward in this particular environment-reward



pair design. Another hypothesis lies in the similarity of the states, produced by
the vector representation provided by the fine-tuned PLM. Both ideas need a
deeper analysis which we plan to explore in future works.

During the experiments, increased stability in SiaNet’s training was observed.
This is, small changes in the hyperparameters did not impact the model’s learn-
ing curve. This stability effect only occurred when prototypes produced by the
DQN agent were used instead of those generated by the RoMa method. Also,
better results were found using fewer prototypes. For the official submission, 52
prototypes with ICM was the best setting for our system.

4.1 Official Results

For the evaluation phase we submitted predictions made by our system as well as
predictions from the RoMa system. The one based on Deep Q-Network achieved
the best results among our submissions, ranking us in 7th place out of 17 teams
with F1-Score of 0.8583, whereas the best system reached 0.8850.

An interesting fact about the performance of our system was the negative
effect of increasing the number of prototypes. This effect should be the opposite
since having more references to compare an unseen message must yield more
steady predictions. We hypothesize that one cause is the agent-actions design.
In our model, the number of actions is equal to the number of prototypes plus
one, which implies the use of considerably large action space and induces the
agent to learn a more complex strategy.

5 Conclusions

In this work, we presented a model for addressing the humor recognition in
Spanish tweets. The model employs the deep representations learned by Trans-
formers models for encoding the tweets. These representations are used by a
Siamese Neural Network combined with a Deep Q-Network prototype selection
method. A key point of our system was the schedule creation within the re-
ward design to reduce training time. The achieved results show that our system
outperformed the original version of RoMa, based on graph clustering.

As future work, we will analyze why ICM did not provide the expected im-
provement during our training process since lots of zero rewards were present.
Also, we propose through experimentation with a non-fixed size action space, to
prove the hypothesis of the agent-actions design problem presented in Section
4.1. Another direction we plan to address is exploring the use of more robust
Deep Reinforcement Learning algorithms and reward policies.

6 Acknowledgments

The work of the second and third authors was in the framework of the research
project MISMIS-FAKEnHATE on MISinformation and MIScommunication in



social media: FAKE news and HATE speech (PGC2018-096212-B-C31), funded
by Spanish Ministry of Science and Innovation, and DeepPattern (PROME-
TEO/2019/121), funded by the Generalitat Valenciana.

References

1. Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger,
E., Shah, R.: Signature Verification Using a “siamese” time delay Neural Network.
International Journal of Pattern Recognition and Artificial Intelligence 7(04), 669–
688 (1993)

2. Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., Efros, A.A.: Large-
scale Study of Curiosity-Driven Learning. arXiv preprint arXiv:1808.04355 (2018)

3. Cañete, J., Chaperon, G., Fuentes, R., Ho, J.H., Kang, H., Pérez, J.: Spanish Pre-
Trained BERT Model and Evaluation Data. In: PML4DC at ICLR 2020 (2020)

4. Chiruzzo, L., Castro, S., Góngora, S., Rosá, A., Meaney, J.A., Mihalcea, R.:
Overview of HAHA at IberLEF 2021: Detecting, Rating and Analyzing Humor
in Spanish. Procesamiento del Lenguaje Natural 67(0) (2021)

5. Edler, D., Anton, E., Rosvall, M.: The MapEquation Software Package. URL:
https://mapequation. org (2020)

6. Garcia, R.J.G.: Algoritmos de Agrupamiento sobre Grafos y su Paralelización.
Ph.D. thesis, Universidad Jaume I (2005)

7. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality Reduction by Learning an
Invariant Mapping. In: 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06). vol. 2, pp. 1735–1742. IEEE (2006)

8. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

9. Li, Y.: Deep Reinforcement Learning: An Overview. arXiv preprint
arXiv:1701.07274 (2017)

10. Meaney, J., Wilson, S., Chiruzzo, L., Lopez, A., Magdy, W.: SemEval 2021 Task
7: Hahackathon, Detecting and Rating Humor and Offense. In: 15th International
Workshop on Semantic Evaluation (2021)

11. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602 (2013)

12. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The Map Equation. The European
Physical Journal Special Topics 178(1), 13–23 (2009)

13. Sutton, R.S.: AGB: Reinforcement Learning: An Introduction. A Bradford Book
(1998)

14. Tamayo, R.L., Rodriguez, M.J., Bueno, R.O., Rosso, P.: Roma at Semeval-2021
Task 7:A Transformer-based Approach for Detecting and Rating Humor and Of-
fense. In: Proceedings of the 15th International Workshop on Semantic Evaluation
(2021)

15. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is All you Need. arXiv preprint arXiv:1706.03762
(2017)

16. Zai, A., Brown, B.: In: Deep Reinforcement Learning in Action, pp. 223–234. Man-
ning Publications (2020)


