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Abstract 
 

Peru has an electricity demand of 180 PJ per year, which is currently met with a generation 

fleet dominated by fossil fuels and hydropower plants. This demand is expected to almost 

quadruple within the next thirty years and how the system copes with its expansion is still 

to be determined.  

This project proposes a model of the electric system which divides the country in four dif-

ferent regions, englobing departments with similar resources availability, population den-

sity, energy requirements and geographical location. The renewable potential of these ar-

eas is accounted for, as well as their associated costs and those of all other technologies 

participating in the sector, such as fossil fuels, storage or electricity transmission between 

zones.  

This model is then implemented into the software urbs, which provides the cost optimal 

path to be undertaken to guarantee a reliable electric supply. Additionally, different scenar-

ios are considered, such as adding a CO2 taxation or limiting the GHG emissions to comply 

with the climate change sustainable development goals.  

Results highlight the importance of hydropower in the system, as well as the increasing 

need for storage and transmission expansion as the grid decarbonizes. Wind has more 

importance during the first years of the model but stagnates due to the scarcity of optimal 

locations on shore. On the other hand, PV gains relevance in the last years of the model. 

Optimistic results are obtained as it appears feasible to achieve a carbon-neutral system 

by 2050. Nevertheless, additional incentives such as CO2 taxation should be implemented.  
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1. Introduction 

Peru is a country located in the western region of South America, bordering with Ecuador, 

Colombia, Brazil, Bolivia and Chile. The country is constituted by 24 departments and one 

constitutional province, which add up to a population of 34 million people, making it the 

fourth most habited state of the subcontinent [1]. 

 

Figure 1 Peru location in South America, ³0DS�,Q�6HFRQGV´ [2] 

1.1. Energy sector 

Peru has a final energy consumption of 873 PJ per year, of which the electricity accounts 
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consequence of the implementation of renewables in the electricity sector, which make it 

less carbon intense than transport, for instance, which currently depends on direct 

consumption of oil. 

The transport is the economic sector with the most energy consumption with close to 380 

PJ in the year 2019 [3]. 

 

Figure 2 Final energy consumption by economic sectors 
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Figure 3 Energy consumption [TJ] and GHG emissions [tonnes of CO2-eq * 103] 
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will englobe other sectors for which renewables integration is not as feasible, such as 

transport [4]. 
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are to be dealt with. Nevertheless, the way it must evolve is still unclear [4] [6]. Hence, this 

report aims to analyse the feasibility of renewables integration into the electric grid, under 

specific conditions, for the Peruvian case study. 

Peru is of great interest due to their great RERs potential, which is expected to be able of 

meeting the growing regional electric demand. Furthermore, the electric sector of Peru is 

experiencing expansion, and hence, its reliability compromised to some extent, enhancing 

the importance of the proposed feasibility analysis. 

Additionally, the state possesses natural gas reserves that could be traded for capital with 

countries with less potential. This would allow Peru to gain independence from this source 

over time while decarbonizing the country, if earnings were to be invested into renewables 

implementation [7]. 

Overall, the main objective is to develop an open model, freely available, that represents 

WKH�FRXQWU\¶V�V\VWHP��IURP�which a clear path towards the decarbonization of the country 

can be deduced. 
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2. Methodology 

The model developed will be implemented into urbs to obtain the most cost-effective path 

for the integration of renewables in the system within the period 2019 ± 2050. To do this, 

first a single year model for 2019 is developed, then validated, and finally integrated into 

the intertemporal analysis. 

The software urbs is a tool developed by the Chair of Renewable and Sustainable Energy 

Systems of the Technical University of Munich, based on linear optimisation [8] [9]. 

The main results from urbs display the yearly energy generation by technology, as well as 

the capacity to be installed and their associated costs for each modelled year. The inputs 

for the tool considered are the generation technologies, the transmission capabilities, the 

storage capacity, the electrical demand and the intermittency of supply for the renewable 

energy resources. 

The generation technologies are classified as either stock or supply intermittent, which 

applies for variable renewable energies such as wind or photovoltaics. Stock is always 

available for a given price, and refers to diesel, natural gas or biomass. On the other hand, 

supply intermittent technologies are free but can only be used at specific time slots, which 

account for available resource. 

For the second input listed, transmission capabilities, the transport of electric power 

between regions tolerated by the system is required.  

In the storage capacity, limitations for storable energy and power are displayed. 

Additionally, the initial and final energy stored for each modelled year can be implemented. 

The energy saved for this study will be of two types, electricity, used by lithium-ion batteries 

and potential energy of saved water, used for conventional plants, whose input comes from 

a dam. 

These three inputs, generation, transmission and storage, have associated processes, in 

which cost, lifetime, efficiency, currently installed capacity and maximum or minimum 

installed capacity are specified. 

The next input, electrical demand, represents the energy requirements in a time series. 

This demand must be always met by the generation of the system. If the system were 

incapable of meeting this, an error from the software would be displayed. 
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The last input is the intermittency of supply, previously introduced. In the same way as the 

electrical demand, these data are presented as a time series, but representing available 

generation in this case. This input is relevant for variable RER, for which the capacity 

factors are listed. 

2.1. Model nodes 

Differentiating between nodes allows for a more accurate model. This way, the same 

demand, depending on the region, will entail different costs, not only economical but also 

environmental, because of differences in power grid mixes or transmission losses. 

Additionally, this approach allows for transmission limitations between the regions that 

would have otherwise been overlooked. 

For the model, developed four different nodes will be considered: Center, East, North and 

South. This region division considers departments with similar resources availability, 

population density, energy requirements and geographical location, and is associated with 

the interconnecting transmission lines [10]. 

 

Figure 4 Regions Peru by departments��³0DS�,Q�6HFRQGV´�[2] 
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Despite regions being similar in size, the center comprises most of the population with close 

to 50% of the total, while north and south together account for 47% and the east just above 

3%. This disparity, together with differences in living conditions, leads to variations in the 

electricity demand and generation behaviours. These will be analysed in detail in the data 

collection sections 3.1, 3.2 [10]. 

Table 1 Nodes population and demand [10] 

Region Population Energy demand [GWh] Energy demand per 
capita [GWh/person] 

Center 16.018.971 26.636,6 1662,8 

East 1.015.212 834,1 821,6 

North 8.288.259 6.508,06 785,2 

South 6.808.958 15.961,88 2344,2 

 

2.2. Intertemporal approach 

The intertemporal approach goes through the years 2019, 2024, 2030 and 2040, until 

reaching the end of the timeline, 2050. This type of modelling allows for an analysis of the 

system development, rather than specific configurations [11]. 

