

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/190679

Fraile Gil, F.; Montalvillo, L.; Rodríguez-Sánchez, MDLÁ.; Navarro, H.; Ortiz Bas, Á. (2021).
Multi-tenant Data Management in Collaborative Zero Defect Manufacturing. IEEE. 464-468.
https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488534

https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488534

IEEE

Multi-tenant Data Management in Collaborative

Zero Defect Manufacturing

Francisco Fraile

CIGIP

Universitat Politècnica de València

Valencia, Spain

ffraile@cigip.upv.es

Héctor Navarro

CIGIP

Universitat Politècnica de València

Valencia, Spain

hecnabae@cigip.upv.es

Leticia Montalvillo

Industrial Cybersecurity

IKERLAN

Arrasate, Spain

lmontalvillo@ikerlan.es

Ángel Ortiz

CIGIP

Universitat Politècnica de València

Valencia, Spain

aortiz@cigip.upv.es

María Ángeles Rodríguez

CIGIP

Universitat Politècnica de València

Valencia, Spain

marodriguez@cigip.upv.es

Abstract—This research paper describes different patterns

and best practices to effectively implement multi-tenancy of

production sensor data in collaborative applications. The paper

explains the design considerations taken to support multi-

tenancy in the Zero Defects Manufacturing Platform (ZDMP),

using concrete collaborative use cases as an example. The main

objective is to provide an overview of multi-tenancy as an

enabler of collaborative use cases in digital manufacturing

platforms, describe the different design patterns, the main

trade-offs, and best practices.

Keywords— Multi-tenancy, zero defects manufacturing

I. INTRODUCTION

One of the keys to implement effective zero defects
manufacturing systems is the ability to integrate detection,
prediction, correction, and prevention strategies into a holistic
approach to eliminate product and process defects [1]. Data
collected in the shop-floor is the cornerstone of this vision.
Thanks to the latest advancements in sensor technology,
Machine to Machine (M2M) communications, and Big Data,
manufacturing companies are able to capture information
about products and processes with unprecedent level of detail.
From these data, machine learning, and artificial intelligence
unveil hidden defects and learn courses of action that can
potentially lead the company towards zero defects
manufacturing. The benefits obtained depend to a great extent
on the quality and the quantity of collected data. The accuracy
of the detection and prediction capabilities of the system
improve as the company enhances its capacity to collect and
store data.

However, a manufacturing company can only go so far in
this journey towards zero defects without collaboration, for
two main reasons. One is the high operational costs of
managing Big Data. Certainly, companies are reluctant to let
critical operational data leave the boundaries of their IT
infrastructure. The first option is therefore to invest in the
required infrastructure and services to manage collected data
privately, within the organization boundaries. However, this
alternative comes at the expense of additional operational
costs. If companies decide to externalize infrastructure and
services, thanks to economies of scale, digital platforms are
able to offer managed services at a very competitive cost,
without the know-how required for deployment, maintenance,
and management.

The other reason is that, nowadays supply chains are so
entangled that there is a high degree of correlation between the
defects that occur within the boundaries of collaborators and
the production data collected either downstream or upstream
the supply chain. Indeed, the failures detected in a company
can be rooted back to the production process or the production
environment of one of the providers. Conversely, the defects
detected on a product manufactured by a provider may be
traced back to the production process of a company. Machine
learning is able to capture these relationships and provide
actionable feedback as long as it receives the right input data.

To benefit from these synergies, collaborators need to
integrate their production data, either on premise (i.e.
managed by one of the partners) or in cloud (i.e. managed by
an external service provider). Ideally, each collaborator must
be able to exercise their rights over their data: manage who
can access what data in which way. Multi-tenancy is a
software pattern to accomplish this and is considered a key
enabler of cloud computing. Multi-tenant architectures allow
different organizations (or tenants) to securely share data
services and underlying infrastructure. Each collaborator (or
tenant) is able to manage access to their data using Rule Based
Access Control (RBAC) policies.

The Zero Defects Manufacturing Platform (ZDMP) [2] is
a digital manufacturing platform specifically designed to
support zero defect manufacturing strategies in companies of
any sector. This paper presents the position of ZDMP towards
multi-tenancy and discusses the main trade-offs of the
different alternatives for zero defects manufacturing use cases.
The rest of the paper is structured as follows. Next section
contains a brief description of multi-tenancy. Section III
describes the key technological enablers and the approach in
ZDMP, and Section IV discusses configuration options and
best practices to support multi-tenancy in different use cases.
Finally, Section V includes a discussion on the different
approaches to enable collaboration in ZDMP.

