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Abstract

In the last decade, deep learning (DL) has become the main tool for
computer vision (CV) tasks. Under the standard supervised learnng paradigm,
and thanks to the progressive collection of large datasets, DL has reached
impressive results on different CV applications using convolutional neural
networks (CNNs). Nevertheless, CNNs performance drops when sufficient data
is unavailable, which creates challenging scenarios in CV applications where
only few training samples are available, or when labeling images is a costly
task, that require expert knowledge. Those scenarios motivate the research of
not-so-supervised learning strategies to develop DL solutions on CV.

In this thesis, we have explored different less-supervised learning paradigms
on different applications. Concretely, we first propose novel self-supervised
learning strategies on weakly supervised classification of gigapixel histology
images. Then, we study the use of contrastive learning on few-shot learning
scenarios for automatic railway crossing surveying. Finally, brain lesion
segmentation is studied in the context of unsupervised anomaly segmentation,
using only healthy samples during training. Along this thesis, we pay special
attention to the incorporation of tasks-specific prior knowledge during model
training, which may be easily obtained, but which can substantially improve
the results in less-supervised scenarios. In particular, we introduce relative
class proportions in weakly supervised learning in the form of inequality
constraints. Also, attention homogenization in VAEs for anomaly localization
is incorporated using size and entropy regularization terms, to make the
CNN to focus on all patterns for normal samples. The different methods are
compared, when possible, with their supervised counterparts.

In short, different not-so-supervised DL methods for CV are presented along
this thesis, with substantial contributions that promote the use of DL in data-
limited scenarios. The obtained results are promising, and provide researchers
with new tools that could avoid annotating massive amounts of data in a fully
supervised manner.
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Resumen

En la última década, el aprendizaje profundo (DL) se ha convertido en la
principal herramienta para las tareas de visión por ordenador (CV). Bajo el
paradigma de aprendizaje supervisado, y gracias a la recopilación de grandes
conjuntos de datos, el DL ha alcanzado resultados impresionantes utilizando
redes neuronales convolucionales (CNNs). Sin embargo, el rendimiento de las
CNNs disminuye cuando no se dispone de suficientes datos, lo cual dificulta su
uso en aplicaciones de CV en las que sólo se dispone de unas pocas muestras
de entrenamiento, o cuando el etiquetado de imágenes es una tarea costosa.
Estos escenarios motivan la investigación de estrategias de aprendizaje menos
supervisadas.

En esta tesis, hemos explorado diferentes paradigmas de aprendizaje menos
supervisados. Concretamente, proponemos novedosas estrategias de apren-
dizaje autosupervisado en la clasificación débilmente supervisada de imágenes
histológicas gigapixel. Por otro lado, estudiamos el uso del aprendizaje por
contraste en escenarios de aprendizaje de pocos disparos para la vigilancia
automática de cruces de ferrocarril. Por último, se estudia la localización de
lesiones cerebrales en el contexto de la segmentación no supervisada de anoma-
lías. Asimismo, prestamos especial atención a la incorporación de conocimiento
previo durante el entrenamiento que pueda mejorar los resultados en escenarios
menos supervisados. En particular, introducimos proporciones de clase en el
aprendizaje débilmente supervisado en forma de restricciones de desigualdad.
Además, se incorpora la homogeneización de la atención para la localización
de anomalías mediante términos de regularización de tamaño y entropía.

A lo largo de esta tesis se presentan diferentes métodos menos supervisados
de DL para CV, con aportaciones sustanciales que promueven el uso de DL
en escenarios con datos limitados. Los resultados obtenidos son prometedores
y proporcionan a los investigadores nuevas herramientas que podrían evitar la
anotación de cantidades masivas de datos de forma totalmente supervisada.
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Resum

En l’última dècada, l’aprenentatge profund (DL) s’ha convertit en la principal
eina per a les tasques de visió per ordinador (CV). Sota el paradigma
d’aprenentatge supervisat, i gràcies a la recopilació de grans conjunts de
dades, el DL ha aconseguit resultats impressionants utilitzant xarxes neuronals
convolucionals (CNNs). No obstant això, el rendiment de les CNNs
disminueix quan no es disposa de suficients dades, la qual cosa dificulta el
seu ús en aplicacions de CV en les quals només es disposa d’unes poques
mostres d’entrenament, o quan l’etiquetatge d’imatges és una tasca costosa.
Aquests escenaris motiven la investigació d’estratègies d’aprenentatge menys
supervisades.

En aquesta tesi, hem explorat diferents paradigmes d’aprenentatge menys
supervisats. Concretament, proposem noves estratègies d’aprenentatge
autosupervisat en la classificació feblement supervisada d’imatges histològiques
gigapixel. D’altra banda, estudiem l’ús de l’aprenentatge per contrast
en escenaris d’aprenentatge de pocs trets per a la vigilància automàtica
d’encreuaments de ferrocarril. Finalment, s’estudia la localització de lesions
cerebrals en el context de la segmentació no supervisada d’anomalies. Així
mateix, prestem especial atenció a la incorporació de coneixement previ durant
l’entrenament que puga millorar els resultats en escenaris menys supervisats.
En particular, introduïm proporcions de classe en l’aprenentatge feblement
supervisat en forma de restriccions de desigualtat. A més, s’incorpora
l’homogeneïtzació de l’atenció per a la localització d’anomalies mitjançant
termes de regularització de grandària i entropia.

Al llarg d’aquesta tesi es presenten diferents mètodes menys supervisats de
DL per a CV, amb aportacions substancials que promouen l’ús de DL en
escenaris amb dades limitades. Els resultats obtinguts són prometedors i
proporcionen als investigadors noves eines que podrien evitar l’anotació de
quantitats massives de dades de forma totalment supervisada.
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includes the thesis framework and the thesis outline.
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1.1 Motivation

Computer vision and deep learning

Computer vision (CV) is a scientific field born in the early 1960s with
the advent of the first digital image scanners, that aims to mimic the
effect of human vision by electronically perceiving and understanding an
image [1]. In other words, computer vision systems aim to develop visual
perception: to describe the objects in the image, their categories and their
context [2]. Image understanding includes, among others, different tasks
such as image classification, semantic segmentation, object detection or
scene description.

Classical computer vision systems included two stages. First, the
information contained in the image was compressed in a set of
features, usually obtained by image processing operations. Among
others, outstanding approaches included texture analysis via local binary
patterns (LBPs) [3], HoG [4], or SIFT [5] features. Then, those feature
descriptors were passed through trained machine learning methods, that
were in charge of providing predictions or decisions based on data
patterns. Some of the typically used classifiers included simple linear
regression, support vector machines (SVMs) [6], or random forest [7].

The definition of hand-crafted features using image processing techniques
is a tedious and challenging process. There are tasks that are easy
for people to perform, but hard to describe formally [8]. This is
where deep learning (DL) comes to play. Deep learning is a field of
machine learning that is not limited to pattern recognition, but also to
representation learning. Representation learning is a set of methods that
allow a machine to be fed with raw data and to automatically discover
the representations (features) needed for detection or classification [9].
Deep learning methods are based on artificial neural networks (ANNs).
Inspired on its biological counterpart, ANNs are algorithms that combine
stacked layers of neurons, sequentially connected one to each other
between, to learn patterns on input data given an objective task.

The foundations of deep learning in computer vision date back to late
1970s, with the Neocognitron architecture [10]. The maturity arrived
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thanks to the contributions of LeCun et al. [11, 12] on backpropagation
architectures in the 1990s, and the refinement of pooling operations
[13], the use of ReLU activation or dropout regularization [14]. These
advances composed the modern convolutional neural networks (CNNs)
architectures, a particular type of ANNs based on trainable convolutional
filters able to integrate local visual patterns. Still, it is only in the
recent 21st century that DL has become the main tool in computer
vision systems thanks of software advances and CNNs training on
graphic process units (GPUs) [15–17]. In particular, AlexNet network
from Krizhevsky et al. [16], which ranked 1st position on ImageNet1

2012 challenge on image classification, is considered the milestone that
started the CNNs era. Since then, a golden decade of computer vision
using deep learning has led astonishing performance across different
applications such as: natural image categorization [18], object detection
[19], autonomous driving [20], medical imaging analysis [21], old image
and video restoration [22], industrial predictive maintenance [23, 24],
video captioning [25] or image generation [26], among others.

The data barrier

The successful application of CNNs in computer vision systems is closely
connected to the ability to collect data. As discussed by Goodfellow et
al. [8], deep learning has become more useful as the amount of available
training data has increased. Indeed, the first outstanding results of deep
learning temporally coincide with the release of public challenges with
large amounts of data. Since early studies of modern CNN architectures
[27, 28], its performance has shown a log-dependence on the amount of
training data. This is, CNNs require a reasonable amount of data to
perform properly.

When we refer to data, we are not only referring to the original images,
but also to the expert knowledge that has to be provided to the model.
Under the standard supervised scenario, images must be labelled at
global label (i.e. categories in the image), object-level (bounding boxes ob
objects), or at pixel level, on semantic segmentation tasks. The main core
of deep learning architectures for image recognition task are benchmarked

1https://www.image-net.org
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on natural images in datasets such as ImageNet, CIFAR2, COCO3, etc.
Those datasets contain images of real-world animals and objects, which
can be easily labeled with general knowledge. However, achieving large
datasets in real-world applications can be a very challenging task. For
instance, in medical imaging applications, expert knowledge is limited
to physicians. Obtaining such curated labeled datasets is a cumbersome
process prone to subjectivity, which makes access to sufficient training
data difficult in practice. This problem can be magnified in the context
of specific imaging applications that require pixel-level annotations, such
as radiology, when volumetric data from magnetic resonance imaging
comes to play, or histology, based on gigapixel images magnified under
the microscope. Another challenging scenario is the application of CV
in industry. In this case, it is often difficult to get a large number of
examples, and the data domain, usually sensor-based, is very different
from that of natural imagery. Also, in scenarios such as predictive
maintenance, it is not possible to obtain a priori examples of possible
defects in a heterogeneous way.

For all the above, there is a need to develop novel deep learning
methods capable of performing well in data-poor scenarios, where the
standard supervised learning scenario results impractical or infeasible.
This includes algorithms capable of incorporating any type of knowledge
into learning that is easily accessible, as opposed to the tedious process
of annotation at the image or pixel level, and also models able to learn
on scarce, and imbalanced datasets. In this thesis, we refer to those
methods as not-so-supervised or less-supervised strategies, analogously
to Cheplygina et al. [29]

Towards a less-supervised perspective

To alleviate the need of data to train well-performing deep learning
models, different research lines are exploring the use of other less-
supervised learning strategies. Popular strategies in this field using CNNs
include transfer learning of knowledge from models trained on large
datasets [30], or data augmentation [31]. Other hot research topics focus
on unsupervised learning, which use only unlabeled images to feed deep

2https://www.cs.toronto.edu/~kriz/cifar.html
3https://cocodataset.org
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learning models. In this setting, visual features are usually trained using
pretext tasks in a self-supervised fashion. Promising methods in this line
combine data augmentation with contrastive learning [32, 33], jigsaw
puzzle reconstruction [34], or generative networks [35]. Then, the CNN
backbone or classification layers are retrained for task-specific purposes.
In a middle ground before the unsupervised and supervised scenarios,
other learning strategies aim to leverage indirect, noisy, or inexact
knowledge, so called weakly supervised learning scenarios. In a popular
scenario, weakly supervised learning is used for object localization and
segmentation tasks [36] using global labels instead of tedious pixel-level
annotations. Still, those methods require large amounts of weak- or
unlabeled data to get promising results. The scenario in which this data
in simply unavailable is covered under the few-shot learning paradigm
[37, 38], where learning is driven only by no more than tens of images.

Still, the performance gap between the supervised scenario and less-
supervised ones is outstanding. For instance, the best performing
method on weakly supervised segmentation [39] performs ∼ 25% worse
in mean intersection-over-union than its supervised counterpart on
PASCAL VOC 2012 dataset. On unsupervised learning, the gap on
image classification using SimCLR method [33] is of ∼ 8% accuracy on
ImageNet. Regarding the results obtained under the few-shot learning
setting, they are still far of being competitive.

1.2 Objectives

The main objective of this thesis is the design, development and
validation of innovative not-so-supervised methods to solve real-world
computer vision challenges using deep learning. We aim to address a
wide number of perspectives, that best fit in each particular application.
However, we also seek to make the proposed methodologies largely
generalizable. In particular, the specific objectives include:

• Contribute to the weakly supervised learning literature, using only
global labels during training, in the context of multi-label gigapixel
image segmentation.
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• Study the capability of few-shot learning on real-world applica-
tions with scarce data, and improve the existing state-of-the-art
approaches.

• Develop novel deep learning strategies on unsupervised anomaly
segmentation, able to model normal data during training to locate
out-of-distribution anomalies on inference.

Likewise, and transversally to the different methods, this thesis aims to
propose novel strategies that can incorporate a priori knowledge easily
accessible in each application, and which do not require a laborious
annotation process. To do so, novel constrained formulations will be
taken into account for the different learning settings.

1.3 Framework

This PhD thesis is framed within three different research projects on
applied computer vision. These projects are introduced below:

• SICAP − Histopathological image interpretation system for the
detection of prostate cancer. SICAP is a national project
which objective is to develop computer vision algorithms to
automatize the diagnosis and prognosis prediction in prostate
histology biopsies analysis. This project was funded by the
Ministerio de Economía, Industria y Competitividad (DPI2016-
77869-C2-1-R). The automatic analysis of biopsies is a challenging
task. Digitised biopsies under the microscope constitute gigapixel
samples known as whole slide images (WSIs). The large size
of these images makes computer vision systems work with small
patches of the image, which require local annotations made by
expert pathologists. In the case of prostate, the different tumor
patterns must be delimited at the pixel level following the Gleason
grading scale. This is a tedious process, prone tu interannotator
variability, which makes it difficult to use large databases during
training. An important part of this thesis is framed within this
project. In particular, Chapter 2 develops a computer vision system
that covers the different stages on biopsy analysis under standard

7
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supervised learning methods. Then, Chapter 3, Chapter 4 and
Chapter 5 explore the use of weakly supervised strategies to alleviate
the need of pixel-level annotations. In this case, training is driven
by global labels, which indicate the presence of tumour patterns in
the whole biopsy.

• INTELVIA − Smart track dynamic surveying approaches based on
digital image processing. This national project aims to develop
novel computer vision systems for the automatic analysis of railway
deterioration using axle-box accelerations. INTELVIA project was
funded by the Ministerio de Economía, Industria y Competitividad
(TRA2017-84317-R-AR). Railway singularities are processed using
time-frequency representations of the axle-box accelerations, that
sequentially feed CNNs models for classification. Nevertheless,
these predictive maintenance applications usually suffer from lack
of samples for training the models. In the case of railway surveying,
available singularities are limited to the extent of the railway system,
and new examples cannot be generated in an straightforward way.
The limitations on the amount of accesible data result on overffited
models, that hardly generalize to unseen data. Chapter 6 is a
key component of this project due to its contributions to deep-
learning based railway crossing defects detection using an small
number of training examples, under the few-shot learning paradigm,
to alleviate the aforementioned limitations.

• BraTS − Brain tumor segmentation challenge. This competition
seeks to promote the development of computational methods for
the segmentation of gliomas in brain magnetic resonance imaging.
This public challenge brings together one of the largest databases in
the field, and has become very popular in the scientific community in
recent years. The problem of lesion segmentation on MRI images on
different organs is one of the main topics on medical image analysis.
In this context, creating the dataset involves radiologists to assign
a category to each voxel of the image. In addition, brain lesions
experience large intraclass variations, which could not be captured
during training but on very large datasets. This makes that, in
a fully-supervised setting, deep models might have difficulties when
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learning from such class-imbalanced training sets. Thus, considering
the scarcity and the diversity of target objects in these scenarios,
lesion segmentation is typically modeled as an anomaly localization
task, which is trained in an unsupervised manner. In particular, the
training dataset contains only normal images and abnormal images
(i.e. with lesions) are not accessible during training. Chapter 7
contributes to BraTS challenge under this paradigm, so called
unsupervised anomaly segmentation, which has been a less explored
solution than the standard supervised scenario.

1.4 Main contributions

This thesis incorporate outstanding contributions to the computer vision
and deep learning community, which are detailed below.

1.4.1 Contributions to weakly supervised learning

Weakly supervised learning aims to leverage location information of
objects using only global labels during training. This paradigm includes
two related but substantively distinct tasks: weakly supervised semantic
segmentation (WSSS) and multiple instance learning (MIL). MIL works
group the data on bags of instances (images), and only bag-level labels
are known during training. In this setting, instances are independent
one to each other, and the global label is positive if one of the instances
belongs to the given category. In the case of WSSS, the instances are the
pixels of the image, whereby instances are correlated each other forming
image patterns, and all are processed by a CNN together.

Weakly supervised semantic segmentation

Latest WSSS strategies using CNNs optimize the networks in an
standard supervised way via global labels. In this setting, spatial
features are extracted, and pooled into an uni-dimensional feature
vector (embedding-based) using standard global average pooling, that
serves as embedding for image classification. Then, segmentation maps
are obtained using spatial intermediate activations [36] or gradient-
weighted class-specific activation maps (Grad-CAMs) [40]. Recent
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works have focused on regularizing those attention maps during training
to incorporate consistency losses [41], equivariant matching [42], or
subcategory explorations [39]. Other less-popular choices include pixel-
level classification layers into the CNNs (instance-based), which are
lately pooled into a global classification using costume aggregation
methods such as WILDCAT [43]. Finally, both kind of methods
aggregate class-level segmentation masks into complementary semantic
segmentation mask using costume post-processing pipelines, that include
the background class for low-activated pixels [44]. In this thesis,
we study the multi-label WSSS setting in the context of histology
image segmentation in Chapter 3. Concretely, we propose an instance-
based architecture that (i) does not require complex post-processing to
aggregate class-wise attention maps, and (ii) uses log-sum-exponential
pooling [45] to incorporate the concept of object size into training, which
is optimized using only global labels.

Multiple instance learning

Regarding the MIL methods, as previously indicated, instances are
composed of entire images belonging to the same group. In the
embedding-based perspective, pooling operations such as mean, maxi-
mum, attention-weigthed [46], or RNN [47] produce a bag-level represen-
tation that serves to produce a global classification. Nevertheless, since
instances do not present spatial dependence, activation-based methods
are not applicable to leverage instance-level classifications. For this rea-
son, we focus on this thesis in instance-based MIL methods, in the context
of gigapixel histology WSI classification. In this application, each WSI is
considered a bag, and extracted patches constitute instances. In Chap-
ter 4 we propose a self-supervised Teacher-Student training framework to
leverage instance-level labels. In particular, an instance-level MIL CNN
using max-pooling is trained in a first stage as Teacher model. Thanks
to the max-pooling properties, high precision hard pseudolabels are ex-
tracted from instances, which are further refined using the known global
labels. Then, we propose to train a noisy Student [18] on pseudolabels in
a standard supervised manner. Finally, in Chapter 5 we propose to in-
clude prior knowledge, in the form of class proportions, using constraint
modifications of the standard MIL setting. In particular, we propose to
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use inequality constraints via log-barrier extensions [48] to (i) palliate the
effect of max-pooling on Teacher model and promote the classification of
instances in positive bags, and (ii) incorporate relative class proportion
constraints, in the form of proportion ordering in the bags. Our formula-
tion substantially differs from previous constraint formulations on weak
supervision that incorporate the target size of the object in the image
[49]. On the contrary, our inequality formulation only requires relative
information (i.e. the primary and secondary categories), which is much
more feasible to obtain.

Prostate histology diagnosis

In what refers to the prostate biopsy automatic analysis, this thesis
also brings noticeable contributions. Concretely, in collaboration with
pathologists of Hospital Clínico of Valencia, we have prepared and
released a large public dataset containing both global biopsy-level
labels and pixel-level annotations (see Chapter 2 and Chapter 5).
Also, under the weakly supervised perspective, the proposed methods
reach a performance around ∼ 0.80 of quadratic Cohen’s kappa for
tumor grading, which is similar to the inter-pathologist variability (see
Chapter 4). The obtained results are consistent, and tested on different
external datasets.

1.4.2 Contributions to few-shot learning

Few-shot learning

Few-shot learning (FSL) aims to train deep learning models able to
generalize using only few samples from each category during training.
In a tight formulation, the objective is to train a model capable of
making predictions that can be generalized to new classes, of which few
examples (K-shots) are given during inference. Nevertheless, on real-
world applications, all classes are required to be used for training and
testing, or they simply are binary scenarios. Still, methods proposed on
the few-shot learning paradigm tend also to generalize best on standard
supervised scenarios trained on very small data. Outstanding approaches
on FSL are organized into deep distance metric learning using embedding
matching [37] or relational networks [50], or memory-based methods via
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prototypical networks [38, 51]. A popular way to train these methods is to
use the episodic training procedure, where training examples are divided
between queries and support samples to simulate the inference setting.
However, a recent work suggests that this form of training may not be
optimal [52]. In Chapter 6 of this thesis, we propose (i) to use contrastive
learning [53] to pull together samples belonging to the same class in
an unity hyper-sphere hyper-plane, bypassing the episodic prototypical
procure, in low-data scenario. Then, we propose to use the original latent
representation to discern between classes using a prototypical l2-based
distance.

Automatic railway crossing surveying

The proposed few-shot learning methods presented in Chapter 6 are
applied in the context of automatic railway crossing surveying, in a binary
classification scenario to detect deterioration patterns. As input to the
model, spectrogramas from acceleration signals of railway crossings are
used. With the proposed pipeline, we outperform previous literature on
this field by accuracy gains of ∼ 8%. In addition, extensive ablation
experiments for using CNNs in this application are presented, which will
contribute to further research on this field.

1.4.3 Contributions to unsupervised anomaly segmentation

Unsupervised anomaly segmentation

Unsupervised anomaly segmentation aims to train deep learning models
on normal data, able to identify abnormal pixels on test images,
containing, for example, lesions on medical images [54], defects in
industrial images [55] or abnormal events in videos [56]. The main core
of literature on this field is focused on training constrained CNNs on
normal data, under the hypothesis that anomalies will not fit the imposed
constraint. In particular, generative methods such as autoencoders are a
popular choice. In this case, the CNN is constrained to create a latent
representation of the input image, such that the decoder is able to make a
precise reconstruction of normal samples. Then, anomalies are located in
the reconstructed image in the pixels that differ from the original input.
This formulation is regularized in different ways, using variational latent
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space in VAEs [57] or context augmentation [58], or feature matching
by incorporating a discriminator to the decoder output [59]. Still, this
residual-based anomaly detection depends on the decoder performance
to generate normal images, which is usually limited. For this reason, very
recent methods have proposed to constrain intermediate attention maps
of the encoder using Grad-CAMs [40]. In particular, [60] incorporates a
size constraint into attention maps to force all pixels to be fully activated
using an l1 penalty, and [61] uses disentanglement regularization [61]. In
this thesis, Chapter 7 further along this line of research. In particular,
we propose to relax the pixel-level constraint in [60] by (i) applying a
size constraint at the image level, and (ii) to include a margin term,
that allows using inequality constraints via log-barrier extensions [48],
instead of penalty terms. Although this formulation brings substantial
results, log-barrier extensions require several hyper-parameters to be
optimized. For this reason, we also study an alternative formulation
based on solely activation maps (instead of Grad-CAMs), and (iii) a
regularization term that maximizes the Shannon entropy of attention
maps distribution to force the CNN to be activated homogeneously in
the whole image. Finally, anomalies are located into these attention
maps on the pixels that differ from the homogeneous distribution.

Brain lesion segmentation

The proposed unsupervised anomaly segmentation methods are validated
in the context of magnetic resonance imaging (MRI) brain tumour
segmentation. In the popular BraTS dataset, our formulation brings
outstanding improvements of nearly ∼ 25% in terms of DICE compared
to previous literature. In addition, as discussed in the ablation
experiments in Chapter 7, the constraint formulation used offers good
performance even without accessing to anomalous examples to set the
threshold on anomaly scores, in contrast to previous literature. Finally,
the method is satisfactorily validated on Physionet-ICH dataset for
unsupervised intracranial hemorrhage (ICH) localization on CT scans,
which shows its generalization capabilities to other image modalities and
lesions.
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1.5 Outline

This thesis is divided into 8 chapters. The current chapter introduces
the motivation behind the research involved in this thesis, the proposed
objectives and the main contributions. Subsequently, this chapter also
details the framework and the thesis outline.

Chapter 2 corresponds to the paper: "Going Deeper through the Gleason
Scoring Scale: An Automatic end-to-end System for Histology Prostate
Grading and Cribriform Pattern Detection" [62]. It was published in
the journal Computer Methods and Prgorams in Biomedicine (CMPB)
belonging to the editorial ELSEVIER. CMPB journal had an impact
factor of 5.428 when the article was published in 2020, and an h5-index
of 79. The best rank was in the category computer science, theory &
methods with a percentile of 88.64 (Q1).

Chapter 3 corresponds to the paper: "WeGleNet: A weakly-supervised
convolutional neural network for the semantic segmentation of Gleason
grades in prostate histology images" [63]. It was published in the
journal Computer Medical Imaging and Graphics (CMIG) belonging to
the editorial ELSEVIER. CMIG journal had an impact factor of 7.422
when the article was published in 2021, and an h5-index of 45. The best
rank was in the category radiology, nuclear medicine & medical imaging
with a percentile of 90.07 (Q1).

Chapter 4 corresponds to the paper: "Self-learning for weakly supervised
Gleason grading of local patterns" [64]. It was published in the journal
IEEE Journal of Biomedical and Health Informatics (JBHI) belonging to
the editorial IEEE. JBHI journal had an impact factor of 7.021 when the
article was published in 2021, and an h5-index of 80. The best rank was
in the category mathematical & computational biology with a percentile
of 93.86 (Q1).

Chapter 5 corresponds to the paper: "Proportion constrained weakly
supervised histopathology image classification". It was published in the
journal Computers in Biology and Medicine (CIBM) belonging to the
editorial ELSEVIER. The paper was published in 2022, but the following
publication details correspond to 2021, as the most recent journal indexes
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date from that year. CIBM journal had an impact factor of 6.698, and
an h5-index of 76. The best rank was in the category mathematical &
computational biology with a percentile of 90.35 (Q1).

Chapter 6 corresponds to the paper: "Supervised contrastive learning-
guided prototypes on axle-box accelerations for railway crossing inspec-
tions". It was published in the journal Expert Systems with Applications
(ESWA) belonging to the editorial ELSEVIER. The paper was published
in 2022, but the following publication details correspond to 2021, as the
most recent journal indexes date from that year. ESWA journal had an
impact factor of 8.665, and an h5-index of 132. The best rank was in the
category engineering, electrical & electronic with a percentile of 91.85
(Q1).

Chapter 7 corresponds to the paper: "Constrained unsupervised anomaly
segmentation". It was published in the journal Medical Image Analysis
(MedIA) belonging to the editorial ELSEVIER. The paper was published
in 2022, but the following publication details correspond to 2021, as the
most recent journal indexes date from that year. MedIA journal had an
impact factor of 13.828, and an h5-index of 90. The best rank was in the
category radiology, nuclear medicine & medical imaging with a percentile
of 98.16 (Q1).

Note that Chapters 2, 3, 4, 5, 6 and 7 are based on the same structure.
First, they present an abstract followed by an introduction containing the
computer vision application and the motivation behind the conducted
research. Next, the related works section contains a review of relevant
previous literature in the field. Then, the proposed methods are
detailed, followed by the experimental setting description (i.e. datasets,
metrics, implementation details, and baselines). In that follows, the
results, comparison with previous literature and ablation experiments
are presented. Finally, the conclusions summarize the main findings in
each chapter.

In Chapter 8, we relate the findings from each paper with the global aim
of this PhD thesis. We also collect final remarks from a global perspective
and suggest future research lines. Then, in Merits, we include journal
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publications, national and international conferences, as well as research
awards derived from this thesis. Finally, we display the Bibliography.
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Chapter 2

Going deeper through the Gleason scoring scale: An
automatic end-to-end System for histology prostate

grading and cribriform pattern detection

The content of this chapter corresponds to the author
version of the following published paper: Silva-Rodríguez, J.,
Colomer, A., Sales, M.A, Molina, M., & Naranjo, V. Going
deeper through the Gleason scoring scale: An automatic end-
to-end system for histology prostate grading and cribriform
pattern detection. Computer Methods and Programs in
Biomedicine, 195 (2020).
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Abstract

Prostate cancer is one of the most common diseases affecting men
worldwide. The Gleason scoring system is the primary diagnostic and
prognostic tool for prostate cancer. Furthermore, recent reports indicate
that the presence of patterns of the Gleason scale such as the cribriform
pattern may also correlate with a worse prognosis compared to other
patterns belonging to the Gleason grade 4. Current clinical guidelines
have indicated the convenience of highlight its presence during the
analysis of biopsies. All these requirements suppose a great workload
for the pathologist during the analysis of each sample, which is based on
the pathologist’s visual analysis of the morphology and organisation of
the glands in the tissue, a time-consuming and subjective task. In recent
years, with the development of digitisation devices, the use of computer
vision techniques for the analysis of biopsies has increased. However, to
the best of the authors’ knowledge, the development of algorithms to
automatically detect individual cribriform patterns belonging to Gleason
grade 4 has not yet been studied in the literature. The objective of the
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work presented in this paper is to develop a deep-learning-based system
able to support pathologists in the daily analysis of prostate biopsies.
This analysis must include the Gleason grading of local structures, the
detection of cribriform patterns, and the Gleason scoring of the whole
biopsy. The methodological core of this work is a patch-wise predictive
model based on convolutional neural networks able to determine the
presence of cancerous patterns based on the Gleason grading system. In
particular, we train from scratch a simple self-design architecture with
three filters and a top model with global-max pooling. The cribriform
pattern is detected by retraining the set of filters of the last convolutional
layer in the network. Subsequently, a biopsy-level prediction map is
reconstructed by bi-linear interpolation of the patch-level prediction of
the Gleason grades. In addition, from the reconstructed prediction
map, we compute the percentage of each Gleason grade in the tissue
to feed a multi-layer perceptron which provides a biopsy-level score.
In our SICAPv2 database, composed of 182 annotated whole slide
images, we obtained a Cohen’s quadratic kappa of 0.77 in the test
set for the patch-level Gleason grading with the proposed architecture
trained from scratch. Our results outperform previous ones reported
in the literature. Furthermore, this model reaches the level of fine-
tuned state-of-the-art architectures in a patient-based four groups cross
validation. In the cribriform pattern detection task, we obtained an area
under ROC curve of 0.82. Regarding the biopsy Gleason scoring, we
achieved a quadratic Cohen’s Kappa of 0.81 in the test subset. Shallow
CNN architectures trained from scratch outperform current state-of-the-
art methods for Gleason grades classification. Our proposed model
is capable of characterising the different Gleason grades in prostate
tissue by extracting low-level features through three basic blocks (i.e.
convolutional layer + max pooling). The use of global-max pooling to
reduce each activation map has shown to be a key factor for reducing
complexity in the model and avoiding overfitting. Regarding the Gleason
scoring of biopsies, a multi-layer perceptron has shown to better model
the decision-making of pathologists than previous simpler models used
in the literature.
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2.1 Introduction

Worldwide, prostate cancer (PCa) is the second most common cancer
in men, with 1.3 million new patients in 2018 [65]. According to the
World Health Organisation, the yearly number of new cases will increase
by more than 40% in this decade [66]. The main tool to diagnose
PCa, once clinical explorations or blood test suggest its presence, is
the prostate biopsy. Small portions of the tissue are extracted with
a needle, laminated, stained with Hematoxylin and Eosin (H&E) and
finally stored in crystal. Then, the sample is analysed under the
microscope by the pathologist, determining the presence and grade of
cancerous patterns depending on the morphology and organisation of the
glands, nuclei and lumen using the Gleason grading system [67]. In this
system, different cancer patterns in the tissue are grouped in different
grades according to the prognosis of the cancer. In particular, for two-
dimensional tissue slides, the Gleason grades (GG) range from 3 to 5,
correlating inversely with the degree of gland differentiation of the tissue.
The Gleason grade 3 (GG3) includes atrophic well differentiated and
dense glandular regions. The GG4 contains cribriform, ill-formed, large-
fused and papillary glandular patterns. Finally, GG5 includes isolated
cells or file of cells, nests of cells without lumina formation and pseudo-
roseting patterns. Examples of patterns belonging to different grades are
presented in Figure 2.1.

Pathologists classify by visual inspection the tissue regions, detecting
the presence of one or more Gleason patterns and, finally, diagnose the
combined Gleason score according to the most prominent grades (e.g.
the combined grade 5+4 = 9 would be assigned to a sample in which the
main cancerous Gleason grade is 5 followed by the grade 4). Therefore,
the combined Gleason score ranges from 6 to 10, and it is assigned to
the whole biopsy. This score is currently the best marker of prostate
cancer prognosis and it defines the treatment to apply [68]. However, the
Gleason scoring of histological prostate biopsies is a high time-consuming
and repetitive task, which has intra and inter pathologist variability.
Moreover, after the last International Society of Urological Pathology
(ISUP) Consensus Conference in 2014 [69], new guidelines have been
included that increase the pathologists’ workload. In particular, it is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Patches of H&E histology samples presenting different Gleason patterns. (a):
Non-cancerous well-differentiated glands; (b): Gleason grade 3 containing atrophic dense
patterns; (c): Gleason grade 4 containing large fused glandular patterns; (d): Gleason grade
4 containing cribriform patterns; (e): Gleason grade 4 containing papillary structures; (f):
Gleason grade 4 containing individual poorly-formed glands; (g): Gleason grade 5 including
nests of cells without lumen formation; (g): Gleason grade 5 containing files of isolated cells.

recommended to also report the percentage of Gleason grade 4 in the
sample, mainly for regions scored as 3+4 = 7, where a higher percentage
of Gleason grade 4 indicates the convenience of an earlier treatment
[70], and the presence of cribriform glandular patterns, which indicate
worse prognosis than the presence of other Gleason grade 4 patterns
[71, 72]. Computer-Aided Diagnosis systems (CAD) support the work
of pathologists and increase the objectivity in the this process. These
are based on the digitisation of the histological crystals, obtaining whole
slide images (WSIs) and developing computer vision algorithms to detect
the cancerous regions inside the biopsy (or WSI).

The objective of this work is to develop an automatic Computer-Aided
Diagnosis system working on WSIs and able to support pathologists in
the analysis of the biopsy during the diagnosis process. The tasks of this
analysis, to be included in the pathologists’ report, are:
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• Detection of the cancerous regions in the tissue according to the
Gleason grading system.

• Detection of cribriform patterns.

• Calculation of the percentage of each Gleason grade in the biopsy.

• Gleason scoring of the whole biopsy, taking into account not only
the grade proportion but also its severity.

