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Abstract— Estimation of the number of materials that are 
present in a hyperspectral image is a necessary step in many  
hyperspectral image processing algorithms, including 
classification and unmixing. Previously, we presented an 
algorithm that estimated the number of materials in the image 
using clustering principles. This algorithm is an iterative approach 
with two input parameters: the initial number of materials (P0) 
and the number of materials added in each iteration (∆). Since the 
choice of P0 and ∆  can have a large impact on the estimation 
accuracy. In this paper, we made an experimental study of the 
effect of these parameters on the algorithm performance. Thus, we 
show that the choice of a large ∆  can significantly reduce the 
estimation accuracy. These results can help to make an 
appropriate choice of these two parameters.  

Keywords— Hyperspectral images, endmembers, clustering, 
Independent Component Analysis, Principal Component Analysis. 

I. INTRODUCTION 

Some steps in hyperspectral imaging processing require to 
know how many materials are in an image. One of these steps is 
unmixing, which consists of the split of the components 
composing the pixel data, which forms a pixel signature 
obtained from hyperspectral images. Thus, from the output of 
unmixing, abundance maps describing the amount of every 
component in a given pixel can be built.  

The calculation of the endmember number in hyperspectral 
images have been approached from different methods [2]-[13]. 
Recently, we proposed a method that implements a hierarchical 
clustering for this purpose [14]. From an initial number of 
clusters, a pyramidal structure is built, where the number of 
clusters decreases at each level of the pyramid until it reaches 
one cluster at the highest level. Thus, a set of partitions of the 
hyperspectral image is generated where each partition represents 
a number of materials. The optimal partition is determined 
applying a cluster validation index. A drawback of the algorithm 
is that the user must specify the maximum material number in 
the image (P), which is the number of clusters in the pyramid 
base. In [20], we extended this algorithm so that so that the input 
parameter P is not required. Thus, the estimation for several 
increasing values of P is performed iteratively until a condition 
is reached. This iterative algorithm has two input parameters: the 
number of materials considered in the first iteration (P0) and the 
number of materials added in each iteration (∆). 

The choice of P0 and ∆  can have a large impact on the 
estimation accuracy. In this paper, we experimentally study the 

influence of these two parameters in the algorithm 
performance. The results of this study can help to  make an 
appropriate choice of these two parameters. 

In Section II, a review of previous works on estimation of 
the hyperspectral image number of materials is included. In 
Section III, we experimentally study how the choice of P in the 
algorithm of [14] affects the estimation performance. In Section 
IV an estimation algorithm is proposed. In Section V, the 
proposed algorithm using five hyperspectral images is 
experimentally evaluated. Finally, Section VI includes the 
conclusions and future lines of research. 

II. HIERARCHICAL CLUSTERING  

A hyperspectral image of 𝑁 pixels and 𝐿 spectral is defined 
as a 𝐿 𝑁  matrix, 𝐗 𝐱 , ⋯ , 𝐱 . Each column of 𝐗  is an 
image pixel. Since the 𝑙-th component of a pixel is the measured 
energy at the 𝑙-th spectral band (1 𝑙 𝐿 , each pixel can be 
considered as a 𝐿 -band spectrum. Each material of a 
hyperspectral image correspond to a characteristic 𝐿 -band 
spectrum, called spectral signature or endmember. Commonly, 
the material number in the image, 𝐾, is much smaller than the 
band number, i.e., 𝐾 ≪ 𝐿. The material number in an image can 
be determined by estimating the number of endmembers that 
contains a hyperspectral image 𝐗 . Many algorithms that 
estimate 𝐾  from 𝐗  are founded on the linear mixing model 
(LMM), where each pixel is modeled as a random vector with 
the following expression [2],  

𝐱 𝑐  𝐞 𝐧                            1  

where 𝐞 , ⋯ , 𝐞  is the endmember set. The coefficients 
𝑐 , ⋯ , 𝑐  are random variables that represent the fraction of 

each endmember (abundances) in 𝐱; and the noise term, 𝐧, is a 
random vector that accounts for any model or measurement 
error. Abundance variables satisfy 𝑐 0 𝑖 1, ⋯ , 𝐾  
and𝑐 ⋯ 𝑐 1 are named abundance constraints. 