The initial year is selected to be 2019 for two main reasons. First of all, some of the sources 

required and referenced in this study��VXFK�DV�0,1(0¶V�H[HFXWLYH�\HDUERRN�[10], undergo 

a time lap in their publications, being data for the mentioned year the most updated 

available. Secondly, as the experimental results for the year are used to validate the model, 

LW¶V�FRQVLGHUHG�FRQYHQLHQW�WR�SODFH�WKH�RULJLQ�EHIRUH�WKH�FRYLG�SDQGHPLF��to avoid deviations 

from the normal system behaviour. 

The final year chosen is 2050 because this is the deadline, provided by the United Nations, 

to achieve the Climate Change Sustainable Development Goal (SDG 13) of a net zero 

carbon emission system [12]. As the horizon advances, the system considers certain cost 

reductions, demand progressions and increases in transmission capacity, that will be 

specified in the input data and collection section 3.1, 3.4.2, 3.8. 

2.3. Hydrology 

For the purpose of this project three different types of hydro technology are differentiated: 
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x Conventional hydro: the water used to power the turbines is obtained from dams 

which provide energy storage. Their investment is limited due to the social and 

environmental these entail in the country [13] [14] [15]. Hence, the utilization of this 

technology will be only tolerated during their remaining lifetime for all scenarios. 

x Large RoR hydro: run off river with a power equal or greater than 20 MW. 

x Small RoR hydro: run off river with less than 20 MW of power. This technology will 

be the only one considered renewable [16]. 

2.4. Scenarios 

Certain factors considered for the report have a significant effect on the results when 

modified. Due to this, different scenarios are analysed, in which assumptions made deviate. 

2.4.1. Scenario 1: base 
Business as usual scenario. Here, the cheapest alternatives will be considered, with no 

CO2 limitation. 

2.4.2. Scenario 2: renewables cheap 
Business as usual scenario in which latest RERs evolve into more competitive prices [17] 

[18]. 

 

Figure 5 Latest RERs installation cost forecast [USD/kW]. Scenario 2 
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2.4.3. Scenario 3: CO2 tax 
Business as usual scenario with a CO2 tax of 50 USD per ton emitted [19]. 

2.4.4. Scenario 4: SDG 13 
Here, the CO2 emissions per year are limited to comply with the Climate Change 

Sustainable Development Goal. The allowed carbon dioxide emitted follows a linear trend 

starting from the emissions resulting from the single year model of 2019. 

 

Figure 6 Emissions progression [tonnes of CO2 / year]. Scenario 4 

2.4.5. Scenario 5: RER & SDG 13 
Scenario SDG 13 restricting the investment in large RoR plants, as these are not 

considered renewable [16]. Hence, the system will only allow the operation of this 

technology during its remaining lifetime. 

2.4.6. Scenario 6: Macrogrid & SDG 13 
Scenario SDG 13 incorporating international transmission capacity from 2030 onwards 

[20]. Here, the latest prices for commercial electricity are selected. 

Table 2 International transmission. Scenario 6 
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The GHG emissions from the acquired energy are not considered.  

2.4.7. Scenario 7: Conventional hydro & SDG 13 
Scenario SDG 13 in which conventional hydro can receive investment if LW�GRHVQ¶W�VXUSDVV�

its current installed capacity. This implies that only after their lifetime has expired is 

investment allowed. 
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3. Input data collection and modelling 

3.1. Electricity demand 

As mentioned in the methodology, 2.1, the electricity demand in Peru is distributed 

unevenly between the different nodes, not only due to the population difference but also 

because of lifestyle variations. The center, the region with the largest population, also 

dominates in energy consumption, followed by the south. On the other hand, north and 

east together add up to 15% of the FRXQWU\¶V�GHPDQG�[16]. 

 

Figure 7 Regional electrical demand distribution 

The nodes selected also present different behaviours in terms of demand growth. The 

southern region saw the steepest growth in recent years, while demand in the north and 

center showed a similar increase and the east stagnated [10]. These values were used to 
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demand is expected to quadruple [22]. 
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Table 3 Regional demand growth 

Region Recent demand 
growth [%] [10] 

Calculated demand 
growth distribution [%] 

Center 4,9 26,1 

East 0,1 0,5 

North 5,2 27,7 

South 8,6 45,7 

 

 

Figure 8 Total demand forecast (2019 ± 2050) [MWh] [22] 

 

Figure 9 Regional demand forecast (2019 ± 2050) [MWh] 
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Along the day the demand peaks between 10am to 10pm, while the off-peak hours are 

between midnight and 7am. On the other hand, seasonal variations in demand are mild, 

due to the proximity of the country to the equator [23]. 

 

Figure 10 Demand time series extract 2019 [MWh] 

 

Figure 11 Monthly mean demand variation in 2019 [MWh] 
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3.2. Installed generation capacities 

Just as the demand, the generation capacity differs greatly between regions. The center 

has the highest, with a large percentage of hydro and fossil fuels. The south, with a share 

of renewables of over 20%, is the second region with the largest total capacity. Despite 

this, the south is highly dependent on imports from the center, because of their accelerated 

demand growth. The north has the highest relative share of renewables, while the east, 

with the lowest generation, is exclusively powered by fossil fuels. North and east together 

account for 10% of the total generation [16], [24], [25]. 

 

Figure 12 Regional installed generation capacity [MW] 
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Figure 14 Regional generation contribution 

3.2.1. Fossil fuels 
The Peruvian system uses mostly natural gas as a fossil fuel source, as there are reservoirs 
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most of the installed fossil plants are powered by diesel. Coal, the least used fossil fuel, 

can only be found in the south, where it holds a modest share. 

Table 4 Installed capacities fossil fuels [MW] 
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Table 5 Installed capacity hydropower [MW] 

Region Conventional Large RoR Small RoR (RER) 

Center 568 3.458 221 

East 0 0 0 

North 0 150 135 

South 586 0 118 

 

3.2.3. Renewable Energies 
Besides small RoR, Peru has installations of biomass, wind and photovoltaic energy. The 

south is the region with the largest renewables capacity, followed by the north. The center 

has no PV nor wind energy plants, as natural gas is cheap in this region and better locations 

for renewables are found in northern and southern areas, as will be reasoned when the 

RER potential is discussed in 3.10. 

Table 6 Installed capacities RER [MW] 

Region Biomass Wind PV 

Center 29 0 0 

East 0 0 0 

North 32 114 0 

South 0 261 285 

 

3.3. Energy storage capacity 

Currently, the Peruvian system uses exclusively hydro dams for energy storage. These are 

in the center and south. As the system integrates more renewables in the future, the energy 

storage capacity is expected to expand as a consequence of the impossibility of intermittent 

sources to meet the demand on their own, as their generation depends greatly on external, 

environmental factors [24]. 