This work is developed using our collected database SICAPv2, the
largest public database of prostate biopsies with pixel-level annotations
of Gleason grades, specifying the presence of cribriform patterns. In
the following lines, we summarise the main contributions of this paper.
The different blocks of our system are presented in Figure 2.2. First,
we develop a patch-level predictor of Gleason grades with a carefully-
designed CNN architecture trained from scratch. This architecture is
based on three convolutional blocks and global-max pooling after the last
block. With this model, we outperform, for the first time in the literature,
the fine-tunning well-known state of the art architectures. Then, we
discuss the model interpretability by means of the Class Activation
Maps (CAMs) technique. Once the patches are classified, the trained
architecture is fine-tuned to detect the presence of cribriform glandular
structures for those images with Gleason grade 4. To the best of the
authors’ knowledge, no study has addressed this clinical need previously.
Then, the WSIs are reconstructed in probability maps and the class (i.e.
non cancerous, Gleason grade 3, 4 or 5) with the highest probability is
assigned to each pixel. Once the percentages of each Gleason grade in
the WSI are obtained, we developed a model, based on a multi-layer
perceptron architecture, to predict the combined Gleason score to the
whole biopsy. The obtained results show the good performance of this
model which outperforms the previous state-of-the-art methods.
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PATCH-LEVEL GLEASON GRADATION
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Figure 2.2: Flowchart in which the different blocks of our system are presented. Taking
as input a prostate whole slide image (WSI), the system performs a patch-level Gleason
grade prediction through convolutional neural networks. If one patch is classified as Gleason
grade 4 (GG4), a cribriform pattern detection is carried out by fine-tuning the model of the
previous stage. Finally, the regions in the WSI are reconstructed and a pixel-level Gleason
grade assignement is carried out. The WSI-level Gleason scoring is performed with a multi-
layer perceptron taking as input the percentage of the Gleason grades in that region.

2.2 Related work

2.2.1 Computer vision in prostate cancer histology

Computer vision algorithms have been widely used to analyse histological
PCa images. This section summarises the works previously presented
in the CADs literature for prostate cancer detection, classifying them
according to three factors: the kind of images included in the analysed
database, the objectives addressed by CAD systems, and the techniques
proposed to achieve them.

Regarding the images, mainly three types of histological images have
been used: WSIs, prostactetomies and Tissue Micro Arrays (TMAs).
TMAs are clusters of representative tumor areas extracted manually by
pathologists [73]. TMAs are used for testing new techniques in a large
number of different tumour samples. One of the main limitations of
TMAs lies in the small amount of tissue that can be included in each
samples, which may not be representative of the whole tumor region in
epithelial tumors with heterogeneous patterns [74]. This is the case of
prostate cancer, which has different patterns for each Gleason grade, as
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previously mentioned. Non-cancerous patterns that could confuse CAD
systems, as the inflamed tissue or benign multi-nucleation, could be lost
using TMAs. Thus, the strategy based on TMA analysis is not used in
clinical practice [75] and it is more convenient to develop CAD systems
based on raw WSI analysis. A model trained using large databases of
WSIs could be used for both WSIs and prostactetomies. The works in
[76–82] follow the strategy of WSI analysis, while in [83–85] the authors
use TMAs to develop the CAD models.

With regard to the objectives to be addressed, some works focus just on
the detection of prostate cancer against non-cancerous tissue [77, 81] or
on the first-stage prostate cancer detection [86]. A full analysis of Gleason
grades from 3 to 5 is usually limited by the size of the collected database,
and the low prevalence of Gleason grade 5. Due to that, numerous
researchers classify differentiating among non-cancerous samples, low
grade (Gleason grade 3), and high Grade (Gleason grade ≥ 4) [82, 87, 88]
or among non-cancerous, Gleason grade 3, and Gleason grade 4 [76, 79].
The most recent works tried to predict the full Gleason grading (Benign
- Grade 3 - Grade 4 - Grade 5) in [83–85] but only using TMAs cores. To
the best of the authors’s knowledge, works analysing deeper the Gleason
grades, this is, focusing on the automatic detection of individual patterns
of a Gleason grade (i.e. cribriform pattern, which belongs to the Gleason
grade 4 group) do not exist. This work represents an attempt in this
direction.

Finally, concerning the techniques used to deal with the different
mentioned objectives, the most common approach to analysed both is
to perform a patch-based strategy (see Figure 2.3). The motivation for
using this strategy is the large size of both TMAs and, especially WSIs,
together with hardware limitations.
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Figure 2.3: General workflow for high resolution histology slides processing.

2.2.2 Patch-level Gleason grading

Below, we will focus only on the description of the different techniques
used, until now, for the patch-level Gleason grading. In the literature we
can find approaches based on classic machine learning techniques with a
hand-crafted feature extraction and deep learning algorithms (automatic
feature extraction) by means of convolutional neural networks (CNN).
In Nir et al. (2018) [84] a comparison between both approaches is
carried out with a database of 333 cores of TMAs. Glands and nuclei are
segmented to obtain features related to their size, intensity distributions
and number of elements in each patch at different resolutions. Those are
combined with full patch-level features related to the colour distribution
and SURF descriptors to fit different machine learning models as linear
discriminant analysis, linear regression, support vector machines, and
random forests. Those models are compared with a U-Net CNN. The
best result reported is a Cohen’s quadratic kappa (κ) overall agreement
measure of 0.51 obtained by the linear regression model. Nevertheless, in
a later publication by Nir et al. (2019) [85] a κ of 0.60 was obtained by
fine-tuning the CNN architecture MobileNet. In Arvaniti et al. (2018)
[83] a larger database is used, with 886 cores. The patch-level grading
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is addressed through fine-tuning different CNN architectures such as
VGG16, InceptionV3, ResNet50, DenseNet121, and MobileNet. The best
results are reported with the last one, achieving a κ of 0.67 in the training
set and 0.55 in the test one.

2.2.3 Biopsy scoring

Regarding the classification of the Gleason score for the whole biopsy
(whole slide image), only a few works have addressed it, and only
using TMAs. The common strategy used is to obtain the percentage
of each grade in the analysed image and to assign the first and
second components above a threshold as primary and secondary grades
respectively. In Arvaniti et al. (2018) [83] the full Gleason scoring, using
TMAs, is addressed, archiving κ of 0.75. Unfortunately, this simple
model did not perform for extreme cases, for example 5 + 5 = 10. In
this case, a precision of 0.10 is reported in this work. In addition, the
primary and secondary grades are not just related to the proportion of the
different grades in the tissue, but also to the severity of each grade (e.g.
GG5 could be diagnosed as secondary grade even having less proportion
than GG4 or GG3 in the tissue).

2.3 Methods

2.3.1 Patch-level Gleason grading

The patch-level classification in the different Gleason grades is carried out
by means of convolutional neural networks. We propose a self-designed
base-model architecture (from now on called FSConv) which consists of
a simple convolutional architecture with three convolutional layers and
dimensional reduction operation employing max-pooling layers (Table
2.1).

After the automatic feature extraction blocks (base model), we introduce
as top model a global-max-pooling layer. To show the superior
performance of this architecture, different configurations already applied
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Layer Name Filter Size Stride Activation Output Shape Connected to

Input − − − (224, 224, 3) −
Conv1 (3, 3, 32) 1 ReLU (224, 224, 32) Input
Max− Pooling1 (2, 2) 2 − (112, 112, 32) Conv1
Conv2 (3, 3, 124) 1 ReLU (112, 112, 124) Max− Pooling1
Max− Pooling2 (2, 2) 2 − (56, 56, 124) Conv2
Conv3 (3, 3, 512) 1 ReLU (56, 56, 512) Max− Pooling2
Max− Pooling3 (2, 2) 2 − (28, 28, 512) Conv3

Table 2.1: FSConv architecture description. It consists of three blocks with convolutional
filters, ReLU activation and max-pooling operation.

in the literature to the same problem, have been also tested as top models
and are described next.

One of the main approaches is the flattening of the activation volume
resulting from the final convolutional block and the class prediction
through consecutive fully-connected layers. In this case, overfitting
is addressed by means of a random dropout of a percentage of the
neurons in each training iteration. Nevertheless, these top-model
architectures include a large number of parameters to optimise, increasing
the complexity of the model, and they are sensitive to the location of
the structures in the image. This problem is usually dealt with data
augmentation techniques, applying, for example, random rotations and
translations to the images. Other approaches propose the convenience
of using global-average pooling on the last feature maps as regulariser
to make the model translation-invariant and decrease its complexity [89].
This technique is used in [83] for the prediction of prostate cancer Gleason
degree with fine-tuned models. Due to the use of a patch-based strategy
with sliding window, the location and amount of the cancerous structures
in the image is not controlled. Thus, as shown in Figure 2.4, some patches
could have small portions of cancerous tissue. The global-average pooling
layer takes into account the information in the whole activation map,
and in those cases, the output of the filter that detects this pattern
could be diminished. To make the models robust to the amount and
location of cancerous tissue, we propose in this work the use of the global-
max-pooling layer to play the role of the global-average pooling. All
different configurations, fully-connected layer with ReLU activation and
dropout regularisation (FC), global-average-pooling (GAP) and global-
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max-pooling (GMP) layers and their combinations are implemented and
their performance is discussed in this work.

Figure 2.4: Patches with small amount of cancerous tissue. Green: GG3, Blue: GG4.

For comparison, together with the proposed architecture trained from
scratch, we fine-tuned several well-known architectures: VGG19 [90],
ResNet-50 [91], InceptionV3 [92] and MobileNetV2 [93]. All of them were
pre-trained in the Imagenet data set [94]. For the feature extraction
stage, the base model from those pre-trained models is extracted and
partially retrained. This strategy is usually used to transfer the
knowledge obtained in extracting features from a large database to
specific domains where the amount of data is limited. Nevertheless, the
patterns of the images used during the training are very different from the
histology ones. To keep just the low-level features (contours, combination
of basic colours, general shapes, etc.) from the pre-trained models, the
weights of just the first convolutional blocks are frozen, while the rest are
re-trained to adapt the model to the specific application. The layer from
which the freezing strategy is applied is empirically optimised for each
model, and is specified in the experimental part of the paper, in Section
2.5.1.

The output layer for all the different configurations is composed of one
neuron per class with soft-max activation function to obtain the final
probability per class. In the training process, we use categorical cross-
entropy as loss function, modified to deal with the class imbalance in the
training set as follows:
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L(ŷ, y) = − 1

C

C∑
c=1

wc(yclog(ŷc)) (2.1)

where y and ŷ contain the one-hot-encoded reference labels and predicted
probabilities, respectively, of each class c for a certain instance. wc =
(C×N)/Nc is the weight applied to each class, being N the total number
of images, Nc the number of images belonging to class c and C the number
of classes, C = 4 in our case (non-cancerous, GG3, GG4 or GG5).

Stochastic Gradient Descend is applied as optimiser and the training
procedure is performed using mini-batches. The values of learning
rate and batch size are fixed empirically for each configuration and
experiment, and they are specified in Section 2.5.1. Data augmentation
techniques are used on the training set applying random rotations and
translations to the images.

2.3.2 Cribriform pattern detection

The detection of cribriform structures in GG4 patches is also carried
out using convolutional neural networks. Due to the complexity of the
task and the reduced number of samples, we address this problem by
fine-tuning the model trained for the Gleason grades prediction. To
take advantage of the specialised features extracted by the proposed
architecture, the model is re-trained, optimising the layer from which the
filter weights should be frozen to avoid over fitting. The top model used
here is also proposed in the Gleason grading problem (global-max-pooling
layer) followed by a last layer with one neuron and sigmoid activation
function. The loss function used is the binary cross-entropy. Again,
Stochastic Gradient Descent is used as optimiser applied on mini-batches
and including data augmentation with random rotations, translations
and brightness variations.
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2.3.3 Whole slide image Gleason scoring

To predict the Gleason score of the WSI, it is necessary to compute the
tissue percentage of each Gleason grade present in the WSI. For that
purpose, the first step is to apply the patch-level classification (Section
2.3.1). Then, for each pixel, the predicted probabilities for each class
is estimated by bilinearly interpolating the predicted probabilities of
the closest patches in terms of euclidean distance to the center of the
patches. Thus, a probability map per class (i.e NC, GG3, GG4, and
GG5) is obtained per each WSI. Finally, the percentage of each Gleason
grade is calculated after assigning each pixel the class, c, with the highest
probability.

The pathologist’s decision making while assigning a Gleason score to a
WSI takes into account both the percentage of each Gleason grade and
the severity of each grade. To model this process, we propose to train a
Multi-Layer Perceptron (MLP ) to automatically predict the combined
Gleason scoring of a biopsy, by means of a multi-class classification task.
This task requires the prediction of both primary and secondary Gleason
grades. To address it, MLP is selected as a suitable classifier, due
to its flexibility to adapt the architecture to perform a multi-output
classification. The proposed MLP architecture consists of a branch
with two outputs (see Figure 2.5). The branch is composed of two
fully-connected layers with 16 and 8 neurons respectively, and ReLU as
activation function. The branch is then divided into two output layers:
one for the primary Gleason grade and one for the secondary grade.
These output layers are composed of four neurons each, one neuron per
target class (i.e. NC, GG3, GG4 or GG5) and soft-max as activation
function. The loss function used is the categorical cross-entropy.

2.4 Experimental setting

2.4.1 Materials: SICAP database

The database presented in this paper, SICAPv2, is, to the best of
the authors’s knowledge, the largest public collection of prostate H&E
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Figure 2.5: Proposed Multi-Layer Perceptron (MLP ) for the whole slide image Gleason
scoring. The model takes as input the percentage of each Gleason grade in the whole slide
image, and is composed by a main branch with two fully-connected layers and two outputs.
The intermediate layers consist of 8 and 16 neurons respectively and ReLU as activation
function. The output layers present one neuron per target class and soft-max activation.
NC: non cancerous, GG3: Gleason grade 3, GG4: Gleason grade 4, GG5: Gleason grade 5.

biopsies with local-level annotations of Gleason grades. SICAPv2 is an
extension the database introduced in [81] and will be publicy available
after the publication of this paper.

After analysing the literature, four main prostate cancer tissue image
databases were found. The largest database with prostate biopsies was
released by The Cancer Genome Atlas project1 [95] with up to 720
prostate biopsy slides. Nevertheless, the lack of annotations at both the
local and biopsy levels of the Gleason grades restricts the use of these
data. The database shared by Arvaniti et al. [83] includes pixel-level

1https://portal.gdc.cancer.gov/
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annotations of Gleason patterns from 886 small regions of slides (cores of
TMAs). Unfortunately, as discussed earlier, those cores do not represent
the heterogeneous patterns of local structures of prostate cancer and
benign lesions, so they lack clinical relevance for the slide-level Gleason
score diagnosis. Similar limitations are found in the recent database
from the challenge Gleason19 in the MICCAI 2019 conference2, with 331
cores annotated by different pathologists, and the dataset used in [80],
composed by 625 isolated patches. Although those databases contribute
to the validation of different algorithms, the lack of large databases with
clinical reference of heterogeneous patterns has been a limiting factor
for the scientific community to develop deep-learning-based methods
which demand a large amount of data. One of the contributions of this
work is the publication of a large database of WSIs containing biopsy-
level labels (i.e. Gleason scores for each biopsy) and pixel-level Gleason
grades annotations, in which for the first time, the presence of cribriform
glandular regions is indicated.

SICAPv2 database includes 155 biopsies from 95 different patients who
signed the pertinent informed consent. The tissue samples where sliced,
stained and digitised using the Ventana iScan Coreo scanner at 40x
magnification obtaining WSIs. The slides were analysed by a group
of expert urogenital pathologists at Hospital Clínico of Valencia, and
a combined Gleason score was assigned per biopsy. In cases where the
grade was uncertain, the label was assigned by consensus of all expert
pathologists to avoid inter-observer variability. The primary Gleason
grade (GG) in each biopsy is distributed as follows: 36 non-cancerous
regions, 40 samples with Gleason grade 3, 64 with Gleason grade 4 and 15
with Gleason grade 5 (henceforth NC, GG3, GG4, and GG5 respectively).
Regarding the combined scores, the co-occurrence matrix of primary and
secondary grades is shown in Figure 2.6.

The local cancerous patterns were annotated using an in-house software
based on the OpenSeadragon libraries [96], following the Gleason scale
and indicating the presence of cribriform glandular structures. In order
to process the large WSIs, these were down-sampled to 10x resolution and
divided into patches of size 5122 and overlap of 50% between them. Those

2https://gleason2019.grand-challenge.org/Home/
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Figure 2.6: Description of the Gleason scores in the SICAPv2 database. Co-occurrence
matrix of primary and secondary Gleason grades in each biopsy. NC: non cancerous, GG3:
Gleason grade 3, GG4: Gleason grade 4 and GG5: Gleason grade 5.

values were previously optimised for the detection of cancerous patterns
in [81]. A mask of the presence of tissue in the patches was obtained
by applying the Otsu threshold method. To develop the model able to
predict the main Gleason grade, patches with less than 20% of tissue were
excluded. In addition, patches without cancerous patterns annotated by
the pathologists belonging to cancerous biopsies where also discarded.
After this procedure, the database contains 4417 non-cancerous patches,
1635 labelled as GG3, 3622 as GG4, and 665 as GG5. Note that if one
patched contained more than one annotated grade, the majority grade
was assigned as label. 763 GG4 patches also contain annotated cribriform
glandular regions. A summary of the database description is presented
in Table 2.2.

Non cancerous Grade 3 Grade 4 (cribriform) Grade 5 Total

#WSIs 37 60 69 (36) 16 182
#Patches 4417 1636 3622 (763) 665 10340

Table 2.2: SICAPv2 database description. Amount of whole slide images and their
respective biopsy-level primary label (first row) and number of patches of each one of the
Gleason categories (second row).

In order to train the models and optimise the hyperparameters involved
in this process, the database was divided following a cross-validation
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strategy. In particular, each patient was exclusively assigned to one fold
with the aim of avoiding overestimation of the performance of the system
[85] and ensuring its ability of generalisation. Thus, the database was
divided into 5 groups containing approximately 20% of the patches each
one. Notice that this process was carried out trying to guarantee the class
balance character between sets. A summary of the resulting partition is
presented in Table 2.3.

Patients - Patches
Group Non Cancerous GG3 GG4 (Cribriform) GG5

Cross-validation

1 2 - 685 3 - 625 11 - 979 (237) 2 - 198
2 1 - 717 4 - 346 10 - 950 (41) 2 - 153
3 1 - 644 9 - 361 7 - 670 (126) 2 - 118
4 1 - 1727 8 - 497 9 - 1042 (214) 2 - 247

Test 4 - 644 6 - 393 9 - 853 (145) 2 - 232

Table 2.3: Database partition description: number of patients-patches for each grade in
each validation fold (4-fold cross-validation) and test subset.

Notice that four of the five sets were used to tune the hyper-parameters
involved in the developed algorithms while the remaining partition was
employed to test the final predictive system. For the evaluation of the
patch-level Gleason grade prediction, a cross-validation strategy was used
with the four validation cohorts, while for the WSI-level prediction of
Gleason scores those sets were joined to apply a leave-one-out strategy
per patient in training.

The data collected by Arvaniti et al. [83] was also utilised to validate
the models produced in our study. The cores were resized to match the
resolution used in our models and patched to the dimensions used in our
database. By this approach, each one of these cores is approximately
equivalent to one of our patches. Thus, 115 non-cancerous images, 274
patches labelled as GG3, 210 GG4, and 104 GG5 were used to validate
our work in an external database. Also, the patches shared by Gerytch et
al. [77] were used in our work for the validation of our proposed model.
After normalisation of the images to match our methodology, 32 non-
cancerous images, 95 patches labelled as GG3, 216 GG4, and 70 GG5
were obtained.
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2.4.2 Metrics

In order to objectively evaluate the performance of the trained models the
following metrics were used: accuracy, F1-score, and Cohen’s quadratic
kappa statistic. The accuracy (ACC) is defined as the percentage
of samples correctly classified. Nevertheless, this metric does not
provide information about the performance of the model for each class.
This information was quantified by utilising the F1-score (F1S), a
combination of precision and sensitivity per class computed as follows:

F1Sc = 2× precisionc × sensitivityc
precisionc + sensitivityc

(2.2)

Cohewhere c indicates the predicted classes.

However, an automatic method should be less penalised when classifying
a GG5 tissue as GG4 than as NC, even more so when taking into
account the inter and intra-observer variability. In the literature, this
fact is addressed using the Cohen’s quadratic kappa (κ) metric [97]. The
metric κ ranges from −1 to 1, being directly proportional to the level
of agreement between observers (-1 no agreement, 1 total agreement).
Although there is not objective interpretation of which are the reasonable
values for κ in medical applications, recent proposals [98] define a
moderate agreement if κ is higher than 0.6, while a strong agreement
is stated when κ is higher than 0.8.

The patch-level Gleason grading models are evaluated using all the
aforementioned figures of merit.

In order to evaluate the system for the detection of cribriform patterns,
the area under the Receiver Operating Characteristic (ROC) curve
(AUC) was used. In medical applications, a system is considered reliable
if the AUC value exceeds 0.80 [99]. The predicted labels are obtained by
thresholding the scores (cribriform if the probability is above 0.5), and
then evaluated by means of ACC, sensitivity and specificity.

Regarding the evaluation of the WSI-level Gleason scoring, the Cohen’s
quadratic kappa was used.
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2.5 Results

2.5.1 Patch-level Gleason grading

In the case of the patch-level Gleason grading model, in this section
besides the obtained results using SICAPv2 database, we also discuss its
performance in an external database.

After optimising the hyperparameters (learning rate, batch size, number
of epochs, etc.), table 2.4 shows the obtained results in the validation
sets for the proposed network FSConv with different top models:
fully-connected layers (FC), global-max pooling (GMP), global-average
pooling (GAP), or a combination of them (GAP+FC or GMP+FC).
Table 2.4 also presents the results for the best tested fine-tuned
architectures, VGG19 and RestNet, using the same top models as
FSConv. The optimum hyperparameters were: learning rate of 0.01
for FSConv and 0.0001 for the finned-tunned networks, batch size of
32 images and 200 epochs in all cases. The base model of the fine-
tuned networks were also optimised, being selected to freeze the first
convolutional block for VGG19 and setting all layers as trainable for
RestNet. Futhermore, Table 2.5 presents a comparison in terms of
storage space (in kilobytes, KB) and number of trainable parameters
of each architecture.

Experiment ACC F1S Avg-F1S κ
NC GG3 GG4 GG5

VGG19+FC 0.721± 0.041 0.887± 0.017 0.663± 0.050 0.604± 0.169 0.520± 0.099 0.668± 0.065 0.734± 0.032
VGG19+GMP 0.721± 0.054 0.872± 0.020 0.648± 0.060 0.603± 0.167 0.545± 0.094 0.667± 0.076 0.717± 0.064
VGG19+GMP+FC 0.727± 0.042 0.886± 0.019 0.682± 0.063 0.609± 0.150 0.531± 0.082 0.677± 0.065 0.747± 0.064
VGG19+GAP 0.730± 0.046 0.881± 0.026 0.643± 0.096 0.653± 0.116 0.513± 0.084 0.672± 0.047 0.717± 0.073
VGG19+GAP+FC 0.724± 0.048 0.879± 0.013 0.690± 0.060 0.609± 0.154 0.521± 0.118 0.675± 0.072 0.717± 0.062
ResNet+FC 0.695± 0.031 0.838± 0.015 0.667± 0.075 0.572± 0.127 0.484± 0.053 0.640± 0.055 0.681± 0.046
ResNet+GMP 0.687± 0.038 0.836± 0.018 0.642± 0.072 0.556± 0.131 0.506± 0.073 0.635± 0.060 0.678± 0.033
ResNet+GMP+FC 0.699± 0.022 0.845± 0.013 0.674± 0.081 0.552± 0.123 0.492± 0.492 0.641± 0.044 0.689± 0.053
ResNet+GAP 0.696± 0.026 0.848± 0.013 0.677± 0.083 0.545± 0.124 0.501± 0.040 0.643± 0.055 0.692± 0.033
ResNet+GAP+FC 0.702± 0.028 0.847± 0.007 0.682± 0.089 0.555± 0.126 0.518± 0.052 0.650± 0.055 0.698± 0.042
FSConv+FC 0.733± 0.030 0.839± 0.043 0.650± 0.022 0.696± 0.060 0.544± 0.129 0.682± 0.020 0.680± 0.027
FSConv+GMP 0.762± 0.007 0.876± 0.016 0.727± 0.022 0.709± 0.054 0.536± 0.106 0.712± 0.025 0.732± 0.046
FSConv+GMP+FC 0.728± 0.061 0.872± 0.034 0.695± 0.037 0.631± 0.201 0.452± 0.037 0.663± 0.059 0.720± 0.040
FSConv+GAP 0.531± 0.088 0.683± 0.080 0.322± 0.240 0.441± 0.258 0.339± 0.183 0.446± 0.150 0.415± 0.237

Table 2.4: Results for patch-level Gleason grades prediction on the validation set. The
performance of the different models ResNet, VGG19 and FSConv are presented with the
different configurations of top models. The metrics presented are the accuracy (ACC), the
F1-Score (FS1), computed per class and its average, and the Cohen’s quadratic kappa (κ).
GMP: global-max pooling, GAP: global-average pooling and FC: fully-connected layers.
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Experiment Storage (KB) Parameters
VGG19+FC 180700 46203652
VGG19+GMP 78290 19987716
VGG19+GMP+FC 79832 20380676
VGG19+GAP 78289 19987716
VGG19+GAP+FC 79833 20380676
ResNet+FC 496022 126822916
ResNet+GMP 92579 23542788
ResNet+GMP+FC 97170 24716036
ResNet+GAP 92580 23542788
ResNet+GAP+FC 97179 24716036
FSConv+FC 104899 26846212
FSConv+GMP 2486 630276
FSConv+GMP+FC 4026 1023236
FSConv+GAP 2485 630276

Table 2.5: Number of parameters and memory usage of the different CNN architectures
tested for the patch-level Gleason grading task. KB: kilobytes.

Regarding the results obtained in the fine-tuned models, the use of
architectures with residual blocks provided slightly worse results than
the sequential approach, similarly as the previous results reported in the
literature where sequential models used to outperform residual ones [81,
83, 84]. In relation to the use of different top models, no differences were
found in the accuracy of the fine-tuned architectures, observing similar
results for all of them.

In relation to FSConv architecture, interesting results were obtained
while testing the use of different top models. The best performing
architecture to validate the system is the one with global-max pooling,
FSConv+GMP. The outperforming of the global-max pooling compared
to the fully-connected configuration could be explained by the reduction
in the number of weights to be optimised (see Table 2.5), making the
model simpler and more capable of generalising to new images, and by
the invariance to the pattern location provided by the global-pooling
operations. However, the FSConv model did no converge properly using
global-average poling in the top model (FSConv+GAP), an effect non
observed in the case of fine-tuned architectures. The explanation of this
behaviour could be related to the receptive field of the model. The
receptive field is defined as the region of the image involved in the cross-
correlation operation resulting in one output element in the activation
map. As FSConv is a shallow architecture, the final receptive field (i.e.
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in the last convolution layer) is limited, and then the extracted features
are more local than the obtained by deeper architectures. Then, if the
pattern to be detected is just located in a small portion of the tissue,
the activation could be masked in the global average. This effect is not
present in deep networks with a large receptive field as the VGG19 or
ResNet, and it could explain the similar behaviour of both top models
for the pre-trained networks. Therefore, the use of top models based
on global-max pooling in shallow architectures allows to extract relevant
features to train models from scratch reducing the number of trainable
parameters of the model and increasing its robustness against size and
location variability of the region of interest.

Paying attention to Table 2.4 and taking into account all the figures
of merit, we conclude that FSConv+GMP configuration is the best
performing one for the patch-level Gleason grading. In the validation
set used, this model outperforms the VGG19+GMP+FC architecture
in terms of accuracy (0.7622 compared to 0.7273) and average F1-
score (0.7125 against 0.6772). Furthermore, the FSConv+GMP model
performs specially well when distinguishing between GG3 and GG4,
the most difficult task in the pathologists’ work, reaching F1-scores
of 0.7277 and 0.7093 respectively (see Table 2.4). This is the first
time in the literature that self-defined architectures trained from scratch
outperform fine-tuned architectures from the state-of-the-art pre-trained
in Imagenet for Gleason grading. Moreover, the reduced amount of
parameters (2 × 107 in the VGG19+GMP+FC model against 6 × 105

in the FSConv+GMP model, see Table 2.5), makes more convenient the
FSConv architecture for deployment. Thus, the model FSConv+GMP
was trained using all the images in the cross-validation sets in order to
evaluate its performance in the external test cohort.

The results of the proposed model for the test set and a comparison
of them with previous state-of-the-art works are reported in Table 2.6.
κ value increases up to 0.77 in the test subset for FSConv+GMP. In
comparison with previous studies, our results outperform the state of
the art, obtaining almost a strong agreement between our model and the
pathologist, while just moderate agreement (κ = 0.55 [83]) was obtained
previously in the test set. Figure 2.7 shows the performance evaluation
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of FSConv. In particular, the confusion matrix for validation and test
subsets are presented. From this figure, it can be observed that most of
the errors occur between adjacent classes.

Experiment ACC F1S Avg-F1S κ
NC GG3 GG4 GG5

FSConv+GMP Test 0.67 0.86 0.59 0.54 0.61 0.65 0.77

Arvaniti et al. [83] Validation - - - - - - 0.67
Test - - - - - - 0.55

Nir et al. [85] Validation - - - - - - 0.61

Table 2.6: Results for the patch-level Gleason grading on the test set for the model
FSConv+GMP and comparison with previous literature. The metrics presented are
accuracy (ACC), F1-Score (1S), computed per class and its average, and Cohen’s quadratic
kappa (κ). Note that for the results reported in previous literature not all the metrics were
reported. GMP: global-max pooling.

(a) (b)

Figure 2.7: Confusion Matrix of the patch-level Gleason grades prediction done by FSConv
network in (a) validation set and (b) test set.

2.5.2 Model interpretation

One of the main drawbacks of deep learning models in medical practice
is the lack of interpretability. This fact creates distrust in the clinicians,
the final users of CAD systems. To deal with this problem, in this
research we study the interpretability of the trained models by means of
the Class Activation Maps technique (CAMs). Both VGG19+GMP+FC
(the best fine-tuned model) and FSConv+GMP models are compared
in this section using CAMs.

40



2.5 Results

This technique was proposed in [100] as a procedure to obtain a heatmap
indicating the regions of the input image to which the model is paying
attention to predict certain class. CAMs for both models are obtained for
images correctly classified (see Figure 2.8) and for images miss-classified
by the VGG19 model (see Figure 2.9). These illustrations are organised
as follows: the first row corresponds to the original patch, and the
second and third rows show the CAMs for VGG19 and FSConv models,
respectively. In Figure 2.8 each column shows an example per class: NC,
GG3, GG4 and GG5 accordingly. The main difference in the results
obtained by VGG19 and FSConv is the best differentiation between
GG3 and GG4 by the second model (see Table 2.4), the most difficult
task in the pathologists’ work. In Figure 2.9 three of those cases are
presented in each column: two cases predicted by the VGG19 as GG3
and one as GG5, respectively. Those cases were correctly classified as
GG4 by FSConv model.

CAMs obtained for VGG19 in NC, GG3 and GG4 show that the model is
basing the decision in glandular regions detected and classified correctly.
In the case of GG5, the highlighted region presents a group of single cells
and infiltrating cords without lumen formation, characteristic patterns
of poor differentiate tissue in GG5. In the case of FSConv architecture,
the CAM heatmap does not detect large regions, but small dots instead.
Although the glandular regions are not detected, paying attention to the
position where the dots are pointing at, we can extract interesting insights
(see Figure 2.8). In the case of GG4, the map is activated in a small nest
belonging to a fused-glands structure with irregular cribriform shape.
Regarding the GG3 image, the dot indicates thick cytoplasm in different
medium-sized tubular glands. In the image marked as GG5, the CAM
highlights single isolated cells with hyperchromasia. Less interpretable
is the CAM obtained in the NC image, where any gland is detected.
We speculate that the model carries out this classification by dismissing
the presence of cancerous patterns. Regarding the cases where VGG19
miss-classifies GG4 in Figure 2.9, a correct detection of the regions of
interest is observed. However, these glandular regions are not correctly
classified as GG4, while FSConv model does it just paying attention to
closed lumens in small ill-formed glands. At this stage of understanding,
we believe that this fact is the cause of the different performance by
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(a) (b) (c) (d)

Figure 2.8: Original image (first row) and Class Activation Maps (CAMs) obtained by the
VGG19 model (second row) and the FSConv network (third row) in four images correctly
classified. Non-Cancerous (a), Gleason grade 3 (b), Gleason grade 4 (c) and Gleason grade
5 (d).

both models. VGG19 focuses the prostate cancer detection on detecting
epithelial and glandular regions, and these structures present a larger
heterogeneity than its basic components (colour and size of individual
glands, diameter and opening degree of lumens in the glandular region,
etc.). This could be the reason why the VGG19 generalises slightly worse
than FSConv.
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(a) (b) (c)

Figure 2.9: Original images (first row) and Class Activation Maps (CAMs) obtained on
the VGG19 model (second row) and the FSConv network (third row) in images with GG4
correctly classified by the FSConv. The VGG19 model classification of those cases is GG3
in (a) and (b) and GG5 in (c).

2.5.3 Validation on external datasets

With the purpose of testing the generalization capability of the trianed
model, FSConv net was validated on two external databases. The
databases used were shared by Arvaniti et al. [83] and Gerytch et
al. [77]. The first database is composed of 886 cores from Tissue-
Micro Arrays digitised at 40× magnification, and the second has 625
patches of prostate histology images at 20× magnification. Each core was
resized to 10× resolution and a central patch with dimensions 5122 was
extracted. For both databases, the ground truth was generated following
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the procedure in [83]. Non-cancerous patches were extracted from images
with only benign structures annotated, labels GG3, GG4, and GG5
were assigned to patches with only the corresponding grade annotated.
Examples of the obtained images from the Arvaniti et al. and Gerytch et
al. databases are presented in the first and second rows of Figure 2.10,
respectively. Note that the H&E stain color images are different from
those appearing in the SICAPv2 database (see Figure 2.1 for examples of
the images used to train the developed models). To normalise the colour
distribution of the images in external databases, the method presented
in [101] was used after applying a channel-wise histogram matching of
the external images to a SICAPv2 database reference image. This image
was selected by the expert pathologists involved in this work based on
its structural and colour properties. Then, our best performing model,
i.e. FSConv, was used to predict and evaluate our performance on the
external databases. Table 2.7 and Figure 2.11 show the obtained figures
of merit and confusion matrices, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.10: Examples of patches used from the external database from Arvaniti et al.
(first row) and Gerytch et al. (second row). (a) and (e): Benign glands; (b) and (f):
Patches containing GG3 patterns; (c) and (d): Patches containing GG4 patterns; (d) and
(h): Patches containing GG5 patterns.
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Database ACC F1S Avg-F1S κ
NC GG3 GG4 GG5

Arvaniti et al. [83] 0.5861 0.5660 0.6858 0.4688 0.5603 0.5702 0.6410
Gerytch et al. [77] 0.5136 0.2901 0.6162 0.4990 0.4958 0.4753 0.5116

Table 2.7: Results of the patch-level Gleason grading in the Arvaniti and Gerytch databases
by our proposed model, FSConv. The metrics presented are accuracy (ACC), F1-Score
(F1S), computed per class and its average, and Cohen’s quadratic kappa (κ).

