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Abstract

This thesis presents a case of study of the development and performance analysis
of a surface grading application with real-time compliance. The application focuses
on the ceramic tile industry and aims to automate the inspection process of surface
grading and removing human inspectors from this subjective and tedious task. First,
an overview of surface grading works is given. These works have been reported in
recent years in many production areas such as ceramic tile, marble, granite and
wood industries.

We then address the issue of spatial and temporal uniformity in the acquisition
system. In a surface grading application it is crucial to ensure the uniform response
of the system through time and space. Spatial and temporal uniformity is demon-
strated and two illuminating systems (high frequency uniform fluorescents and white
LED arrays) are compared from this point of view.

All the results presented for surface grading were obtained using real data from
the ceramic tile industry. Omne of the aims of the thesis has been to build an ex-
tensive image database of ceramic tile models representing the wide range of ce-
ramic tile surface classes. The VxC TSG database is public and can be accessed at
miron.disca.upv.es/vision/vxctsg/.

Afterwards, we present a study of methodologies developed to obtain a fast and
accurate approach to surface grading. From this study is extracted a method based
on soft colour-texture descriptors computed in perceptually uniform colour spaces.
The method is parameterized and the involved factors are studied using two statis-
tical procedures; experimental design and logistic regression. Although it is not a
new theoretical contribution, we have found and demonstrate that a simple set of
global colour and texture statistics, together with well-known classifiers, are pow-
erful enough to meet stringent factory requirements for real-time and performance.
Two approaches from literature were also implemented, parameterized and statisti-
cally studied for comparative purposes. These methods are Colour Histograms and
Centile-LBP.

Finally, we explore the method’s capacity for on-line inspection in a study of

real-time compliance and parallelization based on cluster and MPI technologies.



Resumen

Esta tesis presenta un caso de estudio para el desarrollo y andlisis de una apli-
cacion de gradacion de superficies con restricciones de tiempo real. La aplicacion se
centra en la industria ceraAmica y su objetivo es automatizar el proceso de gradacion
de superficies sustituyendo a los operadores humanos en esta tarea tediosa y subje-
tiva. En primer término, se presenta una revision de los trabajos de gradacion de
superficies presentes en la literatura. Estos trabajos han sido realizados en los tlti-
mos anos en varias areas productivas, como son las industrias del azulejo, marmol,
granito y madera.

Los resultados presentados en la tesis relativos a la gradacion de superficies han
sido obtenidos utilizando datos reales procedentes de la industria azulejera. Uno de
los objetivos de la tesis ha sido construir una extensa base de datos de imagenes
de azulejos que represente el amplio rango de clases de superficie presentes en la
industria azulejera. Esta base de datos se ha denomidado VxC TSG y es accesible
en miron.disca.upv.es/vision/vxctsg/. Previamente a la presentacion de la base
de datos se procede al estudio de la uniformidad espacial y temporal del sistema
de adquisicion. En las aplicaciones de gradacion de superficies esta uniformidad
es crucial. Se demuestra la uniformidad espacio-temporal al mismo tiempo que se
comparan dos modernos sistemas de iluminacion; los fluorescentes de alta frecuencia
y los LEDs blancos.

Después se presenta un estudio de métodologias desarrolladas para obtener una
aproximacion rapida, fiable y precisa para la gradacion de superficies. Este estu-
dio finaliza con la presentacion de un nuevo método basado en la computacion de
descriptores suaves de color y textura en espacios de color perceptualmente uni-
formes (soft colour-texture descriptors method). Este método es parametrizado y
los factores involucrados son estudiados utilizando dos procedimientos estadisticos;
el diseno de experimentos y la regresion logistica. Aunque el método presentado
no es una nueva contribuciéon tedrica, se demuestra que un conjunto sencillo de es-
tadisticos globales de color y textura, junto con clasificadores bien conocidos, son
suficientes para superar los requisitos solicitados en factoria relativos a la precision,

fiabilidad y capacidad de inspeccion en linea del sistema. Otros dos métodos proce-



iv

dentes de la literatura son factorizados y estudiados utilizando los prodedimientos
estadisticos anteriormente mencionados. Este trabajo es llevado a cabo con fines
comparativos.