Table 7 Hydro dam energy storage capacity 

 Effective power [MW] Useful energy [GWh] Initial capacity [%] 

Center 568 274 34% 

South 586 1.148,3 48% 
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3.4. Transmission capacities 

3.4.1. Present time 
Currently the electric system relies on energy transmissions from the center to north and 

south, whose current generation cannot cope with their demand. Especially critical is the 

connection center to south, as it has risks of saturating in the future. The east is currently 

isolated from the interconnected system, depending exclusively on its generation [16] [26] 

[27] [28]. 

Table 8 Representative transmission lines. Effective power and length 

Connecting Areas Code Effective Power [MW] Length [km] 

Center ± North 2272 / 2274 192 104 

Center ± North 5008 1.040 145 

Center ± South 5034 688 358 

Center ± South 5033 421 360 

Center ± South 2051 / 2052 393 296 

 

 

Figure 15 Transmission capacity [MW] 

A surpass by as much as 10% from the installed capacity will be allowed by the system as 

tolerance [26]. The efficiency of transmission is set to 94% for all lines [24]. 
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Table 9 Transmission capacity forecast [MW] 

 2019 2024 2030 2040 2050 

North ± East 0 0 120 300 300 

Center ± North 1232 1232 1700 1700 1700 

Center ± South 1502 1650 1950 1950 1950 

 

In the model, the increase in capacity will not be forced but allowed, so that urbs can decide 

ZKHWKHU�LW¶V�PRUH�HFRQRPLFDO�WR�LQYHVW in generation, transmission or storage. 

3.5. Technology Investment and Operation Costs 

Since the urbs tool aims to calculate the most cost-effective way of integrating renewable 

energies in the system, special care must be invested into defining the costs accurately. 

Urbs accounts for three process costs: 

x Fixed costs: yearly cost of existing capacity, independent of the actual energy 

generation. Measured in USD/MW/year. 

x Variable costs: generation dependent costs. These include wear and tear of moving 

parts and operation liquids, but do not account for the actual costs of fuel. Measured 

in USD/MWh. 

x Investment costs: costs of adding new capacity. These are annualized depending 

on the lifetime of the process and the weighted average cost of capital, assumed to 

be of 7 % for all technologies. Measured in USD/MW. 

The lifetime of the different technologies will also be analysed LQ�WKLV�VHFWLRQ�VLQFH�LW¶V�RI�

great relevance when it comes to calculating the investment costs, as mentioned 

previously.  

The depreciation period represents the total lifetime of the different technologies and is 

used to calculate the annuity factor for the investment costs. On the other hand, the lifetime 

accounts for the remaining years during which the plant can operate. To calculate these, 

information regarding the increment of power capacity was collected to estimate the age of 

the technologies, which was later subtracted from the total lifetime [16]. 
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3.5.1. Generation of fossil fuels 
The investment costs of coal plants when compared with the alternatives, diesel and natural 

gas plants, is the highest, although it has a longer lifetime on average [29]. 

Table 10 Fossil fuel technology and operation costs, lifetime 

 
Investment 
cost [USD/kW] 

Fixed 
[USD/kW/year] 

Variable 
[USD/MWh] 

Lifetime 
[years] 

Depreciation 
period [years] 

Coal 4.563 61 4 28 40 

Diesel 975 17 4 8 20 

Natural gas 975 17 4 8 20 

 

3.5.2. Generation of renewable technologies and hydro 
The investment costs for the different renewable technologies deviate considerably. PV 

has the lowest cost per installed power while geothermal technology, currently not found in 

the system, has the highest [29] [30] [31]. 

Table 11 Renewable and hydro energy technology and operation costs, lifetime 

Source Investment 
cost [USD/kW] 

Fixed 
[USD/kW/year] 

Variable 
[USD/MWh] 

Lifetime 
[years] 

Depreciation 
period [years] 

Biomass 2.173 87 5 18 30 

Conventional 
hydro (non-RER) 1.717 40 ± 16,5 27,5 

Geothermal 5.275 14 17 ± 25 

Large hydro (non-
RER) 1.717 40 ± 16,5 27,5 

Photovoltaics 1.009 12 ± 25 30 

Small hydro 2.268 40 ± 16,5 27,5 

Wind 1.500 33 ± 15 20 

 

3.5.3. Energy storage 
Two alternatives for energy storage are considered in this assessment: utility scale lithium 

ion batteries and hydro dams, whose output feeds the conventional hydro plants [32], [33]. 

The dams imply lower costs and longer lifetimes, with a deficit in the battery efficiency. 
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Table 12 Energy storage technology and operation costs, lifetime and efficiency 

Technology Investment capacity 
cost [USD/kWh] 

Fixed power cost 
[USD/kW/year] 

Efficiency 
[%] [34] 

Lifetime 
[years] 

Depreciation period 
[years] [34] 

Lithium ion 350 20 90 ± * 15 

Hydro dams 165 15,9 80 17 45 

 

The lifetime of the hydro dams is the same as the selected for conventional hydro plants in 

Table 11. This is to avoid the fixed costs of the dams once the plants are out of operation, 

as no investment in these is allowed. Otherwise, this would entail a cost with no real impact 

in the system. 

3.5.4. Transmission lines 
The costs for transmission greatly depend on the OLQH¶V length. Accordingly, an average 

length for interconnecting lines is calculated using the data from Table 8. With this, an 

average investment cost of 933 USD/MW/km and a 5,5 % fixed cost contribution, the costs 

as input for urbs can be estimated [35]. As no lines connect east and north currently, the 

same costs for center to north are considered. 

Table 13 Transmission costs, efficiency and lifetime 

Regions Investment cost 
[USD/MW] 

Fixed cost 
[USD/MW/year] 

Efficiency 
[%] [24] 

Lifetime 
[years] [36] 

Depreciation 
[years] [37] 

East ± North * 116.196  6.391  94 ± 100 

Center ± North 116.196  6.391  94 90 100 

Center ± South 315.456  17.350  94 90 100 

North ± Ecuador [20] 401.000 22.055 94 ± 100 

 

The remaining lifetime considers exclusively new investments in high voltage lines of 220 

and 500 kV. 
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Figure 16 HV transmission lines length progression [km] [16] [36] 

3.6. Commodity costs 

The commodity costs are the actual cost of fuel. These are strictly variable costs but are 

analysed by urbs separately because of their importance and fluctuating nature. The 

FRPPRGLW\�FRVWV�DUH�VLJQLILFDQW�RQO\�IRU�WKH�IRVVLO�IXHOV��VLQFH�5(V�FRQVXPH�QDWXUDO��³IUHH´�

sources such as waste for biomass or sunlight for PV generation [38].  