Several algorithms for endmember estimation are based on 
eigenvalue computation from the image sample correlation 
matrix [3]-[10]. LMM considers that a single endmember 
represents each material of the image. However, in practice, the 
material endmember could vary spatially. The normal 
compositional model accounts for endmember variability by 
using random endmembers [15]. In [11], an algorithm based on 
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the normal composition model was proposed. Other algorithms 
from different perspectives to estimate the endmember number 
have been proposed in [12], [13]. 

We presented an algorithm based on clustering approach in 
[14]. In this work, we consider that there is a principal 
endmember in a specified amount of pixels of a hyperspectral 
image. From this assumption, cluster centered on those pixels 
could be defined. Under this assumption, we can estimate 𝐾 by 
determining the cluster number in the image. This method 
performs a single hierarchical clustering that generates 
hierarchical image partitions, selecting the optimal partition by 
means of a clustering quality measure. The estimated 
endmember number, 𝐾, is set to the cluster number contained in 
the chosen partition. Figure 1 shows an outline of the algorithm. 

In Figure 1, the preprocessing of the image converts the 
columns of 𝐗 into feature vectors. This preprocessing involves 
the following: centering, which provides zero-mean variables; 
dimensionality reduction (using principal component analysis, 
PCA, to reduce the number of variables from 𝐿  to 𝑀 ); and 
normalization (to provide feature vectors with unit-variance 
variables). The preprocessing provides a matrix 𝐘 ∈ ℝ  
whose columns are normalized feature vectors of the image. The 
clustering step is performed in two stages: K-means and 
hierarchical partition. The K-means stage split into 𝑃 clusters 
the columns of Y and provides partition 𝒞 . Then, the 
hierarchical clustering stage takes 𝒞  as input and provides a 
hierarchy of groups or partitions 𝒞 , 𝒞 , ⋯ , 𝒞 , where 
𝒞 𝒞 and 𝒞  is an individual partition containing all of the 
vectors of features. This process is based on ICA to model the 
cluster densities and the Kullback-Leibler distance (KLD) to 
measure the distance between clusters [16]-[20]. 

Firstly, the parameters of the ICA corresponding to each 
cluster in 𝒞 are obtained. Then, the KLD between each pair of 
clusters in 𝒞  is computed using their corresponding ICA 
parameters. Finally, the clusters of 𝒞 are iteratively merged until 
there is only one cluster. In each merging iteration, the two 
closest clusters are joined (see [14] for details). We assume that 
one particular cluster 𝒞 , 𝒞 , ⋯ , 𝒞   will be close to the 
real constituent materials of 𝐗. Thus, the cluster number in that 
partition will approach the endmember number (𝐾). 

One of the hierarchy partitions of the hierarchy is selected in 
the cluster validation step, so 𝐾 is set to the cluster number. At 
each iteration, r of the merging process, the centroid of each of 
the two merged clusters of feature vectors at 𝒞 , i.e., 𝐦  and 
𝐦 , is obtained; and 𝑣  is set to  

𝑣 𝑚 , 𝑚 ,                   2  

where the 𝑙-th component of 𝐦  is denoted as 𝑚 , . From the 
obtained sequence 𝑣  ( 2 𝑘 𝑃 ), 𝐾  is set to the index 𝑘 
where 𝑣   reaches its maximum value. In addition, the proposed 

method provides the image segmented into 𝐾  clusters and 
obtain an estimation of the material endmembers, i.e., the 
centroid of the clusters. 

 

 
Fig. 1. Popeline of the proposed estimation method. 

Figure 2 shows the hierarchy of partitions generated by the 
algorithm when the input is the hyperspectral image Jasper 
Ridge (the details of this image are provided in Section V) and 
P=10. This figure shows: the average of the image bands 
displayed in grayscale (a) and the partition of the image from 10 
clusters (Fig. 2b), to 2 clusters (Fig. 2j). For this image, 𝐾 4  
is obtained, which, according to [21], is the true number of 
materials. The resulting image segmentation is shown in Figure 
2(h). The clusters displayed in this image correspond to the 
following materials: Tree -green-, Soil -red-, Road -black-, and 
Water -blue-, and. According to [21], this segmentation is 
approximately correct. This allows to obtain an approximation 
of the endmember for each material by computing the centroid 
of the clusters [14].  