Finalmente, se estudia la capacidad del sistema para una inspeccion en linea del
100% de la produccién. Este estudio incluye la paralelizacion del método utilizando

una tecnologia basada en MPI y clusters.



Resum

Esta tesi presenta un cas d’estudi per al desenvolupament i analisi d’una aplicaci6
de gradaci6 de superficies amb restriccions de temps real. L’aplicacio se centra en
la industria ceramica i el seu objectiu és automatitzar el procés de gradacid de
superficies substituint als operadors humans en esta tasca tediosa i subjectiva. En
primer terme, es presenta una revisio dels treballs de gradacié de superficies presents
en la literatura. Estos treballs han sigut realitzats en els tltims anys en diverses
arees productives, com son les industries del taulellet, marbre, granit i fusta.

Els resultats presentats en la tesi relativa a la gradacié de superficies han sigut
obtinguts utilitzant dades reals procedents de la industria del taulellet. Un dels
objectius de la tesi ha sigut construir una extensa base de dades d’imatges de taulel-
lets que represente ’ampli rang de classes de superficie presents en la industria
del taulellet. Esta base de dades s’ha denomidado VxC TSG i és accessible en
miron.disca.upv.es/vision/vxctsg /. Préviament a la presentacié de la base de dades
es procedix a I’estudi de la uniformitat espacial i temporal del sistema d’adquisicio.
En les aplicacions de gradaci6 de superficies esta uniformitat és crucial. Es de-
mostra la uniformitat espai-temporal alhora que es comparen dos moderns sistemes
d’il-luminacio; els fluorescents d’alta freqiiéncia i els LEDs blancs.

Després es presenta un estudi de metodologies desenvolupades per a obtindre
una aproximaci6 rapida, fiable i precisa per a la gradacié de superficies. Este es-
tudi porta a la presentacié d’un nou métode basat en la computacié de descriptors
suaus de color i textura en espais de color perceptualment uniformes (soft colour-
texture descriptors method). Este métode és parametrizado i els factors involucrats
son estudiats utilitzant dos procediments estadistics; el disseny d’experiments i la re-
gressio logistica. Encara que el métode presentat no és una nova contribuci6 teorica,
es demostra que un conjunt senzill d’estadistics globals de color i textura, junt amb
classificadors ben coneguts, son suficients per a superar els requisits sol-licitats en
factoria relatius a la precisio, fiabilitat i capacitat d’inspecci6 en linia del sistema.
Altres dos métodes procedents de la literatura son factorizats i estudiats en profun-
ditat utilizant els métodes estadistics mecionats anteriorment. Este treball és dut a

terme amb fins comparatius.
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Finalment, s’estudia la capacitat del sistema per a una inspeccié en linia del
100% de la produccié. Este estudi inclou la paralelizacion del métode utilitzant la

tecnologia basada en MPI i clusters.
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Chapter 1

Introduction

In recent years, automatic inspection systems have become of paramount impor-
tance for industries with serial productive plans. These industries are commonly

characterized by the following items:

Complex processes formed by multiple stages at production lines.

High production rates.

High added value of every piece.

Quality control stage for the final product.

100% inspection at factory rates.

The ceramic tile industry is one clear example of this type of productive systems.
However, factories continue to use human inspectors to grade tile quality. These
operators, located at the end of the production lines, inspect the final product and
are often affected by problems such as eye fatigue, sickness or boredom. Further-
more, the different criteria of each operator regarding tile defects could produce a
non-uniform quality control criterion.

In this industry the great majority of tile faults are surface defects, thus, surface
inspection is an important quality control subject to automate. But, this is a com-
plex work which is divided into several tasks due to the diversity of existing surface

faults. Surface grading is one of the most important issues of surface inspection.