Natural gas has the lowest volumetric energy density. Due to this, international trading is 

more expensive, and prices differ on the regional level. Accordingly, data for coal and diesel 

is taken from a generic dataset, while a regional source is considered for natural gas, which 

shows a different price within the country regions [38] [39]. 

 

Figure 17 Fossil fuels commodity costs 2010-2022 [USD/MMBtu], IEA [38] 
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Table 14 Fossil fuels commodity costs [USD/MWh] and efficiency 2019 

Fuel Center East North South Efficiency 
[%] [29] 

CO2 tonnes / 
MWhel [40] 

Coal 10,2 10,2 10,2 10,2 40 1,63 

Diesel 40,9 40,9 40,9 40,9 55 1,33 

Natural gas 14 25,6 25,6 20,6 64 0,47 

 

These costs are assumed constant for the whole modelling period. 

3.7. Capacity Factors Renewables 

The capacity factor is the unitless ratio of energy output over maximum capacity, taking 

values between cero and one. This ratio is especially relevant for renewable energies.  

The CFs are dependent on the type of RER, classified as intermittent, constant or 

controllable. 

x Constant RE: Once the generation starts it maintains a relatively constant 

production that cannot be altered. Only geothermal belongs to this category. To 

model this, the geothermal commodity was considered as intermittent supply with 

a constant 0,9 capacity factor [41]. 

x Controllable: biomass and dammed hydro. The generation of these plants can be 

tuned to increase production when there is peak demand and decrease it when the 

electricity demand is lowest. These are both modelled as stock. 

The stock of biomass is considered as always available and the plants will be able 

to operate at 70% capacity [30]. In the case of dammed hydro, the amount of stock 

depends on the intermittency of the rivers feeding the dam. 

x Intermittent: These are hydro, PV and wind. They are characterised by a 

fluctuating nature. The system must adapt to their generation. Only these will 

require a detailed study of their variable capacity factors. 

3.7.1. Hydro 
The capacity factors for hydro were calculated using the data from the volume circulating 

through the turbines [42]. 
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Table 15 Volumetric flow circulating through turbines [m3/s] 

 Conventional Large RoR Small RoR 

Center South Center North Center North South 

Jan ± 19 138,8 189,7 696,9 48,2 142,8 83,5 18,8 

Feb ± 19 134,1 190,1 832,9 58,5 133,3 151,4 19,3 

Mar ± 19 137,2 195,1 751,4 59,6 141,1 153,9 27,4 

Apr ± 19 146,4 184,3 858,5 70,2 155,1 158,3 28,3 

May ± 19 127,5 173,5 724,2 59,6 141,8 148,9 26,1 

Jun ± 19 91,0 156,3 546,7 33,3 114,5 121,3 21,7 

Jul ± 19 88,1 146,3 526,3 22,6 101,9 77,9 19,0 

Aug ± 19 87,4 138,9 474,9 15,1 89,7 71,0 17,3 

Sept ± 19 89,7 136,1 462,6 15,3 87,6 74,6 16,6 

Oct ± 19 96,7 154,4 533,3 31,7 101,4 88,9 12,5 

Nov ± 19 122,9 186,4 655,8 56,3 129,7 112,6 22,9 

Dec ± 19 143,9 185,2 823,5 73,8 153,9 98,7 29,0 

 

With these data and the maximum circulating flow for each location and technology, the 

monthly capacity factor is calculated as the ratio of flows [24]. 

 

Figure 18 Maximum hydro volumetric flow per region and type of plant [m3/s] 
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Table 16 Monthly hydro capacity factors 

 Conventional Large RoR Small RoR 

Center South Center North Center North South 

Jan ± 19 0,83 0,87 0,69 0,60 0,68 0,70 0,82 

Feb ± 19 0,80 0,87 0,82 0,73 0,64 1,00 0,83 

Mar ± 19 0,82 0,90 0,74 0,74 0,67 1,00 1,00 

Apr ± 19 0,88 0,85 0,85 0,87 0,74 1,00 1,00 

May ± 19 0,76 0,80 0,71 0,74 0,68 1,00 1,00 

Jun ± 19 0,54 0,72 0,54 0,41 0,55 1,00 0,94 

Jul ± 19 0,53 0,67 0,52 0,28 0,49 0,65 0,82 

Aug ± 19 0,52 0,64 0,47 0,19 0,43 0,59 0,75 

Sept ± 19 0,54 0,63 0,46 0,19 0,42 0,62 0,72 

Oct ± 19 0,58 0,71 0,53 0,39 0,48 0,74 0,54 

Nov ± 19 0,74 0,86 0,65 0,70 0,62 0,94 0,99 

Dec ± 19 0,86 0,85 0,81 0,92 0,74 0,82 1,00 

 

The monthly capacity factors of the locations without operating plants of a certain 

technology are estimated as the mean of the capacity factors of the region. For the East, 

since there are no hydro plants at the moment, the mean of the plants in the North is 

considered. 

Finally, to obtain the hourly capacity factors, the following model is used for the conversion 

[43] [44]. 

Equation 1 

 ࣐૚/૛(૛࣋�૚ í)࢞࣌ + (࢞ࣆ í ࢚ࢄ) ࣋ + ࢞ࣆ = t+1ࢄ

In which: 

ܺt+1: calculated hourly capacity factor. 

 .mean of the monthly capacity factors for each region and technology :ݔߤ

 .correlation factor taking the value of 0,45 :ߩ

 ��LV�FRQVLGHUHG´ݔߤprevious hourly capacity factor. For the ILUVW�KRXU�WKH�PRQWKO\�PHDQ�³ :ݐܺ

 .standard deviation of the monthly capacity factors :ݔߪ
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߮: random noise. 

3.7.2. Photovoltaics and wind 
The capacity factors for PV and wind are obtained with data from the software pyGRETA, 

which provides four time series for each region, depending on the quality of the location 

[45]. 

x Percentile 90 (Q90): excellent location, 90% of the locations are worse (top 10%). 

x Percentile 60 (Q60): good location, 60% of the locations are worse. 

x Percentile 50 (Q50): average location, 50% of the locations are worse. 

x Percentile 20 (Q20): bad location, 20% of the locations are worse. 

In addition to this, an optimal location percentile will be added (Q95) for wind in the north 

and south, since otherwise the coastal areas with maximum generation potential would be 

underestimated. Currently all the wind generation plants are in these regions, shown in the 

Figure 19. This percentile is calculated to englobe the current generation plants located in 

these areas. 

 

Figure 19 Wind capacity factors distribution, Global wind atlas [46] 
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For calculating the 95th percentile capacity factors, first, wind speed temporal data for 

regions hosting wind plants at present time is collected [46]. 