(a) (b)

Figure 2.11: Confusion Matrix of the patch-level Gleason grades prediction in external
databases using the proposed FSConv model. (a): Arvaniti database and (b): Gerytch
database.

The obtained results in Arvaniti et al. database were slightly worse than
the ones reached in our test cohort. The macro-averaged F1 score was
0.57, while 0.65 was obtained in the test cohort (see Table 2.6). To the
best of the authors’s knowledge, this is the first time in the literature
that a model trained for patch-level Gleason grading in tested on an
external database. This is a challenging task, taking into account the
known inter-pathologist variability of the Gleason grading task and the
differences in the histology sample preparation. Thus, the difference in
the results could be explained by those factors. In comparison to the
results obtained in [83] on this database, the reported κ in the test subset
was 0.55 (see Table 2.6), while the κ obtained by our model was 0.64.
Our proposed model outperforms the current state of the art on this set
of images, even though we used the whole database for testing, and they
reported the result on a specific test subset.
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Regarding the obtained results on the Gerytch et al. database, a macro-
averaged F1 score of 0.47, and a κ of 0.51 were obtained. Note that the
small amount of non cancerous patches in this database (32 patches with
only benign annotation, compared to 116 in Arvaniti et al. set) could be
negatively affecting the figures of merit. Unfortunately, to the best of the
authors’ knowledge, no work has been reported on the use of the entire
set of grades on this database, which makes the comparison impossible.

2.5.4 Cribriform pattern detection

To detect cribriform patterns in GG4 patches, FSConv trained in the
Gleason grading stage was re-trained as specified in Section 2.3.2 with a
learning rate of 0.001 and a batch size of 32 samples during 200 epochs.
The results were optimised freezing the weights of the convolutional filters
at different depths. Concretely, at filters conv1, conv2 and conv3 (see
Table 2.1 for FSConv architecture details). The output probability of
each model was used to compute the Receiver Operative Curve (ROC)
and evaluate the Area Under Curve (AUC). Then, probabilities were
thresholded to output a positive classification when they are above 50%.
The results obtained for the cross-validation set are presented in Table
2.8, and the Receiver-Operative-Curve in Figure 2.12 (a).

Experiment ACC Sensitivity Specificity AUC
conv1 0.8218± 0.0541 0.8837± 0.0525 0.5263± 0.1159 0.8172± 0.0689
conv2 0.8350± 0.0599 0.8993± 0.0436 0.5223± 0.1435 0.8225± 0.0733
conv3 0.8103± 0.0712 0.8586± 0.0650 0.5476± 0.2229 0.7965± 0.1018

Table 2.8: Results in the detection of cribriform pattern in the validation set. The accuracy
(ACC), Sensitivity, specificity and area under ROC curve (AUC) are presented for the fine-
tuned FSConv model freezing up to the convolutional layers conv1, conv2 or conv3.

The best results were obtained for the validation set by the network
whose weights were frozen up to the layer conv2. Thus, just the last
layer, conv3 and the output neuron were trained. The accuracy obtained
through this configuration was 0.8225, with a sensitivity and specificity of
0.8993 and 0.5223, respectively. The reached AUC was 0.8225. Slightly
better results were obtained by this model in the test subset. The
ROC computed in the test subset is presented in Figure 2.12 (b), and it
encloses an AUC of 0.8240. This value is at the permissible confidence
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(a) (b)

Figure 2.12: ROC curves obtained for cribriform pattern detection in samples with Gleason
grade 4.

level of systems for medical applications, above 0.80 [99]. Although
the accuracy value decreases to 0.7239, the sensitivity and specificity
are more balanced, with values 0.7168 and 0.7586, respectively. To the
best of the authors’s knowledge, this is the first time that the detection
of cribriform patterns in histology prostate images is addressed and
evaluated, so that it is not possible to establish comparison with previous
works. Nevertheless, the studies comparing the inter-observer variability
of the Gleason patterns classification show the challenging character of
this task. In [102] the reproducibility in this problem was studied with
23 genitourinary pathologists. The consensus was achieved for cribriform
glands in only 23% of the cases, and a consensus was not reached in how
to classify the complex fused glands with cribriform shapes. We observed
that the misclassified instances in our approach were mainly due to this
kind of pattern. In Figure 2.13 few representative examples are presented,
being (d), (e), and (f) images with complex fused glands that the model
misclassified as cribriform pattern. Therefore, the results obtained by
the model are auspicious, and its main limitation is the misclassification
of patterns with large inter-pathologist variability.
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(a) (b) (c)

(d) (e) (f)

Figure 2.13: Examples of the system performance in the test subset for cribriform pattern
detection. (a): True Positive, (b): True Positive, (c): True Negative, (d): False Positive, (e):
False Positive, (f): False Positive.

2.5.5 WSI-level Gleason scoring

Once the patch-level prediction is performed with model FSConv, the
probability maps for each Gleason grade are obtained, as specified in
Section 2.3.3. The usability of these maps in the clinical practice were
qualitatively validated by expert pathologists with satisfactory results.

Different examples of the test subset are presented in Figures 2.14, 2.15,
and 2.16. These figures are organised as follows: in the first column,
the WSI with pixel-level annotations (a) and pixel-level predictions (b)
are presented, while in the second, the heatmaps of GG3 (c), GG4 (d)
and GG5 (e) are shown from top to bottom, respectively. The regions
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of interest in the WSIs are highlighted with a higher resolution window
to facilitate visualisation. The example in Figure 2.14 is a biopsy with
Gleason score 3 + 4 = 7, the biopsy in Figure 2.15 corresponds to a
3 + 3 = 6 sample and the case in Figure 2.16, 5 + 5 = 10. Finally, a
non-cancerous case is presented in Figure 2.17.

(a) (c)

(b) (d)

(e)

Figure 2.14: Whole slide image level prediction of a biopsy diagnosed as Gleason Score
3 + 4 = 7. (a): manual annotations, (b): system predictions. Green: GG3, Blue: GG4, red:
GG5. (c): GG3 heatmap, (d): GG4 heatmap, (e): GG5 heatmap.

In the case presented with Gleason score 3+ 4 = 7 (see Figure 2.14), the
GG3 and GG4 regions are correctly classified. In a subsequent review
of this case, pathologists detected that some glands in the right region
without pathologist’s annotations in the ground truth and classified as
GG3 by the model were actually cancerous patterns. Additionally, the
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(a) (c)

(b) (d)

(e)

Figure 2.15: Whole slide image level prediction of a biopsy diagnosed as Gleason Score
3 + 3 = 6. (a): manual annotations, (b): system predictions. Green: GG3, Blue: GG4, red:
GG5. (c): GG3 heatmap, (d): GG4 heatmap, (e): GG5 heatmap.
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(a) (c)

(b) (d)

(e)

Figure 2.16: Whole slide image level prediction of a biopsy diagnosed as Gleason Score
5 + 5 = 10 (a): manual annotations, (b): system predictions. Green: GG3, Blue: GG4, red:
GG5. (c): GG3 heatmap, (d): GG4 heatmap, (e): GG5 heatmap.
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Figure 2.17: Non-cancerous biopsy without Gleason grades detected by the model.

few non-cancerous dilated and fusiform glands were correctly classified
as non-cancerous (see Figure 2.14 (b), regions of interest highlighted).
Regarding the biopsy with Gleason score of 3+4 = 7, the model correctly
detects the region with GG3 glands, but due to the patch resolution (5122
pixels) some nearby stroma regions are highlighted as cancerous. Finally,
analysing the case with a score of 5 + 5 = 10, a papilar GG4 pattern
is being correctly detected. The same occurs in the GG5 regions with
isolated cells and pseudorosetting patterns. Nevertheless, in regions with
a score of GS ≥ 9 some stroma regions are frequently highlighted as GG5
by the model. This phenomenon does not occur in stroma of biopsies with
GS < 9, as can be seen in the other cases. This fact suggests that the
model could be detecting some hidden pattern of interest in the structure
of the stroma in these regions.

Then, the percentages corresponding to each grade per WSI were
obtained as specified in the methodology (Section 2.3.3). The proposed
architecture MLP was then trained using as input the percentages
obtained in the cross-validation subset. Adam optimiser was used, with a
learning rate of 0.01, and a constant decay to zero over the 2000 epochs.
The batch size was 32. The training strategy was leave-one-out.

52



2.5 Results

This proposed approach is compared with the method proposed by
Arvaniti [83] using T = 10% as minimum number of pixels with a certain
label to be consider the corresponding grade in the WSI grading. The
confusion matrix at biopsy level obtained for both methods is presented
in Figure 2.18, and Cohen’s quadratic kappa (κ) was calculated as a
figure of merit.

(a) (b)

Figure 2.18: Confusion matrix of the whole slide image level Gleason scoring in the
validation cohorts. (a): Method proposed in [83]; (b): MLP model.

The κ value obtained for Arvaniti’s approach was 0.7693, in line with
the results presented in [83] using their own database (using TMAs),
where the obtained κ value was 0.75. Better results were obtained
with the proposed model MLP (see Figure 2.18 (b)), obtaining a κ
value of 0.8177. The main difference between methods was observed
in few samples misclassified as Gleason score 8 and Gleason score 10
by Arvaniti’s proposal which were correctly classified by our model.
Therefore, our proposed strategy seems to model better the pathologist’s
decision to assign a Gleason score to the full image of the slide than the
previous scoring methodology. The results obtained in the test subset
by MLP model are similar to those obtained for the validation cohorts,
with a κ value 0.8168.
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2.6 Conclusions

In this work, we have proposed and validated end-to-end approaches
to automatically support the pathologists analysis of prostate whole
slide images. This support includes the pixel-level prediction of Gleason
grades, cribriform patterns detection, calculation of the percentage of
each grade in the tissue and finally the scoring of the entire biopsy.

We have compared fine-tuned state-of-the-art architectures and self-
designed convolutional neural network architectures trained from scratch
for the patch-level Gleason grades prediction. In addition, we have
discussed the use of a global-max-pooling and global-average-pooling
layers in the top model for this application. The use of global-max
pooling has showed interesting properties in the model trained from
scratch. It supports the use of shallow architectures with a small
receptive field and a reduced amount of parameters, diminishing one
of the main drawbacks of training from scratch: the over fitting to the
training set. Thus, with a concise model composed of three convolutional
layers, we have achieved the best results in our data set, reaching a
Cohen‘s quadratic kappa of 0.77 in the test images. Furthermore, by
just re-training the filter weights of the last convolutional layer, we have
predicted the presence of cribriform regions in patches with Gleason grade
4, with an AUC value of 0.82 in the test subset. To the best of the
authors’s knowledge, this is the first work contemplating the automatic
detection of cribriform patterns in prostate histology images. We also
have studied the interpretability of the developed deep-learning models
by means of Class Activation Maps. Additionally, we have obtained
probability heat maps indicating the presence of the different Gleason
grades in the whole slide image. Finally, making use of the percentage of
non-cancerous, Gleason grade 3, 4, and 5 tissues in the biopsy we have
predicted its combined Gleason score through a multi-layer perceptron,
reaching a Cohen’s quadratic kappa of 0.8168 in the test cohort. This
model reproduces better the decision-making of the pathologist reporting
the biopsy score than previous ones based on just assigning the two first
grades with a higher percentage.
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The limitations of the study naturally include the intra-observer
variability of the annotator. This fact is not present on the trained
algorithm, but it could affect the figures of merit obtained. Additionally,
the large heterogeneity inside each Gleason grade makes difficult to
balance the different folds, representing all the different patterns of the
Gleason grades in all the training and testing groups.

It is important to note that this work brings an important contribution
to the scientific community: the SICAPv2 database, the largest public
database containing pixel-level annotations of prostate biopsies.

Further research will focus on developing convolutional-neural-network
architectures that combine low and high-level features in the classification
stage, as well as the inclusion in those models the prediction of all the
individual cancerous patterns (i.e. ill-fused, papillary or large-fused) as
the cribriform one, in an end-to-end training. Furthermore, the SICAPv2
database will be enlarged with additional annotated whole slide images.
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WeGleNet: A weakly-supervised convolutional
neural network for the semantic segmentation of

Gleason grades in prostate histology images.

The content of this chapter corresponds to the author
version of the following published paper: Silva-Rodríguez, J.,
Colomer, A., & Naranjo, V. WeGleNet: A weakly-supervised
convolutional neural network for the semantic segmentation
of Gleason grades in prostate histology images. Computerized
Medical Imaging and Graphics, 88, (2021).
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Abstract

Prostate cancer is one of the main diseases affecting men worldwide.
The Gleason scoring system is the primary diagnostic tool for prostate
cancer. This is obtained via the visual analysis of cancerous patterns in
prostate biopsies performed by expert pathologists, and the aggregation
of the main Gleason grades in a combined score. Computer-aided
diagnosis systems allow to reduce the workload of pathologists and
increase the objectivity. Nevertheless, those require a large number
of labeled samples, with pixel-level annotations performed by expert
pathologists, to be developed. Recently, efforts have been made in the
literature to develop algorithms aiming the direct estimation of the global
Gleason score at biopsy/core level with global labels. However, these
algorithms do not cover the accurate localization of the Gleason patterns
into the tissue. These location maps are the basis to provide a reliable
computer-aided diagnosis system to the experts to be used in clinical
practice by pathologists. In this work, we propose a deep-learning-based
system able to detect local cancerous patterns in the prostate tissue using
only the global-level Gleason score obtained from clinical records during
training. The methodological core of this work is the proposed weakly-
supervised-trained convolutional neural network, WeGleNet, based on
a multi-class segmentation layer after the feature extraction module, a
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global-aggregation, and the slicing of the background class for the model
loss estimation during training. Using a public dataset of prostate tissue-
micro arrays, we obtained a Cohen’s quadratic kappa (κ) of 0.67 for the
pixel-level prediction of cancerous patterns in the validation cohort. We
compared the model performance for semantic segmentation of Gleason
grades with supervised state-of-the-art architectures in the test cohort.
We obtained a pixel-level κ of 0.61 and a macro-averaged f1-score of 0.58,
at the same level as fully-supervised methods. Regarding the estimation
of the core-level Gleason score, we obtained a κ of 0.76 and 0.67
between the model and two different pathologists. WeGleNet is capable
of performing the semantic segmentation of Gleason grades similarly
to fully-supervised methods without requiring pixel-level annotations.
Moreover, the model reached a performance at the same level as inter-
pathologist agreement for the global Gleason scoring of the cores.

3.1 Introduction

Prostate cancer is one of the most common diseases affecting men
worldwide. It constitutes 14.5% of all cancers affecting men [65], and,
according to the World Health Organization, the yearly number of new
cases will increase by up to 1.8 million people in this decade [66]. The
gold standard for prostate cancer diagnosis and prognosis prediction
is the analysis of prostate biopsies under the Gleason grading system
[67]. This system defines a series of cancerous patterns related to the
morphology, distribution, and degree of differentiation of the glands in
the tissue. Specifically, in histology slides, the observable Gleason grades
(GG) range from 3 (GG3) to 5 (GG5). Examples of those patterns are
presented in Figure 3.1.

In clinical practice, small portions of tissue are extracted, laminated,
stained with Hematoxylin and Eosin, and finally analyzed under the
microscope by expert pathologists using this system. Local cancerous
regions of the sample are classified according to the Gleason grades, and
finally, the two majority patterns are grouped to obtain a Gleason score as
prognosis biomarker (e.g. the Gleason score 5+ 4 = 9 would be assigned
to a sample in which the main cancerous Gleason grade is GG5 and the
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(a) (b) (c) (d)

Figure 3.1: Histology regions of prostate biopsies. (a): region containing benign glands,
(b): region containing GG3 glandular structures, (c): region containing GG4 patterns, (d):
region containing GG5 patterns. GG: Gleason grade.

second is GG4). Due to the large size of the biopsies augmented under a
microscope, this process results in a high time-consuming and repetitive
task, and presents a large intra and inter pathologist variability [103].

In the last decades, the development of digitization devices has allowed
the storage of biopsies at microscopic magnifications as digital images.
Due to this advance, the field of Computer-Aided Diagnosis (CAD)
systems to support pathologists based on computer-vision techniques
has experienced a great growth. However, the development of those
applications is limited due to the high data-demanding character of deep
learning algorithms, and the difficulty in obtaining pixel-level labeled
histology images [104]. Normally, pathologists store in the clinical history
the global-level diagnosis of the biopsy (e.g. the Gleason score per
prostate biopsy). In order to train/build models or develop algorithms
able to detect and grade local cancerous patterns, a laborious manual
annotation process is required, which must be performed by expert
pathologists due to the complexity of the task. In the case of prostate
cancer, the different tumor patterns have to be accurately delimited at
the pixel level to avoid noisy annotations. Even though multi-resolution
graphical user interfaces are provided to clinicians for performing this
task, it is a tedious process prone to error. These limitations encourage
the development of weakly-supervised deep-learning techniques able to
utilize global labels during the training process to accurately identify
local cancerous patterns in the images. The main benefit of those
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methods is that they are not limited to the annotated samples. They
can work using histology images labeled only in the global-level patient
diagnosis. Recent advances in the literature have proposed the use of the
global Gleason score (obtained from the clinical record) to develop CAD
systems for biopsy scoring (these works are detailed in Section 3.2.2).
Nevertheless, these methods focus on predicting only global biopsy-level
markers, while the location of the cancerous structures in the tissue
is qualitatively evaluated or not addressed. The classification of local
Gleason grades in prostate biopsies is the basis of CAD systems during
its use in clinical practice. Accurate heat-maps provide confidence to
the pathologists in the daily use of the CAD system, and support the
biopsy-level markers provided by the system.

In this work we propose a deep-learning architecture based on convolu-
tional neural networks able to perform a semantic segmentation of the
Gleason grades (i.e. non-cancerous tissue, GG3, GG4 or GG5 classes) in
prostate histology images, trained via weak supervision using the diag-
nosed Gleason score of the sample. To the best of the authors’ knowledge,
this is the first time in the literature that weakly-supervised methods are
explored and quantitatively assessed for the local segmentation of can-
cerous Gleason grades. The main contributions of this research are the
following: (i): a weakly-supervised framework based on a convolutional
neural network (CNN) architecture able to obtain complementary se-
mantic segmentation maps based on a novel configuration of multi-class
activation maps, aggregation layers and the slicing of the background
class prediction during training; (ii) the validation of different aggre-
gation layers and regularization techniques to optimize the model; and
(iii) the comparison of the proposed weakly-supervised model with fully-
supervised state-of-the-art methods.

3.2 Related work

3.2.1 Weakly-supervised semantic segmentation

Weakly-supervised learning deals with the challenge of using incomplete,
scarce, inexact, inaccurate, or noisy information. The problem addressed
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in this work, image segmentation using just global labels during training,
is covered within the Multiple Instance Learning (MIL) scope. MIL works
with data clustered on bags of instances, under the assumption that bags
labeled as a certain class present, at least, one instance belonging to that
class. For one image X composed by the instances (pixels) xij, the bag-
level label (Y ) for a class (c) could be interpreted as:

Yc =

{
1, if ∃ xij : yc = 1

0, otherwise
(3.1)

where yc is the instance-level label for certain class c.

In this topic, two different kinds of classification problems are defined: the
prediction of bag-level (global) labels, or the classification of individual
instances. In this work, both problems are addressed. A recent
extensive review of MIL and its characteristics can be found in [105].
Regarding MIL in image classification, convolutional neural networks
(CNNs) are the most used technique, since they have demonstrated
promising properties for locating objects while performing image-level
classification tasks [30, 36].

The approaches to obtain segmentation maps from global-level image
classification using CNNs can be divided into aggregation and gradient-
based methodologies. Aggregation methods build segmentation maps
into the CNN architecture. They are composed of three main blocks:
a feature-extraction stage (or base model), an adaptation layer that
constructs segmentation maps per class, and a global aggregation layer
that resumes each map to one representative value. Then, a multi-label
loss function is used to optimize the network weights. The main proposed
architectures in this field are WILDCAT [43] and Attention-MIL [46].
WILDCAT constructs the adaptation layer by pooling activation maps
after the last convolutional block of the base model and then applies a
global-pooling operator to obtain the bag-level probabilities. Attention-
MIL joins the adaptation and global aggregation layer by using an
attention mechanism that combines all the features obtained in each
instance by fully-connected layers. Regarding the gradient methods, the
segmentation maps are obtained by post-processing the network output.
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In this line, the most relevant technique in the literature is the gradient-
based class activation maps (Grad-CAMs) [40]. In this technique, the
activation maps of the last convolutional block are linearly combined.
Each map is weighted by back-propagating gradients in the network from
the classification layer, and a ReLU activation is applied to the weights
to keep just the features with a positive influence on the classification.
Recently, the efforts on weakly supervised semantic segmentation have
focused on self-supervised learning. In this methodology, CAMs obtained
from gradient-based methods are used as pseudo labels to feed a pixel-
level semantic segmentation network. Although these methods have
reached promising results, they are still limited by the CAMs used,
and the propensity of CNNs to look only at specific and discriminatory
patterns. In this line, Ficklenet [106] and IRNet [107] have proposed
the use of center-fixed spatial dropout and class propagation respectively
to alleviate this limitation. In all the strategies, the aggregation of the
different class-level maps (or CAMs) in a semantic segmentation mask
is not straightforward. This process is usually carried out by hand-
crafted post-processing. Some methods are based on simply assigning to
each pixel the label with the highest probability and let as background
those instances with probabilities below certain threshold [106]. Other
works apply complex fully-connected conditional random fields (CRF) to
combine the different class-level maps into one combined mask [43, 108–
110]. In our work, we take steps forward in order to solve this limitation,
and propose a CNN architecture that obtains complementary multi-class
semantic segmentation maps without requiring any post-processing (see
Section 3.3.1 for further explanation). An extensive survey regarding the
application of weakly-supervised learning across different image domains
and its current limitations was recently presented in [111].

3.2.2 Weakly-supervised segmentation in histology images

Weakly-Supervised learning is a field of increasing interest for histology
images, due to the difficulty of preparing large datasets labeled by expert
pathologists. While some works just focus on the prediction of bag-
level labels in biopsy slides [47, 112–114] carrying out a qualitative
evaluation of instance-level (local) classifications, others quantitatively
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evaluate their proposed models for the local-level classification task [44,
49, 115, 116]. Nevertheless, most of the works only focus on binary
classification cancer/no cancer. Early work in [116] proposes a MIL model
based on hand-crafted feature extraction (SIFT, color histogram, Local
Binary Patterns, etc.), machine learning classifiers and aggregation of
the instance-level probabilities for colon cancer detection. Lately, semi-
supervised CNNs were used for gland segmentation in prostate images
in [115]. However, the proposed UNet required to incorporate some
instance-level annotations during training to perform properly. Finally,
recent work in [49] included previous knowledge by applying constraints
in the training stage of a weakly-supervised CNN to control the size of
positive instances in the image for colon cancer detection. Recent works
have used weakly-supervised CNNs approaches for multi-class semantic
segmentation. Concretely, HistoSegNet, introduced in [44], performs
a weakly-supervised segmentation of different tissue types in histology
images based on CNNs and Grad-CAM gradient method. Then, a
complex hand-crafted post-processing is proposed to join the class-level
segmentation maps and to include the background class.

3.2.3 Prostate Gleason grading

In the analysis of prostate histology samples, as mentioned previously,
there are two main tasks: the grading of local structures using the
Gleason system, and the global scoring.

First works in this field focused on fine-tuning well-known CNN archi-
tectures in a supervised patch-level classification, with the requirement
of pixel-wise expert annotations. In this line, Nir et al. [84, 85] obtained
a patch-level Cohen’s quadratic kappa (κ) of 0.60 in the validation set,
while 0.55 and 0.49 was reached by Arvaniti et al. in [83] in the test
cohort referenced to two different pathologists. Then, the percentage of
each cancerous tissue in the sample was calculated from the patch-level
probabilities to predict the Gleason score of the sample. Arvaniti et al.
[83] obtained with this method a κ of 0.76 and 0.71 against the anno-
tations of two different pathologist, at the level of the inter-pathologist
agreement (κ = 0.71).
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Latest works in the literature have started to develop weakly-supervised
techniques to avoid the tedious process of pixel-level labeling of Gleason
grades. These techniques are based on assigning the global labels (i.e.
the primary and secondary grades obtained from the Gleason score)
to patch-level regions of interest (i.e. glandular or nuclei structures).
Then, convolutional neural networks are trained to perform a patch-
level classification with the obtained pseudo-ground truth. The selection
of regions of interest in the tissue are based on different approaches,
detailed in the following lines. The work in [117] developed a semi-
supervised pipeline detecting the glandular tissue via a UNet trained with
manual annotations. A few works works focus on selecting these regions
with larger amounts of nuclei, based on color [78, 118] or Laplacian
filters [119]. Finally, the work in [47] directly assigns the global label
(cancerous against non cancerous) to all the patches in the tissue. All
previous methods train patch-level convolutional neural networks with
the obtained pseudo-ground truth, and finally they combine the patch-
level predictions to obtain the global score. The first works aggregate
the predictions using the percentage of each Gleason grade in the sample
and then they train different machine learning models to predict the
global Gleason score [78, 117, 119]. Also, novel approaches combine the
patches using the features extracted by the CNN through recurrent neural
networks [47]. Although the aforementioned methods provide promising
results for Gleason scoring of prostate biopsies, the assumptions made
to develop their weakly-supervised pipeline could be affecting the local
grading of cancerous patterns. To the best of the authors’ knowledge,
none of previous works in the literature focus on locating the Gleason
grades in the tissue using weakly-supervised learning. They only perform
a qualitative evaluation of the heat-maps obtained by their models.

3.3 Methods

3.3.1 WeGleNet: weakly-supervised Gleason grading network

The methodological core of this work consists of a convolutional neural
network able to predict semantic segmentation maps of non-cancerous,
Gleason grade 3 (GG3), GG4, and GG5 tissue in prostate histology
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images, trained using global labels of the grades present in the tissue
during training. The proposed weak-supervised Gleason grading network
(WeGleNet) is presented in Figure 3.2.

Segmentation Maps

Convolution + Activation (ReLU)
Max Pooling

Softmax

750² x 64

350² x 128
187² x 256

93² x 512 48² x 512

48² x 4

NC GG3 GG4 GG5

GG3

NC

GG4
GG5

Log-Sum-Exp Pooling

Predicted Reference

Figure 3.2: WeGleNet, weakly-supervised framework for semantic segmentation of local
cancerous patterns via Gleason grading using the Gleason score of the global sample during
the training stage. NC: non cancerous; GG3: Gleason grade 3; GG4: Gleason grade 4; GG5:
Gleason grade 5.

The architecture is composed of three main components: the base
model, the segmentation (also called adaptation) layer, and the global-
aggregation operation, and it takes as input the prostate core image,
which is resized to 7502 pixels due to computational limitations. First,
the base model is in charge of extracting automatic-learned features from
the input image. Concretely, the VGG19 architecture [90] is used. This
is based on convolutional blocks with an increasing number of filters
with 3 × 3 kernels with ReLU activation and dimensional reduction via
max pooling of size 2× 2. In order to reduce the over-fitting during the
training stage, weights are initialized using the VGG19 model pretrained
in the ImageNet dataset [94]. Secondly, the segmentation layer applies
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to the output convolutional feature volume of the base model as many
convolutional filters of size 1 × 1 as classes to be predicted. This layer
also computes a softmax activation along the class dimension generating
a multi-class segmentation volume of activation maps, in which each
value represents the probability of that pixel of belonging to a class.
During the inference stage, this layer will be the model output, and each
segmentation map will be resized to the original core dimensions (31002
pixels). During the training stage, the pixel-level probabilities in the
activation maps are aggregated in order to output one global probability
per class ranging between 0 and 1. This operation is performed by
a global-aggregation layer, which is detailed in Section 3.3.2. This
aggregation of instance-level predictions embedded in the training stage
of the model avoids previous assumptions in the literature to locate the
regions of interest in the tissue. Then, binary cross-entropy is used as a
loss function. As all cores contain non-cancerous regions, the loss function
is only calculated using the Gleason grade classes (i.e. GG3, GG4, and
GG5). Thus, the NC class segmentation map gathers those patterns not
related to cancer but does not contribute to the calculation of the loss
function. This strategy allows obtaining complementary segmentation
maps including the background class (in our case non-cancerous class).
This is a step forward compared to previous methods, which were based
on the individual prediction of segmentation maps per class, and complex
post-processing to join them including the background class (see Section
3.2.2 for a more detailed explanation of these methods).

During the training stage, two techniques are carried out to regularize the
model and avoid over-fitting: data augmentation and hide-and-seek [120].
Data augmentation is performed by transforming the input images with
random translations, rotations and mirroring in each iteration. Hide-
and-seek (HS) is a method that regularizes weakly-supervised-trained
architectures by replacing random patches of the images with the average
intensity level of the input. In each iteration, the hidden patches vary,
and thus the network is forced to focus on heterogeneous patterns during
training. The input image is divided into patches of 752 pixels, which
have a 25% probability of being hidden in each iteration.
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3.3.2 Global-aggregation layers

Global-aggregation layers summarize information from all spatial loca-
tions in the activation maps (xij) to one representative value (p). For
this task, we propose the use of the log-sum-exponential (LSE) layer [45]
in WeGleNet, which is defined as:

pLSE =
1

r
· log

 1

S
·
∑

(i,j)∈S

exp(r · xij)

 (3.2)

where S constitutes the number of pixels in the activation map xij and
r is a parameter to be optimized.

The LSE operation permits us to obtain a domain-specific representation
of the activation map via the parameter r, with large values of r (r → ∞)
similar to a global-max pooling operation (GMP) [30] and small values
(r → 0) equivalent to a global-average operation (GAP) [89]. The r
parameter is empirically fixed by optimizing the model performance in
the validation cohort (see Section 3.5.1). By this procedure, the training
stage overcomes the limitations of the other global-aggregation layers (i.e.
GAP assumes that the pattern is uniformly distributed across with the
activation map, and GMP could produce over-fitting to small, specific
patterns).

3.3.3 Global Gleason scoring

Once the probability maps per class are obtained, the Gleason score of the
sample is inferred from the percentage of each class k in the tissue, wk. In
[83], the Gleason score is obtained assigning the majority and secondary
grades in terms of percentage, considering only the classes above certain
threshold c. In this work, we introduce another term, d, which models
the tendency of pathologists to focus on the majority cancerous pattern
if it is widespread in the tissue. Thus, the final percentage weights are
assigned to each class such that:
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wk =

{
0, if maxk′ w

k′ > d and k ̸= argmaxk′ w
k′

wk, otherwise
(3.3)

where k denotes the different classes, i.e. Gleason grade 3, 4 and 5.

The operator d adapts the weakly-supervised framework to the global
scoring procedure in clinical practice. Pathologists annotate regions
focusing on primary patterns, while the weakly supervised model
performs a more fine-grained segmentation, that increases the percentage
of secondary patterns. Thus, d allows to suppress the system’s confidence
on these patterns for the global scoring task. The values of the
parameters c and d are empirically fixed in the validation set to optimize
the results.

3.4 Experimental setting

3.4.1 Datasets

The experiments described in this work were carried out using the public
dataset presented by Arvaniti et al. in [83]1. This dataset consists of 886
prostate Tissue Micro-Arrays (TMAs, samples of representative regions
of cancerous biopsies known as cores), digitized at 40× magnification in
images of size 31002 pixels. The cores include pixel-level annotations of
Gleason grades and benign structures, and global labels of Gleason scores
(primary and secondary Gleason grades in the sample). The distribution
of the Gleason grades (GG) in the cores is distributed as follows: 421,
387 and 148 cores with GG3, GG4 and GG5, respectively. Regarding
the pixel-level annotations, the dataset includes five different classes:
benign tissue, GG3, GG4, GG5, and background. In order to evaluate
our proposed methodology, the benign and background classes are joined
in the non-cancerous (NC) class. To establish fair comparisons with
previous literature, the partition of the dataset proposed by Arvaniti
et al. was used for training, validating, and testing. Note that the

1We contacted the corresponding authors to obtain the dataset.
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test cohort contains pixel-level annotations made by two different expert
pathologists.

3.4.2 Experimental strategy and metrics

In order to validate the proposed WeGleNet model, two types of figures
of merit are extracted from the model output: global-level (bag-level in
the MIL framework) and local-level (instance-level) metrics. Figure 3.3
illustrates the evaluation strategy.

Local - Level Evaluation

Global - Level Evaluation

Gleason Score: 4 + 3 = 7

... ...

GG4

GG4

GG3

NC

GG4

GG5GG4GG3

Figure 3.3: Strategies for the evaluation of the model performance. NC: non cancerous;
GG: Gleason grade. The core-level (global) predictions are evaluated using the Gleason score.
The local-level predictions are evaluated at pixel-level or using small patches extracted from
the core.

Global-level metrics are obtained comparing the multi-label prediction
of the WeGleNet in the global-aggregation layer and the Gleason grades
observed in the core using the reference Gleason score. This evaluation
is used to optimize the weakly-supervised model using the Area Under
ROC curve (AUC) as a figure of merit. The decision of using this
metric during the optimization stage is related to being closer to the
output probabilities of the model. Finally, during the comparison of the
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model performance with previous literature (Section 3.5.4) the Cohen’s
quadratic kappa (κ) [97] is obtained for the Gleason score prediction.
This agreement statistic takes into account that in a set of ordered classes,
errors between adjacent classes should be less penalized.

Regarding the local-level evaluation, this is performed to analyze the
capability of the trained model for segmenting the Gleason grades
in the tissue. During WeGleNet optimization and its comparison
with fully-supervised methods for semantic segmentation, metrics are
obtained at pixel level. The obtained figures of merit are the accuracy
(ACC), f1-score per class, the macro-average (F1), mean intersection
over union (mIoU) and Cohen’s quadratic kappa (κ). Usually, in
the Gleason grading literature, the local grading of cancerous patterns
is evaluated at patch level to avoid underestimation of the model
performance due to an inaccurate pixel-level annotation in the ground
truth. Therefore, WegleNet is evaluated at patch level for the comparison
of its performance with previous state-of-the-art works in this field. In
order to establish fair comparisons with previous results reported in the
literature in the used dataset, patch-level labels are obtained as proposed
by Arvaniti et al. [83]. Concretely, patches are extracted using a moving-
window of size 7502 and a step of 350 pixels. Patches with multiple or no
annotations were discarded, and the remaining were labeled by majority
voting according to the annotations in the central region of the patch
(i.e. benign, GG3, GG4 or GG5).