1
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1.1 Motivation and goals of this work

There are many industries manufacturing flat surface materials that need to split
their production into homogeneous series grouped by the global appearance of the
final product. These kinds of products are used as wall and floor coverings. Some
of them are natural products such as marble, granite or wooden boards, and others
are artificial, such as ceramic tiles.

In these industries the quality control stage is crucial in remaining competitive.
One of the most important quality problems is the non-uniformity of the visual
aspect of the product within the same lot of a specific model. As the final product
is used to form areas which are supposed to be uniform in appearance, the presence
of pieces which look slightly different is considered a serious quality defect.

Currently, industries rely on human operators to perform the task of surface grad-
ing. Human grading is subjective and often inconsistent between different graders.
In the area of wood inspection some observations showed low correspondence be-
tween graders. In a test of four grades, different grading operators agreed in only
60% of the samples [1|. Thus, automatic, reliable systems are needed. Also, real-
time compliance is an important issue as systems need to be able to inspect global
production at on-line rates.

Surface grading is related with the automatic classification of flat pieces present-
ing random, pseudo-random or fixed surface patterns. The aim of surface grading is
to split the production into different classes sorted by their global appearance which
depends on colour and texture properties.

In recent years many approaches to surface grading have been developed (see
Table 1.1). Boukouvalas et al |2, 3] proposed colour histograms and dissimilarity
measures of these distributions to grade ceramic tiles.

Other works consider specific types of ceramic tiles; polished porcelain tiles, which
imitate granite. These works include texture features. Baldrich et al [4,5] proposed
a perceptual approximation based on the use of discriminant features defined by hu-
man classifiers at factory. These features mainly concerned grain distribution and
size. The method included grain segmentation and features measurement. Lumbr-

eras et al [6,7] joined colour and texture through multiresolution decompositions on
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several colour spaces. They tested combinations of multiresolution decomposition
schemes (Mallat’s, atrous and wavelet packets), decomposition levels and colour
spaces (Grey, RGB, Otha and Karhunen-Loéve transform). Penaranda et al [8, 9]
used the first and second histogram moments of each RGB space channel.
Kauppinnen et al |1,10,11| developed a method for grading wood based on the
Percentile (or centile) features of histograms calculated for RGB channels. Kyllonen
and Pietikdinen’s approach [12] uses colour and texture features. They chose centiles
for colour, and LBP (Local Binary Pattern) histograms for texture description.
Lebrun and Macaire [13| describe the surfaces of the Portuguese "Rosa Aurora"
marble using the mean colour of the background and mean colour, absolute density
and contrast of marble veins. They achieved good results but their approach is very
dependent on the properties of this marble. Fernandez et al [14]| studied surface
grading for granite blocks. They used the histograms of the RGB colour space
(one for each channel) and a simple measure of dissimilarity; the sum of absolute
differences of each bin-pairs of the histograms to be compared. Finally, Kukkonen
et al |15, 16| presented a system for grading ceramic tiles using spectral images.

Spectral images have the drawback of producing great amounts of data.

Table 1.1: Summary of surface grading literature.

ground truth features real-time study accuracy
Boukouvalas  ceramic tiles colour no -
Baldrich polished tiles  colour/texture no 99%
Lumbreras polished tiles  colour/texture no 92.7%
Penaranda polished tiles  colour/texture yes -
Kauppinen wood colour yes 2%
Kyllénen wood colour/texture yes -
Lebrun marble colour/texture no 98%
Fernandez granite colour no -
Kukkonen ceramic tiles colour no 70%

From the literature review (see Chapter 2 for more information) we deduced
that many of these approaches specialized in a specific type of surface, others did
not achieve good enough accuracy or simply did not provide accuracy information,

others did not carry out extensive studies of performance, and yet others did not
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take into account the time restrictions of a real inspection at factory. As a result,
we think surface grading is still an open issue where more contributions are possible.
In this sense, the present thesis deals with some less explored aspects in terms of
real-time compliance and surface grading performance.

