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Abstract

Visual quality of color images is studied through costly psychophysical experiments, which are
used to record observers quality scores. Visual image quality metrics pursue to maximize the
agreement between computed quality and observers scores. Therefore, it is of critical importance
to have appropriate measures for this agreement, both for the development and use of the im-
age quality metrics. The most used one is the well known Pearson correlation coeflicient while
Spearman rank correlation coefficient is also customary used. In this work we explore the use of
an alternative metric: The standardized residual sum of squares (STRESS). STRESS has some
interesting properties that encourage us to use it for measuring the agreement between computed
image quality and observers scores, being the most important one the possibility to run statistical
significance tests between metrics. We will compare the performance of STRESS with Pearson
and Spearman coefficients using both synthetic datasets as well as a recent visual image quality
evaluation dataset. As it will be shown, the performance is different and we found several points
in favor of using STRESS along with some interesting open issues.

1 Introduction

Image quality assessment is currently an active research topic due to the ubiquitous use of color
images for domestic, scientific and industrial applications. A small proof of this is that the most
popular image quality metric developed so far, the structural similarity index (SSIM) [1], nowadays
accounts for more than 23K citations according to Scopus [2].

In particular, visual quality of color images is studied through costly psychophysical experiments
used to record observers quality scores. Visual image quality metrics aim at maximizing the
agreement between computed quality and observers scores. Therefore, it is of critical importance
to have appropriate measures for this agreement. The most used one is the well known Pearson
correlation coefficient [3] while Spearman rank correlation coefficient [4] is also customary used.
In this work we explore the use of an alternative metric: Standardized Residual Sum of Squares
(STRESS). This metric was originally employed in multidimensional scaling (MDS) techniques

tsmorillas@mat.upv.es



Modelling for Engineering & Human Behaviour 2021

[5,6], and later have been extensively used to measure the agreement between visually assessed and
computed color differences [7], being the standard figure of merit for this problem [8,9]. STRESS
has some interesting properties that encourage us to use it for measuring the agreement between
computed image quality and observers scores. The most relevant one from a theoretical point
of view is the possibility to apply statistical significance tests. That is, the possibility to figure
out, up to a certain degree of confidence, if the performance of two metrics can be considered
different enough, from a statistical point of view. In this paper a comparison of the performance
of STRESS and Pearson and Spearman coefficients is shown, using both synthetic datasets as well
as a recent visual image quality evaluation dataset [11]. As it will be shown, the performance is
quite different and we found several practical points in favor of using STRESS along with some
interesting open issues.

2 STRESS: Standardized Residual Sum of Squares

In multi-dimensional scaling [12,13], loss functions are used to characterize the differences between
two vectors (or objects, in general). When these vectors represent groundtruth and predicted data,
the closeness between them is interpreted as a measure of approximation quality for the prediction.
The usual loss function is the so-called normalized (or Kruskal’s) STRESS, which can be defined
in different equivalent ways, one of them the following;:
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where G and P are N component vectors denoting groundtruth and predicted data, respectively,
and F'p is a non-arbitrary scaling factor determined to minimize the value of the loss function for
P in relation to G. Fp can be analytically determined to be:

2.1 Statistical significance tests for STRESS

By looking at the numerator of Eq. 1, we can see that we are just using a classical euclidean
distance between two vectors, G and P, one of them appropriately re-scaled (by Fp). In particular,
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is the residual variance of the differences which, for a large N and from the central limit theorem,
can be stated to follow a chi-squared distribution with N — 1 degrees of freedom [12].

Now, given two different prediction vectors P; and P2 we can compute their corresponding V;
and V5 with Eq. 3 and compute the ratio

Vi
Ftest = 7;’
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which, by definition, follows the distribution of an F variable [13]. It is easy to see that

Vi STRESS(G,P)?
Vo,  STRESS(G,P;)?

Using Fiest, we can now formulate the null hypothesis that P; and P2 have no significant differ-
ences in predicting . This hypothesis must be rejected when Fi.sy < Fo or Fiest > %, where
F¢ is the critical value of the two-tailed F distribution with a certain (usually 95%) confidence
level and (N — 1, N — 1) degrees of freedom.

Consequently, using Fi.s:, we may conclude that predictions P; and P are equal (Fiesr = 1),
insignificantly different (Fo < Fregt < %), or significantly different (Fiest < Fo or Fiest > %)
In the latter case, the one having the lowest value of V' would be significantly better than the
other.

3 Experimental results

3.1 Synthetic datasets

Aiming to perform synthetic experiments that allow us to characterize the performance of STRESS
in front of Pearson and Spearman correlations, we generated a dataset of groundtruth and pre-
dicted data using random values. In particular, we have generated 500 pairs of groundtruth and
predicted data using a uniformly distributed probability function in the [0, 5] interval. Initially,
this random generation would also provide random results for the two correlation measures, and
for STRESS. From these data we will study how the agreement measures behave when improving
the agreement between groundtruth and prediction data. In addition, we will analyze how the
introduction of outliers affects the correlations and STRESS.