II. MULTI-TENANCY

Multi-tenancy refers to a software architecture in which a
single instance of software serves multiple tenants. A tenant is
a group of users who share a common access with specific
privileges to the software instance [3]. Regarding data, if a
service is multi-tenant, then each tenant can manage
authorization permissions within the boundaries of their
organization, but not across different organizations. From a

usage perspective, each organization is an independent data
silo: users of different organizations may use the same
application and use their respective credentials to authenticate,
but the data is completely segmented based on the access right
that they have in the organization they log in to.

However, from a technical point of view, multi-tenancy is
a cross-cutting concern that impacts several layers. For
instance, some common patterns that can be used to manage
data in a multi-tenant application deployed with a
microservice architecture [3] are:

• Separate data services per tenant: Applications may
manage a separate instance of a database service per
tenant, achieving a high level of data isolation, at the
expense of complexity, and scalability.

• Separate data service resource per tenant:
Applications may use a single instance of a database
service, but tenants may use independent resources
within the service (e.g. different databases or
different file storage service buckets). This pattern
achieves higher isolation than the alternative below,
but it may hinder collaboration between companies.

• Separate data elements per tenant: Applications may
use a single data resource shared among all tenants
(e.g. shared database). In this case, it is easier to share
data between tenants, but there is less isolation. Also,
it requires a robust access policy model to adequately
manage access permissions.

These patterns provide different trade-offs (between
isolation, implementation complexity, operational efficiency)
that need to be taken into account for each particular use case.
Additionally, there are different ways to implement multi-
tenancy with respect to the authentication (verify user’s
identity) and authorization (verify users’ permissions)
services, as well as, in the virtualization service. All these
considerations need to be taken carefully into account in any
implementation.

III. MULTI-TENANCY IN ZDMP

ZDMP is a service Platform to support zero defects
manufacturing. It provides a range of services that allows
companies to integrate AI and analytic services into their
business processes, i.e., Industrial IoT to connect to physical
assets, digital twins to model the hierarchical levels of the
factory, Big Data, analytic services, and AI to implement
simulation, learning and reasoning capabilities. Additionally,
ZDMP provides a development environment that facilitates
the creation of new verticals for specific sectors or use cases.
A marketplace allows companies to discover and install these
applications. There are different deployment patterns
available for interested companies. Any company that wants
to use a ZDMP application (or zApp in short) may connect to
the services hosted by a ZDMP Service Platform provider
(i.e., Platform as a Service). Some use cases may require that
some of the services are deployed on-premise, using the
ZDMP edge platform (distributed computing). The main
objective of the edge platform is to reduce latency and/or data
throughput between the edge tier and the cloud platform tier
for demanding use cases. Also, a company may deploy the
entire platform on-premise, provisioning and managing the
required infrastructure, as well as, the platform services.

Regarding collaborative zero defects manufacturing,
companies may collaborate between them using multi-tenant

applications. Supported by the ZDMP core services, these
applications allow users to manage how supply chain
collaborators can access their data. If the Platform is installed
on-premise, then the ZDMP Service Platform provider is also
one of the collaborators of the supply chain. For instance, a
large company in the automotive sector may be the ZDMP
Service Platform Provider, and collaborate with tier providers,
logistic service providers, or customers through applications.
Other companies may use the applications of a ZDMP Service
Platform which is hosted by a company which core business
is to manage the platform services. Additionally, applications
may be federated [4], so that they can offer applications from
one platform marketplace into another, and interconnect data
services.

Core ZDMP services have been mentioned in the
paragraph above. These services provide the runtime to all
other services as well as key platform features like multi-
tenancy. They are depicted in the Fig. 1.

Fig. 1. Core ZDMP services running in ZDMP Service Platform

(Rancher) and dataflows for Collaborator 1 and Collaborator 2.