The main thesis goal has been to develop a generic, fast and accurate surface
grading method suitable for use in a wide range of surfaces, also able to comply
with real-time requirements for on-line inspection at factory. This major aim is

complemented with other goals, such as:

e In-depth study of the acquisition system in order to demonstrate spatial and
temporal uniformity. This also involved the comparison of two modern illumi-

nation systems.

e Building of an extensive image database of ceramic tiles for surface grading.
The aim of this database is to ensure extensive performance study and methods

comparison.

e In-depth study of methods based on statistical tools in order to obtain objec-

tive and valid conclusions.
e Comparison with similar literature approaches.

e In-depth study of real-time compliance under real factory conditions

1.2 Previous works on ceramic tiles

The scope of the thesis is the surface grading application, but this is not an isolated
work. It stems from a more extensive work performed in recent years by the VxC
group for the automation of ceramic tiles inspection. VxC is a research group located
at Polytechnic University of Valencia and specialized in computer vision topics.
Work on ceramic tiles began in the second part of 90’s when a collaboration
agreement was established between the ceramic tile company Keraben S.A. and the
VxC group. The aim of this project was to develop a prototype able to automatically

inspect a specific surface fault on ceramic tiles; the integrity defects at tiles corners.
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At that moment, losses of materials in corners were the most important surface
fault representing 90% of surface defects. These looses were due to crashes in the
transportation of pieces along the production lines. In [17 19| is summarized the
work carried out for the development of this prototype. Finally, two prototypes were
developed. They were successfully tested at factory during six months (see Figure
1.1). The system was patented as an utility model and a second technological
company was interested in its production and commercialization. This company
went to bankrupt and finally the commercial system was not carried out. Later,
interest on system was lost because integrity defects at factories were drastically
reduced by modernizing transportation systems based on conveyor belts.

Figure 1.1: One factory prototype for the automatic inspection of integrity defects
in ceramic tiles corners.

After this first work, a FEDER-CICYT project (1FD97-0999) related to au-
tomation of ceramic tiles inspection was carried out during first years of 00’s. In
this project we developed a methodology for the surface inspection of fixed patterned
tiles [20-23|. The method performs a comparison with ideal references free of faults
in order to extract the surface defects. Fast and accurate approach to registration
between reference and inspected tiles was specially studied [20,21]|. Actually, the
project was more ambitious and in its initial planning also covered defects detection

on random and pseudo-random patterned surfaces. Although the work on these
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items was started, a final method was not developed. The project also covered the
issue of surface grading presented in this thesis and a very first approach was done us-
ing image tessellation and colour description of homogeneous and non-homogeneous
regions [24].

Once the project was finished, work on surface grading was continued as the
subject of the present thesis. A medium-size image database was collected in col-
laboration with Keraben S.A. and new approaches to fast surface grading derived
from [24] were studied. At the end of 2003 a new FEDER-CICYT project (DPI12003-
09173-C02-01) was assigned to VxC group. In this project, which is still not finished,
surface grading is one of the main subjects. The performed work relative to surface

grading is collected in [25 28] and the present thesis document.

1.3 Thesis outline

Chapter 2 presents an overview of surface grading works done in some industrial
areas such as ceramic tile, parquet slab, woods, granite, marble. They include
major works by several university groups and other isolated minor works.

The acquisition system and the study of its uniform response through time and
space is described in Chapter 3. Spatial and time uniformity is of great importance
in ensuring good surface grading performance [1,2,4,8|. Slight changes in illumina-
tion or acquisition conditions could easily introduce surface misclassifications. Any
alteration in the illumination conditions modify surface colour property giving rise
to a false change in the surface class. We also present a study of different illumi-
nation systems from the point of view of spatial and time uniformity. The studied
systems are; high frequency uniform fluorescents and white LED arrays. The results
show that only fluorescent systems provide sufficient uniform response.

