
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/190568

Vico Bondía, F.; Cabedo Fabres, M.; Ferrando Bataller, M.; Antonino Daviu, E. (2021).
Optimization of 2D Heterogeneous Lenses via BFGS and Volume Integral Equation Method.
IEEE. 1657-1658. https://doi.org/10.1109/APS/URSI47566.2021.9704775

https://doi.org/10.1109/APS/URSI47566.2021.9704775

IEEE



Optimization of 2D Heterogeneous Lenses via
BFGS and Volume Integral Equation Method
Felipe Vico-Bondia, Marta Cabedo-Fabrés, Miguel Ferrando-Bataller, Eva Antonino-Daviu,

Departamento de Comunicaciones
Universitat Politecnica de Valencia

Valencia, Spain
felipe.vico@gmail.com

Abstract— In this paper we apply a quasi-Newton optimization
algorithm called BFGS to optimize heterogeneous lenses in 2D by
using the volume integral equation method. Different preliminary
designs are presented with frequency selective focal point.

I. INTRODUCTION

Volume integral equations have been widely used to solve
electromagnetic problems with heterogeneous dielectrics. See
[1][2]. In all cases we need a fast and efficient convolution
with the free-space Green’s function algorithm. In this paper
we apply the recently developed method (see [3][4]) to analyze
homogeneous and inhomogeneous lens problems.

II. MATHEMATICAL FORMULATION

Maxwell’s equations for inhomogeneous medium in time
harmonic regime are the following:

∇×E(x) = iωµ(x)H(x), x ∈ R3

∇×H(x) = −iωε(x)E(x)
(1)

In general we can write the solution as a sum of two terms:
E = Einc+Escat,H = H inc+Hscat the incoming field and
the scattered field where the incoming field Einc,H inc verifies
the free space Maxwell’s equations and the scattered field
Escat,Hscat verifies the radiation condition at infinity. This
problem can be reformulated by a volume integral equation
(see [4]). In this paper we will consider z-invariant geometries
with TE waves and µ(x) = µ0. In that case, the differential
equation can be rewritten as:

∆u(x) + ω2ε(x)µ0u(x) = 0, x ∈ R2 (2)

and the scalar u(x) = E(x) · ẑ
In that case, the solution can be written as:

uscat(x) =

∫
D

gk(x− y)σ(y)dy (3)

where the source σ verifies the following volume integral
equation:

σ + (ω2ε(x)µ0 − ω2ε0µ0)

∫
D

gk(x− y)σ(y)dy =

= −(ω2ε(x)µ0 − ω2ε0µ0)uinc(x)

(4)

And the Green’s function for 2D is gk(r) = 1
4iH0(kr).

Here, r = ‖r‖2 and H0 denotes the zeroth order Hankel
function of the first kind.

III. WINDOWED SPECTRAL DISCRETIZATION

A critical step in all integral equation problems is the
convolution with the free space Green’s function:

u(x) =

∫
D

gk(x− y)σ(y) dy. = gk(x) ∗ σ(x) (5)

Using the convolution theorem and a uniformly equispaced
grid one can use the FFT to evaluate fast the convolution
integral with a cost O(Nlog(N)).

that is

u(x) = gk(x) ∗ f(x) = F−1 (Gk(s) ·F (σ)) (6)

where
Gk(s) =

1

|s|2 − k2
(7)

F here denotes the Fourier transform. The principal diffi-
culty in employing Fourier methods is the singularity 1

|s|2−k2

in the integrand. It is possible to compute accurately this
integral using the nonuniform FFT with high order quadrature
rules for the singularity (see [5] and the references therein).
In this paper we use the method presented in [3] to compute
fast integral convolutions for any free space Green’s function
in 2D and 3D for any elliptic PDE.

Let us suppose that the working space is the unit box D ⊂
Rd. Then, the maximum distance between any source and
target point in D is

√
2 in 2D and

√
3 in 3D. We define

gLk (r) = gk(r)rect
( r

2L

)
(8)

with rect(x) defined to be the characteristic function for the
unit interval:

rect(x) =

{
1 for |x| < 1/2
0 for |x| > 1/2.

If we set L >
√
d in d dimensions, then the solution (5) is

clearly indistinguishable from

u(x) = gk(x)∗f(x) = gLk (x)∗σ(x) = F−1
(
GL

k (s) ·F (σ)
)

(9)



where now GL
k (s) is a smooth function (see [3])

Since gLk is compactly supported, the Paley-Wiener theorem
implies that its Fourier transform GL

k is entire (and C∞).
Moreover, it is straightforward to compute analytically the
functions GL

k (s) in 2D and 3D. Finally, the discretization by
the trapezoidal rule on the domain [−N

2 ,
N
2 ]d permits rapid

evaluation using nothing more than the FFT.

IV. NUMERICAL EXAMPLES

This analysis machinery can be used to optimize different
goal functions and obtain differnet lens designs. Next we apply
the method to analyze different lens problems in 2D. In all
cases, the incoming wave is a plane wave with electric field
z polarized.

First we have a standard inhomogeneous gradient-index
dielectric flat lens.

Fig. 1. Left: total field for incoming (left to right) plane wave. Right: variable
index ε(x) of the flat lens

Next we apply the optimization method BFGS (see [6]) to
obtain the optimal function ε(x) that maximices the amplitude
of the field in the focal point:

Fig. 2. Left: total field for incoming (left to right) plane wave. Right: variable
index ε(x) of the flat lens with the resulting optimal function

Notice that the value of |E(x)| at the focal point is a factor
of 2 higher in the lens optimized by the BFGS method (figure
2) than in the first case (figure 1).

In figure 3 we see a lens optimized to obtain maximum
focus in the upper focal point at frequency f1, and maximum
focus in the lower focal point at frequency f2 = 1.1 · f1

V. CONCLUSION

We apply the volume integral equation method in 2D
together with the optimization method BFGS to obtain the
optimal distribution ε(x) of a flat lens to achieve different
goals, like frequency selective focal point.

Fig. 3. Left: total field for incoming (left to right) plane wave at frequency
f1 and f2 = 1.1 · f1. Right: variable index ε(x) of the flat lens with the
resulting optimal function (same for both frequencies)
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