 

Figure 20 Normalised, hourly average wind speed in a day 

 

Figure 21 Normalised monthly average wind speed in a year 

With these data, the hourly values for an average day for each month is calculated. Next, 

the complete hourly wind speeds in a year are obtained in a similar way as for 3.7.1. 

 ࣐૚/૛(૛࣋�૚ í) ࢞࣌ + t = Atࢄ

In which: 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Northern region 1 Northern region 2 Southern region 1 Southern region 2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Northern region 1 Northern region 2 Southern region 1 Southern region 2



  

Modelling of Decarbonization of the Electricity Sector in Peru. A Regional and Intertemporal Approach 
33 

ܺt: calculated hourly wind speed. 

At: hourly wind speed for an average day for each month. 

 .correlation factor, taking the value of 0,45 :ߩ

 .standard deviation of the maximum wind speeds per day in a year [47] :ݔߪ

߮: random noise. 

Finally, once the wind speed time series is obtained, the capacity factors are calculated 

with the simplified wind speed to CFs conversion of wind generators, shown in Figure 22. 

 

Figure 22 Wind Capacity factors / Velocity [m/s] 

For winds stronger than 22,5 m/s a break is activated to avoid damage to the infrastructure. 

Hence, the capacity factor is null. 

The optimal location percentile will not be necessary for PV generation, as the areas with 

maximum CFs are broader [48]. 
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Figure 23 Solar horizontal irradiation, Global solar atlas [48] 

3.8. Installation costs forecast 

New technologies such as PV, wind or utility scale batteries have the potential of 

experiencing a significant reduction in their costs in coming years, because of research 

advancements. Particularly significant is the prospect for PV, expected to reduce their 

installation costs to a third of their current price by the end of the modelling period  [17] [18] 

[32]. 
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Figure 24 New technologies installation cost forecast 

3.9. Natural gas availability 

Joules are used when discussing resources availability to differentiate between useful 

energy, measured in Wh, and embedded energy (J). Depending on the application, 

different efficiencies for this conversion are expected. For instance, for the electricity 

generation, the efficiency of 64% displayed in Table 14 is considered. 

Peru has close to 12 EJ of proven natural gas reserves, around 0,22 % of the total reserves 

found in the world [49] [50]. With the current consumption of 0,75 EJ per year from all 

sectors, these would last for around 16 years. 

From the total natural gas consumption experienced in the year 2020, just a 19% is directed 

into electricity generation. Considering this share as the only available for electricity 

generation, the reserves for our study are diminished to 2 EJ. 

 

Figure 25 Natural gas reserves of Peru [TJ] [49] 
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Figure 26 Peruvian natural gas consumption 2020 [49] 

3.10. Renewable Energy Potentials 

The generation of renewable energy resources is limited due to topographic, land-use, 

environmental and performance constraints [51]. Hence, the potentials studied in this 

section are set in urbs as upper bounds for the generation capacity, not to surpass the 

renewable capabilities of the country. 

3.10.1. Biomass 
Two types of biomasses are currently in use in Peru for energy generation: biogas and 

bagasse. Although both originate from organic waste from agricultural activities, biogas 

involves an additional anaerobic process by which microorganisms transform solid waste 

into a mixture of methane and carbon dioxide. The thermal plants using this mixture, also 

known as biogas, show higher efficiencies. 

The total potential of biomass�� ZLWKRXW� VXUSDVVLQJ� LWV¶� FXUUHQW� ODQG�XVH�RI� ���� [52], is 

between 450 and 900 MW. The mean, 675 MW, is selected for this study. More than half 

of the potential is located in the north [40]. 

This capacity is low compared with the potential of other RER such as wind or PV, but since 

LW¶V�D�FRQWUROODEOH�UHQHZDEOH�UHVRXUFH��LW�FDQ�SOD\�D�UHJXODWRU\�UROH�WKDW�ZRXOG�RWKHUZLVH�EH�
taken by storage technologies. 
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Figure 27 Regional allocation of biomass potential [PJ/year] [40] 

 

Figure 28 Regional distribution of biomass potential 

la Alimentaciſn, un conjunto de metodologşas 
y herramientas para determinar el 
potencial inicial de bioenergşa sostenible 
y las oportunidades asociadas, riesgos y 
compensaciſn. Los cultivos utili zados se 
muestran en el cuadro 6-3 y abarcaron, en 
promedio, 1.76 millones de hectĄreas para 
el periodo 2005-2011, equivalente al 60% del 
Ąrea total de producciſn agrşcola en el paşs.

Cuadro 6-3
Disponibilidad anual de los residuos, 

promedio de 2005-2011

GrĄfico 6-11
Distribuciſn de los recursos energĠtico s 

primarios por tipo de residuo

Cultivo Residuos (toneladas)

Algodſn

Arroz

CaŹa de azƷcar

CafĠ
Cebada

EspĄrrago

Maşz amarillo duro
Maşz choclo

Maşz amilĄceo

Fruta de palma

Oliva

Trigo

Uvas

Total

572 083 
4 172 540 

18 967 989 

337 486 
236 006 

499 400 

2 904 397 

599 802 

915 928 

1 499 188 

22 027 

251 682 

34 265 
31 012 793 

Fuente y elaboraciſn: Mitigation  Mo me ntum (2015). 

Fuente: Mitigation  Mo me ntum (2015). Elaboraciſn: GPAE-Osinergmin.

El m ayor potencial 
eſ lico esta en Piura, 

Lam bayeque, La Libertad, 
�ncash, Ica y Arequ şpa.

6.3.4. Potencial de la 
energşa minihidrĄulica
El PerƷ cuenta con diversas regiones 
hidrolſgicas en las cuales se puede utili z ar 
el agua de sus cuencas de forma factibl e 
para la generaciſn de energşa. De acuerdo 
con informaciſn del Mapa de Principales 
Unidades HidrogrĄficas del PerƷ, el paşs tien e 
un total de 113 cuencas y 16 intercuencas. 
Estas se desarrollan en tres vertien tes: 
Pacşfico, AtlĄntico y Lago Titicaca. La del 
Pacşfico se caracteriza por una mayor 
demanda de agua y una defici enc i a en el 
escurrimiento superfici al . En la del AtlĄntico 
hay mayor disponibilidad de agua superfici al  
con una baja demanda.

En 2011, el Ministerio de Energşa y Minas 
(Minem) encargſ a Halcrow Group y OIST 
la elaboraciſn del ͞Atlas del potencial 
hidroelĠctrico del PerƷ .͟ Este estudio tuvo 
como principal objetivo contar con una 
evaluaciſn de forma preliminar del potencial 
hidroelĠctrico teſrico del PerƷ para un rango 
de 1 a 100 MW. La evaluaciſn del potencial 
hidroenergĠtico se estimſ  en base a dos 
mĠtodos: el teſrico, que calcula el potencial 
mĄximo de cada zona; y el tĠcnico, que 
considera la factibi lidad tĠcnico-econſmica 
de cada proyecto. 

