Índice

Índice de figuras IV
Índice de tablas XI
Acrónimos XIII

1. Introducción 1
1.1. Contexto 1
1.2. Motivaciones 4
1.3. Objetivos de la tesis 6
1.4. Principales aportaciones 7
1.4.1. Artículos, Congresos y Jornadas 7
1.4.2. Proyectos de investigación 10
1.4.3. Desarrollo software 12
1.5. Organización de la memoria 13
2. Estado del arte tecnológico 15
2.1. Introducción 15
2.2. Arquitecturas NGIoT de referencia 17
2.3. Edge computing en NGIoT 34
2.4. Aprendizaje automático para indicadores compuestos 47
2.4.1. Predicción de series temporales en NGIoT 47
2.4.2. Aprendizaje federado (Federated Learning) 58
2.5. Otras tecnologías habilitadoras 63
2.5.1. Virtualización y escalabilidad 63
2.5.2. Seguridad en IoT 67
2.5.3. DevSecOps 73
2.5.4. Tactile Internet 79
3. Definición e implementación de la arquitectura 85
3.1. Introducción 85
3.1.1. Requisitos 87
3.1.1.1. Requisitos técnicos 88
3.1.1.2. Requisitos funcionales 90
3.1.1.3. Requisitos de servicio 92
3.1.2. Metodología 94
3.2. Visión general 97
3.2.1. Principios de diseño 97
3.2.2. Estructura modular y vistas 107
3.3. Adquisición de datos 111
3.3.1. Preprocesado y armonización de datos 112
3.3.2. Concentración de información contextual 123
3.4. Procesamiento de datos 130
3.4.1. Persistencia de la información 131
3.4.2. Ejecución de servicios 139
3.5. Visualización 146
3.6. Seguridad y privacidad 157
3.7. Solución integrada 168
4. Cálculo y predicción de índices compuestos 177
4.1. Estado de la técnica 177
4.1.1. Introducción 178
4.1.2. Construcción de índices compuestos 183
4.1.2.1. Creación del marco inicial 185
4.1.2.2. Operaciones matemáticas sobre los indicadores 192
4.1.2.3. Otras consideraciones 203
4.1.2.4. Representación de resultados 204
4.1.3. Herramientas software disponibles 206
4.2. Implementación de los servicios 215
4.2.1. Consideraciones generales 215
4.2.2. Cálculo de indicadores compuestos 222
4.2.3. Predicción de índices 237
4.2.3.1. Predicción de indicadores cKPIs 237
4.2.3.2. Propuesta de aprendizaje federado 245
4.2.4. Servicios auxiliares 248
5. Aplicación en entornos reales 263
5.1. Introducción 263
5.2. Metodología de aplicación y despliegue de la solución 267
5.2.1. Visión general 267
5.2.2. Fase I - Conceptual y de servicio 268
5.2.3. Fase II - Arquitectura IoT y conectores 270
5.2.4. Fase III - Configuración y resultados 273
5.3. Instanciación cloud en ciudad-puerto para análisis de congestión de tráfico 275
5.4. Instanciación cloud en puertos marítimos para análisis de impacto medioambiental 297
5.5. Instanciación edge para la evaluación rápida de impacto medioambiental a través de un kit IoT 326
5.6. Instanciación cloud en un entorno de terminal logística para predicción de distancia social en época de COVID-19 339
5.7. Instanciación híbrida para la recomendación de asignación en transporte logístico por carretera 350
6. Consideraciones hacia la transferencia tecnológica 359
6.1. Perspectiva de financiación 360
6.2. Análisis del resultado explotable 364
6.3. Esbozo de un modelo de negocio 370
7. Conclusiones 377
7.1. Grado de cumplimiento de objetivos 378
7.2. Conclusiones globales 382
7.3. Reflexiones sobre la innovación 388
7.4. Trabajos futuros 390
Referencias 395
Apéndices 433
Apéndice A - Diagramas de clases del servicio CIC 434
Apéndice B - Características de las fuentes de datos 438
Apéndice C - Docker compose de instalación de la arquitectura 442