III. INFLUENCE OF 𝑃 IN THE ESTIMATION ACCURACY 

In the algorithm described in Section II, the user must set the 
value of input parameter 𝑃. In this section, the impact of the 
choice of 𝑃 in the estimation accuracy is studied. To this end, 
we have obtained 𝐾 for some of 𝑃  values and for the 
hyperspectral images Urban, WDM, and Cuprite  (the features 
of these images are provided in Section V). Specifically, for each 
image and 𝑃, we run the algorithm ten times and computed the 
median of the ten 𝐾  values obtained. The results are shown in 
Figures 3, 4, and 5 for Urban, WDM, and Cuprite, respectively. 
Since the complexity of the estimation algorithm increases with 
𝑃, we have focused the analysis in a set of small values of 𝑃 (in 
Cuprite, the range of 𝑃 values have been increased since this 
image has more materials than Urban and WDM). 

 



 

(a) (b) (c) (d) (e) 

 

(f) (g) (h) (i) (j) 

Fig. 2. Partitions of an image provided by the proposed algorithm for image Jasper Ridge when P=10. The figure shows the average of the image bands in grayscale 
(a), and the segmentation with 10, 9, 8, 7, 6, 5, 4, 3, and 2 clusters (in images (b), (c), (d), (e), (f), (g), (h), (i), and (j), respectively). 

 

Fig. 3. Sequence 𝐾 𝑃  for the image Urban. 

 
Fig. 4. Sequence 𝐾 𝑃  for the image WDM. 

 

Fig. 5. Sequence 𝐾 𝑃  for the image Cuprite. 

Note that Figures 3, 4, and 5 show similar patterns. Thus, 𝐾 
remains constant in a plateau of values of 𝑃 in which 𝐾 is close 
or equal to 𝐾 ({9, 10, 11, 12} in Urban, {8, 9, 10} in WDM, and 
{15, 16, 17} in Cuprite). Before each plateau, 𝐾 is smaller than 
𝐾 and is constant with 𝑃 or has small fluctuations (in WDM). 
After each plateau, 𝐾 is also smaller than 𝐾 and fluctuates (with 
a large variation in Cuprite). Also note that the plateau starts 
after the true value of 𝐾. 

For each image and 𝑃  value, the algorithm generally 
provides stable results. In fact, the ten values of 𝐾  are the same 
in many cases. We have only observed some remarkable 
fluctuation when 𝑃 is large (e.g., for the image WDM and 𝑃
15, and for the image Cuprite and 𝑃 17 or 𝑃 20). 

Since we have shown that each sequence 𝐾 𝑃  has a plateau 
that contains good estimates of 𝐾, the estimator could identify a 
𝑃 value that belongs to the plateau and output the 𝐾 that this 𝑃 
value provides. This identification can be based on the 
monotonicity properties of the sequences 𝐾 𝑃 . Thus, since 



before reaching the plateau, the sequences 𝐾 𝑃  are generally 
non-decreasing, we can iteratively estimate 𝐾  for several 
increasing values of 𝐾. Since the sequence values immediately 
after the plateau are smaller than those of the plateau, we stop 
after obtaining a 𝐾 smaller than the one in the previous iteration. 
Note that we use the estimate of the iteration previous to the last 
one (since the 𝐾 𝑃  provided by the last iteration does not 
belong to the plateau). 

IV. PROPOSED ALGORITHM 

In this section, an algorithm that automatically determines a 
proper value of 𝑃  for the estimation of 𝐾  is proposed. This 
algorithm is a modification of the algorithm in [22] and it is 
based on the analysis of Section III. According to the results of 
this section, we can determine 𝐾 by iteratively estimating 𝐾 for 
several increasing values of 𝑃. The iteration should be stopped 
when the estimated 𝐾 decreases with respect to the value of the 
previous iteration, which provides the estimated valued of 𝐾. 
Based on this, we propose Algorithm 1 (‘EstimateK’). 

Apart from the input image 𝐗, the Algorithm 1 has three 
input arguments: 𝑃  (the initial value of 𝑃), ∆ (the increment of 
𝑃  in each iteration), and 𝑃  (the maximum value of 𝑃 
considered). Arguments 𝑃  and ∆ allow to control the set of 𝑃 
values that are considered by the algorithm. Argument 𝑃  
allow to stop when the sequence of 𝐾 values does not decrease. 