3.4.3 Baselines

To compare our proposed weakly-supervised framework, two state-of-
the-art supervised architectures for semantic segmentation of Gleason
grades are implemented. To take advantage of the pixel-level annotations,
patches are extracted from the cores with a size of 7502 pixels and a
step of 350. Due to hardware limitations during training, patches are
resized to 2242 pixels. Then, a UNet architecture and a classifier based
on a patch-level VGG19 fine-tuned network (VGG19Sup) are selected as
supervised architectures to be compared to the WeGleNet model. It is
important to highlight that these methods require an accurate pixel-level
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labeling of the images. The implementation of the models is detailed in
the following lines.

VGG19Sup is based on training a patch-level multi-class classifier
and then modifying the architecture to obtain segmentation maps.
VGG19Sup is composed of a feature-extraction stage using VGG19
backbone pre-trained in Imagenet dataset, a global-average pooling
(GAP) to aggregate the activation maps, and a fully-connected layer
with as many neurons as classes to predict and soft-max activation as
output. In this method, each patch is labeled as the majority grade
annotated. If none Gleason grade is annotated, the patch is labeled
as non-cancerous. Training is performed by optimizing the categorical
cross-entropy as loss function. For the inference of segmentation maps,
the output fully-connected layer is converted in a convolutional layer with
kernel 1× 1, which is applied over the activation volume previous to the
GAP layer to obtain a segmentation map per class. This approach is
equivalent to using a class activation map (CAM) post-processing, but
the segmentation maps are obtained directly from the CNN in an end-
to-end manner. This method was previously used by Arvaniti et al. in
[83] to obtain the probability maps in prostate samples.

Regarding the UNet architecture [121], it is based on a symmetric
encoder-decoder path. In the encoder, feature extraction is carried
out based on convolutional blocks and dimensional reduction through
max-pooling layers. Each convolutional block increases the number of
filters by a factor of 2×, starting from 64 filters up to 1024. After
each block, the max-pooling operation reduces the dimensions of the
activation maps in a factor of 2×. Then, the decoder path builds the
segmentation maps, recovering the original dimensions of the image.
The reconstruction process is based on deconvolutional layers with filters
of size 3 × 3 and ReLU activation. These layers increase the spatial
dimensions of the activation volume in a factor of 2× while reducing the
number of filters by a half. Then, the encoder features from a specific
level are joined with the resulting activation maps of the same decoder
level by a concatenation operation, feeding a convolutional block that
combines them. The convolutional block used during both encoder and
decoder paths includes residual connections [91] to improve the model
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optimization. This residual UNet configuration was proposed in [122],
and showed to outperform other configurations for Gleason grading in
[123]. It consists of three convolutional layers with 3 × 3 kernels and
ReLU activation. The output of the last convolutional layer of the block
in connected via a shortcut residual operation with the output of the
first layer. Finally, after the decoder, a 1× 1 convolutional layer creates
the segmentation probability maps. The loss function used during the
training process is the categorical Dice used in [123].

During the inference stage, the supervised models are used to predict
the entire core instead of local patches. Cores are resized to match the
resolution used during training, and then the output segmentation maps
are resized to the original dimensions of the cores (31002 pixels).

3.5 Results

The following section describes the experiments carried out to optimize
the WeGleNet architecture (Section 3.5.1), and its comparison on the
local-level segmentation of Gleason grades with supervised methods
(Section 3.5.3) and with previous works using the same dataset (Section
3.5.4).

3.5.1 Model optimization

In the first experiments, the objective was to optimize the WeGleNet
architecture for semantic segmentation using global-level labels (i.e. the
presence of certain Gleason grade in the core). The model performance
was studied under the different regularization techniques and global-
aggregation layers. WeGleNet model was trained using the proposed log-
sum-exponential (LSE), global-max (GMP) and global-average (GAP)
pooling. In LSE layer, different values of the r parameter, r =
{1, 5, 8, 10, 15, 25}, were used. In addition, to compare the performance
of the LSE with respect to an automatic-learned combination of GMP
and GAP, a mixed-pooling (MixP) aggregation layer is implemented such
that:
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pMixP = α · pGMP + (1− α) · pGAP (3.4)

where α is a parameter learned during training.

The use of hide-and-seek (HS) regularization was validated by training
the models with and without it. The training was performed in mini-
batches of 8 images, and Stochastic Gradient Descent (SGD) was used
as the optimizer with a learning rate of 1 · 10−3. Exponential decay
in the learning rate was applied in the last 20 epochs to stabilize
the model weights such that: η = 1 · 10−3 · e−0.1·t, where η is the
applied learning rate and t is the epoch. The training was carried
out during 120 epochs, which were increased to 400 when applying HS
regularization. WeGleNet was trained using the training cohort, and
early stopping was applied by keeping the weights of the model obtaining
the best performance in the validation set (in terms of the obtained
losses). After each experiment, segmentation maps were obtained from
the segmentation layer, and core-level predictions were obtained from
the global-aggregation layer using the images of the validation cohort.
The scripts to reproduce the experiments reported in this work are
publicly available on (https://github.com/cvblab/prostate_wsss_
weglenet). Figures of merit related to global-level predictions and pixel-
level segmentation are presented in Figure 3.4 (a) and (b) respectively.

(a) (b)

Figure 3.4: Model performance using different global-aggregation methods and regulariza-
tion techniques. (a): global prediction performance; (b): pixel-level segmentation perfor-
mance. HS: hide-and-seek; GAP: global-average pooling; LSE: log-sum-exponential pooling;
GMP: global-max pooling; MixP: mixed pooling.
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Regarding the obtained results, LSE pooling showed superior perfor-
mance compared to other global-aggregation techniques. In particular,
the best results were obtained using r = 8 (LSEr8), with an AUC of
0.9243 for the core-level detection of Gleason grades and a κ of 0.5973 for
the pixel-level segmentation. Hide-and-Seek regularization (HS) showed
to improve the results in all the experiments, forcing the model to focus
on all the patterns of the images. Thus, results improved to an AUC
of 0.9416 and a κ of 0.6699 in the best-performing model, WeGleNet -
LSEr8. Finally, a high correlation was observed between the global-level
and the local-level performance of the model. A Pearson correlation co-
efficient of 0.5462 was obtained between κ and AUC when using HS regu-
larization. Then, improvements in the global-level predictions produced
a better segmentation of the Gleason grades. This promising behavior
indicates that the model can be optimized without any pixel-level anno-
tations.

3.5.2 Qualitative evaluation

Once WeGleNet was optimized using the validation cohort, the best
performing configuration, WeGleNet - LSEr8 with HS regularization, was
used to predict the segmentation maps from the images of the test cohort.
Representative examples of the obtained results are presented in Figure
3.5. This figure is organized as follows: each row is a different core and
each column represents the ground truth of the Pathologist 1, and the
predicted heatmaps for GG3, GG4 and GG5 classes, respectively. Finally,
the last column presents the discrete-valued semantic segmentation maps,
assigning to each pixel the class with the highest probability. In this
figure, green, blue and red color indicate GG3, GG4 and GG5 patterns,
respectively.

3.5.3 Weak supervision vs. strong supervision

Then, we carried out experiments to compare our proposed weakly-
supervised model with respect to the state-of-the-art supervised methods.
UNet model was trained using Nadam as optimizer, with a learning rate
of 1 · 10−4 during 60 epochs. In each iteration, a mini-batch of 16 images
was used to update the models weights. Regarding the VGG19Sup
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(a) (b) (c) (d) (e)

Figure 3.5: Examples WeGleNet segmentation performance in the test set. The reference
annotations are obtained from Pathologist 1. In green: Gleason grade 3; blue: Gleason grade
4 and red: Gleason grade 5. (a): Reference; (b): Gleason grade 3; (c): Gleason grade 4; (d):
Gleason grade 5; (e): Semantic segmentation mask. The reference and predicted Gleason
scores (Pathologist 1 - Pathologist 2 - Predicted), from top to bottom, are: (6 - 6 - 6); (6 -
7 - 7); (7 - 7 - 8); (10 - 10 - 10); (8 - 9 - 8) and (7 - 7 - 7).
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model, a learning rate of 1 · 10−3 with SGD as optimizer was used.
Training was performed in mini-batches of 64 images during 120 epochs.
For both models, early stopping was applied to keep the best-performing
model in the validation cohort (in terms of the obtained loss). From
the trained models, the segmentation maps of the images in the test
cohort were predicted. The figures of merit obtained by our proposed
WeGleNet - LSEr8 and the supervised models are presented in Table 3.1,
using as reference the annotations carried out by the pathologist 1 (the
same pathologist that annotated the training and validation images). In
order to perform a detailed comparison, accuracy (ACC), class-level f1-
score (F1), average intersection over union (mIoU) and quadratic Cohen’s
kappa (κ) were obtained as detailed in Section 3.4.2.

Experiment ACC F1 mIoU κ
NC GG3 GG4 GG5 Avg.

WeGleNet - LSEr8 0.685 0.815 0.588 0.562 0.353 0.579 0.436 0.610
SupVGG19 0.542 0.674 0.519 0.495 0.155 0.461 0.349 0.263
UNet 0.696 0.838 0.593 0.573 0.241 0.561 0.417 0.638

Table 3.1: Results of the Gleason grades semantic segmentation using the proposed weakly-
supervised model, WeGleNet, and two supervised approaches, SupVGG19 and UNet. The
metrics presented are the accuracy (ACC), the F1-Score (F1), computed per class and its
average, the mean intersection over union (mIoU) and the Cohen’s quadratic kappa (κ).

WeGleNet - LSEr8 model reached a κ value of 0.6105, a mIoU f
0.4368 and an average F1 of 0.5798 in the semantic segmentation of
Gleason grades in the test cohort. Our proposed model outperformed
the supervised SupVGG19 model segmentation (κ = 0.2630, mIoU =
0.3497 and F1 = 0.4613), and it performs similarly to the UNet
model (κ = 0.6387, mIoU = 0.4178 and F1 = 0.5618). Although
the UNet model reached better results in the non-cancerous class
(F1 = 0.8383), WeGleNet - LSEr8 differentiated better the Gleason
grades, reaching an F1 of 0.3531 for the GG5 class, a challenging
task due to the low prevalence of these patterns. Thus, our proposed
WeGleNet model performed at a level equivalent to supervised methods
in the segmentation of Gleason grades, without requiring pixel-level
annotations.
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3.5.4 State-of-the-art comparison

Finally, predictions were obtained at patch-level (which extraction is
specified in Section 3.4.2) to compare WeGleNet against previous works
in the used dataset. In the test cohort, patch-level classifications were
obtained by majority voting of pixel-level predictions. Only fully non-
cancerous patches were predicted as benign. The Cohen’s quadratic
kappa (κ) was obtained using the annotations of both pathologists. The
figures of merit are presented in Table 3.2 and confusion matrices are
presented in Figure 3.6.

Then, the global Gleason scoring of the cores was performed as described
in Section 3.3.3. The parameters c = 0.03 and d = 0.70 were empirically
fixed using the validation set. The κ and confusion matrices were
obtained using as reference both pathologists, and the results are reported
in Table 3.2 and Figure 3.7, respectively. Moreover, the obtained Gleason
Score and references of representative cores are indicated in Figure 3.5.

In order to compare the obtained figures of merit with previous literature,
the reported results for the patch-level grading and global scoring
obtained using fully-supervised models with pixel-level annotations by
Arvaniti et al. [83] are indicated in Table 3.2. Also, the results obtained
in this test set by Bulten et al. [117] using semi-supervised models trained
in a large set of biopsies (see Section 3.2.3 for a more detailed description)
are pointed out in that table.

Approach κ
Pathologist 1 Pathologist 2

Patch-Level Grading
WeGleNet 0.59 0.50
Arvaniti et. al (2018) [83] 0.55 0.49
Pathologist 2 0.65 −

Core-Level Scoring
WeGleNet 0.76 0.67
Arvaniti et. al (2018) [83] 0.75 0.71
Bulten et al. (2020) [117] 0.72 0.70
Pathologist 2 0.71 −

Table 3.2: Results of the patch-level Gleason grading and core-level scoring of the proposed
model and comparison with previous literature. The metric presented is the Cohen’s
quadratic kappa (κ).
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(a) (b)

Figure 3.6: Confusion Matrix of the patch-level Gleason grades prediction done by
WeGleNet - LSEr8 network in the test subset. The reference labels in each matrix are
obtained from: (a) pathologist 1, and (b) pathologist 2. GG: Gleason grade; NC: non
cancerous.

(a) (b)

Figure 3.7: Confusion Matrix of the global-level Gleason scores prediction done by
WeGleNet network in the test subset. The reference labels in each matrix are obtained
from: (a) pathologist 1, and (b) pathologist 2.

The obtained results are in line with our previous experiments, and
WeGleNet performed comparably to the fully-supervised approach used
by Arvaniti et. al [83]. We reached a better κ value (κ = 0.59
against κ = 0.53) with the first pathologist, and similar performance was
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observed using the annotations from the second pathologist (κ = 0.50
against κ = 0.49). In addition, Figure 3.6 showed that most of the errors
were conducted between adjacent classes.

Regarding the core-level Gleason scoring, the performance was also
similar to previous works in the test set. A κ of 0.76 and 0.67 was
obtained with each pathologist, respectively. In average, the obtained κ
(0.715) is similar to the one obtained by Arvaniti et al. (0.730) and Bulten
et al. (0.719). These results are at the same level of inter-pathologist
agreement (k = 0.710). In addition, our approach obtained accurate
localization heat-maps validated in Section 3.5.3 without using pixel-level
annotations during training.

3.6 Conclusions

In this work, we have presented WeGleNet, a weakly-supervised trained
architecture able to obtain semantic segmentation maps of Gleason
grades in prostate histology images. The model is trained using just
global-level labels, the Gleason score obtained from medical history,
and it is capable of locating the local cancerous patterns in the tissue
according to its grade.

Our proposed architecture makes use of multi-class segmentation layers
after the feature-extraction stage, and a global-aggregation of the pixel-
level probabilities into one representative value per class. Then, the
output of the non-cancerous class (background) was sliced to obtain the
loss of the model during training. This strategy allows us to obtain
complementary maps in the architecture, without requiring complex
post-processing of the output. In the experimental stage, we compared
different global-aggregation layers and regularization techniques to
optimize the model performance in the validation cohort. The log-
sum-exponential pooling (LSE) showed superior performance than other
layers, thanks to its ability to adapt the model to the specific domain
via the adjustable parameter r. Thus, we have achieved a Cohen’s
quadratic kappa (κ) of 0.67 for the Gleason grading of local patterns
in the validation cohort at the pixel level. During this optimization
stage, we have observed a high correlation between global and local-level
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figures of merit. Thus, optimizing the proposed architecture using just
global-labels involves improving the local-level localization of cancerous
patterns. Additionally, we have compared the model performance
with state-of-the-art supervised methods for semantic segmentation of
Gleason grades in the test cohort. The proposed WeGleNet architecture
performed similarly to supervised methods, without requiring any kind
of pixel-level annotations during the training stage, reaching a pixel-level
k of 0.61 and an average f1-score of 0.58. The performance for the core-
level Gleason scoring was similar to previous works, and comparable to
inter-pathologist agreement in the test cohort, reaching an average κ of
0.715. These promising results constitute a step forward in the literature
of the analysis of prostate histology images and could avoid the tedious
process of pixel-level generation of ground truth by expert pathologists.

Further research will focus on generalizing the proposed method to be
trained using entire slices of biopsies digitized as whole slide images,
whose larger size presents an added challenge in developing weakly-
supervised methods for locating local cancerous patterns.
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Self-learning for weakly supervised Gleason grading
of local patterns

The content of this chapter corresponds to the author
version of the following published paper: Silva-Rodríguez, J.,
Colomer, A., Dolz, J., & Naranjo, V. Self-learning for weakly
supervised Gleason grading of local patterns. IEEE Journal of
Biomedical and Health Informatics, 25, (2021).
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Abstract

Prostate cancer is one of the main diseases affecting men worldwide. The
gold standard for diagnosis and prognosis is the Gleason grading system.
In this process, pathologists manually analyze prostate histology slides
under microscope, in a high time-consuming and subjective task. In
the last years, computer-aided-diagnosis (CAD) systems have emerged
as a promising tool that could support pathologists in the daily clinical
practice. Nevertheless, these systems are usually trained using tedious
and prone-to-error pixel-level annotations of Gleason grades in the
tissue. To alleviate the need of manual pixel-wise labeling, just a
handful of works have been presented in the literature. Furthermore,
despite the promising results achieved on global scoring the location of
cancerous patterns in the tissue is only qualitatively addressed. These
heatmaps of tumor regions, however, are crucial to the reliability of CAD
systems as they provide explainability to the system’s output and give
confidence to pathologists that the model is focusing on medical relevant
features. Motivated by this, we propose a novel weakly-supervised deep-
learning model, based on self-learning CNNs, that leverages only the
global Gleason score of gigapixel whole slide images during training to
accurately perform both, grading of patch-level patterns and biopsy-
level scoring. To evaluate the performance of the proposed method, we
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perform extensive experiments on three different external datasets for
the patch-level Gleason grading, and on two different test sets for global
Grade Group prediction. We empirically demonstrate that our approach
outperforms its supervised counterpart on patch-level Gleason grading by
a large margin, as well as state-of-the-art methods on global biopsy-level
scoring. Particularly, the proposed model brings an average improvement
on the Cohen’s quadratic kappa (κ) score of nearly 18% compared to full-
supervision for the patch-level Gleason grading task. This suggests that
the absence of the annotator’s bias in our approach and the capability
of using large weakly labeled datasets during training leads to higher
performing and more robust models. Furthermore, raw features obtained
from the patch-level classifier showed to generalize better than previous
approaches in the literature to the subjective global biopsy-level scoring.

4.1 Introduction

Prostate cancer is one of the major diseases affecting men worldwide. It
accounts for 14.5% of all cancers in men [65] and, according to the World
Health Organization, its yearly incidence will increase to 1.8 million cases
this decade [66]. The Gleason grading system [67] is the main tool for its
diagnosis and prognosis. This system describes different stages of cancer
based on the morphology and distribution of glands in prostate biopsies.
Specifically, the Gleason grades (GG) observable in histology samples
range from 3 (GG3) to 5 (GG5). Fig. 4.1 shows representative patterns
of each grade.

(a) (b) (c) (d)

Figure 4.1: Histology regions of prostate biopsies. (a): region containing benign glands,
(b): region containing GG3 glandular structures, (c): region containing GG4 patterns, (d):
region containing GG5 patterns. GG: Gleason grade.
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In order to make a diagnosis of prostate cancer, pathologists extract small
portions of tissue, which are laminated and stained using Hematoxylin
and Eosin. Then, the slides are carefully analyzed under the microscope
to grade local glandular patterns according to the Gleason grading
system. Finally, the two most prominent grades in terms of proportion
and severity are used to obtain a global Gleason score as prognosis
marker. For instance, the Gleason score 3 + 5 = 8 would be assigned
to a sample in which the main cancerous Gleason grade is GG3 and the
second is GG5. Recently, after the 2014 conference of the International
Society of Urological Pathology, a new grading system referred to as
Grade Group [124] has been adopted. This systems takes into account
the different prognosis between patients with Gleason score 3 + 4 = 7
and 4+3 = 7, including them to different groups (Grade Group 2 and 3,
respectively). The whole diagnostic process is highly time-consuming,
and is characterized by a large variability among pathologists [103].
These limitations have motivated the development of automatic tools
to analyze whole slide images in recent years.

Computer-aided diagnosis (CAD) systems based on computer vision
algorithms are able to support pathologists in the daily analysis of
prostate biopsies. However, the development of these applications
is limited, mainly due to the high data-demanding nature of deep
learning algorithms, the large size of digitized biopsies (known as
whole slide images (WSIs)) and the difficulty in obtaining pixel-level
labeled histology images [104]. Current CAD systems are usually
developed to classify local cancerous regions, which are finally combined
into a global score. In the case of prostate cancer, this requires
manual annotation using multi-resolution graphical user interfaces to
accurately delimit the cancerous structures using the Gleason grading
system. This is a laborious process, prone to error due to pathologists
discouragement, which could incorporate the annotator’s bias for certain
patterns. Moreover, heterogeneous epithelial cancer such as prostate
cancer requires a large number of samples to cover the wide range of
possible patterns, which is difficult to reach on annotated datasets.

The limitations of using large annotated datasets encourages the
development of weakly-supervised methods able to leverage global labels
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–easily accessible from the clinical record via the Gleason score– during
the training process. Nevertheless, the literature on employing the
global Gleason score to develop CAD systems for prostate biopsy grading
remains scarce. The main limitation of the proposed approaches is
that they focus on the global-level scoring, while the challenge of local
grading cancerous patterns is only qualitatively validated, or simply not
addressed. It is noteworthy to mention that the classification of local
Gleason grades in prostate biopsies is the basis of an explainable prostate
CAD system. The resultant heatmaps support the biopsy-level scoring
provided by the system, and they demonstrate that the model relies on
relevant medical markers. Thus, the accuracy of the proposed methods in
this task must be validated, in order to provide confidence to pathologists
in the daily-use of CAD systems.

In this work, we propose a novel weakly-supervised learning strategy to
perform both, the global scoring of biopsies and the local grading of
cancerous structures in the tissue, where learning is driven only by the
global Gleason score. To the best of our knowledge, this is the first
attempt to accurately grade local cancerous patterns in prostate whole
slide images using biopsy-level labels during training. In the following
lines, we summarize the main contributions of this paper. First, we
propose an end-to-end CNN architecture, based on patch-level inference
aggregation, that is able to detect high-confidence cancerous instances in
a weakly-supervised multiple-instance learning (MIL) scenario. Then,
we propose a self-learning framework that converts the MIL dataset
into a pseudo-supervised task, employing the patches predicted by the
previous model and a subsequent post-processing label refinement. We
empirically demonstrate that weakly-supervised models trained on large
datasets are able to generalize better on the patch-level Gleason grading
task than supervised models trained in smaller databases with pixel-level
annotations. Finally, we predict the global biopsy-level score based on
the aggregation of local features by using the models trained for the
patch-level Gleason grading.
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4.2 Related work

4.2.1 Self-learning

In the context of this work, we refer to self-learning (a.k.a. self-paced
learning or self-training) as the training procedure introduced in [125],
which aims to use the knowledge of a firstly trained model (usually
called teacher) into a second model (known as student). Interest in this
technique has grown in recent years due to the promising results obtained
in semi- and weakly-supervised learning scenarios. For instance, in semi-
supervised learning approaches, the teacher is used to obtain pseudo-
labels from non-labeled data, after it has been trained on annotated
examples [18, 126, 127]. Afterwards, the student model is trained by
integrating the pseudo-labels in the augmented training dataset. To train
more robust students, which are also consistent with the teacher, [18]
introduces noise to the samples, as well as model noise, while [126] selects
the top–K images based on the corresponding classification scores by the
teacher. These works also exploit knowledge distillation by transferring
the teacher knowledge to either larger [18] or smaller [126] students.
In the context of weakly-supervised object localization, several works
employ a teacher model to select regions of interest from the image
to train student model in a simplified dataset [128–130]. We want to
emphasize that the techniques presented here differ from the similarly so-
called self-learning methods, which pre-train networks on pretext tasks
where both the inputs and labels are derived from an unlabeled dataset
[131, 132]1. Even though both techniques aim at leveraging unlabeled,
or weakly unlabeled data, they present fundamental and methodological
differences.

Inspired by these previous works, we adopt a self-learning strategy
to accurately classify instances using image-level labels from WSIs.
Nevertheless, our work differs from these in that our strategy: (1) trains
a teacher model on global image labels, (2) uses the teacher predictions
to generate pseudo-labels on unlabeled instances at patch-level, and (3)

1The terminology used in this work is proposed by analogy to the previous work on self-learning
applied to semi-supervised learning in [18].
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trains a student model, of the same complexity, on the pseudo-labels
generated by the teacher.

4.2.2 Multiple instance learning

The multiple instance learning (MIL) paradigm falls under the umbrella
of weakly supervised learning. In this setting, the training instances are
grouped in sets, referred to as bags, X, where only the label for an entire
bag, Y , is known. Thus, a bag is considered positive for certain class if
at least one instance is positive such that:

Yk =

{
1, if ∃ x : yk = 1

0, otherwise
(4.1)

With the advent of deep learning, recent efforts on this field have focused
towards training a feature extractor under the MIL framework using
CNNs. Then, a bag-level representation is obtained by aggregation
of either the instance-level features (embedding-based) or predictions
(instance-based). Typical aggregation functions include the maximum
[36], average, and log-sum-exponential [45] pooling, more advanced
min-max mechanisms recently proposed, such as WILDCAT [43], and
trainable functions such as AttentionMIL [46]. Most recent works on
MIL adress the problem of weakly-supervised segmentation. In this
scenario, embedding-based methods are employed to obtain pixel-level
predictions via gradient methods (e.g., grad-CAMs [40]), which are later
refined via self-training iterative strategies [42, 106]. Nevertheless, it is
noteworthy to highlight that weakly-supervised segmentation works with
co-dependent instances (pixels), which are merged on combined features
in the CNN. Thus, the generalization of these methods to MIL scenarios
which use images as instances is not straightforward.

Nonetheless, despite the wide adoption of MIL in computer vision, its
use in prostate histology images still remains scarce. There have been
only few attempts to resort to the MIL paradigm in this scenario, which
are detailed on the following section.
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4.2.3 Gleason grading in prostate histology images

A reliable Computer-Aided Diagnosis system in prostate cancer using
histology biopsies aim two main tasks: the global scoring of slides
and the quantification and localization of cancerous tissue, both using
the Gleason grading system. Due to the large dimension of WSIs
and the computational limitations of CNNs, the basis of these systems
is the use of small patches extracted from the slide. The proposed
methods in the literature can be divided into two categories: bottom-up
frameworks, which perform a patch-level classification of Gleason grades
using pathologists annotation, and top-down methods, which perform a
pseudo-labeling of the patches based on the global Gleason score of the
sample.

First works in this field focused on bottom-up frameworks. They
usually fine-tune well-known CNN architectures in a supervised patch-
level classification [62, 83–85]. Note that these methods require pixel-
level expert annotations to obtain the ground truth. Recently, different
approaches have been proposed in the literature to overcome the need
of pixel-level annotations of Gleason grades. These methods are based
in a top-down strategy, where global labels (easily accessible from the
patient clinical record) are assigned to local regions of interest. In
this way, a weakly-supervised patch-level classification model is trained
using the pseudo-labels obtained from global images. In this vein,
Campanella et al. [47], under the MIL formulation, assigned the global
label (cancerous against non-cancerous) to all the patches of the slide,
resulting in a considerable amount of noisy labels. In [78] and [118], color-
based filtering was employed to select only patches with high presence
of nuclei in cancerous slides, and Ström et al. [119] followed a similar
strategy using Laplacian filters. Bulten et al. [117] proposed a semi-
supervised pipeline and discarded patches that presented low amount of
epithelial tissue. In that work, glandular tissue was previously segmented
using an UNet trained using pixel-level annotations. Although these
works provided promising results for the global biopsy-level scoring, the
patch-level classification was not quantitatively validated. Few works
only performed a qualitative evaluation of the produced heatmaps. In
these methods, the localization of Gleason grades in the tissue could
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be affected by the assumptions made to obtain the patch-level pseudo-
labels. Accurate localization of Gleason grades in the tissue is a major
task that CAD systems should address. The produced heatmaps provide
explainability to the system, and ensures that the output is based on
medical factors to entrust pathologists in their daily use. Contrary to
these works, we propose a teacher model based on instance-level MIL to
infer patch-level Gleason grades from bag (biopsy)-level Gleason scores.

Regarding the global scoring of biopsies, the main approach is based
on aggregating the patch-level predictions of Gleason grades via the
percentage of each grade in the tissue. Particularly, the different
models proposed to predict the global Gleason score or ISUP group
include: threshold strategies [83, 117], a k-nearest neighbor model [133],
a multilayer perceptron [62] or random forests [119].

4.3 Methods

The methodological core of the proposed approach is a self-supervised
CNN classifier able to grade prostate histology patches using only the
biopsy-level Gleason score during training. The proposed workflow,
which is composed by a teacher (θt) and a student (θs) model, is presented
in Fig. 4.2. The first model, i.e., (θt), classifies high-confidence patches
under a noisy multiple instance learning (MIL) paradigm. In this context,
a prostate biopsy is considered as a bag Xb containing instances xb,i,
and the goal is to predict the instance-level labels yb,i when only the
biopsy-level labels Yb are known. Yb are obtained using the primary
and secondary Gleason grades of the biopsy indicated in the Gleason
score. Concretely, the non-cancerous (NC), Gleason grade (GG) 3, 4
and 5 classes are included in Yb as a multi-label one-hot-encoding ground
truth. Then, during the second step, the student model (θs) resorts
to the instance-level pseudo-labels predicted by the teacher model for
training on a pseudo-supervised dataset. The details of these steps are
given below.
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Figure 4.2: Self-learning CNNs pipeline for weakly supervised Gleason grading of local
cancerous patterns in whole slide images. MIL: multiple-instance learning; WSI: whole slide
image; NC: non-cancerous; GS: Gleason score; GG: Gleason grade.

4.3.1 Teacher model

The teacher model aims to grade high-confidence patches using biopsy-
level labels for learning. Formally, let us denote each individual bag as
X t

b = {xb,1, ..., xb,I}, where xb,i is the i-th instance and I denotes the
total number of patches, i.e., instances, in the slide. Hence, the objective
becomes to predict the global Gleason grade (Ŷ t

b ) from the instances
(xb,i), which can be defined as follows:

Ŷ t
b = f({xb,1, ..., xb,i, ..., xb,I}, θt) (4.2)

where θ denotes the teacher model weights.

To accomplish the inference of instance-level predictions, the learning
process is based on the aggregation of patch-level predictions, i.e., ŷtb,i.
Thus, for each instance xb,i in the bag, the teacher model predicts the
Gleason grade as follows:

ŷtb,i = f(xb,i, θ
t) (4.3)

Then, we employ an aggregation function p(·) to resume all the instance-
level predictions into one representative value that serves as global-level
inference. Following this, eq (4.2) can be rewritten as:
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Ŷ t
b = p({ŷtb,1, ..., ŷtb,i, ..., ŷtb,I}) (4.4)

In the context of this work we employ pooling as aggregation function.
It is important to mention that the pooling function should be robust to
the MIL characteristics. A bag-level class could be positive if just one of
the instances is positive for that class. For instance, the use of average
pooling would diminish the global cancerous classes activation if the
slide contains a large number of non-cancerous patches. Inspired by the
properties observed in the max-pooling operation in weakly-supervised
segmentation tasks [36], we propose the use of a slide-level max-pooling.
Using this operation, the global probability per class is the maximum
of the patch-level inferences. This architecture ensures the classification
only of high-confidence instances, since gradients in the network are only
back-propagated on the instance with largest entropy.

Finally, multi-label binary-cross entropy loss is used during training for
gradient estimation. Concretely, the loss is obtained using only the
cancerous grades under the assumption that all slides could contain non-
cancerous regions, but only cancerous slides contain patches with Gleason
patterns. A summary of the Teacher model training is illustrated in Fig.
4.3.

C
N

N

0.60 0.00 0.00 ... 0.90 0.99 0.20

0.20 0.25 0.00 ... 0.10 0.00 0.05

0.20 0.75 0.95 ... 0.00 0.01 0.00

0.00 0.00 0.05 ... 0.00 0.00 0.75GG5

i patches

Gleason Score  
4+5=9

GG4

GG3

NC

GG5GG4GG3
Reference

Prediction

0.25

0.95

0.75

slide-level max-pooling

Figure 4.3: Teacher CNN for the prediction of local Gleason grades in a multiple-instance
learning framework. GG: Gleason grade.
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4.3.2 Student model

The student model aims to perform a patch-level Gleason grade
prediction based on a pseudo-supervised data set of images, using the
teacher model predictions as pseudo-labels. First, all instances from the
dataset are predicted using the teacher model. Then, a label refinement
process is carried out based on patch-level teacher model predictions (ŷtb,i)
and the known global slide-level labels (Yb). During this process, labels
are modified and patches are discarded under the following premises:

ŷtb,i =


NC, if G ̸⊂ Yb

G, if G ⊂ ŷtb,i ∧G ⊂ Yb

Discarded, Otherwise

(4.5)

where NC denotes the non-cancerous class, G an undefined Gleason
grade, and ŷtb,i is the hard one-hot encoding of the Teacher model
prediction for certain patch i, belonging to the slide b. By doing this,
only the patches classified as certain Gleason grade that belong to a slide
actually containing that grade are kept for the subsequent learning of the
student model. Regarding the non-cancerous patches, these are obtained
only from known benign slides. This label refinement post-processing,
together with the simplification of the problem from a MIL to a pseudo-
supervised framework, allows the student model to better learning feature
representations of the patches. Finally, the student model, which has the
same architecture as the teacher, is trained minimizing the categorical-
cross entropy between predictions and pseudo-labels. To account for class
imbalance, class-specific weights are integrated into the loss function:

L(ŷsb,i, ŷ
t
b,i) = − 1

C

C∑
c=1

wc(ŷ
t
b,i,clog(ŷ

s
b,i,c)) (4.6)

where C is the total number of classes (i.e. non-cancerous, Gleason
grade 3, 4 and 5), wc = (C × N)/Nc is the weight corresponding to
each class, being N the total number of images and Nc the number of
images belonging to class c.
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4.3.3 Biopsy-level Gleason scoring

Once the Gleason grades are located in the tissue, we propose to use
the specialized features extracted by student model to predict the global
Gleason score. Thus, if we denote zsb,i the features extracted by the
student model for each patch, the slide-level feature representation is
obtained by global averaging the instance-level features as follows:

zsb =
1

I

∑
i

zsb,i (4.7)

Then, two different models are used to predict both the global Gleason
score and Grade Group. First, a simple multi-layer perceptron (MLP)
composed of one hidden layer with 64 neurons followed by a ReLU
activation is used to predict the one-hot-encoding of the global labels. In
this case, soft-max activation is used in the output layer and the weights
are optimized using the categorical cross-entropy loss. Regarding the
second model, k-Nearest Neighbors (kNN) is employed to compare the
generalization capability of neural networks and non-parametric models
for this task.

4.4 Experimental setting

4.4.1 Dataset

The experiments described in this paper are conducted using several
public datasets, which are well known in the prostate cancer histology
literature. Concretely, two different datasets of prostate WSIs are used
to validate the global biopsy-level methodology, while three databases
with pixel-level annotations are used to test the local Gleason grading
capability of the proposed methods.

Regarding the datasets used to validate the biopsy-level classifier
performance, the recently released dataset from the MICCAI 2020
PANDA challenge [134] is used to evaluate the proposed algorithms. This
dataset consists of 10, 415 prostate WSIs whose primary and secondary
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Gleason grades have been labeled by expert pathologists. The gigapixel
images were resampled to 10× resolution, and randomly clustered into
three groups for training, validating and testing. Further, the external
SICAP2 database presented in [62] is used for testing. This dataset
consists of 155 prostate WSIs with both global primary and secondary
Gleason grades annotated by expert pathologists. The obtained splits
for the PANDA dataset, as well as the Gleason score distribution across
both datasets are presented in Table 4.1.

