Índice

Índice de	figuras	IV
Índice de	tablas	XI
Acrónimo	S	XIII
1. Intro	oducción	1
1.1. Cont	exto	1
1.2. Moti	vaciones	4
1.3. Obje	tivos de la tesis	6
1.4. Princ	cipales aportaciones	7
1.4.1.	Artículos, Congresos y Jornadas	7
1.4.2.	Proyectos de investigación	10
1.4.3.	Desarrollo software	12
1.5. Orga	nización de la memoria	13
2. Esta	do del arte tecnológico	15
2.1. Intro	ducción	15
2.2. Arqu	itecturas NGIoT de referencia	17
2.3. Edge	computing en NGIoT	34
2.4. Apre	ndizaje automático para indicadores compuestos	47
2.4.1.	Predicción de series temporales en NGIoT	47
2.4.2.	Aprendizaje federado (Federated Learning)	58
2.5. Otras	s tecnologías habilitadoras	
2.5.1.	Virtualización y escalabilidad	63
2.5.2.	Seguridad en IoT	67
2.5.3.	DevSecOps	73
2.5.4	Tactile Internet	79

3.	Definición e implementación de la arquitectura	85
	3.1. Introducción	85
	3.1.1. Requisitos	87
	3.1.1.1. Requisitos técnicos	88
	3.1.1.2. Requisitos funcionales	90
	3.1.1.3. Requisitos de servicio	92
	3.1.2. Metodología	94
	3.2. Visión general	
	3.2.1. Principios de diseño	97
	3.2.2. Estructura modular y vistas	107
	3.3. Adquisición de datos	111
	3.3.1. Preprocesado y armonización de datos	112
	3.3.2. Concentración de información contextual	123
	3.4. Procesamiento de datos	
	3.4.1. Persistencia de la información	131
	3.4.2. Ejecución de servicios	139
	3.5. Visualización	146
	3.6. Seguridad y privacidad	157
	3.7. Solución integrada	168
4.	Cálculo y predicción de índices compuestos	177
	4.1. Estado de la técnica	
	4.1.1. Introducción	
	4.1.2. Construcción de índices compuestos	
	4.1.2.1. Creación del marco inicial	
	4.1.2.2. Operaciones matemáticas sobre los indicadores	
	4.1.2.3. Otras consideraciones	
	4.1.2.4. Representación de resultados	
	4.1.3. Herramientas software disponibles	
	4.2. Implementación de los servicios	
	4.2.1. Consideraciones generales	
	4.2.2. Cálculo de indicadores compuestos	
	4.2.3. Predicción de índices	
	4.2.3.1. Predicción de indicadores cKPIs	
	4.2.3.2. Propuesta de aprendizaje federado	245
	4.2.4. Servicios auxiliares	
5.	Aplicación en entornos reales	263
	5.1. Introducción	
	5.2. Metodología de aplicación y despliegue de la solución	
	5.2.1. Visión general	
	5.2.2. Fase I – Conceptual v de servicio	

5.	.2.3. Fase II – Arquitectura IoT y conectores	270
5.	.2.4. Fase III – Configuración y resultados	273
5.3.	Instanciación <i>cloud</i> en ciudad-puerto para análisis de contráfico	_
5.4.	Instanciación <i>cloud</i> en puertos marítimos para análisis de	
	medioambiental	-
5.5.	Instanciación edge para la evaluación rápida de impacto medica través de un kit IoT	
5.6.	Instanciación cloud en un entorno de terminal logística para	predicción
	de distancia social en época de COVID-19	
5.7.	Instanciación $hibrida$ para la recomendación de asignación en	transporte
	logístico por carretera	350
6.	Consideraciones hacia la transferencia tecnológica	359
6.1.	Perspectiva de financiación	360
6.2.	Análisis del resultado explotable	364
6.3.	Esbozo de un modelo de negocio	370
7.	Conclusiones	377
7.1.	Grado de cumplimiento de objetivos	378
7.2.	Conclusiones globales	382
7.3.	Reflexiones sobre la innovación	388
7.4.	Trabajos futuros	390
Refer	rencias	395
Apén	ndices	433
$\mathrm{Ap}\dot{\epsilon}$	éndice A – Diagramas de clases del servicio CIC	434
	éndice B – Características de las fuentes de datos	
${ m Ap} \epsilon$	éndice C – Docker compose de instalación de la arquitectura	442