Con el objetivo de fomentar la partic

i

paci ſn 
privada en la generaciſn de energşa, el 
estudio busca proveer informaciſn bĄsica 
para el desarrollo de nuevos proyectos. 
Por ello, se acuŹſ el concepto de Potencial 
HidroelĠctrico TĠcnico, que representa una 
medida base tĠcnico-econſmica del potencial 
del recurso. Este concepto incluye el potencial 
tĠcnico excluido y el aprovechable. El primero 
contabiliza los valores de potenciales que 
estĄn dentro de las �reas de Concesiſn 
para generaciſn de hidroenergşa y las �reas 

Ilustraciſn 6-5
Mapa de distribuciſn de los recursos energĠtico s 

primarios de los principales residuos agrşcolas 

Fuente y elaboraciſn: Mitigation  Mo me ntum (2015).
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3.10.2. Photovoltaics 
There is significant deviation in the literature regarding the usable PV potential in Peru [40] 

[45]. In this study, the more conservative approach will be considered, which accounts for 

a total of of 25.000 MW [40]. To identify the distribution between regions the software 

pyGRETA is consulted, which ranks the south as the area with more exploitable PV 

resources [45], in accordance with the solar irradiation map of Peru, displayed in Figure 

23. 

 

Figure 29 Solar potential regional distribution 

The regional solar potential will be classified according to the pyGRETA percentiles 

specified in 3.7.2. This way, once the installed capacity of PV in the north surpasses the 

10% of its total potential, for instance, the capacity factors used for new installations will 

change from best location (Q90) to good location (Q60). This classification implies that the 

potential is reduced to an 80% of the total, as locations worse than percentile Q20 are not 

considered. 

3.10.3. Wind 
The north is the region with the highest wind potential, with over 70% of the total. By 

contrast, the east has a null potential [40]. 
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Figure 30 Regional total wind potential [MW] 

The total capacity is considered instead of the exploitable one, as 20% of the listed potential 

is classified as non-exploitable, for their capacity factors are not listed by pyGRETA. Just 

as for PV, the regional wind potential will be classified according to this software quartiles 

[40] [45]. 

3.10.4. Geothermal 
The potential of geothermal is rather limited in Peru, with 74% of its potential in the south. 

Nevertheless, similarly to biomass, the predictability characteristic of this source could 

provide a base load for the system [40]. 

 

Figure 31 Regional geothermal potential [MW] 
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3.10.5. Hydro 
Hydro plants in Peru have a potential of 70.000 MW, the largest of all technologies here 

listed. The hydrologic resources in the east account for more than 9.000 MW, of special 

relevance considering the scarcity of other renewables in the region [53]. 

 

Figure 32 Hydro potential allocation 

3.10.6. Potential overview 
The total renewables potential accounts for 126 GW. The majority, 55%, comes from hydro 

installations. Nevertheless, there is a 42% of PV and wind potential, especially significant 

in the northern and southern regions. Biomass and geothermal account for less than 3% 

of the total potential. 

Table 17 Renewables generation potential [MW] 

 Center East North South 

Biomass plant 185 101 341 48 

Geothermal 393 ± 345 2.121 

Small RoR plant 18.830 9.085 13.338 28.191 

Photovoltaics  3.802 12 6.373 14.813 

Wind Park 1.434 ± 20.490 6.471 

27%

13%

19%

41%

Center East North South
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Figure 33 Regional RER potential [MW] 

 

Figure 34 Total RER potential distribution 
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4. Results and Evaluation 

4.1. Single year optimization 

Once all the inputs are added into urbs, an optimization of the year 2019 is performed to 

validate the model. The results obtained are compared with those of the previous Peruvian 

model by Tubella Boada C. [5] and with experimental data from COES [24].  

Table 18 Single year energy generation by source [GWh] 

 Own model Previous model Real system 

Hydro 30.830 30.169 30.168 

Renewable 3.026 N/D 1.845 

Non-renewable 27.804 N/D 28.323 

Other renewables 2.890 2.254 2.670 

Biomass plant 375 215 252 

Photovoltaics 673 582 762 

Wind Park 1.841  1.457 1.646 

Fossil fuels 19.176 20.470 20.061 

Coal plant ± 135 36 

Diesel plant 869  999 74 

Gas plant 18.308  19.336 19.951 

Total 52.897  52.892 52.889   

 

4.1.1. Observations 
The experimental and previous model present almost identical results regarding hydro, 

since the monthly generation from the experimental results were used as inputs for 

calculating the capacity factors. On the other hand, in the developed model the water flows 

circulating through the different plants were used for this purpose, as explained in 3.7.1, 

explaining the slight discrepancy when comparing the non-renewable production.  

Additionally, the renewable production is significantly higher for the own model. This is 

because some small RoR plants were not listed LQ�WKH�H[SHULPHQWDO�FDVH��DV�WKH\�GRQ¶W�

belong to the COES. 
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The model produces around 9% more than the experimental case. Biomass is generating 

more in the model because the capacity factor of 70% considered is not obtained from 

regional but from general values. Solar produces less because of the areas hosting the 

generation plants being in a better percentile than the 10% considered by pyGRETA. 

Finally, wind has a greater production due to greater wind variations than considered in the 

model, in which the average CFs were considered, although noise was added as function 

of the maximum wind deviation. 

Finally, in the own model there is no coal production because of the increment of wind 

generation from the south. This allows the coal plant, working as peak plant in the system, 

to remain shut down. The increase in diesel production is a consequence of the 

experimental case not considering data for the East, greatest diesel consumer, as this 

region is not a part of the interconnected system. 

4.1.2. Key performance indicators 
The east and center are self sufficient, meaning that they only depend on their own 

generation. Meanwhile, northern and southern regions rely heavily on imports from the 

center to operate. These imports are the cause of the 1% deficit between demand and 

production, consequence of interregional transmission losses. 