Partition NC GS6 GS7 GS8 GS9 GS10
PANDA

Train 2, 297 2, 122 2, 075 1, 002 874 99
Validation 98 89 85 42 33 6
Test 497 455 425 205 190 22
Total 2, 892 2, 666 2, 585 1, 249 1, 097 127

SICAP
Test 36 14 45 18 35 7

Table 4.1: Datasets of prostate biopsies used. Whole slide images partition and Gleason
scores (GS) distribution.

In order to validate the capability of the proposed methods to grade
local cancerous patterns, three different external datasets containing
pixel-level annotations of Gleason grades are used. Concretely, the test
cohort from SICAP dataset and the ARVANITI [83] and GERTYCH
[77] databases3 are used. For these sets, patches of size 5122 pixels
are extracted at 10× resolution. This choice is motivated by prior
literature, which determined this configuration as the most optimum for
the binary cancer vs. no cancerous supervised classification task [81].
Furthermore, the main study on supervised learning used for comparison,
i.e., [62], employs the same patch size, which makes direct comparison
easier. Even though this image size might be considered large, benign
fusiform or dilated glands, and cribriform GG4 structures may come
to have sizes in this range, and smaller patch size could impede the
visualization of complete glandular structures. For SICAP dataset, the
label was assigned by majority voting of the pixel-level annotations, and
for ARVANITI and GERTYCH datasets, only patches containing one

2SICAPv2 dataset is accessible at: http://dx.doi.org/10.17632/9xxm58dvs3.2.
3ARVANITI and GERTYCH datasets were obtained upon request of corresponding authors of

[83] and [77], accordingly.
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Gleason grade were used. The non-cancerous class is assigned to patches
containing only benign annotations. The data source and the number of
patches from each dataset, as well as the Gleason grade distribution are
presented in Table 4.2.

Database Source NC GG3 GG4 GG5
SICAP Biopsies 644 393 853 232
ARVANITI Tissue Micro-Arrays 115 274 210 104
GERTYCH Prostatectomies 32 95 216 70

Table 4.2: Datasets with patch-level Gleason grade annotations used for testing.
Distribution of the patches among non-cancerous (NC) and the different Gleason grades
(GG).

The three external databases were normalized to homogenize the color
distribution to the PANDA database. More concretely, the method
presented in [101] was used after applying a channel-wise histogram
matching to the images from the external databases to a PANDA
reference image. This image was selected by the pathologists involved
in this work based on its structural and stain properties.

4.4.2 Metrics

In order to evaluate the different approaches, we resort to accuracy
(ACC), f1-score (F1S) per class and its average, and Cohen’s quadratic
kappa (κ). The last metric, κ, is the main figure of merit typically used
in prostate Gleason grading. It takes into account that the Gleason
system consists on a set of ordered classes, and errors between adjacent
classes should be less penalized. In addition, precision and sensitivity
are obtained for the non-cancerous class for better understanding of the
Teacher-Student pair behavior.

4.4.3 Implementation details

The patch-level classification of Gleason grades was obtained using
the self-learning pipeline detailed in Sections 4.3.1 and 4.3.2. The
teacher model takes tiles of size 256 × 256 as input, and uses VGG16
architecture as backbone with weights pre-trained on Imagenet for the
feature extraction stage. Then, a global-average pooling and a dense layer
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with soft-max activation is used as top model. The proposed Teacher
model is based on the aggregation of patch-level outputs (Gleason grade
predictions). Due to the variable amount of instances in a biopsy
I, the architecture can not be trained using a mini-batch strategy.
Thus, the learning process was carried out using a batch size of 1
slide. The number of patches per slide varies from 40 up to 300 in
the training set. In order to avoid computational limitations, up to
200 random patches were used in each iteration. During the learning
stage, the teacher model was trained during 30 epochs by using SGD
optimizer. The learning rate (η) was initialized to 1 · 10−2, whose value
is decreased by 10 after half the iterations. Then, an exponential decay
was applied during the last 5 epochs to stabilize the weights such that
η = 1 ·10−3 ·e−0.1·t, where t is the epoch number. The student model was
trained following the same procedure than the teacher model, i.e., same
number of epochs, optimizer, and learning rate schedule. The global
scoring of biopsies was carried out using the features extracted by the
student model as detailed in Section 4.3.3. For the multi-layer perceptron
model (MLP), Adam was applied as optimizer, using a learning rate of
1 · 10−2 during 20 epochs. Also, a k-Nearest Neighbors (kNN) model was
fitted using a k = 20, optimized on the validation set. The proposed
methods were implemented in Python 3.6 using Pytorch. The scripts
to reproduce the results reported in this work are publicly available on
(https://github.com/cvblab/self_learning_wsi_prostate).

4.4.4 Baselines

In order to compare our proposed approach with previous state-of-the-
art models, baseline methods are implemented for both the local grading
and the biopsy-level scoring.

First, regarding the weakly-supervised patch-level Gleason grading, a
model similar to [47] for MIL classification was implemented. This
method, hereafter referred to as Global-Assignment, consists in assigning
the global label to each patch of the WSI, and training a CNN using
this pseudo-supervised dataset. In order to reduce noise on the pseudo-
labels, only slides with one unique Gleason grade were used during
training. Regarding the network employed, we trained a model using
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the same architecture, optimizer and learning rate schedule than we
used in our student model. Furthermore, state-of-the-art methods for
MIL aggregation were used in the teacher model to compare to the
proposed max-pooling operation. Concretely, recent methods focus on
using attention-based mechanisms for embedding-based aggregation in
binary MIL classification tasks [46]. The gated attention aggregation,
referred to as AttMIL, was adapted to the instance-based multi-class
aggregation use-case to obtain global predictions per each class k, Yk,
from the instance-level predictions, yi,k such that: Yk =

∑
i ai,kyi,k. Thus,

the attention weights, ai,k, determine the contribution of each patch i in
the global prediction for each class via the features extracted by the
CNN, zi ∈ RM , and the trainable parameters V ∈ RL×M , U ∈ RL×M

and W = [w0, ...,wK−1] ∈ RL×K as follows:

ai,k =
exp{w⊤

k (tanh(Vzi)⊙ sigm(Uzi))}∑
i,k exp{w⊤

k (tanh(Vzi)⊙ sigm(Uzi))}
(4.8)

where tanh(·) and sigm(·) are non-linearity functions, and ⊙ an element-
wise multiplication. The number of features extracted by the CNN is
M = 512 per instance, which are reduced to L = 128 during the attention
mechanism.

The global Gleason score and Grade Group was predicted also using
previously proposed methods based on the percentage of each cancerous
grade in the tissue (GG%) using a kNN model as in [133] and a MLP
used in [62]. It is noteworthy to mention that other learnable aggregation
functions were tested to obtain the embedding of instance-level features
instead of the proposed average pooling. In particular, AttentionMIL [46]
and miGraph [135] were evaluated. Nevertheless, these methods did not
perform properly. Obtaining the Gleason score, by its very definition,
involves obtaining the percentage of cancerous patterns in the biopsy,
which does not match the formulation of the MIL methods (Equation
4.1). It is noteworthy to mention that, in the weakly-supervised patch-
level grading, we solve this limitation by using the presence of Gleason
grades as global label, which fits the MIL formulation. We also performed
an extensive comparison with previous results obtained in the same test
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subsets in [62]. In that work, referred to as Supervised, a supervised CNN
is trained using pixel-level annotations of Gleason grades performed by
expert pathologists on WSIs from SICAP database.

4.5 Results

4.5.1 Grading of local patterns

The figures of merit obtained using the teacher and student models
on the different external datasets are presented in Table 4.3. In
this table, we also report the results obtained in [62], who resort to
supervised training, and those achieved by employing the the baseline
approaches. Furthermore, we include the confusion matrices associated
to the obtained results in Fig. 4.4.

(a) (b) (c)

Figure 4.4: Confusion Matrix of the patch-level Gleason grades prediction done by Student
CNN on the different test cohorts. (a): SICAP; (b): ARVANITI; (c): GERTYCH.

First, we will focus on the discussion of the results obtained by the
different weakly supervised settings and the behavior of the teacher-
student pair for this task. We can observe that teacher model achieved
an inter-dataset average κ of 0.69 and 0.71 using max and AttMIL
as aggregation functions, respectively. This represents a significant
improvement compared to the Global-Assignment model (average κ =
0.47), which is limited by the noise introduced in the patches labeled from
cancerous biopsies using the global label. Although similar inter-dataset
κ is obtained for max and AttMIL aggregation functions in the teacher
model, the former shows most promising results for Gleason grades
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Method Grading Binary C/NC
ACC F1 κ Sen. Prec.

NC GG3 GG4 GG5 Avg.
Other settings

Arvaniti et al. [83] (2018)* − − − − − − 0.55/0.49 − −
Nir et al. [84] (2018)** − − − − − − 0.60 − −

SICAP
Supervised [62] (2020) 0.67 0.86 0.59 0.54 0.61 0.65 0.77 - -
Global Assignment 0.505 0.075 0.440 0.744 0.095 0.338 0.465 0.732 0.039
Teacher - Max 0.722 0.788 0.642 0.642 0.217 0.604 0.636 0.663 0.972
Teacher - AttMIL 0.655 0.657 0.544 0.768 0.483 0.613 0.725 0.911 0.513
Student - Max 0.797 0.901 0.714 0.798 0.601 0.754 0.830 0.862 0.944
Student - AttMIL 0.663 0.653 0.563 0.760 0.544 0.630 0.728 0.938 0.501

ARVANITI
Supervised [62] (2020) 0.586 0.566 0.685 0.469 0.560 0.570 0.641 - -
Global Assignment 0.554 0.017 0.674 0.612 0.205 0.377 0.501 0.644 0.008
Teacher - Max 0.705 0.726 0.730 0.682 0.666 0.701 0.756 0.589 0.947
Teacher - AttMIL 0.655 0.271 0.725 0.647 0.725 0.592 0.716 0.760 0.165
Student - Max 0.722 0.836 0.765 0.623 0.702 0.731 0.793 0.772 0.913
Student - AttMIL 0.635 0.126 0.712 0.626 0.733 0.549 0.689 0.727 0.069

GERTYCH
Supervised [62] (2020) 0.513 0.290 0.616 0.499 0.495 0.475 0.511 - -
Global Assignment 0.562 0.014 0.693 0.761 0.267 0.434 0.531 0.462 0.007
Teacher - Max 0.789 0.697 0.795 0.835 0.666 0.748 0.694 0.555 0.937
Teacher - AttMIL 0.680 0.162 0.639 0.727 0.771 0.575 0.693 0.600 0.093
Student - Max 0.830 0.811 0.821 0.848 0.800 0.820 0.826 0.756 0.875
Student - AttMIL 0.707 0.111 0.636 0.760 0.850 0.589 0.731 0.500 0.062
* Results reported on different patch size and resolutions.

** Results reported on a different (private) dataset.

Table 4.3: Results for the patch-level Gleason grades classification performed by the
different approaches on the different test cohorts. The metrics presented are the accuracy
(ACC), the F1-Score (F1) and the Cohen’s quadratic kappa (κ). Furthermore, precision
and sensitivity are indicated for the non-cancerous class. Bold numbers highlight the best
performing method. NC: non cancerous, GG: Gleason grade.

differentiation. In particular, AttMIL achieves an inter-dataset average
F1 of 0.6360, 0.7140 and 0.6601 for GG3, GG4 and GG5, respectively.
This shows the benefit of using attention mechanisms when training the
teacher model, which enforces the model to focus on different patches
to aggregate the instance-level predictions. Nevertheless, results shift
when training the student model using the teacher model’s predictions
as pseudo-labels. We can observe that the student model using max
aggregation obtained and inter-dataset average κ of 0.82 and a F1 of
0.77, an improvement of 8% and 12%, respectively, compared to its
corresponding teacher model. On the other hand, the student model does
not show any improvement when using AttMIL as aggregation function.
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In the interpretation of these results, the process of label refinement
between the teacher and the student models (see Section 4.3.2) plays a
fundamental role. In this process, false negative patches from positive
bags are discarded during training, while false positive instances cannot
be detected. These instances classified wrongly as cancerous by the
teacher model are the main source of noise in the student model training.
Furthermore, we observe that max-pooling aggregation results on an
inter-dataset precision in the detection of cancerous instances of 0.95,
whereas AttMIL aggregation obtains only 0.26. This difference can be
explained by the fact that the slide-level max pooling operation in the
teacher model architecture produces backpropagation of the weights for
only cancerous patterns that the model classifies with high confidence.
Although this phenomenon increases the number of false negative for
cancerous classes, these samples are discarded during the aforementioned
label-refinement process. Thus, our proposed framework using max-
pooling as MIL aggregation function in the teacher model does not
introduce noise during the pseudo-labeling process, which results on a
better performance of the student model.

Regarding previous state-of-the-art methods for patch-level Gleason
grading based on supervised training on pixel-level annotations, our
proposed teacher-student model using max-aggregation compared also
favorable. In the supervised method in [62], which employs a CNN
trained on annotated patches from SICAP database, a consistent drop
in the κ metric was observed across the three datasets: SICAP test
subset (κ = 0.77) to ARVANITI (κ = 0.64) and GERTYCH (κ = 0.51).
In contrast, our weakly-supervised model obtained similar results in
the three external datasets, with κ = 0.83 on SICAP, κ = 0.79 on
ARVANITI and κ = 0.82 on GERTYCH. These values demonstrate that
the proposed weakly supervised pipeline outperforms the methodology
presented in [62], showing a higher generalization ability and requiring
a weaker supervision during training. This comparison extends to
other prior works using supervised learning, which reach k values of
0.55/0.49 in [83] and 0.61 in [84] under different setups. The reason
for superior performance of the proposed weakly-supervised strategy
could be due to the bias of the annotator produced in the supervised
learning scenario, which is not present when using global-labels in
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our pipeline. Furthermore, the difficulty of obtaining large annotated
datasets with heterogeneous patterns can also reduce the performance
of fully supervised learning approaches. These benefits over previously
proposed methods in the literature outweigh the disadvantages of
the proposed strategy. In particular, we might identify as potential
limitations the large computational requirements of processing all the
patches of a biopsy in each iteration during the training of the teacher
model, and the need to use large datasets for correct generalization.
These drawbacks, however, are an inherent characteristic of weakly
supervised strategies.

Finally, we would like to highlight the limitations observed to evaluate
patch-level Gleason grading models in different, heterogeneous datasets.
Although similar κ values were obtained across the three external
datasets, differences can be observed when focusing on concrete figures
of merit. For instance, the best results are obtained on GERTYCH
dataset (average F1 of 0.82), whereas the worse results are reported on
ARVANITI dataset (average F1 of 0.73). Although the overall results
are similar on SICAP dataset (average F1 of 0.75), the student model
performs poorly on the GG5 class (F1 of 0.60) and gives the best results
on the NC class (F1 of 0.90). These differences could be related to
different reasons. For instance, in each dataset the balance of the classes
is not equal (see Table 4.2). Precisely, SICAP dataset presents a larger
proportion of NC patches, while the proportion of GG5 cases is lower. In
addition, SICAP dataset contains patches with mixed Gleason grades,
whose label is assigned by majority voting. In these cases, the CNN
could be mixing the features of the different classes, thus hampering
the obtained performance. Examples of these patches are presented in
Figure 4.5. Another limitation for Gleason grading assessment is the
well-known inter-pathologist variability. Thus, specific patterns could be
annotated with different Gleason grades by pathologists. This variability
was quantified at patch level by Arvaniti et al. [83], obtaining a κ of
0.65. This fact enhances the importance of testing the proposed methods
across different datasets to ensure the generalization capability of the
CAD systems for Gleason grading.
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(a) (b) (c) (d)

Figure 4.5: Histology regions with mixed Gleason grades from SICAP dataset. (a):
region containing benign and GG3 glands, (b): region containing GG3 and GG4 glandular
structures, (c) and (d): region containing GG4 and GG5 patterns. GG: Gleason grade.

4.5.2 Biopsy-level scoring

Table 4.4 reports the results obtained by the proposed approaches based
on the student features, as well as those from the baseline methods
(GG%). Also, results reported in previous works are indicated. Similarly,
the confusion matrices of the Grade Group predictions using Student
model as feature extractor are illustrated in Fig. 4.6.

(a) (b)

Figure 4.6: Confusion Matrix of the biopsy-level Grade Group prediction done by Student
CNN features and k-Nearest Neighbor classifier, on the two test cohorts. (a): PANDA; (b):
SICAP

Our proposed model based on aggregating patch-level features and kNN
classifier outperformed previously state-of-the-art methods based on the
use of the percentage of each Gleason grade in the tissue, reaching an
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Method Gleason Score Grade Group
Other settings

Arvaniti et al. [83] (2018) 0.75/0.71 −
Bulten et al. [117] (2020) − 0.85*/0.72**
Strom et al. [119] (2020) − 0.91*/0.82**
Otalora et al. [136] (2020) − 0.44***

PANDA
GG% + kNN 0.7936 0.8152
GG% + MLP 0.8054 0.8229
Features + Average + kNN 0.7773 0.7927
Features + Average + MLP 0.7954 0.8245

SICAP
Supervised [62] 0.8177 −
GG% + kNN 0.5942 0.5221
GG% + MLP 0.4861 0.5082
Features + Average + kNN 0.8299 0.8854
Features + Average + MLP 0.3847 0.4421
* Results on test subset.
** Results reported on external datasets.
*** The used dataset does not include benign biopsies.

Table 4.4: Results of the biopsy-level Gleason scoring in the test subsets. The metric
presented is the Cohen’s quadratic kappa (κ).

average κ of 0.84 for both datasets. Although the results were similar for
all models when testing on biopsies from the same center as in the training
cohort (PANDA), the performance of neural-networks-based methods
dropped on the external dataset (SICAP). The classification stage on
neural networks showed overfitting to the training set characteristics
in both Gleason grade percentage calculation (based on patch-level
classification) and in the global score prediction using the Student model
features. The non-parametric use of raw features and kNN generalized
better on external datasets. The obtained results are promising, being
most of the errors between adjacent classes. Moreover, the model
differentiated well critical cases such Grade Group 2 and 3, whose main
difference is the balance between Gleason grade 3 and 4 in the tissue
(see Fig. 4.6). It is noteworthy to mention that the different results
reported from other works are evaluated under different datasets and
training conditions. Thus, direct comparison to those works is unfair.

The obtained results are in line with previous literature for global Gleason
scoring. The proposed method is comparable against works that use
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strong supervision via pixel-level annotations, i.e., Arvaniti et al. [83]
(κ = 0.75 for Gleason scoring) and Bulten at al. [117] (κ = 0.85 for
Grade Group scoring), as well as works that use only global biopsy-level
labels, i.e., Strom et al. [119] (κ = 0.91 for Grade Group scoring) and
Otálora et al. [136] (κ = 0.44 for Grade Group scoring). In accordance
with the observations in our work, methods based on the Gleason grades
proportion in the tissue suffer a performance drop on external datasets
(κ = 0.72 in Bulten et al. and κ = 0.82 in Strom et al.) Finally,
we would like to highlight the difficulty of establishing comparisons
among different datasets, since most of the presented results are at the
level of inter-pathologist variability for Gleason scoring. Different works
have quantified the inter-observer variability on kappa values of 0.71 by
Arvaniti et al. [83] or ranging 0.726-0.869 by Bulten et al. [117].

4.5.3 Qualitative evaluation

Representative examples of the obtained results using the CAD system
on the external SICAP dataset are presented in Fig. 4.7. The pixel-
level heatmaps are obtained by bilinearly interpolating the patch-level
predicted probabilities of the closest patches in terms of euclidean
distance. Then, the class with highest probability is assigned to each
pixel. This figure is organized as follows: each row constitutes a case,
and the Gleason grades in the tissue are highlighted in different colors.
Also, the Grade Group predicted and the ground truth are indicated.

4.6 Conclusions

In this work, we have proposed a novel self-learning CNN strategy to
perform both Gleason grading of local cancerous patterns and global
scoring of prostate WSIs using only the global Gleason score during
training. Our proposed framework is composed by a novel teacher model
based on max-pooling of patch-level inferences of Gleason grades able
to perform local classification of Gleason grade using biopsy-level labels.
Based on the output of the teacher model and a label refinement post-
processing, we propose the training of a patch-level student model on
a pseudo-supervised dataset. In the experimental stage, we validate the
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(a)

(b)

(c)

(d)

Figure 4.7: Examples of the proposed CAD system based on Self-Learning CNNs
performance on the external SICAP dataset. In green: Gleason grade 3; blue: Gleason
grade 4 and red: Gleason grade 5. The reference and predicted Grade Group (Reference -
Predicted) are: (a): (2 - 1); (b): (2 - 2); (c): (3 - 3); (d): (5 - 5).
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patch-level classification on three different external datasets. The student
model reaches an inter-datasets average Cohen’s quadratic kappa (κ) of
0.82 and an f1-score of 0.77. Our results outperformed previous works
based on supervised learning with pixel-level annotations. Moreover, the
results between the different test cohorts were similar, while previous
supervised methods experimented a drop in performance when testing
on external test images. Our proposed weakly-supervised method
generalizes better than supervised methods for local Gleason grading,
due to the absence of annotator bias and the capability of being trained
on large heterogeneous datasets.

Then, the features learned by the patch-level trained models were used to
predict the global Grade Group via an average aggregation and a linear
classification layer. The method was tested on two different datasets,
reaching an average κ of 0.84. This method was compared with the
main approach in the literature for Grade Group prediction using the
percentage of the different Gleason grades in the tissue. Our feature-
based model showed to better generalize pathologist scoring biopsies than
previous approaches.

The promising results presented in this work represent a significant
advance in the literature of prostate histology. Using weakly-supervised
learning it is possible to grade local patterns in gigapixel WSIs
outperforming supervised methods which require laborious annotations
by expert pathologists. Further research will focus on studying and
improving the image-normalization process of prostate histology samples
to use CAD systems in external datasets, which is a vital step for a
successful generalization. Also, the proposed weakly-supervised models
will be refined to decrease the number of biopsies required during
training.
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Proportion constrained weakly supervised
histopathology image classification

The content of this chapter corresponds to the author
version of the following published paper: Silva-Rodríguez,
J., Schmidt, A., Sales, M.A, Molina, M., & Naranjo, V.
Proportion constrained weakly supervised histopathology image
classification. Computers in Biology and Medicine, (2022).
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Abstract

Multiple instance learning (MIL) deals with data grouped into bags of
instances, of which only the global information is known. In recent years,
this weakly supervised learning paradigm has become very popular in
histological image analysis because it alleviates the burden of labeling
all cancerous regions of large Whole Slide Images (WSIs) in detail.
However, these methods require large datasets to perform properly, and
many approaches only focus on simple binary classification. This often
does not match the real-world problems where multi-label settings are
frequent and possible constraints must be taken into account. In this
work, we propose a novel multi-label MIL formulation based on inequality
constraints that is able to incorporate prior knowledge about instance
proportions. Our method has a theoretical foundation in optimization
with log-barrier extensions, applied to bag-level class proportions. This
encourages the model to respect the proportion ordering during training.
Extensive experiments on a new public dataset of prostate cancer WSIs
analysis, SICAP-MIL, demonstrate that using the prior proportion
information we can achieve instance-level results similar to supervised
methods on datasets of similar size. In comparison with prior MIL
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settings, our method allows for ∼ 13% improvements in instance-level
accuracy, and ∼ 3% in the multi-label mean area under the ROC curve
at the bag-level.

5.1 Introduction

In the supervised learning paradigm, deep learning methods have shown
promising performance in a wide range of medical imaging applications.
Nevertheless, these methods usually require large amount of data for
training, which must be labeled by expert clinicians. Obtaining these
labeled datasets is a time-consuming process and is susceptible to inter-
annotator variability, which complicates the use of these models in
practice. This is the case for histology image analysis, whose large
size of tissue images magnified on whole slide images (WSIs), patterns
heterogeneity, and the high level of expertise required to annotate
the data make this learning paradigm unfeasible. Considering these
limitations, the most popular choice in this field has become the use
of weakly supervised learning strategies under the multiple instance
learning (MIL) paradigm. In particular, typically the training dataset
is composed of bags (WSIs) that are known to have cancer or not. Each
bag consists of instances (tissue tiles), of which the label is not accessible
during training. Under this setting, different works have demonstrated
outstanding results for both WSI-level cancer detection [47] and instance-
level cancer localization [64]. Nevertheless, these methods require very
large datasets (i.e. thousands of biopsies) to compensate for the absence
of greater supervision. One common limitation is that these methods
tend to focus on only a limited number of instances of each bag
during training. Very recent literature has resort to instance-dropout
[137] during training to alleviate this issue. Despite the improvement
it produces, this solution does not involve classifying more positive
instances systematically, but depends on the samples randomly discarded
in the dropout, without prior knowledge. To improve the performance of
MIL models with the help of prior knowledge, constraint deep learning
has been proposed using previously estimated tumor size [49] to guide
the weakly supervised optimization. Although this method shows a
promising performance, in this case the tumor size estimation is a tedious
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task, which can be as costly as performing instance-level annotations.
All these limitations are accentuated in the multi-label scenario, where
it is desired to differentiate between different types of tissues, which may
coincide in the same bag. In contrast to the binary scenario classification,
multi-label MIL literature still remains scarce in histology image analysis
[138].

Based on these observations, we propose a novel formulation for MIL in
the multi-label scenario, applied to histology prostate cancer grading in
WSIs. The key contributions of our work can be summarized as follows:

• A novel constrained formulation for instance-level MIL, which
integrates an auxiliary term that forces to increase the number of
instances classified on positive classes.

• In addition, our formulation leverages prior knowledge in terms of
relative tissue proportions (i.e. primary cancerous grade in the
WSI) by imposing inequality constraints on bag(WSI)-level class
proportions.

• We benchmark the proposed model against a relevant body
of literature on SICAP-MIL, a new publicly available dataset
containing 350 prostate WSIs with global labels, as well as
instance-level labels to test weakly-supervised methods on tumour
localization.

• Comprehensive experiments demonstrate the superior performance
of our model. By simply incorporating relative proportion
information during training (easily accessible from medical records
in many cancer types) we found improvements of nearly ∼ 3% in
mean AUC for bag-level classification and ∼ 13% for instance-level
cancer grading accuracy compared to prior MIL methods.
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5.2 Related work

5.2.1 Multiple Instance Learning

In computer vision, multiple instance learning (MIL) is a learning
paradigm that works with independent images (instances) that form
groups (bags), and only bag-level information is known. In the
multi-label scenario, each instance belongs to one class, but different
classes could coincide at bag level [139]. Modern MIL methods using
convolutional neural networks (CNNs) for feature extraction usually
process each instance independently, and then combine the instance-
level information into one bag-level output. Methods that combine
instance-level features are known as embedding-based, which require a
subsequent classification layer. In contrast, instance-based architectures
combine directly instance-level predictions into the bag classification.
Beyond the basic mean and maximum aggregation functions, recent
methods have proposed the use of weighted-averaged embeddings, using
instance-specific attention weights learned via a multi-layered perceptron
projection [46] or recurrent neural networks [47]. It is noteworthy
to mention that, although embedding-based approaches have yielded
slightly better bag-level results in previous literature, they do not provide
instance-level probability outputs. In this work, we are interested in
both: instance and bag-level classification. Since we aim to include
prior knowledge referred to class-wise proportions, our proposed method
follows the instance-based learning paradigm.

5.2.2 Constrained classification

Constrained classification aims to guide the training of a CNNs towards
a solution that satisfies a given condition, which takes advantage of
additional knowledge to the main labels. This learning paradigm has
gained popularity on weakly supervised scenarios (e.g. weakly supervised
segmentation or MIL), since it allows to incorporate local information to
the global annotations. In a usual constraint weakly supervised setting,
an additional loss term enforces the sum of the instance-level predictions
to match a given proportion using an L2 penalty [140]. Similarly, it has
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been applied in unsupervised anomaly segmentation, to force attention
maps to focus on all patterns of training images [60], or in semi-supervised
learning, to match the predicted size distributions to the ones observed
in the supervised subset using a KL-divergence term [141]. While the
aforementioned equality-constrained formulations proposed in weakly
supervised settings are very promising, they demand exact knowledge
of the prior. For instance, in the case of histology tumour grading, this
would require to know the cancerous tissue proportion extent. Therefore,
recent works have preferred the use of inequality constraints to relax the
prior assumptions, allowing more flexibility. This approach allows, for
example, to set some tolerance margins on target size using L2 penalties
[142, 143], or Lagrangian optimization [48]. Following the example above,
these works would require approximate knowledge of tumor size, and
a tolerance margin would be applied to smooth the constraint. Unlike
these works on weakly supervised classification, our formulation does not
require prior information on the absolute size of the target. In contrast,
we seek to constrain the training to account for relative relationships
between proportions within the same global image. In the case of
histological whole slide image classification in a multi-label setting, this
formulation incorporates information about which tumor grade is in the
majority (primary) and which is in the minority (secondary), so that
the proportion of the primary grade must be greater than that of the
secondary grade. Thus, we use inequality constraints to (i) encourage
classification of instances to positive classes at the bag level, and (ii)
incorporate relative relationships between class proportions within bags.

5.3 Methods

An overview of our proposed method is depicted in Figure 5.1. In the
following, we describe the problem formulation, and each of the proposed
components.
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Input bag
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Figure 5.1: Method overview. In this work, we face weakly supervised histology image
classification under the Multiple Instance Learning (MIL) paradigm. Each biopsy is a bag,
while its patches are the instances conforming it. In the case of prostate analysis, expert
labels are conformed by the Gleason score, that are the sum of the two most predominant
tumour grades (i.e. G3, G4 or G5). In order to extract both instance and bag-level labels, an
standard instance-level MIL with max aggregation is trained via cross-entropy loss, Lce (see
Eq. 5.3). Then, prior information is incorporated via inequality constraints that (i) force
the classifier to predict instances that are present in the biopsy (LPE , see Eq. 5.5), and (ii)
ensure that the proportion of the primary grade is superior than the secondary grade (LPC ,
see Eq. 5.7). Colored tissue indicates: blue: Gleason grade 4; red: Gleason grade 5. Circles
in instance-level predictions indicate soft-max scores, yn,k. The more intense the color, the
higher the score.

Problem Formulation In the paradigm of Multiple Instance Learning
(MIL), instances are grouped in bags of instances X = {xn}Nn=1, that
exhibit neither dependency nor ordering among them, and its number N
is arbitrary for each bag. In the multi-label scenario, there are multiple
labels per bag, Y = (Y1, ..., Yk, ..., YK) , where k ∈ {1, ..., K} denotes
each one of the K categories. Also, individual labels, yn,k ∈ {0, 1}, exist
for each instance in the bags, but they remain unknown during training.
In the standard MIL formulation, a bag label is considered positive if at
least one instance in the bag is positive for that category. We can rewrite
this assumption in the following forms:
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Yk =

{
1, iff

∑
n yn,k > 0

0, otherwise
(5.1)

≡ Yk = max
n

{yn,k} (5.2)

Instance-based MIL In this work, we aim to training a model capable
of extracting both: instance and bag-level labels, which falls into the
instance-based MIL paradigm1. Let us denote a neural network model,
fθ(·) : X → HK+1, parameterized by θ, which processes instances x ∈ X

to predict softmax instance-level class scores, {hk}Kk=0 ∈ H, such that
H ∈ [0, 1]. Note that k = 0 represents a category for instances negative
at all classes. Also, we use a parameter free aggregation function,
fa(·), in charge of pooling the instance-level scores into one global score
H = (H1, ..., Hk, ..., HK) such that H = fa({fθ(xn)}Nn=1). Then, the
optimization of θ is driven by the minimization of cross entropy loss
between reference and predicted bag-level score.

Lce = − 1

K

K∑
k=1

Yklog(Hk) + (1− Yk)log(1−Hk) (5.3)

5.3.1 Inequality constraints for MIL

Previous literature on instance-level MIL have proposed aggregation
functions fa(·) based on mean or maximum operator. The second solution
is used based on the direct interpretation of maximum operation on MIL
formulation (Eq. 5.2). Nevertheless, training a neural network via this
aggregation produces well-known problems such as gradient vanishing
of non-maximum instances. This limitation produces the network to
focus only on discriminative instances during training, which leads to
poor generalization performance on unseen samples. To alleviate this
issue, we focus on the MIL formulation in Eq. 5.1, which interpretates a
positive bag via an inequality that forces the sum of instances scores
to be greater than zero. In this line, we incorporate to the base

1Based on the denomination proposed in [46]
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instance-based MIL training a term that increases the proportion of
positive instances classification for a given class k, pk = 1

N

∑N
n hn,k, by

minimizing −λlog(pk). Nevertheless, this log-term is non-differentiable
when pk → 0. To solve this limitation we resort to a smooth, duality-gap
bound approximation. Concretely, we use the formulation proposed in
[48] on constrained optimization that models inequality constraints using
the approximation of log-barrier that is formally defined as:

ψ̃t(z) =

{
−1

t
log(z) if z ≥ 1

t2

−tz − 1
t
log( 1

t2
) + 1

t
otherwise,

(5.4)

where t controls the barrier during training, and z is the objective term.

This log barrier extension is applied on the proportion term pk of the
bags that are positive for the class k at bag level (i.e. Yk = 1). It is
noteworthy to mention that this proportion is the objective term z in
Eq. 7.4. Hereafter, we refer to this term as positives expansion (PE)
constraint.

LPE =
∑

k:Yk=1

ψ̃tPE
(pk) (5.5)

Thus, we propose a MIL loss that combines the maximum formulation
in Eq. 5.2 via the aggregation function fa(·) = max

n
{yn,k}, and the PE

term as follows:

L = Lce + λPELPE (5.6)

where λPE ∈ R+ weights the importance of each term during training.
Note that the positives expansion term, LPE, is only applied for those
positive categories at bag-level.
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5.3.2 Incorporating proportion information

In some applications, prior knowledge of the bags is known. In this
work, we focus on an information usually recorded on medical domains:
data regarding the proportion of categories in the image (i.e. primary
or secondary tumor grades in the tissue). This information can be
formulated as an inequality constraint between categories proportions
such that: pk′ > pk′′ , where k′ denotes the larger proportion category, and
k′′ its respective counterpart. Note that this relation can be established
between any pair of positive categories in the bag for which we have
this information available. Thus, we contemplate an arbitrary number
of conditions I for each bag, which could give complete or partial
information (i.e. the formulation could be applied for only few known
inequalities). For each condition i, both major (k′) and minor (k′′)
categories should be indicated. Again, we make use of extended log-
barrier (see Eq. 7.4) to solve this inequality constraint, which has
demonstrated good performance when multiple constraints are used [48].
In this case, the objective term z in Eq. 7.4 is the different between
major and minor proportions in a given bag: (pk′i − pk′′i ). Hereafter, we
refer to this additional term as proportion constraint (PC).