Therefore, we started by reducing in an increasing way the difference between the groundtruth
and predicted data in each pair by modifying the predicted data towards the groundtruth in a
fixed percentage of each difference (|G; — P;|,i € {1,...,N}) from 0% to 100% in steps of 10%
so that, eventually, we obtain perfect data agreement. We run this experiment five times with
different random initial values. In Figure 1 (left) we have plotted the average results and standard
deviations (multiplyed by 3 for visualization purposes) between the 5 experiments, provided for
STRESS, Pearson and Spearman coefficients. For clarity of presentation, all measures have been
re-scaled in the interval [0,100] as shown in the legend of the Figure 1 (left). It is clear that
the curve for STRESS is almost linear while the ones for Pearson and Spearman are highly
nonlinear. In particular, it is specially interesting to note that when differences between predicted
and groundtruth data have been reduced 80% or more, Pearson and Spearman correlations have
little sensitivity in this range, while STRESS has the same sensitivity in every reduction step.
This region of good agreement between groundtruth and predicted data is the usual case in most
of the applications of these indexes.

Second, starting again with 500 pairs of random values for G and P, and also repeating five times
the computations, ramdon outliers are introduced in the generated data. In particular, each
outlier corresponds to multiplying by a factor of 10 one random pair prediction, also randomly
chosen. That is, we arbitrarily considered an outlier as a change of one order of magnitude. We
proceeded by increasingly introducing one by one more outliers from one until a number of 10,
which corresponds from 0.2% to 2% of the whole dataset. In Figure 1 (right) we have plotted the
relative worsening observed for STRESS, Pearson and Spearman coefficients (computed in the
range [0, 100] as commented above), with respect to their initial values, when introducing one by
one the outlier while keeping the previous ones in each case. Specifically, we plotted the average
and standard deviations (divided by 5, for visualization purposes) of the relative worsening. We
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Figure 1: Left: STRESS values, and Pearson and Spearman correlations when increasingly reduc-
ing the differences between random groundtruth data and random predictions. Right: Relative
worsening of STRESS values, and Pearson and Spearman correlations when increasing the number
of outliers in the data set.

can see the the worsening ratio has an up to 30% increment for 10 outliers in the case of STRESS.
This plot also shows that STRESS is much more sensitive to the introduction of outliers than
Pearson and Spearman correlations, being the latter almost insensitive to them.

3.2 Image quality scores dataset

Now we compare the performance of STRESS with the classical Pearson and Spearman coefficients
when predicting image quality scores for a real experimental dataset. As groundtruth data we
use the image quality scores dataset in the Colourlab Image Database: Image Quality (CID:1Q)
[11]. This dataset contains 23 pictorial images selected as the reference images with 6 different
distortions over 5 levels. The distortions are JPEG compression, JPEG2000 compression, Poisson
noise, blurring, and two gamut mapping algorithms. These images where evaluated by a total of
17 observers.

In order to predict these data values, we use 10 image quality metrics applied between each
distorted image and the corresponding reference: (1) image Color Appearance Model difference
(iCAMA) [14], (2) Fuzzy Color Structural Similarity (FCSS) [15], (3) Structural Similarity Index
(SSIM) [1], (4) Multiscale Structural Similarity Index (MSSIM) [16], (5) Color Structural Simi-
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Figure 2: Ranks from worst (1) to best (10) obtained for each of the Image Quality Metrics in
the comparison and for each index (rescaled to [0,100]): Pearson correlation (left), Spearman
correlation (center) and Stress (right). Absolute values of correlations are used.

IQM |iCAMd FCSS | SSIM | MSSIM | CSSIM | FSIMc | MSE | RMSE | PSNR | NCD
iCAMd
FCSS
SSIM
MSSIM
CSSIM
FSIMc
MSE
RMSE
PSNR
NCD

Table 1: Statistical significant performance in terms of STRESS for 95% confidence interval. For
each pair of image quality metrics (IQM), we fill the cell with a green colour when performance
of the metrics is significantly different and with the red colour, otherwise.

larity Index (CSSIM) [17], (6) Feature similarity index (FSIMc) [18], and the classical ones (7)
Mean Squared Error (MSE), (8) Root Mean Squared Error (RMSE), (9) Peak Signal to Noise
Ratio (PSNR), and (10) Normalized Color difference (NCD) [19].

In Figures 2 (left to right), we compare the agreement between the image quality metrics and the
average observers scores, given by the Pearson and Spearman correlation coefficients and STRESS.
Absolute value of correlations found is used as it is meaningless to us whether the correlations are
direct or inverse. In each bar plot, the 10 metrics are sorted from left to right corresponding to
from worst to best agreement predicted in each case. As we can see, the order differs significantly
depending on the agreement measure, but in all cases there are some quality measures with a
similar performance. The statistical significance test explained in Section 2.1 can be used in the
case of STRESS in order to determine whether the differences are really meaningful or not. Thus,
Table 1 shows the statistical significance tests computed for all pairs of metrics. Each position
in the double entry table represents whether the two corresponding metrics show a significantly
different performance (green colour) or not (red colour) for a 95% confidence level. It is interesting
to note that all metrics have a performance that it is not significantly different from at least one
other metric. In particular, among the best performing metrics (FCSS, SSIM and PSNR) we
found not significant differences for a 95% confidence level.
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4 Conclusions

In this work we have studied the application of the standardized residual sum of squares (STRESS)
as an alternative to Pearson and Spearman correlation coefficients to measure the agreement
between psychophysical groundtruth data of image quality and computed image quality metrics.
From synthetic experiments we have seen than STRESS has more sensitivity for smaller differences
between predictions and groundtruth data and it is also more sensitive to outliers in the dataset.
When applying STRESS to an image quality database, we saw how useful it is to have the
possibility to run statistical significance tests to decide whether performance differences among
image quality metrics can be considered meaningful or not. In this case, we found that there
are no statistically significantly different results between the best performing metrics, so we may
wonder if this performance can be really improved.
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