Table 19 Regional self sufficiency 

 Center East North South 

Production [GWh] 42.700 869 2.444 6.885 

Demand [GWh] 27.746 869 6.779 16.627 

Self sufficiency [%] 100 100 36 41 

 

The grid mixes vary to a large extent depending on the regions. While south and north have 

no direct fossil fuel consumption, in the center their share is more than 40%. Additionally, 

as the center is the only electricity exporter, its relevant portion of fossil fuels implies that 

both north and south rely indirectly on fossil fuels. 
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Figure 35 Regional production [GWh] 

The technology with the lowest LCOE is the conventional hydro plant, while the highest 

cost is associated with natural gas electricity production. Nonetheless, this metric does not 

consider the value of the energy provided, higher for gas or biomass plants due to their 

flexible production. Additionally, the natural gas plant fleet is operating at 49% of its 

capacity compared with the 100% CF of biomass. This indicates an over dimension which 

inflates the fossil fuel costs. In the intertemporal analysis discussed below, with optimal 

dimensioning, the system has preference for natural gas over the green alternative. 

 

Figure 36 Levelized cost of energy [USD/MWh] 
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For this analysis, coal and diesel production were excluded due to their roles as peak plants 

in the system. 

4.2. Intertemporal 

4.2.1. Base case 
The demand increase in the system is met by installing wind, hydro, PV and natural gas 

plants. During the first three modelled years, the installed power stagnates in the center 

while it increases significantly in the south and east through hydro, and moderately in the 

north, through wind energy mainly. From 2040 onwards, PV experiences a steep growth, 

especially remarkable in southern and central regions. In this same period, hydro capacity 

increments in north and south, through small and large RoR respectively. The center 

maintains an important natural gas share throughout the model, while the share in the east 

is dominated by investment in large RoR plants. 

 

Figure 37 Regional installed capacity [MW]. Base scenario 

Natural gas, assuming a linear progression between the modelled years, generates 780 

TWh of electricity within the 31-year time frame. That implies a total consumption of 2,8 EJ 
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the total share invested into electricity would need to increase from the current 19%, 

displayed in Figure 26, to a 24%, by reducing exports correspondingly. 

 

Figure 38 Regional generation [GWh]. Base scenario 

 

Figure 39 Natural gas generation [TWh]. Base scenario 

The energy stored in the reservoirs behaves similarly in center and south, increasing its 
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Figure 40 Storage capacity 2024 
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Figure 41 Total installed capacity [MW] Scenarios 1 ± 4 
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LQ�WKH�\HDU������RI�VFHQDULR����QDWXUDO�JDV�FDQ¶W�EH�IRXQG�LQ�WKH�UHJLRQ��7KH�UHDVRQ�IRU�WKLV�

is the diverse renewable fleet available, which has relevant wind and biomass reserves in 

contrast with the south, area with the highest overall renewable potential, but lead solely 

by PV and hydro. 

Both zones show an increase in the generation capacity for scenario 4, same behaviour as 

that observed in the general comparison. This increment is particularly relevant in the north, 

DV� WKH� H[SDQVLRQ� LQ� WUDQVPLVVLRQ� FDSDFLW\� UDLVHV� WKH� HDVW¶V� dependence on northern 

generation. 

 

Figure 42 Center installed capacity [MW]. Scenarios 1 ± 4 
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Figure 43 East installed capacity [MW]. Scenarios 1 ± 4 

 

Figure 44 North installed capacity [MW]. Scenarios 1 ± 4 
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Figure 45 South installed capacity [MW]. Scenarios 1 ± 4 

 

Figure 46 Lithium-ion storage capacity [MWh]. Scenarios 1 ± 4 
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Figure 47 Transmission Center ± North [MW] 

 

Figure 48 Transmission Center ± South [MW] 

 

Figure 49 Transmission North ± East [MW] 
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4.2.3. CO2 emissions. Scenarios 1 ± 4 
A sudden drop in the CO2 emissions is experienced by the system until the year 2024 for 

all scenarios. This is a consequence of the competitive prices of hydro, specially in eastern 

and southern areas. After this point, all scenarios but SDG 13 increase their emissions 

consistently. In terms of decarbonization, scenario 3 behaves best until the year 2030. For 

the last two modelled years, as expected, scenario 4 is preferred. The scenario renewables 

FKHDS��DV�QRWHG�SUHYLRXVO\��GRHVQ¶W�KDYH�D�SRVLWLYH regarding this matter. 

 

Figure 50 CO2 emitted [Tonnes]. Scenarios 1 ± 4 

4.2.4. Gas consumption. Scenarios 1 ± 4 
The total consumption of natural gas in scenario 2 surpasses the reserves planned for 

generation, just as happened for the base case, shrinking the percentage intended for 
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of natural gas saved in scenario 4 with respect to the base case is of 1,74 EJ. 
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Figure 51 Natural gas consumed vs available [EJ]. Scenarios 1 ± 4 

4.2.5. Costs. Scenarios 1 ± 4 
The costs required to achieve a fully decarbonized system in 2050, scenario 4, are 85 

billion USD, 20% higher than for the base case. However, the model does not consider the 

gained value that unconsumed natural gas reserves could provide if exported. For 

reference, considering the latest natural gas market price of 8 USD/MMBtu, the increase 

in exports could bring in 13 billion USD in gross revenue [54]. 

 

Figure 52 Costs [billion USD]. Scenarios 1 ± 4 
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The costs of a fully decarbonized system operating with only RER, scenario 5, are 13 billion 

USD higher than the cost-optimal carbon-neutral scenario, SDG 13. This is due to a 

combination of circumstances: an increase in the generation and storage capacity required, 

consequence of a worse performance of small over large RoR and the rise of PV in the 

system, and the higher installation costs for small hydro systems. 

With the installation of the macrogrid, scenario 6, we manage to reduce significantly the 

storage and installation capacity with respect to scenario 4. Additionally, consequence of 

the revenue obtained from selling the electricity, the total costs are almost half of those of 

scenario SDG 13. Nevertheless, must be noted that this is a simplified scenario in which 

electricity can always be sold and bought for the constant prices listed in Table 2, with the 

only limitation imposed being the transmission power. 

Finally, scenario 7, in which conventional hydro can be used throughout the whole model 

(with a capacity never greater than the currently installed) presents a 2 billion USD 

decrease, consequence of the reduction in generation capacity required due to the gained 

versatility in the hydro production. The energy stored in the UHVHUYRLU¶V peaks in similar 

times for all years, but the peaks increase significantly in value, reaching its full capacity in 

2040. 

 

Figure 53 Reservoir storage level 2024 ± 2040. Scenario 7 
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Figure 54 Total installed capacity [MW]. Scenarios 4 ± 7 

 

Figure 55 Storage capacity [MWh]. Scenarios 4 ± 7 
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Figure 56 Costs comparison [billion USD]. Scenarios 4 ± 7 
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5. Summary and Outlook 

The study shows optimistic results concerning integration of renewables in the system. 

Until 2030, the system, purely economically driven, experiences a reduction of fossil fuels 

to up to a third of the total installed capacity and an increase in renewables participation, 

lead by wind, and of large RoR, technology with the largest investment. Despite this, the 

steep increase of electrical demand expected in the last 20 years also entails greater 

dependence of fossil fuels, despite their share in the global system continues to decrease. 