LPC =

Ib∑
i

ψ̃tPC
(pb,k′i − pb,k′′i ) (5.7)

where b indicates the bag index over the complete dataset, λPC ∈ R+

weights the relative importance of the proportion term during training,
tPC controls the barrier slope over time. It is noteworthy to mention
that the proportion term is not taken into account for bags with only
one positive category, or which the proportion information is unknown.

Taking into account the different terms previously detailed, θ is trained
to solve the multi-label MIL formulation using the following optimization
criteria via standard Gradient Descent:

L = Lce + λPELPE + λPCLPC (5.8)
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5.4 Experimental setting

5.4.1 Datasets

In this work, we present a new dataset for prostate histological image
analysis: SICAP-MIL2. This dataset is an extension of the previously
published SICAP versions [62, 81], which is expanded with 168 new WSIs.
The dataset introduced is composed of 350 WSIs from 271 patients. The
samples were digitised using the Ventana iScan Coreo scanner at 40x
magnification. The slides were analysed by a group of expert urogenital
pathologists at Hospital Clínico of Valencia, and a combined Gleason
score (GS) was assigned per biopsy. The Gleason score is the sum of the
two main (primary and secondary) Gleason grades (GG) in the biopsy
regarding its extent and severity. The clinical report specifies both the
score and the primary and secondary grades that constitute the score.
SICAP-MIL is specially design to serve as a benchmark for MIL methods.
Each WSI is considered as a bag, from which instances are obtained by
tiling the images using non-overlapped moving-windows of 5122 pixels at
10× of resolution level. Note that tiles with less than 20% of tissue were
excluded. The dataset is divided into three class-wise balanced groups
for training, validation and testing. A summary of the dataset in terms
of the labelled Gleason scores and proposed partitions is presented in
Table 5.1.

Partition NC GS6 GS7 GS8 GS9 GS10 Total
Train 77 10 61 7 25 8 188
Validation 19 2 26 5 10 2 64
Test 17 9 28 13 27 4 98
Total 111 21 115 25 62 14 350

Table 5.1: SICAL-MIL dataset. Whole slide images partition and Gleason scores (GS)
distribution.

From the WSI-level Gleason scores, bag-level labels referred to the
presence of each Gleason grade in the WSI are inferred. Also, the relative-
proportion information of the primary and secondary grades is obtained

2SICAP-MIL is available at https://cvblab.synology.me/PublicDatabases/SICAP_MIL.zip or
on the GitHub repository of the project: https://github.com/jusiro/mil_histology.
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from this score. We show in Figure 5.2 the information regarding the
primary and secondary Gleason grades for each WSI. It is observed that
most cases present at least two tumor types, and thus two proportion
expansion (PE) constraints and one proportion constraint (PC) in the
proposed formulation. Also, the difficulty of training a classifier capable
of distinguishing between different Gleason grades in a weakly supervised
manner is appreciated, since the biopsy rarely presents a single tumor
type.

Figure 5.2: SICAP-MIL dataset description. The confusion matrix shows the distribution
of global labels in terms of primary and secondary Gleason grades per Whole Slide Image.
GG: Gleason grade. NC: non-cancerous.

In addition, SICAP-MIL includes instance-level annotations, which allow
to test the capability of MIL methods to leverage instance classifications
in a weakly-supervised manner. To do so, annotated WSIs are kept into
the test subset. Note that instance-level labels are obtained from pixel-
level annotations done by expert pathologist. Non-cancerous patches are
obtained only from benign WSIs, while cancerous patch-level labels are
obtained by majority voting of segmentation masks. The distribution of
instance-level annotated subset from the test cohort is presented in Table
5.2.

Partition NC GG3 GG4 GG5
Test 448 289 632 132

Table 5.2: SICAP-MIL patch-level Gleason grade annotations used for testing. Distribution
of the patches among non-cancerous (NC) and the different Gleason grades (GG).
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5.4.2 Implementation details

The proposed methods were trained using the train subset from SICAP-
MIL. The backbone fθ(·) used was a VGG16 [90] pre-trained on Imagenet
[94], which takes as input instances resized to 224 × 224 images. First,
the PE setting was trained by empirically fixing λPE = 0.1 and tPE = 15.
Training was carried out during 100 epochs using a batch size of 1 bag
and the SGD optimizer with a learning rate η = 1 · 10−2. After 50
epochs, η is decreased in a factor to 10×. During training, bag-level
mAUC is monitored in the validation set, and early stopping is applied
if this figure of merit does not improve during 20 epochs. Then, the
PC formulation is trained keeping constant the PE hyperparameters,
and empirically setting λPC = 1 and tPC = 5. The training is carried
out using the same training conditions as the PE setting. Nevertheless,
instead of using mAUC from validation subset as early stopping criterion,
we use the average proportion constraint satisfaction, z = pb,k′i − pb,k′′i
in Eq. 5.7 from the training set to determine the best model. The
hyperparameters and early stopping criterion used are further justified
by means of ablation experiments. The code and trained models are
publicly available on https://github.com/jusiro/mil_histology.

Instance-level Student In this work, we complement the proposed
models for instance-level prediction with a second model, Student,
trained with instance-level hard pseudo-labels as described in [64]. This
second stage has demonstrated to increase model performance without
any modification of the architecture as described in [64]. Note that we
use as Teacher any trained instance-level classifier fθ(·) under the MIL
paradigm with the proposed methodology. A Student model with the
same complexity as the Teacher is trained following the Noisy Student
paradigm on semi-supervised learning [18]. Concretely, a dropout rate of
0.20 is applied over the instance embedding, and data augmentation is
applied to all instances using random rotations, translations, Gaussian
blur and color jittery. Student is trained during 60 epochs with mini-
batches of 32 images using SGD optimizer and a learning rate of η =
1 · 10−2.
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5.4.3 Baselines

With the aim of comparing our approach to state-of-the-art methods, we
implemented and tested prior methodologies on MIL for both instnace-
level and bag-level classification on SICAP-MIL dataset. Instance-
based MIL. First, we compare our method with other instance-based
MIL aggregation. Concretely, we use basic mean and max operations
over the instance-level predictions to obtain the bag-level prediction.
Embedding-based MIL. Secondly, we included embedding-based
methods, which aim to obtain a bag-level embedding, on which a
classifier is trained to predict bag-level labels. Aggregation methods
of instance-level features include mean, max, attention mechanism, and
recurrent neural networks (RNN). AttentionMIL [46] aims to obtain a
weighted feature representation, which highlights positive instances in
the bag. The weights are obtained using a multi-layered perceptron as
detailed in [46]. We implemented the gated attention mechanism with
an intermediate layer with D = 128 neurons. Campanella et al. [47]
proposed a RNN based aggregation over the top-k positive instances of
each bag to produce bag-level classifications. We increased k = 10 to
support the multi-label scenario, and a RNN with a hidden state of 128
neurons was trained. All methods are train under the same training setup
(i.e. backbone, learning rate, scheduler, batch size, etc.) as our baseline.
Only the learning rate of the methods based on attention mechanisms was
changed to η = 1 · 10−3. Note that embedding-based method don’t make
instance-level predictions, and is therefore only used as a comparison of
the results at the bag level. Although attention-based methods include
instance-level importance weights, these are not true predictions at the
instance level, as they are sensitive to the number of instances in the bag.

5.4.4 Evaluation metrics

We evaluate the different models in this work using standard metrics
on MIL for both instance and bag-level performance on the test subset.
Concretely, for instance-level validation we obtain accuracy (Acc), and
f1-score per class and micro-averaged. Also, as the Gleason grades
constitutes a set of ordered classes, we obtain Cohen’s quadratic kappa
(κ) as figure of merit. Regarding the bag-level predictions, we evaluate
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them using the area under ROC curve (AUC). In the multi-label scenario,
AUC is obtained class-wise, and it is averaged (mAUC). In order to
facilitate the comparison of our methods with previous literature at
the bag level, we also obtained the AUC for binary cancer vs. non-
cancer detection by combining each class prediction and target via max-
aggregation. For each experiment, the metrics shown are the mean of
three consecutive repetitions (with its respective standard deviation) of
the model training, to account for the variability of the stochastic factors
in the process.

5.5 Results

5.5.1 Comparison to the literature

The quantitative results obtained by the proposed model and baselines
on the test cohort are presented at instance level in Table 5.3, and at bag
level in Table 5.5 and Figure 5.3. Also, we include results reported in
a relevant body of literature for both tasks, using different datasets and
experimental settings for instance level in Table 5.4, and at bag level in
Table 5.6.

Method Acc F1-score κ
NC GG3 GG4 GG5 Avg.

mean 0.458 0.312 0.383 0.548 0.411 0.413 0.431
max 0.484 0.604 0.295 0.411 0.199 0.377 0.262
max (Student) [64] 0.573 0.716 0.398 0.529 0.320 0.490 0.454
max - w. PE 0.535 0.644 0.259 0.533 0.217 0.413 0.296
max - w. PE (Student) 0.610 0.748 0.302 0.616 0.341 0.502 0.481
max - w. PE w. PC 0.639 0.706 0.686 0.611 0.309 0.578 0.450
max - w. PE w. PC (Student) 0.705 0.818 0.692 0.691 0.417 0.655 0.655

Table 5.3: Quantitative comparison to prior literature at instance level on SICAP-MIL
dataset. Results derived from the proposed methods in gray. Best results in bold. NC:
non-cancerous; GG: Gleason grade; κ: Cohen’s quadratic kappa.

Instance-level results. The proposed constrained formulation using a
positive expansion constraint term (PE) to enhance positive instances
prediction outperforms in ∼ 5% the accuracy for instance-level clas-
sification of max-aggregation baseline. Adding the Student stage, the
model reaches an accuracy of 0.610, which outperforms on SICAP-MIL
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Method Paradigm Training
Dataset Acc F1-score κ

TMAs WSIs NC GG3 GG4 GG5 Avg.
Arvaniti et al. [83] (2018) supervised 508 - - - - - - - 0.67/0.55
Nir et al. [85] (2019) supervised 333 - - - - - - - 0.61
Silva-Rodríguez et al. [62] (2020) supervised - 160 0.67 0.86 0.59 0.54 0.61 0.65 0.77
Otálora et al. [144] (2020) semi-supervised 508 171 - - - - - - 0.59/0.55
Silva-Rodríguez et al. [64] (2021) MIL - 10, 000 0.797 0.901 0.714 0.798 0.601 0.754 0.830
max - w. PE w. PC (Student) MIL - 188 0.705 0.818 0.692 0.691 0.417 0.655 0.655

Table 5.4: Quantitative comparison to prior literature at instance level. Results reported
on different datasets, patch size and resolutions. Results derived from the proposed methods
in gray. TMAs: tissue micro arrays; WSIs: whole slide images; NC: non-cancerous; GG:
Gleason grade; κ: Cohen’s quadratic kappa.

Method Cancer
Detection Multilabel

Embedding + mean 0.952(0.013) 0.844(0.009)
Embedding + max 0.951(0.019) 0.834(0.002)
Embedding + RNN [47] 0.967(0.014) 0.855(0.011)
Embedding + AttentionMIL [46] 0.961(0.006) 0.848(0.007)
Instance + mean 0.701(0.090) 0.769(0.071)
Instance + max 0.955(0.012) 0.867(0.005)
Instance + max w. PE 0.962(0.009) 0.873(0.019)
Instance + max w. PE w. PC 0.979(0.005) 0.899(0.007)

Table 5.5: Quantitative comparison to prior literature at bag level on SICAP-MIL dataset.
The metric presented is the Area Under ROC curve (AUC). Results derived from the
proposed methods in gray. Best results in bold.

Method Training
WSIs

Cancer
Detection Multilabel

Campanella et al. [47] (2019) 24, 859 0.994 −
Ström et al. [119] (2020) 6, 682 0.997 −
Bulten et al. [117] (2020) 5, 759 0.990 −
Li et al. [137] (2021) 9, 638 0.982 −
max - w. PE w. PC (Student) 188 0.979(0.005) 0.899(0.007)

Table 5.6: Quantitative comparison to prior literature at bag level. Results reported on
different datasets, patch size and resolutions. The metric presented is the Area Under ROC
curve (AUC). Results derived from the proposed methods in gray. WSI: whole slide image.

the Teacher-Student strategy using only max aggregation in [64]. The ob-
served improvement could be caused by the larger number of instances
classified using the inequality constraint, which avoids over-fitting the
model to focus only on very discriminative instances. Note that, al-
though still the results reported in [64] in prior literature are better, the
training dataset required to accomplish these results is too large: around
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Figure 5.3: Overall receiver operating characteristic (ROC) curves for the multilabel bag-
level prediction of proposed methods and baselines on SICAP-MIL dataset.

10, 000 WSIs. Once we introduce the proportion information in terms of
primary and secondary classes in the bag via the proportion inequality
constraint (PC), results reach an accuracy of 0.705 and average F1-score
of 0.655. It is noteworthy to mention that these results are similar to the
ones obtained in prior literature under full supervision on similar sized
datasets [62, 83, 85, 144]. Under our proposed formulation, the model is
capable of grading cancerous patches at the same performance of using
pixel-level annotated datasets, by providing only WSI-level information
about the most abundant grade.

Bag-level results. Regarding the MIL bag-level results obtained, our
PE formulation improved around ∼ 0.7% the baseline instance-based
maximum aggregation. This modest improvement may be due to the
fact that, because of the maximum-based inference, it is only necessary
to locate one positive sample to get the bag-level prediction right. These
observations are in line with previous literature, which highlights that
the best classifier at the bag level need not be the best classifier at
the instance level [29]. Once we incorporate the proportion information
during training, the proposed model increases the multilabel mAUC in
∼ 3.3% from the baseline, and reaches mAUC of 0.899 in the multi-label
scenario and 0.979 in the binary prediction (see Table 5.5). Note that this
result almost reaches the ones reported in previous literature (see Table
5.6), which use thousands of WSIs during training. However, it is worth
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noting the limitations of this indirect comparison. The methods used in
previous works may have different levels of supervision, and the datasets
used are larger. Next, we perform a direct comparison of the weakly
supervised methods in the database used in this work, SICAP-MIL (see
Table 5.5). Specifically, we pay attention to embedding-based methods
performance at bag level. The obtained results using mean and max
aggregation are similar to the baseline instance-based max approach.
However, in the multi-label scenario, these methods perform worse.
Moreover, since they cannot provide instance-level labels, they cannot
take advantage of the information referred to the proportion during
training. It is notable that deep-learning based aggregation modules such
as AttentionMIL or RNN do not perform properly in this training setting.
This could be due to the complexity of having multiple classes in some
bags, the over-fitting tendency of neural networks, and the incapacity of
AttentionMIL to get class-specific attention weights. Finally, We would
like to point out that a significant body of previous work validates multi-
class methods at the bag level on the basis of Gleason scores. However,
this score is beyond the scope of MIL. Its derivation involves a decision
making according to the severity of the grades in the tissue by the clinical
expert, which does not fit a proper formulation of MIL (see Eq. 5.1),
based on the presence of each class in the bags of instances.

5.5.2 Ablation studies

In the following, we provide comprehensive ablation experiments to
validate several elements of our model, and motivate the choice of the
values employed in our formulation, as well as our experimental setting.

First, we optimized the proposed formulation only with the inequality
constraint term in Eq. 5.6. Using the training setting previously
described, validated different values of λPE = {0.01, 0.1, 1} and slopes
of the log-barrier inequality tPE = {1, 5, 10, 15}. Using the mAUC on
validation subset as an early stopping criteria, we obtained bag-level
mAUC from the validation subset and instance-level accuracy from the
test cohort. Results are presented in Figure 5.4. These show that the
inclusion of the PE term improves both the performance at both bag-
level and instance-level under most of the settings. Thus, we selected
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tPE = 15 and λPE = 0.1, which led the best results at bag level in the
validation cohort.
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Figure 5.4: Ablation studies on positive expansion (PE) MIL formulation. Hyperparam-
eters study for λPE and tPE are performed for bag-level mAUC on validation set (a), and
instance-level accuracy (b).

Then, using the best configuration reached for the PE term, we optimized
the proportion constraint configuration (PC) in Eq. 5.8. During
empirical experimentation, we appreciated that the instance-level model
performance on the test subset did not always correlate with the bag-
level performance on the validation or test cohort when applying early
stopping based on mAUC metric. As the proposed PC loss term provides
information about the correct prediction of proportions, we evaluated
this term as an early stopping criterion. Thus, we also kept track of
the epoch average of z = 1

B

∑
b pb,k′i − pb,k′′i . Among the full range

of hyperparameter values, the ones that showed best stability during
training were λPC = {0.1, 1} and tPC = {1, 5, 10}. We show the results
obtained at bag-level and the instance-level accuracy on test cohort, as
well as the proportion constraint satisfaction on the train subset for both
early stopping criterion in Figure 5.5.

The figures of merit indicate that the criterion based on constraint
satisfaction (dashed lines) consistently outperforms the validation mAUC
criteria (solid line) at both instance and bag level for all settings. This
could be explained by the possibles bias introduced using the validation
subset due to class imbalance. Likewise, maximizing the difference in
proportion between the majority and minority classes can help to better
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Figure 5.5: Ablation studies on proportion constraint (PC) MIL formulation. Hyperpa-
rameters study for λPC and tPC are performed for bag-level mAUC on test set (a) and
instance-level accuracy on test set (b). Also, two early stopping criterion are validated:
mAUC on valdiation set (solid lines) and proportion constraint satisfaction zPC (dashed
lines), which values are illustrated in (c).

distinguish between them. The results obtained are in line with these
observations, since lower values of tPC seem to obtain better results.
Due to the formulation of the barrier extension (Eq. 5.4), low values of
t contribute not only to fulfill the constraint, but also to maximize it
by using a slope proportional to 1/t. Therefore, we selected the setting
that gives the largest proportion of difference between the primary and
secondary grade on the train cohort: tPC = 5 and λPC = 1.

5.5.3 Qualitative evaluation

Finally, we want to get a more intuitive view of how the different terms of
the proposed methodology are influencing the extraction of discriminative
features. For that purpose, we depict the feature representation of the
embedding space produced by the encoder networks on the instance-
level labelled test cohort using the t-sne [145] in Figure 5.6. Concretely,
we obtained the two-dimensional t-sne embedding using a perplexity
value of 40, and 300 iterations. The t-sne representation is obtained
on the instance-max setting (5.6a), instance-max with PE term (5.6b)
and instance-max with PE and PC terms (5.6c) after Student model
training.
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(a) (b) (c)

Figure 5.6: Visualization of the embedding space produced by baselines and the proposed
method models on the labelled instances from SICAP-MIL test cohort. (a) instance-max;
(b) instance-max w. PE; (c) instance-max w. PE w. PC. Red: non-cancerous; light blue:
Gleason grade 3; dark blue: Gleason grade 4; purple: Gleason grade 5.

Features obtained using the basic max aggregation are quite overlapped
on the cancerous classes. Although the PE term slightly improves this
condition, only once the PC term is included it is possible to distinguish
class-wise clusters between Gleason grades 3 and 4. These grades tend
to coincide in WSIs, with Gleason score 7 (whole slide images that
include both tumour growth patterns of grade 3 and 4) being the most
common in the database used (see Table 5.1 and Figure 5.2). This
fact produces noise during training, as many bags are positive for both
classes simultaneously, making it difficult to distinguish between the two
types of instances. However, when we introduce the relative proportion
information of both classes during training, this facilitates the network
to promote a distinction between them.

Also, we introduce in Figure 5.7 visualizations of the obtained instance-
level classifications, compared to pathologists annotations and baselines.
Instance-level predictions are performed on the test subset biopsies using
an overlap of 75% between instances, to gain spatial resolution. Then,
the instance-level scores are assigned to each pixel of the patch, and
they are averaged among the overlapped patches. From the selected
representative examples, it is observed how once the different proportion
constraints are introduced, the model is able to differentiate best between
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the different Gleason grades (first and second rows), and locates more
cancerous regions (third row).

pathologist instance-max
instance-max 
w. PE w. PC

Figure 5.7: Visual examples of the proposed model performance on instance-level prostate
cancer grading. In particular, the pathologists annotations are depicted with the instance-
based MIL baseline using max aggregation, and the results when we introduce the proportion
priors. In green: Gleason grade 3; blue: Gleason grade 4; red: Gleason grade 5.

5.6 Conclusions

In this work, we have presented a novel constrained multi-label instance-
based MIL formulation that encourages the network to focus on many
positive instances, and allows to impose restrictions about relative
proportions of class size within the bag. In particular, we combine
a standard instance-based max aggregation with additional inequality
constrains terms via a flexible log-barrier extension. We validate the
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proposed formulation on a new publicly available dataset of prostate
histology cancer WSIs images, SICAP-MIL. In the experimental stage,
our method shows that forcing the network to classify more positive
instances, the results improve in ∼ 5% at instance level classification
accuracy. By simply incorporating relative proportion information about
the primary grade in the WSI, which is usually easily accessible from
medical records, our method reports improvements of ∼ 9% accuracy at
instance level, and ∼ 3.3% mAUC at bag level. In addition, the target
relative proportion difference between primary and secondary classes in
the bag has proven to be a good criterion when optimizing the model,
obtaining more generalizable results than using the mAUC at the bag
level. The obtained results are comparable to prior works using similarly-
sized datasets under the supervised paradigm, which require tedious
instance-level annotations.
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Supervised contrastive learning-guided prototypes on
axle-box accelerations for railway crossing

inspections

The content of this chapter corresponds to the author ver-
sion of the following published paper: Silva-Rodríguez, J., Sal-
vador, P., Naranjo, V., & Insa, R. Supervised contrastive
learning-guided prototypes on axle-box accelerations for rail-
way crossing inspections. Expert Systems with Applications,
(2022).
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Abstract

Increasing demands on railway structures have led to a need for new
cost-effective maintenance strategies in recent years. Current dynamic
railway track monitoring systems are usually based on the analysis of
axle-box accelerations to automatically detect track singularities and
defects. These methods rely on hand-crafted feature extraction and
classifiers for different tasks. However, the low performance shown in
previous literature makes it necessary to complement these analyses with
in-situ inspections. Very recent works have proposed the use of deep
learning systems that allow extracting more generalizable features from
time-frequency spectrograms. However, the lack of specific public domain
datasets and the finite number of track singularities in a railway structure
have limited the development of deep learning based systems. In this
paper, we propose a method capable of outstanding in low-data scenarios.
In particular, we explore the use of supervised contrastive learning to
cluster class embeddings nearly in the encoder latent space, which is
used during inference for prototypical distance-based class assignment.
We provide comprehensive experiments demonstrating the performance
of our method in comparison to previous literature for detecting worn-out
crossings.
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6.1 Introduction

Railway structures are one of the main components of any country’s
transportation system. Railway maintenance plays a key role in achieving
a high-performance, safe and cost-effective system. [146]. The increase
in demand for passenger and cargo rail transport services has led to an
increase in the maintenance needs of the rail network in recent years.
Specifically, European countries invest between 15 and 25 billion euros
annually in the maintenance and renewal of these structures [147]. With
the advent of the Industry 4.0 paradigm and the development of enabling
technologies such as sensing devices and artificial intelligence systems,
predictive maintenance has been projected as a promising tool for cost-
effective maintenance strategies.

In this work, among the different challenges on railway maintenance, we
focus on track surveying. Different technologies have been proposed to
support the maintenance process: vision camera-based methods, acoustic
recording, laser sensors, etc. [148]. Among these procedures, the use
of axle-box accelerometers have proved to be versatile enough to sense
different track irregularities of different wavelengths and occurrence [149–
151]. Some of its advantages are that this technology is not limited to
any field of view, and it is able to perform a dynamic surveying of the
direct interaction between the track and the railway. The presence of
characteristic track element patterns and their deterioration in axle-box
acceleration on time-frequency domain has been extensively studied in
previous literature [149]. In addition, some models based on hand-crafted
feature extraction based on traditional image processing methods and
machine learning models have been proposed and used on maintenance
practice [152]. However, the low performance of these methods makes it
necessary to supplement these predictions with on-site visual inspections
by operators.

The emergence of deep learning has led to an increase of performance
of different computer-vision based industrial applications. In particular,
very recent works have shown the benefits of using convolutional neural
networks (CNNs) for axle-box track surveying characterization [153–
155]. Under the supervised learning paradigm, deep learning models
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have achieved remarkable performance in a wide range of applications.
Nevertheless, a main limitation of these models is the large amount of
labeled data required for training. These limitations are accentuated in
track surveying applications. The absence of domain-specific datasets
makes it difficult use pre-trained fine-tuned models and the annotation
process is costly, while the number of track elements is limited [156]. This
encourages the development of novel strategies, capable of withstanding
low data scenarios, to achieve robust and reliable automatic systems that
may be used in decision making systems for dynamic track surveying.

Based on these observations, in this paper we propose a novel end-to-
end system able to detect worn crossings using axle-box accelerations
and deep-learning based features via convolutional neural networks (see
Figure 6.1). The key contributions of our work can be summarized as
follows:

• We propose to deal with the scarcity of labelled training data
inherent to track surveying applications by means of non-parametric
prototypical inference over the feature encoding.

• Specifically, unlike previous work, class embeddings are distributed
in the latent space indirectly, using a subspace guided by supervised
contrastive losses.

• We compare the proposed system with previous methods in
the literature. In-depth experiments demonstrate the superior
performance of our approach, with accuracy gains of ∼ 8%.

• In addition, we report extensive ablation experiments to provide
further insights into feature preprocessing, CNN architectures, and
learning strategies in a deep learning-based analysis of axle-box
accelerations.
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Figure 6.1: System overview. In this work, we propose a deep-learning based system
able to locate worn crossing on railway surveying maintenance. The sensing technology is
based on axle-box vertical accelarations (Section 6.3.1). First, signals are transformed to
time-frequency distributions (Section 6.3.2). Then, normalized features are used as input to
an artificial intelligence model (Section 6.3.3) to detect worn crossings. The proposed model
can be trained on scenarios with scarce training examples. This pipeline can be scaled to
other analysis on dynamic railway surveying.

6.2 Related Work

6.2.1 Railway track surveying

Automatic track surveying is based on patter analysis over sensed signals
and images. Among sensing devices, different technologies such as
thermal resistors [157], acoustic sensors [158, 159], video recording [160–
165]; [166, 167]) or accelerators [149, 153–155, 168–187] have been
proposed. In particular, the use of acceleration sensors on axle-box
has become more popular for detecting track irregularities of different
wavelengths and occurrence. Concretely, different applications include
wheel flat [171], crossings monitoring [174, 175], rail corrugation [176,
185]; [188]), roughness derivation [178, 179], rail joints [155], settlement
and dipped joint ([189]) and other railway elements [149, 190]. In the
aim of predictive maintenance, first works focused on visual description
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of the patterns that elements and defects produce on time-frequency
domain [149, 168, 169, 177–179, 182–184, 190]. Among time-frequency
distributions, both standard short-time Fourier transform and Wavelets
have been used alike. Further on, some works described a set of features
based on classic image processing such as peak intensity, frequency-band
relative intensity, or other statistics. Then, first classifiers were used on
these features, such as SVMs [176] to predict rail corrugation, random
forest for railway lifetime prediction [174, 175] or simple costume decision
trees for fault detection [185], or recent neural networks classifiers [189,
191]. Very recent works [153–155, 187] have proposed the use of deep
learning models via CNNs to characterize acceleration spectrograms on
predictive tasks. In line to recent advance on computer vision, these
works have perform superior than previous approaches based on hand-
crafted feature extraction [153, 155, 187]. Although these works have
shown promising results, models are usually trained on small datasets,
with scarce labelled data [156]. On vision camera-based methods, the
vast amount of publicly available databases of natural images facilitates
the use of previous knowledge for fine-tuning rich, pre-trained models
[162]. Thus, camera-based surveying methods in the literature have been
able to successfully train CNNs architecture such as UNets for track
segmentation and fault classification [166] or YOLO networks for surface
defect localization [167]. Nevertheless, time-frequency distribution of
acceleration spectrograms are a too specific domain to apply such
knowledge. To deal with this issue, different strategies have been
proposed. For instance, some works use synthetic data to train CNNs
directly on acceleration signals [189, 191]. Still, the reliability of synthetic
data is not clear in comparison with in situ data. Other works have
resort to self-training strategies such us autoencoders ([154]), which use
unlabelled data to learn rich features. Regarding the CNNs training, the
main strategy ([153, 155, 189]) is still the use of standard cross-entropy
based supervised training of deep networks, which tend to generalize
poorly when trained from scratch on small datasets.
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6.2.2 Learning from limited data

In the context of deep learning, the branch that covers low-data training
is few-shot learning. In this scenario the goal is to train a model capable
of making predictions that can be generalized to new classes, of which
few examples (K-shots) are given during inference. This model, instead
of simply characterizing given classes on a standard supervised scenario,
should be able to project a feature space from images, where samples
from new, unknown concepts, behave similar. Although this setup has
gained popularity on recent years, it is sometimes difficult to apply it in
real applications, which need to prove its performance when all classes
are used during both training and inference. Nevertheless, methods
proposed on the few-shot learning paradigm tend also to generalize best
on standard supervised scenarios train on very small data, as it is our
case. Among different approaches in few-shot learning classification,
metric-based methods aim to learn a good embedding space, where
novel class samples can be nicely categorized. This categorization has
been done learning a deep distance metric on matching [37] or relational
networks [50], but also using memory-based nearest neighbour classifier
(so-called prototypical networks) based on class-level prototypes via l2
(Euclidean) [38] or cosine distance [51, 192]. These methods are trained
on an episodic way, where training examples are divided between queries
and support to simulate the few labeled examples encountered during
inference. Nevertheless, recent works have demonstrated that such
training strategy is data-inefficient, and produces detriments in model
performance [52]. Methods that learn to cluster samples in a non-episodic
way resemble contrast-based learning methods, which have recently
demonstrated leading results on classification tasks in self-training [33],
and in standard supervised learning [53]. In the last case, clusters of
points belonging to the same class are pulled together in a hyper-sphere
subspace, while simultaneously pushing apart clusters of samples from
different classes, in a mini-batch way. In this work, we investigate the
use of contrastive learning on low-data scenarios for learning embeddings
subsequently used via a prototypical-based inference.
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6.3.1 Data acquisition

In this work, we study the dynamic train-track interaction as a system
of masses, springs and dampers. In this model, any significant alteration
in any of the elements will affect the rest of the system. Thus, it is
possible to survey alterations on railway track status by recording the
interaction on later elements of the system. The dynamic surveying of
the railway status is performed by means of vertical accelerometers placed
on the axle-boxes of the wheelsets for the left and right rails. From this
interaction, we intend to train a classifier capable of recognizing whether
a crossing is worn or not. Hereafter, we will refer to x[n] as the signal
acquired for any of the channels in a given window, which contains a
crossing.

6.3.2 Feature extraction

The recorded signals x[n] on time domain are transformed into the time-
frequency spectrograms using the short-time Fourier transform, X[m,ω]
such that:

X[m,ω] =
N−1∑

n=−∞

x[n]w[n−m]e−jωn (6.1)

where w[n] is a hamming window, with length W samples. Each window,
w[n], get chunks of the original signal, overlapped by O to reduce
artifacts. Note that, in the following, we refer to X[m,ω] as X for
simplicity.

Then, spectrograms are scaled to improve model convergence and fasten
training. Concretely, we propose to use a dynamic-margin normalization
of the input spectrogram to ensure that X ∈ [0, 1], and use all the
intensity range. This operation is parameterized by the desired dynamic
margin in decibels, γ, such that:
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X ′ =
20 log10(

X
W/2

+ ϵ) + γ

γ
(6.2)

where ϵ = 10(
−γ
20

). In the following, we refer to X ′ as X for notational
simplicity

Feature extraction is applied to axle-box signals from both railways, and
their features are concatenated into a two-channel tensor for both model
training and inference.

6.3.3 Supervised contrastive feature learning

An overview of our algorithm for crossing wear detection is presented
in Figure 6.2. Below, we describe each component proposed for model
training and inference.

Let us denote a set of I crossing features {Xi}Ii=1, and their respective
labels by {yi,k}Ii=1. Each individual label, yi,k, is composed by a one-hot-
encoding ground-truth that indicates if that crossing is worn, such that
yi,k ∈ {0, 1}, with k = {0, 1}. We also define an encoder, fθ(·) : X → Z,
parameterized by θ, that is trained to characterize each crossing into an
embedding of lower dimensionality DE, such that z ∈ Z ⊂ RDE . Then,
we aim to train fθ(·) such that the embedding representation of normal
and anomalous crossings are discriminated. In this line, we propose to
use a supervised contrastive strategy. Thus, we define a projection head,
fϕ(·) : Z → R, parameterized by ϕ, which is composed by a two-layered
perceptron with relu activations that maps the embedding space to a
lower dimensionality, such that z ∈ R ⊂ RDE/Fc , with Fc a system hyper-
parameter. Then, θ and ϕ are trained via gradient descent to minimize
the supervised contrastive loss [53] defined as:

Lc =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(ri · rp/τ)∑

a∈A(i)

exp(ri · ra/τ)
(6.3)
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Encoder
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Inference

Encoder Projection + Contrastive loss
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Input

Prototypes Estimation
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Figure 6.2: Method overview. An encoder is trained to minimize supervised contrastive
loss in Eq. 6.3 after projecting the produced embedding z into a subspace r that falls into an
unit hyper-sphere. During inference, new queries are classified on the latent space projected
by the encoder. Concretely, a non-parametric prototypical classifier is implemented using
class-wise prototypes z̄k from the training set given by Eq. 6.4. In particular, the class of
nearest prototype in terms of l2-distance is assigned to the new query sample.

where · denotes the inner product, τ ∈ R+ is a temperature parameter,
A(i) ≡ I \ {i} indicates all instances other than i, and P (i) ≡ p ∈ A(i) :
yp = yi refers to the set of instances positives, with |P (i)| its cardinality.
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It is noteworthy to mention that r are l2-normalized features, to apply
the criterion on an unity hyper-sphere. Using supervised contrastive loss,
points belonging to the same class (positives) are pulled together in the
projected space, while simultaneously pushing apart clusters of samples
from different classes (negatives).

6.3.4 Prototypical inference

For inference, contrastive-based methods usually train a linear classifier
on top of the frozen representations z using a cross-entropy loss. In
this work, we study the use of non-parametric inference strategy, to
avoid overfitting on scenarios with limited data available. Concretely,
we use prototypical-based inference [38], a memory-based approach
that assigns predicted labels according to the distance in the latent
space between new queries and precomputed representations of each
class, called prototypes. This method creates softer decision boundaries
compared to learned-based architectures. As we support later on our
experiments, it generalizes better in the setting under study. Prototypes
are calculated using all samples from training set such that:

z̄k =
1

I

∑
i

zi (6.4)

Given a new query sample, X∗, the wear prediction ŷk is given by its
relative distance to each prototype as follows:

ŷk = σk(d(fθ(X
∗), z̄k)) (6.5)

where σk indicates a softmax activation over classes, and d(·) indicates
the Euclidean distance.
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6.4.1 Dataset

The experiments described in this work were carried out using a private
dataset of dynamic railway surveying on line 3 of Metrovalencia. 25
km of railway surveying were recorded using the data acquisition setup
described in Section 6.3.1, with accelerometers of model KS76C100
manufactured by MMF and sampling frequencies of 3.2 KHz. The train
used in the tests was an Electrical Multiple Unit (EMU 4300 series),
which has four cars of two bogies each one, being motorised the wheelsets
of the last car. The run tests had a maximum speed of 80 km/h, and
included ballasted track with single-block concrete sleepers, and Stedef
slab track. From the entire path, 33 crossing points were selected and
manually on-site evaluated by experienced operators in terms of wear. Of
this dataset, 17 crossings points showed damages that required follow-
up and maintenance actions. Observed deterioration included spalls,
burrs and squats. Examples of the deteriorated crossings are presented
in Figure 6.3. The acceleration signals recorded were windowed using 4
seconds around each crossing point.