The ZDMP platform is deployed thanks to the Application
Runtime component (Rancher – a Kubernetes management
platform that deploys the Kubernetes cluster running all the
ZDMP services as docker containers [5]). So far, the approach
is to have one cluster in which all components (from all ZDMP
Service Platform provider collaborators) are deployed.
Besides, as stated above, the distributed component can
deploy smaller clusters at the edge tier of collaborators for
specific use cases. Multi-tenancy is rooted in the
Authorization and Authentication component, which is
implemented with Keycloak [6]. Keycloak is an open-source
Identity Access Management software that provides
authentication and authorization mechanisms for all users
across all collaborators, as well as, for any other components
deployed in the application runtime component. The
Application Programming Interface Gateway (API-GW) is an
intermediary software component that acts as a single-point of
entry for a set of services and APIs (Application Programming
Interfaces). Furthermore, it enforces access control on API
endpoints, by connecting to the authentication and
authorization component to enforce access policies
(authorization based on scopes) [7]. The Storage component
provides different storage mechanisms for securely storing
platform data. These services, together with the Portal, which

provides centralised access to all platform components, and
the Marketplace, are known as the ZDMP core services.

ZDMP applications and components can be either multi-
tenant or single tenant. The Marketplace is inherently multi-
tenant since all the ZDMP Service Platform Supplier’s
collaborators, i.e. Collaborator1 and Collaborator2 can
access it. A given zApp can be single-tenant if only one client
has the rights to access to it (or multiple-tenant if multiple
clients can have access to it). An example of a single-tenant
application is an application deployed at the edge.

 Regarding data, the ZDMP Platform provides several
options. The Storage component is a service that allows to
create and access data-lakes and manage large volumes of
data. It also provides central file storage and database services
for internal components. All these services are also multi-
tenant, but it is not the only option available. Applications can
also deploy single-tenant or multi-tenant internal data
services, either in the platform, or at the edge.

 Now, with all these options available, developers have a
wide variety of options to implement the right multi-tenancy
pattern for their collaborative zero defects manufacturing use
case: Given an application that is multi-tenant, the data can be
stored in separate data services, in separate databases, or in a
shared database. The following section introduces some
Keycloak key concepts needed to support the comparison
analysis on the different alternatives to handle multi-tenancy
and describe the implications and possible impact in other
related ZDMP components (Application Runtime, API-GW,
Storage).

A. Keycloak Concepts and considerations

There are some Keycloak core concepts that need to be
described in order to understand the different options available
to implement multi-tenancy.

Firstly, users are entities that can log into the system. They
can be assigned group membership and have specific roles
assigned to them. Secondly, roles identify a type or category
of user, like “admin”, “user”, “manager”, or “employee”.
Applications often assign access and permissions to specific
roles rather than individual users, following the Role-Based
Access Control (RBAC). Thirdly, groups manage set of users.
Roles can be mapped to groups and attributes can be defined
for a given group. Users that become members of a group
inherit the attributes and role mappings that group defines.
Fourthly, a realm is an object of Keycloak that manages a set
of users, credentials, roles, and groups (entities that need to be
protected). A user belongs to and logs into a realm. Realms
are isolated from one another and can only manage and
authenticate the users that they control. Finally, clients are
entities that can request Keycloak to authenticate a user. Most
often, clients are applications and services that want to use
Keycloak to secure themselves and provide a single sign-on
solution.

A graphical depiction of these concepts is shown in the
Fig. 2, one supplier company which provides ZDMP
Marketplace has one realm (ZDMP Service Platform Supplier
Realm) with two clients (API-1 and webapp). Keycloak holds
the information about these applications (URL, allowed
origins, allowed redirects, etc). Then, in that realm there is a
set of registered users. Users within a realm can have access
to that realm’s clients (if they have the rights to access them).
Additionally, users can be assigned to multiple groups.

Moreover, roles can be created within a realm, and user groups
can be attached to multiple roles, as well as users can be
directly assigned with roles (roles serve as access control, and
grant access to certain clients).