Algorithm 1: Estimation of 𝐾. 

Inputs: 𝐗, 𝑃0, ∆, 𝑃𝑚𝑎𝑥 

Output: 𝐾 

            𝑃 𝑃  

             𝐾 EstimateK 𝐗, 𝑃  
Repeat 

  𝐽 𝐾 

 𝑃 𝑃 ∆  
 𝐾 EstimateK 𝐗, 𝑃   

until 𝐾 𝐽 or 𝑃 𝑃𝑚𝑎𝑥 
              𝐾 𝐽 

 

Note that large values of ∆ speeds up the algorithm but could 
provide worse estimations since the algorithm could jump the 
plateau with accurate values of 𝐾 (see the figures of Section III). 
Also note that the value of P0 must  be small since otherwise the 
algorithm would start with a P value after the plateau. 

V. EXPERIMENTAL RESULTS 

We tested the accuracy of Algorithm 1 in five hyperspectral 
images. The images are: Samson, Jasper Ridge (JR), Urban, 
Washington DC Mall (WDM), and Cuprite. Table I shows the 
following for each of the images: spatial dimensions (#rows x 
#columns), number of spectral bands 𝐿 , spectral band number 
used in estimation (𝐿), and groundtruth endmember number 𝐾 
according to [21]. The table includes several groundtruth values 
of 𝐾 for the Urban and Cuprite images since classifications with 
different number of materials have been reported. 

TABLE I.  TEST IMAGES USED IN THE EXPERIMENTS. 

Image Size 𝐿      𝐿 𝐾 

Samson 95 × 95 156 156 3 

Jasper Ridge 100 ×100 224 198 4 

Urban 307 ×307 221 162 4,5,6 
Washington DC 
Mall 

150 ×150 224 191 6 

Cuprite 250 ×190 224 188 10,12,14 

 

Table II shows the values of 𝐾 provided by the proposed 
algorithm for several values of 𝑃  (6, 8, and 10) and ∆ (1, 2, 3, 
4, and 5). In all the runs, 𝑃  is set to 20 since the stability of 
the estimates decreases for 𝑃 20. For each image, 𝑃 , and ∆, 
the median of the 𝐾 values obtained after running Algorithm 1 
twelve times is shown.  

TABLE II.  ESTIMATED NUMBER OF ENDMEMBERS (JR=JASPER RIDGE; 
WDM=WASHINGTON DC MALL) 

𝑃  ∆ Samson JR Urban WDM Cuprite 

6 1 3 6 5 3 13 

8 1 3 6 5 6 13 

10 1 3 4 5 5 13 

6 2 3 6 5 6 13 

8 2 3 6 5 6 13 

10 2 3 6 5 5 13 

6 3 3 6 5 6 13 

8 3 3 6 5 6 11 

10 3 3 6 5 5 13 

6 4 3 6 5 5 3 

8 4 3 6 5 6 13 

10 4 3 4 5 5 4 

6 5 3 6 5 8 3 

8 5 3 6 2 6 3 

10 5 3 4 5 5 13 

 

For Samson, Urban and WDM, the algorithm provided 
estimates that are equal or close to the groundtruth K in most 
cases. In Cuprite, good estimates are obtained when ∆ 4. The 
number of materials was generally overestimated in Jasper 
Ridge since in this image the assumed monotonicity properties 
are not met as accurately as in the rest of images. Using a ∆ 5 
would speed up the process at the expense of a significant 
decrease of the estimation accuracy (as can be deduced from the 
figures of Section III). 

VI. CONCLUSION 

A method to estimate the number of materials in a 
hyperspectral image was developed. This method extends the 
algorithm in [22] and does not require the user to provide a 
proper value of parameter 𝑃 . The estimation for several 
increasing values of P is performed iteratively until a condition 
is reached. The results showed the proposed method provided 



estimates that were equal or close to the groundtruth values in 
many cases.. In future works, advanced machine learning 
techniques including semi-supervised learning [23][24], 
oversampling [25]-[27], and graph signal processing [28][29] 
will be studied to improve endmember performance estimation. 
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