(a) (b)

(c) (d)

Figure 6.3: Examples of deteriorated railway crossings included in the used dataset.
Anomalies indlude squats (a-b-d), spalls (c), and burrs (d).
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6.4.2 Implementation details

The 4 seconds crossing signals acquired as detailed in Section 6.3.1
are transformed to time-frequency spectrograms as detailed in Section
6.3.2. Concretely, based upon the studies in [149], hamming windows of
W = 0.25 seconds with an overlap of O = 95% were used to compute
the short-time Fourier transforms. Then, spectrograms were normalized
using the dynamic-margin standardization with γ = 20, and resized
to 256 × 320 pixels to reduce computational requirements. Using a 4-
fold cross validation strategy, the encoder for crossing characterization
was trained as described in Section 6.3.3. Concretely, ResNet-18 [91]
was used as base architecture for the encoder. The architecture used
included an initial convolutional layer to adapt the number of channels,
and was composed of 2 residual blocks. The spatial features were reduced
to a one-dimensional embedding z ∈ R64 via a global-average pooling.
Regarding the projection head, a multi-layered perceptron that reduced
the embedding size in an order of Fc = 4 with relu activation was
used. The different modules were trained during 200 iterations, using
ADAM optimizer with a learning rate of 1e−4 and mini-batches of 8
samples. Finally, test samples form each fold are infered as described in
Section 6.3.4, using all samples from training subset to compute class-
wise prototypes. The code and trained models are publicly available on
(https://github.com/cvblab/contrastive_prototypes_railway).

6.4.3 Baselines

In order to compare our approach to state-of-the-art methods, we
implemented proposals of prior works on accelerometer-based automatic
railway maintenance, and validated them on the dataset used, under
the same conditions. Due to the scarce literature on this field, we only
differentiated three proposed approaches: hand-crafted feature-based
methods, standard supervised learning using CNNs and cross entropy
loss, and self-training ones via autoencoder features. Hand-crafted
features methods , aim to describe a series of features obtained by
classic signal processing methods on time and frequency domains using
human knowledge about the problem. Concretely, from the windowed
crossing signal, we used as features the intensity peak amplitude, relative
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intensity at different bandwiths, entropy and other statistics such as
skewness, similarly to [176]. Then, a support-vector machine (SVM)
classifier with Gaussian kernell was trained to predict the wear crossing.
Self-training methods , aim to leverage knowledge on large amounts of
unlabelled data from dynamic surveyings. Concretely, an autoencoder
is trained to compress the spectrogram information into an embedding
space, which is trained to minimize the reconstruction error using a
trained decoder. Then, the resultant embedding space is used for
clustering purposes. In our work, we implemented an autoencoder
trained on the full dataset (including unlabelled data). Concretely, the
same architecture with residual blocks used for our proposed method
was used as encoder, and a symmetrical decoder was used to reconstruct
the input spectrogram. The autoencoder architecture was pre-trained
during 100 iterations using ADAM optimizer with a learning rate of 1e−4
and mini-batches of 32 samples. Then, the non-parametric prototypical
inference described in Section 6.3.4 was used for classification using the
features extracted from the encoder. CNNs using cross-entropy loss :
Also, we include as an independent baseline the same CNN architecture
trained using simply the binary cross entropy loss instead of the proposed
learning method, as it has been used by [153, 155, 189].

6.4.4 Evaluation metrics

We use standard metrics on classification tasks to evaluate the proposed
system performance on crossing wear detection. In particular, accuracy,
precision and recall are calculated using the expert and system labels.
From precision and recall F1-score (FS) is calculated to summarize both
figures of merit. For each experiment, the metrics shown are the mean
of ten consecutive repetitions of the model training, to account for the
variability of the stochastic factors involved in the process.
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6.5 Results

6.5.1 Crossing wear detection

The quantitative results obtained by the proposed model and baselines on
the cross-validation partitions are presented in Table 6.1. We can observe
that the proposed methodology outperforms previous approaches by a
large margin, with a substantial increase of ∼ 8% in both accuracy and
F1-score. Although the hand-crafted features baseline reached promising
results (0.6124 accuracy), deep-learning methods outperformed this
approach, which aligns to recent literature on railway surveying [155].
Finally, the features learned by the autoencoder approach, even though it
is trained on large quantities of data, obtained results inferior to those of
the proposed method. This may be because the cross wear classification
task requires specific features. In contrast, the autoencoder learns general
features to reconstruct the original image that do not seem suitable for
the supervised task.

Method Metric (µ± σ)
Accuracy F1-Score Precision Recall

CNNs + BCE ([155, 189]) 0.5875± 0.0945) 0.6099± 0.1227 0.6111± 0.0863 0.6529± 0.2254
Hand-crafted Features + SVMs [152, 185] 0.612± 0.061 0.652± 0.014 0.604± 0.022 0.651± 0.054
Autoencoder Features [154] 0.648± 0.025 0.652± 0.014 0.652± 0.014 0.720± 0.064
Proposed 0.715± 0.715 0.735± 0.050 0.726± 0.0496 0.747± 0.064

Table 6.1: Quantitative results on railway crossing wear detection for the proposed method
and implemented baselines. Best results in bold.

6.5.2 Ablation studies

In the following, we provide comprehensive ablation experiments to
validate several elements of our model, and motivate the choice of the
values employed in our formulation, as well as our experimental setting.
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Studies on model complexity We first studied the configuration of
the encoder used, ResNet-18, for the feature extraction stage. Concretely,
we validated the proposed model using different number of residual
blocks. Results are presented in Figure 6.4a, from which we can
observe how the less residual blocks are used, the best the classification
performance is. These results could be explained in two different ways:
first, deep networks are over parameterized under scarce data conditions,
and second, visual characterization on acceleration spectrograms are
made up of by simple patterns, which are modeled on early layers of
CNNs, together with intensity information.
Contrastive learning setup Next, we study the multi-layered
perceptron block used on the contrastive head. Concretely, ablation
experiments are performed on the dimensionality of the unity hyper-
sphere used to contrast samples, as a fraction of the dimension of the
features extracted by the encoder. Concretely, the compression factor
Fc is evaluated at Fc = {1, 2, 4, 8, 16}. Results are illustrated in Figure
6.4b. These show that reducing the dimension on the hyper-sphere used
for contrastive losses produces slight benefits, with improvements around
3% on F1-score.
Feature normalization As previously mentioned, one of the main
steps on deep learning systems is feature normalization. Concretely,
the time-frequency spectrogram intensity should be constrained to small
amplitudes, such that x ∈ [0, 1]. For this purpose, our method uses
a dynamic-margin normalization described in Section 6.3.2. We now
validate the proposed normalization, comparing both quantitatively
and qualitatively with other well-known methods. In particular, we
use minimum-maximum normalization, and z-score standardization on
log-magnitude spectrograms. Results are presented in Table 6.2,
while normalized spectrograms are presented in Figure 6.5. Results
demonstrate that benefits of dynamic-margin normalization, which
outperforms other approaches by up to ∼ 8% in terms of F1-score.
Qualitative evaluations show that the most large-intensity excited
frequencies are contrasted from background on the spectrogram, the best
the results are.

151



Chapter 6. Supervised contrastive learning-guided prototypes

2 3 4 5
ResNet Blocks

0.5

0.6

0.7

0.8
F1

S

(a)

1 2 4 8 16
Fc

0.5

0.6

0.7

0.8

F1
S

(b)

Figure 6.4: Ablation studies on network architecture. Accuracy and F1-score are presented
for each possible configuration. Best performance highlighted in bold. (a) Encoder
complexity; (b) Contrastive head compression factor.

Normalization Metric (µ± σ)
Accuracy F1- score

z-score 0.6124(0.0619) 0.6045(0.0223)
min-max 0.6484(0.0259) 0.6529(0.0147)
dynamic-margin 0.7156(0.0715) 0.7352(0.0508)

Table 6.2: Ablation study on feature normalization methods. Best results in bold.

Learning strategies In the following, we benchmark the proposed
contrastive-based feature learning and prototypical inference with other
common methods. Concretely, we train the proposed model using a linear
classification layer and binary cross-entropy (BCE) loss to compare both
contrastive and BCE-based training. For fair comparisons and to avoid
the over-parametrization of densely classification, we also implement the
prototypical inference on the BCE-trained model (BCE+Prototypes)
as described in [193]. Finally, we also include a purely prototypical
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(a) (b)

(c)

Figure 6.5: Qualitative assessment of different normalization strategies. (a) min-max; (b)
z-score; (c) dynamic margin.

learning strategy (Prototypical), using episodic training and minimizing
l2-distance between support and query samples as proposed in the
original publication [38]. Concretely, the number of query and support
samples used during training was 4. The encoder architecture and
hyper-parameters were the same to the ones optimized for our proposed
method (see Section 6.4.2). Results for different methods are presented
in Figure 6.6 in terms of accuracy and F1-score. The proposed supervised
contrastive learning model and prototypical inference outperforms by a
large margin the BCE method, and shows greater stability in the results
among experiment repetitions. Although results consistently improve
using prototypical memory-based inference, our method reaches the best
performance, which shows the benefits of contrastive learning strategies.
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Figure 6.6: Ablation studies on learning strategies. The illustrated metrics are accuracy
(a) and F1-score (b).

On the role of each element of the system Different components
have been presented to optimize the proposed method: dynamic margin
normalization, prototypical inference, and constrastive feature learning
have been the best performing settings. Nevertheless, it is still unclear
the individual contribution of each element. For this reason, in the
following, we discuss the incremental improvement of each module of
the system. First, we focus on normalization methods, where dynamic
margin normalization performed the best on the proposed setting (see
Table 6.2). In addition, as shown in Figure 6.7, this type of normalization
is also indispensable to obtain promising results when we simply use a
CNN with linear classifier, trained using cross-entropy (BCE). Thus, we
consider this standardization to be an indispensable step for the operation
of the system. Next, if we introduce an inference based on prototypes
(BCE+Prototypes), improvements of ∼ 8% are obtained (see Figure
6.6). Finally, when we get rid of entropy-based objective functions, using
the proposed contrastive learning setting, improvements of ∼ 5% are
obtained for both accuracy and F1-score figures of merit (see Figure
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6.6). Thus, we see that what most damages the model is the use of
dense classifiers during inference, in the scenario studied with sparse
data. Next, direct training of the model to generate prototypes based on
contrastive learning also produces a substantial improvement.

zscore min-max dm
Normalization

0.5

0.6

0.7

0.8
F1
S

Proposed
BCE

Figure 6.7: Ablation study on feature normalization methods. In particular, performance
using zscore, min-max, and the proposed dynamic margin (dm) normalization is compared
for the proposed method and a CNN using linear classifier (BCE).

6.5.3 On system explainability

Explainability on AI-based systems have become a relevant topic on the
field that aims to prevent bias on learning systems and demonstrate
the robustness of the model [194]. In the following, we explore the
explainability of the proposed model in order to provide confidence
in its use during railway maintenance practice. Thus, we shed light
into the features learned by the trained CNN to detect wear crossings
using gradiend-guided class activation maps (CAMs) [40]. For a given
input image x its corresponding attention map is computed as: a =
Σ(

∑K
k αkf

s
θ(x)k) where K is the total number of filters of that encoder

layer, Σ a sigmoid operation, and αk are the generated gradients such
that:

αk =
1

|a|
∑
t∈ΩT

∂ŷ1
∂ak,t

(6.6)

where ΩT is the spatial features domain.

Generated CAMs of representative cases are visualized overlaid to
the input spectrogram features on Figure 6.8. These heat-maps
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highlight the important regions in the image for predicting a crossing
as anomalous. Concretely, we can appreciate that CAMs focus on the
band-with between 650 to 850 relaxation frequencies. These findings are
consistent with previous literature [149], that identified wider patterns
and higher relative amplitude on this band related to crossings points on
spectrograms.

(a) (b)

(c)

Figure 6.8: Qualitative evaluation of the proposed model on wear crossing detection. For
explainability, class-activation maps are obtained on true positive (a-b) and true negative
(c) predictions, and overlaid over the input spectrogram.

6.6 Conclusions

A deep learning system capable of detecting worn crossings in dynamic
railway inspections via axle-box accelerations sensing has been presented.
Specifically, the system processes time-frequency spectrograms using con-
volutional neural networks through a novel combination of prototypical
inference guided by supervised contrastive learning. The use of narrow
CNNs showed the best results, as they extract mostly basic patterns,
similar to those found in time-frequency spectrograms. Furthermore,
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normalization of these distributions using a dynamic margin scaling ap-
proach outperforms standard normalization in computer vision tasks.
This method improves the contrast between the excited frequencies and
the background, leading to better characterization. In addition, the
supervised contrastive learning strategy has shown a promising perfor-
mance for learning on small data sets. It outperforms standard cross-
entropy based supervised learning by a wide margin, and improves other
metric learning strategies from the few-shot learning domain, which re-
sort to episodes-based training. The presented method achieves F1-score
values of 0.7352 in a cross-validation, and outperforms previous literature
by ∼ 8% for defect crossing classification. The presented system and its
methods could be used to detect a wide range of singularities and defects
in railway surveying.
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Chapter 7

Constrained unsupervised anomaly segmentation

The content of this chapter corresponds to the author
version of the following published paper: Silva-Rodríguez, J.,
Naranjo, V., & Dolz, J. Constrained unsupervised anomaly
segmentation. Medical Image Analysis, (2022). This
article is an extension of the following paper presented at
the international conference: Silva-Rodríguez, J., Naranjo,
V., & Dolz, J. Looking at the whole picture: constrained
unsupervised anomaly segmentation in The 32nd British
Machine Vision Conference (BMVC) (2021).
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Abstract

Current unsupervised anomaly localization approaches rely on generative
models to learn the distribution of normal images, which is later
used to identify potential anomalous regions derived from errors on
the reconstructed images. To address the limitations of residual-
based anomaly localization, very recent literature has focused on
attention maps, by integrating supervision on them in the form
of homogenization constraints. In this work, we propose a novel
formulation that addresses the problem in a more principled manner,
leveraging well-known knowledge in constrained optimization. In
particular, the equality constraint on the attention maps in prior
work is replaced by an inequality constraint, which allows more
flexibility. In addition, to address the limitations of penalty-based
functions we employ an extension of the popular log-barrier methods to
handle the constraint. Last, we propose an alternative regularization
term that maximizes the Shannon entropy of the attention maps,
reducing the amount of hyperparameters of the proposed model.
Comprehensive experiments on two publicly available datasets on
brain lesion segmentation demonstrate that the proposed approach
substantially outperforms relevant literature, establishing new state-of-
the-art results for unsupervised lesion segmentation, and without the
need to access anomalous images.
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7.1 Introduction

Deep learning models are driving progress in a wide range of visual
recognition tasks, particularly when they are trained with large amounts
of annotated samples. This learning paradigm, however, carries two
important limitations. First, obtaining such curated labeled datasets
is a cumbersome process prone to annotator subjectivity, limiting the
access to sufficient training data in practice. This problem is further
magnified in the context of medical image segmentation, where labeling
involves assigning a category to each image pixel or voxel. In addition,
even if annotated images are available, there exist some applications,
such as brain lesion detection, where large intra-class variations are not
captured during training, failing to cover the broad range of abnormalities
that might be present in a scan. This results in trained models which
are potentially tailored to discover lesions similar to those seen during
training. Thus, considering the scarcity and the diversity of target objects
in these scenarios, lesion segmentation is typically modeled as an anomaly
localization task, which is trained in an unsupervised manner. In this
setting, the training dataset contains only normal images and abnormal
images are not ideally accessible during training.

A popular strategy to tackle unsupervised anomaly segmentation is to
model the distribution of normal images in the training set. To this
end, generative models, such as generative adversarial networks (GANs)
([59, 195–199]) and variational auto-encoders (VAEs) ([58, 200–203])
have been widely employed. In particular, these models are trained
to reconstruct their input images, which are drawn from a normal,
i.e., healthy, distribution. At inference, input images are compared to
their reconstructed normal counterparts, which are recovered from the
learned distribution. Then, the anomalous regions are identified from
the reconstruction error.

As an alternative to these methods, a few recent works have integrated
class-activation maps (CAMs) during training [60, 61]. In particular, [60]
leverage the generated attention maps as an additional supervision cue,
enforcing the network to provide attentive regions covering the whole
context in normal images. This term was formulated as an equality
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constraint with the form of a L1 penalty over each individual pixel.
Nevertheless, we found that explicitly forcing the network to produce
maximum attention values across each pixel does not achieve satisfactory
results in the context of brain lesion segmentation. In addition, recent
literature in constrained optimization for deep neural networks suggests
that simple penalties –such as the function used in [60]– might not be
the optimal solution to constraint the output of a CNN ([48]).

Based on these observations, we propose a novel formulation for
unsupervised semantic segmentation of brain lesions in medical images.
The key contributions of our work can be summarized as follows:

• A novel constrained formulation for unsupervised lesion segmen-
tation, which integrates an auxiliary constrained loss to force the
network to generate attention maps that cover the whole context in
normal images.

• In particular, we leverage global inequality constraints on the
generated attention maps to force them to be activated around a
certain target value. This contrasts with the previous work in [60],
where local pixel-wise equality constraints on Grad-CAMs [40] are
employed. In addition, to address the limitations of penalty-based
functions, we resort to an extended version of the standard log-
barrier.

• Furthermore, we consider an alternative regularization term that
maximizes the Shannon entropy of the attention maps, reducing the
amount of hyperparameters with respect to the extended log-barrier
model, while yielding at par performances.

• We benchmark the proposed model against a relevant body of lit-
erature on two public lesion segmentation benchmarks: BraTS and
Physionet-ICH datasets. Comprehensive experiments demonstrate
the superior performance of our model, establishing a new state-of-
the-art for this task.

This journal version provides a substantial extension of the conference
work presented in [204]. First, we extended the literature survey,
particularly for unsupervised medical image segmentation. Then, in
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terms of methodology, the current version introduces several important
modifications. In particular, we further investigate the role of the
gradients on the attention maps derived from Grad-CAM in the task of
unsupervised anomaly detection. Based on our empirical observations,
we modify the formulation in [204] to constraint directly the activation
maps without involving any gradient information. Furthermore, we
propose an alternative learning objective for our constrained problem
based on the Shannon entropy. More concretely, we replace our log-
barrier formulation by a maximizing entropy term on the softmax
activation of brain tissue pixels, which reduces the complexity in terms
of hyperparameters with respect to the former model. Last, we add
comprehensive experiments to empirically validate our method, including
an additional dataset and extensive ablation studies on several design
choices.

7.2 Related Work

7.2.1 Unsupervised anomaly segmentation

Unsupervised anomaly segmentation aims at identifying abnormal pixels
on test images, containing, for example, lesions on medical images ([58,
198]), defects in industrial images ([55, 60, 61]) or abnormal events
in videos ([56, 197]). A main body of the literature has explored
unsupervised deep (generative) representation learning to learn the
distribution from normal data. The underlying assumption is that a
model trained on normal data will not be able to reconstruct anomalous
regions, and the reconstructed difference can therefore be used as an
anomaly score. Under this learning paradigm, generative adversarial
networks (GAN) ([205]) and variational auto-encoders (VAE) ([57]) are
typically employed. Nevertheless, even though GAN and VAE model the
latent variable, the manner in which they approximate the distribution
of a set of samples differs. GAN-based approaches ([59, 195–199])
approximate the distribution by optimizing a generator to map random
samples from a prior distribution in the latent space into data points
that a trained discriminator cannot distinguish. On the other hand,
data distribution is approximated in VAE by using variational inference,
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where an encoder approximates the posterior distribution in the latent
space and a decoder models the likelihood ([201, 206]). Recent literature
on unsupervised anomaly segmentation also includes non VAE and GAN
based approaches. For instance, [23] exploits the teacher-student learning
paradigm, highlighting anomalies on those outputs where the student
networks and teacher model predictions differ. Additionally, feature-
based methods [23, 207], which identify anomalies in the feature space
can be also employed.

7.2.2 Unsupervised anomaly segmentation in medical imaging

In the context of medical images, most current literature resorts to
VAEs, proposing several improvements to overcome specific limitations
of simple VAEs [58, 200, 202, 208]. For example, to handle the lack
of consistency in the learned latent representation on prior works, [58]
included a constraint that helps mapping an image containing abnormal
anatomy close to its corresponding healthy image in the latent space.
[208] presented a context-encoding VAE that combines reconstruction-
with density-based anomaly scoring to capture the high-level structure
present in the data. More recently, a probabilistic model that uses a
network-based prior as the normative distribution on the latent-variable
model was proposed in [202]. In particular, this model penalized large
deviations between the reconstructed and original input images, reducing
false positives in pixel-wise predictions. Generative models have been
also employed to tackle the unsupervised lesion segmentation task [198,
209]. While SteGANomaly [198] integrated a CycleGAN-based style-
transfer framework to map samples in the latent space much closer to
the training distribution, [209] mask out random regions of the input
data before they are fed to the GAN model. Note that a detailed survey
on unsupervised anomaly localization in medical imaging can be found
in [210]. However, despite the recent popularity of these methods, the
results from the Medical Out-of-Distribution Analysis Challenge 2020
[211] highlight their suboptimal performance on anomaly segmentation,
which might impede their usability in clinical practice, as stressed by
[212].
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More recently, [60] integrate attention maps derived from Grad-CAM
([40]) during the training as supervisory signals. In particular, in addition
to standard learning objectives, authors introduce an auxiliary loss that
tries to maximize the attention maps on normal images by including an
equality constraint with the form of a L1 penalty over each individual
pixel.

7.2.3 Constrained segmentation

Imposing global constraints on the output predictions of deep CNNs has
gained attention recently, particularly in weakly supervised segmenta-
tion. These constraints can be embedded into the network outputs in
the form of direct loss functions, which guide the network training when
fully labeled images are not accessible. For example, a popular scenario
is to enforce the softmax predictions to satisfy a prior knowledge on the
size of the target region. [49] employed a L2 penalty to impose equality
constraints on the size of the target regions in the context of histopathol-
ogy image segmentation. In [213], authors leverage the target properties
by enforcing the label distribution of predicted images to match an in-
ferred label distribution of a given image, which is achieved with a KL-
divergence term. Similarly, [141] proposed a novel loss objective in the
context of partially labeled images, which integrated an auxiliary term,
based on a KL-divergence, to enforce that the average output size dis-
tributions of different organs approximates their empirical distributions,
obtained from fully-labeled images.

While the equality-constrained formulations proposed in these works are
very interesting, they assume exact knowledge of the target size prior.
In contrast, inequality constraints can relax this assumption, allowing
much more flexibility. In [214], authors imposed inequality constraints
on a latent distribution –which represents a “fake” ground truth– instead
of the network output, to avoid the computational complexity of directly
using Lagrangian-dual optimization. Then, the network parameters are
optimized to minimize the KL divergence between the network softmax
probabilities and the latent distribution. Nevertheless, their formulation
is limited to linear constraints. More recently, inequality constraints have
been tackled by augmenting the learning objective with a penalty-based
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function, e.g., L2 penalty, which can be imposed within a continuous
optimization framework ([48, 142, 143]), or in the discrete domain ([215]).
Despite these methods have demonstrated remarkable performance in
weakly supervised segmentation, they require that prior knowledge, exact
or approximate, is given. This contrasts with the proposed approach,
which is trained on data without anomalies, and hence the size of the
target is zero.

7.3 Methods

An overview of our method is presented in Fig. 7.1. In what follows, we
describe each component of our methodology.

Preliminaries Let us denote the set of unlabeled training images as
D = {xn}Nn=1, where xi ∈ X ⊂ RΩi represents the i th image and Ωi

denotes the spatial image domain. This dataset contains only normal
images, e.g., healthy images in the medical context, and has therefore
no segmentation mask associated with each image. We now define an
encoder, fθ(·) : X → Z, parameterized by θ, which is optimized to
project normal data points in D into a manifold represented by a lower
dimensionality d, z ∈ Z ⊂ Rd. Furthermore, a decoder fϕ(·) : Z → X

parameterized by ϕ aims at reconstructing an input image x ∈ X from
z ∈ Z, which results in x̂ = fϕ(fθ(x)).

7.3.1 Vanilla VAE

A Variational Autoencoder (VAE) is an encoder-decoder style generative
model, which is currently the dominant strategy for unsupervised
anomaly location. Training a VAE consists in minimizing a two-term
loss function, which is equivalent to maximize the evidence lower-bound
(ELBO) ([57]):

LV AE = LR(x, x̂) + βLKL(qθ(z|x)||p(z)) (7.1)

where LR is the reconstruction error term between the input and its
reconstructed counterpart. The right-hand term is the Kullback-Leibler
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Figure 7.1: Method overview. Following the standard literature, the VAE is optimized
to maximize the evidence lower bound (ELBO), which satisfies Eq. 7.1. In addition, we
include an attention constraint (in the form of a size-constrained loss Ls or entropy proxy
LH) on the attention maps a, to force the network to search in the whole image. At inference,
the attention map is thresholded to obtain the final segmentation mask m.

(KL) divergence (weighted by β) between the approximate posterior
qθ(z|x) and the prior p(z), which acts as a regularizer, penalizing
approximations for qθ(z|x) that differ from the prior.
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7.3.2 Size regularizer via VAE attention

Very recent literature ([60, 61]) has explored the use of attention maps
for anomaly localization. In particular, attention maps a ∈ RΩi are
generated from the latent mean vector zµ, by using Grad-CAM ([40]) via
backpropagation to an encoder block output f s

θ(x), at a given network
depth s. Thus, for a given input image xn its corresponding attention
map is computed as follows:

an = σ(
K∑
k

αkf
s
θ(x

n)k) (7.2)

where K is the total number of filters of that encoder layer, σ a
sigmoid operation, and αk are the generated gradients such that: αk =
1

|an|
∑

t∈ΩT

∂zµ
∂an

k,t
, where ΩT is the spatial features domain.

In [60], authors leveraged the Grad-CAMs based attention maps (Eq.7.2)
by enforcing them to cover the whole normal image. To achieve this,
their loss function was augmented with an additional term, referred to as
expansion loss, which takes the form of: Ls =

1
|a|

∑
l∈Ωi

(1− an
l ). We can

easily observe that this term resembles to multiple equality constraints,
one at each pixel, forcing the class activation maps to be maximum at
the whole image in a pixel-wise manner (i.e., it penalizes each single
pixel individually). Contrary to this work, we integrate supervision on
attention maps by enforcing inequality constraints on its global target
size. Note that the use of the inequality constraints is motivated by the
choice of the barrier function in the constrained problem, which is further
detailed in Section 7.3.3. Hence, we aim at minimizing the following
constrained optimization problem:

min
θ,ϕ

LV AE(θ,ϕ) s.t. fc(a
n) ≤ 0, n = 1, ..., N (7.3)

where fc(aj) = (1 − 1
|Ωi|

∑
l∈Ωi

an
l ) is the constraint over the attention

map from the j-th image, which enforces the generated attention map
to cover the whole image. It is well-known in optimization that a
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penalty does not act as a barrier near the boundary of the feasible set
[216]. In other words, a constraint that is satisfied results in a null
penalty and gradient. Therefore, at a given gradient update, there is
nothing that prevents a satisfied constraint from being violated, causing
oscillations between competing constraints and ultimately resulting in
a potential unstable training. This is further exacerbated in the case
of many multiple constraints (i.e., [60]), motivating the use of a single
global constraint to achieve a maximum coverage of class-activation maps
over the whole image in our scenario. From Eq. 7.3 we can derive
an approximate unconstrained optimization problem by employing a
penalty-based method, which takes the hard constraint and moves it into
the loss function as a penalty term (P(·)): minθ,ϕLV AE(θ,ϕ)+λP(fc(a)).
Thus, each time that the constraint fc(an) ≤ 0 is violated, the penalty
term P(fc(a

n)) increases.

7.3.3 Extended log-barrier as an alternative to penalty-based
functions

Despite having demonstrated a good performance in several applications
([49, 214, 217, 218]) penalty-based methods have several drawbacks.
First, these unconstrained minimization problems have increasingly
unfavorable structure due to ill-conditioning ([219, 220]), which typically
results in an exceedingly slow convergence. Second, finding the optimal
penalty weight is not trivial. In addition, we advocate for the use of the
log-barrier extension versus penalties due to the strictly positive gradient
of the latter becomes higher when a satisfied constraint approaches
violation during optimization, pushing it back towards the feasible set
(See Figure 1 in [48]). As explained in the previous section, this contrasts
with penalties, as they deliver null gradients if a given constraint is
satisfied. To address these limitations, we replace the penalty-based
functions by the approximation of log-barrier1 presented in [48]. We
would like to stress that barrier methods require the interior of the
feasible sets to be non-empty and they are used, therefore, in constrained
optimization problems with inequality constraints, such as the one

1Note that this function is convex, continuous and twice-differentiable.
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defined in Eq. 7.3 (note that there is no interior for equality constraints).
Thus, we can formally define the approximation of log-barrier as:

ψ̃t(z) =

{
−1

t
log(−z) if z ≤ − 1

t2

tz − 1
t
log( 1

t2
) + 1

t
otherwise,

(7.4)

where t controls the barrier during training, and z is the constraint fc(an).
Thus, by taking into account the approximation in 7.4, we can solve the
following unconstrained problem by using standard Gradient Descent:

min
θ,ϕ

LV AE(θ,ϕ)︸ ︷︷ ︸
Standard VAE loss

+λs

N∑
n=1

ψ̃t(1−
1

|Ωi|
∑
l∈Ωi

an
l )︸ ︷︷ ︸

Ls: Size regularizer

(7.5)

In this scenario, for a given t, the optimizer will try to find a solution
with a good compromise between minimizing the loss of the VAE and
satisfying the constraint fc(a

n). In the following, we refer to this
formulation of gradient-CAM constraint as GradCAMCons setting.

7.3.4 On the role of gradients in VAEs

Even though there exist a few initial attempts to integrate attention
maps on the task of unsupervised anomaly detection, how gradient-based
attention behave on anomalous patterns remains unclear. For instance,
[61] argue that anomalies produce larger gradients in the learned latent
representation, which results in higher activated attention maps. On
the other hand, [60] states that the VAE only focus on normal patterns
(with which it has been trained), thus anomalous regions produce smaller
absolute value gradients. These inconsistencies in the literature have
motivated us to analyze the underlying role of the gradients in the context
of brain images analysis. Thus, we performed several experiments to
analyze the behaviour of grad-CAMs in anomaly localization compared
to non-weighted activation maps (AMs), which are computed as:
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an =
1

K

K∑
k

f s
θ(x

n)k (7.6)

In particular, we could not find any benefit on gradients weighting other
than serving as a scaling factor for attention maps to fall on non-saturated
range of values of typically used activation functions, such as the sigmoid
operation in Eq. 7.2 (see Figure 7.2, where we show that the values
obtained by both types of attention are highly correlated). Furthermore,
we found that the reconstructed images derived from the gradient-based
attention contained more errors compared to those reconstructed with
attention on the activation maps (Eq 7.6). We refer the reader to Section
1 of Supplemental Material for the detailed results concerning the role of
the gradients.

Figure 7.2: Relation between the activation values and gradient-weighted attention maps
in an unconstrained VAE. These results demonstrate that the values obtained by Grad-CAM
based attention are highly correlated (correlation coefficient = 0.98) to those obtained by
the attention maps, suggesting that the gradient basically contributes as a scaling factor on
the attention maps.
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7.3.5 Entropy maximization as a proxy for the constraint

Based on our previous findings, we advocate that the use of non-weighted
activation maps (AMs) should be preferred over their gradient-based
counterpart. Nevertheless, this solution has a main limitation that
hinders the use of size constraints. As the activation maps are not
normalized, the arbitrary activation value to impose the constraint loses
the sense of size or proportion. The activation values produced by neural
networks can vary in each application, as well as with the architecture
used, which makes it difficult to establish generalizable restrictions on
their value. For this reason, we propose to use attention maps derived
from normalizing the activation maps over all the pixels of the image,
via a softmax activation, similarly to [46], such that: pn = τΩB

(an)2.
Since these attention maps are normalized across pixels and not over
classes, the use of global constraints is meaningless, as the sum over all
the pixels post-softmax will be equal to 1.0. Nevertheless, we still aim
at regularizing the attention distribution pn to focus on all patterns in
the image homogeneously. To this end, we propose to minimize the KL
distanceDKL(p||q) = H(p, q)−H(p) between the attention distribution p,
and a constant distribution q, where H(p, q) represents the cross-entropy
between both distributions, and H(p) = H(p, p) is the Shannon entropy
of the intensity distribution such that H(p) = −1

I

∑
i pi · log(pi). In

the scenario where we want p to match a constant distribution, it is
straightforward to see that minimizing the KL distance is equivalent to
maximizing the entropy H(p):

DKL(p||q) = H(p, q)−H(p) =c −H(p) (7.7)

where =c indicates equality up to an additive constant.

Thus, the proposed constrained optimization problem integrating an
entropy maximization term, referred to as LH , offers a softer attention
constraint compared to the solution in Eq. 7.5. Furthermore, this
formulation allows the VAE to keep the most suitable activation values,
while requiring less hyper-parameters to be optimized. Analogously to

2Note that τ is the softmax activation on the brain tissue instances, ΩB .
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Eq. 7.5, we solve the constrained optimization problem with LH by using
standard Gradient Descent:

min
θ,ϕ

LV AE(θ,ϕ)︸ ︷︷ ︸
Standard VAE loss

−λH
1

N

N∑
n=1

H(τΩB
(an))︸ ︷︷ ︸

LH : Entropy regularizer

(7.8)

Hereafter, we will refer to this formulation as AMCons.

7.3.6 Inference

During inference, we use the generated attention as an anomaly saliency
map. For the Grad-CAMs based settings we replaced the sigmoid
operation by a minimum-maximum normalization in order to avoid
saturation caused by large activations. During the experimental stage,
we found that anomalies produce larger activation on attention maps
than the constrained normal samples, in line to prior literature ([61]).
Then, the map is thresholded to create an anomaly mask of the image.

7.4 Experimental setting

7.4.1 Datasets

The experiments described in this work are carried out in the context of
brain lesions localization. Concretely, we use two relevant neuroimaging
challenges: tumour segmentation in MRI volumes and intracranial
hemorrhage (ICH) segmentation in CT scans.