The capacity increase in this period is lead by photovoltaics. 

Important differences between regions are noted. The implementation of renewables is 

very successful in the north as the natural gas share continues to decrease. This is a 

consequence of a relatively high, diverse potential of renewables. The south despite having 

the largest RER potential, gains dependence on fossil fuels in the last modelled years 

because of the very steep demand growth experienced in the region, combined with a 

renewable fleet concentrated in PV and hydro exclusively. On the other hand, east and 

center depend the most on natural gas throughout the model, because of a moderate 

renewable potential and cheap fuel prices respectively. In addition, center acquires a 

regulatory role for the system because of its strategic position, with possibilities of electricity 

transmission to both north and south. As the grid mix gets cleaner, electricity exports from 

northern and southern regions, where of the most storage capacity concentrates, to east 

and center gain importance. 

From the different scenarios analysed, results for the CO2 taxation proves specially 

promising as a compromise between economic and environmental performance. This 

scenario is very effective when it comes to decarbonization for the first 20 years but proves 

insufficient to achieve a carbon neutral system by 2050. 

The report has certain limitations that could entail further research in the subject. First, no 

wind offshore is considered. This technology could raise the importance of wind energy in 

the system, currently with a minor role due to the scarce high quality onshore locations. 

Secondly, the macrogrid scenario presents constant prices for the electricity to be 

exchanged between countries. The demand behaviour of all states involved should be 

analysed in detail to deduce the actual variations of the prices within the year. Finally, no 

conventional hydro is considered throughout the report but in scenario 7, where its 

investment is limited, due to the environmental concerns these have raised in the area. 
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Annex A 

Table 20 Hydro generation plants, own elaboration 

Plant Department Region Type Max flow (m3/s)   Effective power 
(MW)  

8 de agosto Huanuco Center Small RoR 19,0 19,0 
Ángel I Puno South Small RoR 2,1 5,0 
Ángel II Puno South Small RoR 3,1 7,1 
Ángel III Puno South Small RoR 3,0 7,1 
Aricota I Tacna South Conventional 4,5 22,1 
Aricota II Tacna South Conventional 4,6 12,2 
Cahua Lima Center Conventional 24,3 45,4 
Callahuanca Lima Center Large RoR 24,4 84,5 
Canchayllo Junín Center Small RoR 7,0 5,2 
Caña Brava Cajamarca North Small RoR 19,4 5,7 
Cañón del Pato Ancash Center Conventional 75,6 265,6 
Carhuac Lima Center Large RoR 14,5 20,4 
Carhuaquero Cajamarca North Large RoR 21,1 94,5 
Carhuaquero Iv Cajamarca North Small RoR 2,6 10,0 
Cerro del Águila Huancavelica Center Large RoR 221,5 557,7 
Chaglla Huanuco Center Large RoR 148,4 470,4 
Chancay Lima Center Large RoR 3,4 20,0 
Charcani I Arequipa South Conventional 7,6 1,6 
Charcani II Arequipa South Conventional 6,0 0,6 
Charcani III Arequipa South Conventional 10,0 4,7 
Charcani IV Arequipa South Conventional 15,0 15,4 
Charcani V Arequipa South Conventional 26,2 146,6 
Charcani VI Arequipa South Conventional 15,0 8,9 
Cheves Lima Center Large RoR 33,4 176,3 
Chimay Junín Center Large RoR 95,6 152,3 
El Carmen Huanuco Center Small RoR 4,2 8,4 
El Platanal Lima Center Large RoR 41,0 222,5 
Gallito Ciego Cajamarca North Large RoR 41,1 35,3 
Her 1 Lima Center Small RoR 17,0 0,7 
Huampani Lima Center Conventional 21,2 30,9 
Huanchor Lima Center Conventional 10,9 19,8 
Huanza Lima Center Large RoR 16,3 98,3 
Huasahuasi I Junín Center Small RoR 6,5 9,9 
Huasahuasi II Junín Center Small RoR 6,5 10,2 
Huayllacho Arequipa South Small RoR 0,2 0,2 
Huinco Lima Center Large RoR 27,2 277,9 
Imperial Lima Center Small RoR 7,5 4,0 
La Joya Arequipa South Small RoR 7,6 7,7 
Las Pizarras Cajamarca North Small RoR 23,0 19,2 
M. Cerro del 
Águila 

Huancavelica Center Small RoR 19,2 10,4 

Machupicchu Cusco South Conventional 55,8 168,8 
Malpaso Junín Center Large RoR 80,4 48,4 
Mantaro Huancavelica Center Large RoR 106,0 678,7 
Marañón Huanuco Center Small RoR 26,4 19,9 
Matucana Lima Center Conventional 15,8 137,0 
Misapuquio Arequipa South Small RoR 2,2 3,9 
Moyopampa Lima Center Conventional 19,3 69,1 
Oroya Junín Center Small RoR 6,6 9,1 
P. Chaglla Huanuco Center Small RoR 3,7 6,4 
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Pachachaca Junín Center Small RoR 6,6 9,7 
Pariac Ancash Center Small RoR 2,2 5,0 
Patapo Lambayeque North Small RoR 8,0 1,0 
Poechos II Piura North Small RoR 60,9 9,6 
Potrero Cajamarca North Large RoR 18,4 20,2 
Purmacana Lima Center Small RoR 2,0 1,7 
Quitaracsa Ancash Center Large RoR 15,6 117,8 
Renovandes H1 Junín Center Small RoR 7,7 19,6 
Restitución Huancavelica Center Large RoR 105,1 219,4 
Roncador Lima Center Small RoR 12,0 3,5 
Rucuy Lima Center Large RoR 3,5 20,0 
Runatullo II Junín Center Small RoR 7,2 20,0 
Runatullo III Junín Center Small RoR 5,5 20,0 
San Antonio Arequipa South Small RoR 2,4 0,6 
San Gaban II Puno South Conventional 19,9 115,7 
San Ignacio Arequipa South Small RoR 2,5 0,4 
Santa Cruz I Ancash Center Small RoR 6,5 6,6 
Santa Cruz II Ancash Center Small RoR 6,3 6,5 
Santa Teresa Cusco South Conventional 53,1 89,8 
Yanango Junín Center Large RoR 20,0 43,1 
Yanapampa Ancash Center Small RoR 19,9 3,9 
Yarucaya Lima Center Small RoR 10,0 15,0 
Yaupi Junín Center Large RoR 29,1 113,7 
Yuncan Pasco Center Large RoR 29,9 136,7 
Zaña Cajamarca North Small RoR 6,2 13,2 
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