Fig. 2. Depicting Keycloak concepts.: realm, clients, roles, user groups

and users

 Now, after introducing these key concepts, let us discuss
some technical considerations and restrictions important
regarding multi-tenancy. First, the Application Runtime
instance (Rancher) can only be connected to one realm. This
connection is to provide users access to the Rancher user
interface (UI) and clients to deploy components or
applications. Therefore, there must be a specific realm for the
ZDMP Service Platform Provider, which is used to manage
the platform deployment and provide access to the runtime
management UI. Second, regarding Keycloak, any user and
client need to be registered in a realm to secure
communications. However, there is no restriction on the level
of isolation provided by the platform security mechanisms.
Broadly, it is possible to go for a multi-realm option (one
realm per client), or one realm where all users from all clients
are mixed. The API-GW component and can connect to just
one realm. That is, enforcement is provided as per realm basis.
Finally, ZDMP applications: ZDMP applications need to
connect to the authentication component first to get
authenticated (e.g. user login). It is easier to connect to one
realm, but it is also feasible to connect to different realms.
Within each realm, independent API-GW instances will act as
independent policy enforcement points to secure connections
and provide an adequate level of isolation.

 Taking these considerations into account, multi-
tenancy in collaborative scenarios can be achieved in different
ways, described in the following sections.

IV. MULTI-TENANCY IMPLEMENTATION OPTIONS

A. Multi-realm implementation

The Multi-realm implementation implies the deployment
of one realm for each of the organizations registered within
ZDMP. Therefore, in this case, Keycloak would have one
separate realm for each supply chain collaborator. One of the
key concepts of multi-tenancy architecture is the complete
isolation from one tenant to the other. Keycloak logically
splits multi-tenant apps into realms, meaning that each
collaborator will have a separate configuration (users, groups,
roles), as shown in Fig. 3.

Fig. 3. Multi-realm approach: each collaborator has its own isolated realm

where applications (clients), groups, roles and users are registered

As an example, the use of this approach in a collaborative
zero defects manufacturing use case using this approach is
shown in Fig. 4. There are two differentiated realms, each
holds info only of a unique company (i.e., roles, users’ data,
permission) and provides separation of the data. Also, there
are two API-GW deployments, each connecting to a single
realm. Each API-GW may hold the configuration of
proprietary applications (single-tenant applications) with
private databases, like App_1 and App_2 of Collaborator1, or
shared applications (multi-tenant) with shared data services
like App_N of Collaborator2. Note that shared database
services need to appropriately separate the data for each
tenant, applying any of the multi-tenancy patterns introduced
in Section II.

Fig. 4. Multi-tenant approach in ZDMP platform: multi-realm alternative

B. Single-realm implementation

This implementation implies having one realm shared by
all the collaborators. Here, multi-tenancy is achieved by
organizing users into groups and providing access to client
applications based on these groups. In this case, the ZDMP
Service Platform Supplier Realm should have one Keycloak
server and one shared realm to manage user rules and policies,

for all companies, whether they are supply chain collaborators
or not, as shown in Fig. 5.

Fig. 5. Single-realm approach: collaborators 1 and 2 share the same realm

and naming conventions for groups, roles and clients need to be declared to

separate them apart.

Fig. 6. Multi-tenant approach in ZDMP platform: single-realm alternative.

In ZDMP, the use of this approach is shown in Fig. 6.
There is one shared realm for all collaborators, and having
multi-tenants in one realm requires to work around tenant’s
separation using groups. Also, there are independent API-GW
deployments for each collaborator, one for Collaborator1 and
one for Collaborator2, each connected to the same realm.
API-GW may be holding the configuration of proprietary
applications (single tenants) with private databases like App_1
and App_2 of Collaborator1, or shared applications (multi-
tenant) with shared data services like App_N of
Collaborator2. Again, shared database services need to apply
one of the multi-tenancy patterns described above.

C. Multi-Keycloak implementation

It is also possible to have multiple Keycloak servers. In
this configuration, each collaborator has an independent
Keycloak server. In ZDMP platform the use of this approach
is very similar to Fig 4. Instead of having one keycloak server
with different realms (as in Fig. 4), in a multi-keycloak
approach each collaborator has its own keycloak server
instance where their realm is kept. The platform provider’s

Keycloak server manages a realm with the Keycloak
administrator account of the different collaborators, so that
rancher (that can only connect to one realm) can authenticate
administrator users, who can in turn monitor the applications
deployed applications in their corresponding realms. Each
collaborator can manage their user accounts and realms
independently in their own Keycloak server. Multi-tenancy
applications can integrate clients to connect to different
customer realms (e.g. Collaborator1 and Collaborator2). And
single-tenant applications (proprietary applications) connect
to a single realm.