Brain tumor segmentation For this task, we used the popular BraTS
2019 dataset ([221–223]), which contains 335 multi-institutional multi-
modal MR scans with their corresponding Glioma segmentation masks.
Following [54], from every patient, 10 consecutive axial slices of FLAIR
modality of resolution 224× 224 pixels were extracted around the center
to get a pseudo MRI volume. Then, the dataset is split into training,
validation and testing groups, with 271, 32 and 32 patients, respectively.
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Following the standard literature, during training only the slices without
lesions are used as normal samples. For validation and testing, scans
with less than 0.01% of tumour are discarded, following the standard
practices in the literature.

Intracranial hemorrhage segmentation We use the Physionet-ICH
dataset ([224–226]) to localize intracranial hemorrhage lesions. The
dataset is composed of 82 non-contrast CT scans of subjects with trau-
matic brain injury. From those, 36 cases are diagnosed with intracra-
nial hemorrhage of different types: Intraventricular, Intraparenchymal,
Subarachnoid, Epidural and Subdural. ICH Lesions were slice-wise de-
lineated by two expert radiologists. In our work, we join the different
ICH types into one single label for binary lesion segmentation. CT scans
are skull-stripped, intensity-normalized, and co-registered into a refer-
ence scan. Similar to the BraTS dataset, 10 consecutive axial slices of
resolution 224 × 224 pixels around the center were extracted to get CT
pseudo volumes. The dataset is divided into training, validation and
testing splits. The first one contains only non-ICH cases (n=46), while
cases with labeled lesions were used for validation (n=6) and testing
(n=30). Although the main core of ablation experiments in this work
are described on the BraTS dataset, we use the Physionet-ICH dataset
to demonstrate the generalization capabilities of our proposed method
on different brain lesions and imaging modalities.

7.4.2 Evaluation metrics

We resort to standard metrics for unsupervised brain lesion segmentation,
as in [210]. Concretely, we compute the dataset-level area under
precision-recall curve (AUPRC) at pixel level, as well the area under
receptive-operative curve (AUROC). From the former, we obtain the
operative point (OP) as threshold to generate the final segmentation
masks. Then, we compute the best dataset-level Sørensen-Dice score
(⌈DICE⌉) and intersection-over-union (⌈IoU⌉) over these segmentation
masks. Finally, we compute the average Sørensen-Dice score (DICE)
over single scans. For each experiment, the metrics reported are the
average of three consecutive repetitions of the training, to account for
the variability of the stochastic factors involved in the process.
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7.4.3 Implementation details

The VAE architecture used in this work is based on the recently proposed
framework in [60]. Concretely, the convolution layers of ResNet-18 ([91])
are used as the encoder, followed by a dense latent space z ∈ R32. For
image generation, a residual decoder is used, which is symmetrical to
the encoder. It is noteworthy to mention that, even though several
methods have resorted to a spatial latent space ([54, 60]), we observed
that a dense latent space provided better results, which aligns to the
recent benchmark in [210]. To train the GradCAMCons formulation
in eq. 7.5 we first trained the VAE during 50 epochs without any
expansion to stabilize the convergence using β = 1. Then, the proposed
regularizer was integrated (equation 7.5) with t = 10 and λs = 103

applied to the Grad-CAMs obtained from the first convolutional block
of the encoder during 250 epochs. We use a batch size of 8 images, and
a learning rate of 1e−5 with ADAM as optimizer. The reconstruction
loss, LR, in eq. (7.1) is the binary cross-entropy. Similarly, the AMCons
formulation in eq. 7.8 was trained by using β = 10 and λH = 0.1, using
a learning rate of 1e−4. Ablation experiments to motivate the choice of
values used are presented in Section 7.5.2 and Section 3 of supplemental
materials. The code and trained models are publicly available on (https:
//github.com/jusiro/constrained_anomaly_segmentation/).

7.4.4 Baselines

In order to compare our approach to state-of-the-art methods, we
implemented prior works and validated them on the dataset used, under
the same conditions. First, we use residual-based methods to match the
recently benchmark on unsupervised lesion localization in [210]. Then,
we implement up-to-date methods based on contrast adjustment on
the input image via histogram equalization. We also include recently
proposed methods that integrate CAMs to locate anomalies. For both
strategies, the AE/VAE architecture was the same as the one used in
the proposed method. Residual methods , given an anomalous sample,
aim to use the AE/VAE to reconstruct its normal counterpart. Then,
they obtain an anomaly localization map using the residual between both
images such that m = |x− x̂|, where |·| indicates the absolute value. On
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the AE/VAE scenario, we include methods which propose modifications
over vanilla versions, including context data augmentation in Context AE
[208], Bayesian AEs ([200]), Restoration VAEs ([202]), an adversarial-
based VAEs, AnoVAEGAN ([54]) and a recent GAN-based approach,
F-anoGAN ([59]). For methods including adversarial learning, DC-GAN
[26] is used as discriminator. During inference, residual maps are masked
using a slight-eroded brain mask, to avoid noisy reconstructions along the
brain borderline. Equalization-based methods : very recent methods
have highlighted the limits of residual-based approaches to properly
discern brain lesions [212, 227]. In contrast, they propose to apply an
equalization of the histogram of the input image, and to set a threshold
on the preprocessed image, considering that brain lesions often show
hyperintense patterns in different modalities. Concretely, we include the
method proposed in [227], which we refer to as HistEq. CAMs-based :
we use Grad-CAM VAE ([61]), which obtains regular Grad-CAMs on the
encoder from the latent space zµ of a trained vanilla VAE. Concretely, we
include a disentanglement variant of CAMs proposed in this work, which
computes the combination of individually-calculated CAMs from each
dimension in zµ, referred to as Grad-CAMD VAE. We also use the recent
method in [60] (CAVGA), which applies a L1 penalty on the generated
CAM to maximize the attention. In contrast to our model and [61],
the anomaly mask in [60] is generated by focusing on the regions not
activated on the saliency map such that a = 1 − CAM , hypothesizing
that the network has learnt to focus only on normal regions. Then, a
is thresholded with 0.5 to obtain the final anomaly mask m ∈ RΩi . For
both methods, the network layer to obtain the Grad-CAMs is the same
as in our method.

7.5 Results

7.5.1 Comparison to the literature.

The quantitative results obtained by the proposed model and baselines
on the test cohort are presented in Table 7.1. Results from residual-
based baselines range between [0.056-0.511](AUPRC) and [0.188-0.525]
(DICE), which are in line with previous literature [210]. We can
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observe that the proposed formulations outperform these approaches by
a large margin. Concretely, the AMCons method provides a substantial
increase of ∼34% and ∼26% in terms of AUPRC and DICE, respectively,
compared to the best model, i.e., F-anoGAN. Furthermore, the model
integrating the LH term significantly outperforms our previous method
in [204]. This supports our hypothesis that using non-weighted attention
maps with a maximization entropy term as constraint is indeed a
better solution for the unsupervised lesion segmentation task. Finally,
in comparison with the very recently proposed method of histogram
equalization, HistEq, our proposed formulation brings improvements of
nearly ∼10% in the main figures of merit.

Method AUROC AUPRC ⌈DICE⌉ ⌈IoU⌉ DICE (µ± σ)
CAVGA ([60]) 0.726(0.001) 0.056(0.005) 0.188(0.001) 0.104(0.002) 0.182(0.004)±0.096(0.002)
Bayesian VAE ([200]) 0.922(0.002) 0.193(0.005) 0.342(0.005) 0.206(0.005) 0.329(0.005)±0.115(0.005)
AnoVAEGAN ([54]) 0.925(0.020) 0.232(0.052) 0.359(0.074) 0.221(0.053) 0.349(0.071)±0.115(0.015)
Bayesian AE ([200]) 0.940(0.002) 0.279(0.009) 0.389(0.012) 0.242(0.009) 0.375(0.010)±0.130(0.011)
AE 0.937(0.002) 0.261(0.011) 0.397(0.011) 0.248(0.008) 0.386(0.010)±0.125(0.004)
Grad-CAMD VAE ([61]) 0.941(0.003) 0.312(0.010) 0.400(0.009) 0.250(0.012) 0.361(0.014)±0.164(0.005)
Restoration VAE ([202]) 0.934(0.028) 0.352(0.111) 0.403(0.099) 0.252(0.069) 0.345(0.075)±0.186(0.044)
Context VAE ([208]) 0.939(0.004) 0.271(0.017) 0.406(0.020) 0.255(0.016) 0.394(0.017)±0.126(0.007)
Context AE ([208]) 0.940(0.003) 0.278(0.012) 0.411(0.014) 0.259(0.011) 0.399(0.013)±0.126(0.005)
VAE ([54, 203]) 0.940(0.002) 0.273(0.010) 0.411(0.012) 0.259(0.009) 0.399(0.010)±0.127(0.004)
F-anoGAN ([59]) 0.946(0.026) 0.511(0.190) 0.525(0.147) 0.369(0.131) 0.494(0.138)±0.151(0.038)
GradCAMCons w. LS (L2 penalty) 0.969(0.015) 0.567(0.138) 0.620(0.085) 0.455(0.086) 0.586(0.079)±0.184(0.028)
HistEq ([227]) 0.972(0.000) 0.725(0.000) 0.705(0.000) 0.545(0.000) 0.653(0.000)±0.233(0.000)
GradCAMCons w. LS (Log Barrier) 0.982(0.001) 0.746(0.034) 0.698(0.034) 0.537(0.041) 0.677(0.021)±0.215(0.019)
AMCons w. LH 0.988(0.000) 0.850(0.011) 0.786(0.009) 0.648(0.013) 0.741(0.009)±0.153(0.001)

Table 7.1: Comparison to prior literature on BraTS dataset. Results derived from the
proposed methods in gray. Best results in bold. The values in parentheses indicate the
standard deviation over the three training repetitions.

7.5.2 Ablation experiments

The following ablation studies aim at demonstrating, in an empirical way,
the motivation of employing the proposed models. First, we provide
quantitative evidences about the better performance of using global
constraints (model in Eq. 7.5) over pixel-level constraints (i.e., [60]).
Second, we show that resorting to the extended log-barrier function
is a better alternative than standard L2 penalty functions. Then, we
perform an in-depth analysis of the optimal hyperparameters values for
the entropy-guided model (Eq. 7.8), as well as other important design
choices.
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Image vs. pixel-level constraint The following experiment demon-
strates the benefits of imposing the constraint on the whole image rather
than in a pixel-wise manner, such as in [60]. In particular, we compare
the two strategies when the constraint is enforced via a L2-penalty func-
tion, whose results are presented in Table 7.2. In particular, we can easily
see that imposing the constraint at image-level consistently outperforms
pixel-level constraints. These results support our hypothesis that global
constraints, such as the proposed formulation in Eq. 7.5, should be pre-
ferred over multiple pixel-wise constraints, similar to [60].

L2
(pixel-level)

L2
(image-level)

Log-Barrier
(image-level)

AUPRC 0.489(0.098) 0.550(0.160) 0.728(0.034)

Table 7.2: Quantitative comparison, in terms of AUPRC, between enforcing the constraint
at pixel-level (i.e., [60]) or at image-level (i.e., proposed approach), and for the impact of the
type of regularization.

Extended log-barrier vs. penalty-based functions To motivate
the choice of employing the extended log-barrier over standard penalty-
based functions in the constrained optimization problem in Eq. (7.3),
we compare them in Table 7.2. It can be observed that imposing the
constraint with the extended log-barrier consistently outperforms the L2-
penalty, with substantial performance gains.

On the impact of entropy-guided constraints We now perform an
in-depth analysis of the effect of integrating the entropy-guided constraint
in Eq. 7.8 for anomaly localization, as well as an extensive validation
of the values of the balancing terms β and λH . First, we study the
impact of LH across different β values (i.e. β = {0.01, 0.1, 1, 10}), by
fixing its balancing term λH to 0.1, a value that empirically showed
good stability. These results, which are reported in Figure 7.3a, show
that the VAE with and without entropy constraint presents different
optimal values for β. Nevertheless, the best results are obtained when
the contribution of the regularization term is large (i.e. β ≥ 1), and
the entropy-based regularization over the activation maps included (i.e.,
green bars). Furthermore, this configuration is shown to be more stable
once a large β weight is set, particularly for the constrained formulation.
Then, based on the best configuration (β = 10), we study how different
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λH weights {0.01, 0.1, 1, 10} impact the model performance. These results
(Figure 7.3b) show that incorporating the entropy regularization always
contributes to performance gains, with an optimum weight value of
λH = 0.1.

(a) (b)

Figure 7.3: Ablation study on the AMCons setting. Concretely, the role of the KL
regularization (β) in the VAE and the entropy constraint on attention maps (λH) from
our formulation is studied. (a) Entropy constraint effect and dependency on β. (b) Ablation
study on λH .

In the next experiment, we show how adding the LH term in our
formulation impacts the activation maps (AM). Concretely, we first show
in Figure 7.4 the AM distribution for a normal sample for both the
constrained and unconstrained configurations. It can be observed that,
in our constrained formulation, the distribution of activation values is
more homogeneous (in orange), unlike the more spread values found
in its unconstrained counterpart (in green). Furthermore, we show its
impact on unseen, anomalous samples, where the benefits of our model
are better highlighted. In particular, we represent the AM distribution
for normal and anomalous pixels on the unconstrained formulation (i.e.
λH = 0) in Figure 7.5 (top), and the effect of integrating the LH term
(Figure 7.5, bottom). Similarly to the normal samples, the distribution
of normal pixels produced by the unconstrained setting spreads over a
larger range, resulting in a higher overlapping with the distribution of
anomalous pixels. Note that, in addition to the overlapping regions,
there exist values of normal pixels which overpass anomalous values.
In contrast, the more compact distribution provided by the proposed
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formulation favors a smaller overlap between normal and anomalous pixel
intensity distributions. This results in an easier identification of normal
versus anomalous pixels.

Figure 7.4: Influence of the entropy constrained term on the attention maps for AMCons
on normal images.

Figure 7.5: Influence of the entropy constrained term on the attention maps for AMCons
on images with anomalies.

In the following, we explore how the entropy constraint favors the
smallest overlap between normal and anomalous distribution on the
objective criteria, compared to previous literature. To do so, we depict in
Figure 7.6 the distribution of both populations for the proposed methods,
AMCons and GradCAMCons, and the most promising baselines, F-
anoGAN and Histeq. Furthermore, we obtain the overlap between both
distributions by dividing the number of samples in the overlapped region
of the histograms by the total number of samples. It can be seen
how the proposed method based on entropy maximization obtains the
smallest overlap (10.2%) and produces a narrower distribution of normal
samples in comparison with the GradCAMCons method, based on size
constraints.
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Figure 7.6: Histogram analysis on the overlap of normal and anomalous samples for the
different proposed methods and baselines (on the whole BRATS dataset).

Using statistics from normal domain for anomaly localization
threshold A common practice on unsupervised anomaly segmentation
is to use anomalous images to define the threshold to obtain the final
segmentation masks. In particular, these methods look at the AUPRC
on the anomalous images, which is then used to compute the optimal
threshold value. We refer to this technique in our experiments as
OP (Operative Point). To alleviate the need of anomalous samples
during the validation stage, several methods ([54]) have discussed the
possibility of using a given percentile from the normal images (i.e., no
anomalies) distribution to set the threshold. Motivated by this, an
ablation study on the percentile value is presented in Table 7.3 for our
proposed formulations and the best performing baselines. First, we can
observe that under the OP strategy (i.e., accessing to anomalous images
to identify the optimal threshold), both of our models bring substantial
improvements over the state-of-the-art on residual-based approaches,
ranging from 14% to 22%. If we resort to the percentiles instead,
the performance improvements observed are very similar to the OP
scenario, with our models outperforming F-anoGAN by a large margin.
Nevertheless, we observed that the best results are obtained with different
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percentile values. While F-anoGAN and AMCons w. LH yields the best
performance using the 98% percentile, GradCAMCons w. LS follows
previous observations in [54], performing better using the 95% percentile.

OP th=0.5 p85 p90 p95 p98
F-anoGAN 0.525 − 0.310 0.390 0.505 0.488
HistEq 0.690 − 0.298 0.404 0.624 0.620
GradCAMCons w. LS 0.693 0.583 0.512 0.611 0.663 0.587
AMCons w. LH 0.743 − 0.189 0.201 0.265 0.720

Table 7.3: Ablation study on threshold values from normal images. pX indicates the
average percentile used on the training set (normal images) to compute the segmentation
threshold. OP indicates the operative point from area under precision-recall curve, using all
validation dataset, which contains anomalous images. The metric presented is the dataset-
level DICE.

This suggests that, even though not used directly, anomalous images are
still required to find the optimal threshold value. However, the proposed
method GradCAMCons shows special properties that suggest that they
can achieve large performance gains without having access to anomalous
images to define the threshold, unlike prior works. In particular, our
GradCAM-based formulation restricts the attention values to [0, 1], which
allows to set a typical threshold to 0.5, with still large performance gains
(+7%) compared to the baselines. Nevertheless, we can observe that if
we resort to the percentile strategy, our method based on maximizing
the entropy of the attention maps (i.e., AMCons) is very sensitive to the
selected value.

Number of slices to generate the pseudo-volumes In our
experiments, we followed the standard literature ([210]) to generate
the pseudo-labels for validation and testing. Nevertheless, we concede
that this scenario is unrealistic, as the appropriate number of slices
used from the MRI scans in unsupervised anomaly detection should be
unknown. We now explore the impact of including more slices in these
pseudo-volumes, which increase the variability of normal samples. For
instance, it is well-known that the target regions in slices farther from
the center are incrementally smaller. In this line, we hypothesize that
the dimension of the VAE latent space and the importance of the KL
regularization may be a determining factors in absorbing this increased
variability. Regarding the latent space, the appropriate z dimension is
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unclear in the literature. For instance, [210] uses z = 128, while [54]
uses z = 64, and we obtained better results using z = 32. To validate
the proposed experimental setting and latent space dimension, we now
present results using increasing number of slices around the axial midline
N = {10, 20, 40}, and two different latent space dimensions z = {32, 128}
for both a standard VAE and our proposed models, in Figure 7.7a.
We can observe that despite the gap between the baselines and the
attention based methods is reduced as the number of slides is increased,
this difference is still significant, and the relative performance drop is
similar for all methods. Finally, we can observe that an increasing on z
dimension (solid versus dotted lines in Fig 7.7a) does not produce gains
in performance in any case. Note that the model hyperparameters used
are optimized for z = 32, and N = 10, which also could produce some
underestimation of the proposed model performance when N increases.
In the following, we study the performance of the proposed AMCons
method using different β values (β = {1, 10}) in the KL term of eq. 7.1
across different number of slices, whose results are presented in Figure
7.7b. We can observe that, by decreasing the value of β as the number of
employed slices increases, we can alleviate the performance degradation
observed with a fixed β. Since the KL regularization directly affects
the capacity of the VAE for learning different samples, the optimization
of its balancing term when increasing the domain of samples used
seems necessary. The similar behaviour between the proposed method
and baselines suggest that this could be a limitation of self-training
features based on VAEs, which struggle to encode heterogeneous sample
information.

7.5.3 Generalization to other datasets

In order to empirically demonstrate the generalization properties of
the proposed methodology, we evaluate its performance on a different
dataset for brain lesion detection. Concretely, as previously described, we
resort to Physionet-ICH dataset for non-contrast CT on ICH localization.
Implementation details are analogous as the ones used on the BraTS
dataset, although we decreased the learning rate to 1e − 5, and we
set a larger latent dimension, i.e. z ∈ R128, along all baselines and
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(a)

(b)

Figure 7.7: Ablation study on the effect of increasing the number of axial slices around the
center used from MR brain volumes. (a) Study of latent space dimension for the proposed
models and an standard VAE. Solid lines indicate z = 32, and dashed lines denote z = 128.
(b) Study of the KL component importance (β term) using the proposed AMCons method.

methods to favour model convergence. Obtained results for anomaly
localization are reported in Table 7.4. Even though there exist slight
differences in the comparison between residual methods in the literature
compared to the results obtained on BraTS dataset (i.e. the simple
AE outperforms variations approaches), the proposed attention-based
anomaly localization methods still achieve remarkable results. Again,
the AMCons configuration yields the best performance, and it reaches
improvements of nearly ∼25% and ∼18% in terms of AUPRC and DICE,
respectively, compared to previous literature. The observed results
suggest that the proposed methodology is able to generalize to other
unsupervised brain lesion segmentation challenges, even using different
imaging modalities. It should be noted, however, that the absolute results
in terms of segmentation are lower than those obtained in BraTS. Among
other reasons, this may be due to the greater heterogeneity observed in
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the ICH dataset, the lower degree of standardization and size of the
database used, and the small size of ICH lesions, which penalizes metrics
such as DICE. Nevertheless, the values obtained are in line with the
scarce previous literature on ICH segmentation, as reflected in Table 7.4.
Indeed, the obtained results are at par with previous works using a fully
supervised learning approach [225], which shows the difficulty of the task.

Method AUROC AUPRC ⌈DICE⌉ ⌈IoU⌉ DICE (µ± σ)
Other works
Karkkainen et al. (2021) (Unsupervised)* − − − − 0.197± 0.222

Hssayeni et al. (2020) (Supervised) − − − − 0.315± 0.211

Physionet-ICH dataset
CAVGA ([60]) 0.919(0.004) 0.061(0.003) 0.094(0.005) 0.062(0.004) 0.053(0.004)±0.161(0.002)
Grad-CAMD VAE ([61]) 0.955(0.003) 0.157(0.009) 0.275(0.011) 0.159(0.005) 0.178(0.005)±0.175(0.003)
Bayesian AE ([200]) 0.961(0.001) 0.188(0.006) 0.309(0.009) 0.183(0.007) 0.242(0.008)±0.181(0.003)
VAE ([54, 203]) 0.962(0.000) 0.167(0.005) 0.319(0.002) 0.190(0.002) 0.245(0.004)±0.192(0.003)
AnoVAEGAN ([54]) 0.961(0.000) 0.167(0.003) 0.313(0.006) 0.185(0.004) 0.239(0.006)±0.192(0.002)
Bayesian VAE ([200]) 0.964(0.000) 0.178(0.010) 0.323(0.007) 0.193(0.005) 0.248(0.008)±0.191(0.004)
Context VAE ([208]) 0.963(0.002) 0.170(0.013) 0.321(0.023) 0.191(0.016) 0.243(0.014)±0.191(0.009)
Restoration VAE ([202]) 0.962(0.001) 0.183(0.005) 0.327(0.002) 0.187(0.001) 0.233(0.004)±0.189(0.003)
Context AE ([208]) 0.962(0.001) 0.195(0.005) 0.359(0.010) 0.219(0.007) 0.276(0.004)±0.198(0.004)
F-anoGAN ([59]) 0.961(0.000) 0.173(0.007) 0.343(0.007) 0.207(0.005) 0.268(0.007)±0.191(0.005)
AE 0.961(0.001) 0.176(0.006) 0.344(0.007) 0.208(0.006) 0.266(0.002)±0.202(0.005)
GradCAMCons w. LS (L2 penalty) 0.967(0.009) 0.261(0.013) 0.361(0.067) 0.231(0.029) 0.276(0.046)±0.243(0.029)
HistEq ([227]) 0.963(0.000) 0.313(0.000) 0.385(0.000) 0.239(0.000) 0.348(0.000)±0.213(0.000)
GradCAMCons w. LS (Log Barrier) 0.970(0.008) 0.295(0.073) 0.401(0.044) 0.251(0.049) 0.286(0.076)±0.233(0.039)
AMCons w. LH 0.971(0.006) 0.420(0.068) 0.522(0.046) 0.354(0.043) 0.319(0.054)±0.266(0.011)
* Results reported on a different (private) dataset.

Table 7.4: Comparison to prior literature on Physionet-ICH dataset, and previous works
on ICH segmentation. Results derived from the proposed methods are depicted in gray, and
best results are indicated in bold.

7.5.4 Qualitative evaluation

Visual results of the proposed and existing methods for both datasets
are depicted in Figure 7.8. We can observe that our approach identifies
as anomalous more complete regions of the lesions, whereas existing
methods are prone to produce a significant amount of false positives (first,
third and seventh rows) and fail to discover many abnormal pixels (third
row). These visual results are in line with the quantitative validation
performed in previous sections. However, there is a known problem about
segmenting only hyperintense regions in the state-of-the-art methods of
unsupervised anomaly localization of brain lesions ([227]). Although the
proposed method still suffers from this limitation (fourth row, red arrow),
the positive results regarding true negative segmentation obtained in
some normal, hyperintense tissue (second row, green arrow) suggest an
improvement in relation to this problem.
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Input MRI Ground Truth GradCAMCons AMConsF-anoGAN HistEq

Input CT Ground Truth AE GradCAMCons AMConsHistEq

Figure 7.8: Qualitative evaluation of the proposed and existing high-performing methods
for anomaly localization on BraTS MRI flair volumes (top) and on Physionet-ICH non-
contrast CT images (bottom). A failure case is depicted with the red arrow (fourth column).
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7.6 Conclusions

Despite the recent advances of unsupervised anomaly segmentation in
medical problems, existing literature still provides limited performance,
with most methods yielding suboptimal results in popular segmentation
benchmarks. In this work, we have presented a novel approach that
substantially differs from prior literature in several aspects.

First, we resort to generated attention maps to identify anomalous
regions, which contrasts with most existing works that rely on the pixel-
wise reconstruction error. Second, our formulation integrates a size-
constrained loss that enforces the attention maps to cover the whole
image in normal images. This differs from very recent works [60],
as we tackle this problem by imposing inequality constraints on the
whole target attention maps. Another important difference lies on the
manner the constrained problem is addressed. While [60] leverages a
L2 penalty function, we resort to an extension of standard log-barrier
methods, which overcome the well-known limitations of penalty-based
methods. Quantitative results demonstrate that this model significantly
outperforms prior literature on unsupervised lesion segmentation.

A drawback of the log-barrier based formulation is that it requires to
find the optimal value for several hyperparameters. Motivated by this,
we have proposed an alternative model, which integrates a regularization
term that maximizes the Shannon entropy on the generated attention
maps. This new formulation only adds the entropy balancing term LH ,
which reduces the complexity compared to the constrained problem in eq.
7.5. Furthermore, as reported in the results, the maximum-entropy model
yields better performance than the size regularizer formulation. Note, in
addition, that the alternative entropy-based model better separates the
intensity distributions between normal and abnormal tissue. This allows
us to employ a higher percentile value to obtain the final anomalous
regions, with a substantial performance improvement compared to
previous methods. Thus, based on the reported empirical validation,
the proposed models represent a novel state-of-the-art for unsupervised
anomaly segmentation.
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We believe that there exist potential research directions to further im-
prove the performance of unsupervised segmentation methods. For ex-
ample, brain images are typically acquired along multiple modalities.
Learning how to combine multiple modalities in the scenario of anoma-
lous regions detection might indeed enhance the learned representation
by the VAE, ultimately resulting in better identification of abnormal
pixels. In addition, unsupervised segmentation methods have been only
evaluated from a discriminative perspective. Nevertheless, assessing their
performances in terms of the quality of the uncertainty estimates, i.e.,
calibration, might give a better overview of the quality of a segmentation
model.
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Chapter 8

Final conclusions

This chapter relates the findings from each paper to the
final aim of the PhD thesis. It summarises concluding remarks
and suggests future research lines for each proposed learning
framework.
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8.1 Global remarks

8.1 Global remarks

In this thesis, we have designed, developed and validated novel not-so-
supervised methods to solve real-world computer vision challenges us-
ing deep learning. Concretely, we have focused on weakly supervised,
few-shot and unsupervised learning strategies. We have proposed self-
supervised learning algorithms on weakly supervised learning for gi-
gapixel prostate histology image classification, able to leverage highly
accurate instance-level tumor grades. Then, this thesis has explored
prototypical few-shot learning methods, based on the recently popular-
ized contrastive learning optimization, to detect crossing defects on train
railway surveying. Finally, we have presented a novel formulation on
unsupervised anomaly localization, applied to brain lesion segmentation,
based on attention regularization. In a transversely fashion, this thesis
has explored how to incorporate prior knowledge for each application, in
the form of constraint formulations. In particular, inequality constraints
have been explored to include relative class proportions in weakly super-
vised classification, or attention homogenization on VAEs for anomaly
localization. The methods proposed in this thesis have been extensively
validated and, when possible, not-so-supervised solutions have been com-
pared with their supervised counterparts.

8.2 Specific remarks

Weakly supervised classification of histology images

In Chapter 2 we first introduced the use of deep learning models based
on CNNs for prostate histology biopsies grading, under the supervised
learning paradigm. The difficulties and slowness encountered in the
preparation of a database with local annotations, and the problems
of generalization in external databases, have motivated the study of
weakly supervised techniques in this thesis. Thus, in Chapter 3 we
introduced an instance-based CNN able to leverage pixel-level labels
from global labels on histology patches, under the weakly supervised
segmentation paradigm, in a multi-label scenario. Results show the
promising performance of this method, being comparable to a supervised
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counterpart using an UNet architecture. The difficulty for pathologists to
perform accurate annotations at the pixel level leads to noisy annotations,
coupled with the heterogeneity of the patterns, and the imbalance of the
different categories may be behind this phenomenon. Then, in Chapter 4
we have gone further, processing entire WSIs in a weakly supervised
manner under the multiple instance learning paradigm. In this line,
we proposed a self-supervised learning framework based on a Teacher
CNN that leverages instance labels, which are further post-processed
to feed a Noisy Student trained with pseudolabels. Different Teacher
architectures have been explored. The use of max-pooling on instance-
based MIL showed the best performance, since the pseudolabels predicted
were of high specificity. This framework was trained on the large PANDA
dataset, reaching a Cohen’s quadratic kappa of ∼ 0.80. It is noteworthy
to mention that the proposed self-supervised learning approach has been
tested on three different datasets, showing robust performance, which
are comparable to inter-pathologist variability. The observed results are
largely better than the ones reached in Chapter 2 under the supervised
learning paradigm. Thus, the capability of weakly supervised methods
for training CNNs on large datasets allows a best generalization than its
supervised counterparts on smaller datasets. Still, collection such large
number of samples could be unfeasible on other applications with less
prevalence. For that reason, we have presented in Chapter 5 a constraint
optimization able to incorporate prior knowledge, in the form of relative
class proportions, to the multiple instance learning formulation. By using
this information during training, which is easily accessible on medical
records, results are comparable with the supervised methods developed
in Chapter 2 using similarly sized datasets. Interestingly, the results
improve notably in the grades that coincide the most in the training
bags. This shows the benefits of the method to better discern categories
at the instance level, with less effort on the part of the annotators. As
a qualitative sample, the database developed in Chapter 2 took years
to compile, while the one used in Chapter 5 with global constraints was
obtained in a matter of weeks.
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Few-shot learning for railway crossing surveying

In Chapter 6 we have presented a few-shot learning formulation for
railway crossing defect detection. The computer vision system takes
as input axle-box accelerations, preprocessed using short-time Fourier
transform spectrograms, to detect via CNNs worn crossings. The
use of supervised contrastive learning to learn discriminative latent
spaces, that are further used by memory-based k-nearest neighbours on
inference, has shown a promising performance when dealing with small
datasets. In particular, in comparison with standard episodic-based
prototypical training on few-shot learning, the proposed formulation
reaches improvements of ∼ 8% F1-score. Likewise, it also substantially
outperforms cross-entropy based standard supervised learning losses.
The direct regularization of latent space, contrary to cross-entropy losses,
which require to create non-calibrated decision boundaries, produces best
embeddings for classification tasks on small datasets. In that refers to
crossings surveting, we observed how narrower models produced best
results, since spectrograms contain low-level features present in early
layers of CNNs. Likewise, we explored different normalization techniques
for input features. On the contrary to standard computer vision
application on natural images, max or zscore normalization perform
worse than a dynamic-margin standarization that allows to maintain
the intensity information across samples. The methods introduced in
Chapter 6 outperform largely previous, scarce literature in this field, and
has a promising future ahead of it.

Unsupervised anomaly segmentation of brain lesions

Finally, we have studied the use of unsupervised deep learning, in
the context of unsupervised anomaly segmentation of brain lesions,
in Chapter 7. In line to very recent literature, using constrained
attention maps on VAEs has shown better performance than residual-
based approaches. This may be due to the difficulty that generative
models have in producing accurate, high-resolution images. In addition,
the incorporation of image-level constraints, instead previously proposed
pixel-level, led to best results for lesion localization. In this line,
two different formulations have been presented that aim to homogenize
the attention maps: one based on size constraints, and the other
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based on Shannon entropy maximization. The second one reaches best
results, needing fewer parameters for optimization. This suggests that
applying softer constraints, which have led to better reconstructions in
the VAE, also improves the representation of normal domain images.
Thus, anomalous pixels differ more from those observed during training
in the attention maps. It is worth mentioning that the constraint
formulation produces compact activation distributions on normal pixels,
which favors a smaller overlap between normal and anomalous pixel
intensity distributions. The best results obtained with respect to the
state of the art, in two different applications for brain injury detection,
suggest that the method is feasible generalizable on different scenarios.
Although the obtained results are still far form the supervised scenario
performance, our work substantially bridges the gap, and bodes well for
the future of this field.

8.3 Future work

In the present thesis, different not-so-supervised methods have been
explore to palliate the deep learning necessity of large, labelled datasets to
perform properly. Still, there are many research possibilities to go further
in this line. To begin with, the methods studied in this thesis contained
only pure methodologies. In real-world scenarios, despite focusing
on weakly supervised or unsupervised methods, some labeled samples
are usually available. This opens the range of possibilities for mixed
methods, including semi-supervised learning mechanisms. Among other
possibilities, using few labelled samples allow predicting pseudolabels
on weakly- or unlabeled data, using class-specific data augmentation,
distilling knowledge of supervised CNNs into less-supervised ones, or
incorporating subcategory exploration methods with deep clustering
techniques. Similarly, the use of few labeled data opens up other
challenges to consider: uncertainty, category imbalance, and inter-
annotator variability should be incorporated into the model. This can
be done using Bayesian networks for example, or by incorporating prior
knowledge about uncertainty in the annotations, in the form of constraint
formulations, among other approaches.
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Finally, we would like to point out some future perspectives on using
computer vision on real-world applications. Most deep learning focus on
training a model able to perform accurately in a given task. Then, this
model is directly used in practice. Still, this model remains static along
time, even if new, unseen data domains are used, or if it produces noisy
predictions on its daily use. Further research lines should focus on active
learning paradigms, able to deploy dynamic models that are updated
given new data, and discontinuous supervision on its use. Challenges
in this field include how to incorporate new categories to the model in
the form of continual learning, how to deal with uncertainty of non-
supervised data and corrections from the annotations of noisy outputs,
how to avoid catastrophic forgetting, or how to integrate multicentric
knowledge under the federated learning paradigm. Active learning topics
are of great interest to today’s scientific community and foresee an
exciting future for the successful inclusion of computer vision in everyday
life.
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