D. Hybrid implementation

This implementation implements a combination of the first
and the second alternative, leveraging Keycloak identity
brokering and delegated authentication. In this configuration,
a central authentication server manages all user accounts, and
the rancher realm. Each collaborator manages independently
their respecting realms, delegating authentication to the
central platform authentication server. This resolves the
limitation that rancher must connect to only one realm, but at
the same time providing the required security and isolation
between collaborators, as there is one realm per collaborator
in the different use cases, and an independent policy
enforcement point. The main advantage is that all
collaborators can use a shared authentication server with a
single credential per user to access either single tenant
applications or multi-tenant applications, as shown in Fig.8.
The shared central authentication server would again need to
differentiate tenants using groups and allow/deny access
based on groups.

Fig. 7. Hybrid approach in ZDMP platform.

V. GUIDELINES FOR COLLABORATIVE ZDM USE CASES

Based on this implementation patterns, this section
discusses the different approaches to enable collaboration in
ZDMP. The multi-realm implementation provides strong
security control, because there is a clear separation of users
and more control for access permissions since users and
applications from different companies are separated. Further,
the hybrid implementation provides a similar level of isolation

between collaborators, with the advantage that all the user
accounts can be managed centrally, which is beneficial also
for usability. However, the approach chosen for ZDMP is the
multi-realm approach, one realm per customer and one
Keycloak server. This configuration provides security-by
design as companies have separated realm for their users,
roles, clients etc. and this prevents unauthorized access and
data leakages upon misconfigurations. Each company can
manage their own realm independently in both alternatives,
and they decide how to share data with their collaborators in
multi-tenant applications. Multi-tenant applications on the
other hand can use any of the patterns available to achieve the
required level of isolation for each specific use case. This set
up is ideal for any collaborative use case, but comes at the
expense of complexity, since collaborative zero defects
manufacturing applications need to manage clients and
connections to different realms within their code. To alleviate
this, the ZDMP Portal component provides convenient session
information to allow applications to connect to the right realm.

In the single-realm configuration, there is less privacy
control for collaborators which are not the ZDMP Service
Platform Provider, since applications need to connect to just
one realm. However, it is still possible to achieve adequate
levels of isolation between data. This set up is of course easier
to manage and applications are also easier to develop. This set
up may be convenient in collaborative use cases where there
is a high level of trust between collaborators, and the ZDMP
Service Platform Provider is the main agent of the supply
chain. This set up is not convenient when the ZDMP provider
is a PaaS service provider, since there is no adequate level of
separation to host different supply chains.

ACKNOWLEDGMENT

This work was supported in part by the European
Commission under the Grant Agreement 825631. The author
María Ángeles Rodríguez was supported by the Generalitat
Valenciana (Conselleria de Educación, Investigación, Cultura
y Deporte) under Grant-Agreement ACIF/2019/021.

REFERENCES

[1] Psarommatis, F., May, G., Dreyfus, P. A., & Kiritsis, D. (2020). Zero
defect manufacturing: state-of-the-art review, shortcomings and future
directions in research. International Journal of Production Research,
58(1), 1-17.

[2] Campbell, S., Cáceres, S., Pagalday, G., Poler, R., & Gonçalves, R.
(2020). A European Manufacturing Platform for Zero-Defects.
Proceedings of the 10th International Conference on Interoperability
for Enterprise Systems and Applications (I-ESA 2020).

[3] Pachghare, V. (2016). Microservices Architecture for Cloud
Computing. Journal of Information Technology and Sciences, vol. 2.

[4] Jacoby, M., Antonić, A., Kreiner, K., Łapacz, R., & Pielorz, J. (2016,
November). Semantic interoperability as key to iot platform federation.
In International Workshop on Interoperability and Open-Source
Solutions (pp. 3-19). Springer, Cham.

[5] Buchanan, S., Rangama, J., & Bellavance, N. (2020). Inside
Kubernetes. In Introducing Azure Kubernetes Service (pp. 35-50).
Apress, Berkeley, CA.

[6] Keycloak (Accesed December 9, 2020). URL http://www.keycloak.org

[7] Christie, M. A., Bhandar, A., Nakandala, S., Marru, S., Abeysinghe, E.,
Pamidighantam, S., & Pierce, M. E. (2017). Using keycloak for
Gateway Authentication and Authorization. Presented at Gateways
2017, University of Michigan, Ann Arbor, MI, October 23-25, 2017.