Chapter 3 also presents the VxC TSG (VxC Tiles for Surface Grading) which
is an image database of ceramic tiles oriented to surface grading. Creating and
compiling this database has been one important goal of the thesis (see Figure 1.2).
The VxC TSG is intended to be a tool for the scientific community and future works

in the field of surface grading. It is also the ground truth used in the thesis for testing
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and comparing surface grading approaches. VxC TSG is an extensive image data
base of ceramic tile models representing the wide range of surface classes in ceramic

tiles. Tt is public and can be accessed at miron.disca.upv.es/vision/victsg/.

Figure 1.2: Samples from VxC TSG image database. From up to down; three
samples of petra and marfil models, each one corresponding to a different surface
grade.

Our search for a fast and accurate method for the purpose of surface grading is
revised in Chapter 4. Here, we collect the previous works that finally gave rise to the
soft colour-texture descriptors method. Work relative to this preliminary approaches
has been published in [25] and [26].

In Chapter 5 we develop the in-detph statistical study performed to extract the
final approach to surface grading based on soft colour-texture descriptors. Although
the method is not a new theoretical contribution we have found and demonstrate that
a simple set of global statistics softly describing colour and texture [29] computed in
perceptually uniform colour spaces (CIE Lab or CIE Luv), together with well-known
classifiers |30|, are enough to fulfil stringent factory requirements. The two main
needs of the industry are; on-line inspection at factory rates (real-time compliance)
and accurate performance in surface grading. Production managers at factories will

only accept an error rate close to 5% before relying on these automatic grading
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systems. The method we present meets the first demand by using the simplest
and fastest [to compute| colour-texture features. The second demand is met by
achieving average accuracies of more than 95% in many tests carried out using the
VxC TSG database. We named this approach soft colour-texture descriptors because
it uses the less complex texture and colour descriptors known in the literature [29].
The method was extracted from a statistical procedure which is a combination of
experimental design [31] and logistic regression [32] analysis. This procedure is used
to determine the best combination of quantitative/categorical factors in terms of a
set of experiments that maximize or minimize one response variable also involved in
the experiments. We used the accuracy rate of classifications as response variable.
The soft colour-tezture descriptors method has been recently reported and accepted
in 28] .

Two methods from the surface grading literature are also implemented and tested
in Chapter 6 for comparison purposes. These methods are colour histograms |2, 3]
and centile-LPB [1,12]. We selected these methods from literature because they
are similar to ours; they are generic solutions with low computational costs. An
experimental design and logistic regression analysis was also performed using the
VxC TSG database in order to determine the best combination of proposed factors
providing the best accuracy results. Results show that all methods are almost equal
in accuracy performance but soft colour-texture descriptors method achieved better
results in timing costs.

Chapter 7 presents a study of real-time compliance including the parallelization
of the method proposed in Chapter 5. This study is an in-depth exploration of the
real-time compliance of the approach. We use the parallel architecture provided by
the cluster-MPI model. The method is easily translated to this architecture and the
results demonstrate that, in conjunction with standard computing technologies, the
approach is able to inspect and grade more surface area per time unit than factories
can produce on a production line. Work relative to real-time compliance has been
published in [27].

Finally, the conclusions of all chapters and further work are summarized in Chap-

ter 8.



Chapter 2

Overview of surface grading works

This chapter is devoted to surface grading literature. Although there are many works
in literature related to surface grading, we have found they were not interconnected.
These approaches were performed without establishing almost any reference among
them and also does not exist a general term to describe the automatic inspection of
surface materials in order to split their production into homogeneous series grouped
by the global appearance. In this chapter we compile and introduce these works
unifying them under the term of surface grading works.

We present an overview of surface grading works found in literature and per-
formed in several industrial areas such as ceramic tile, parquet slab, wood, granite
and marble. This overview include major works by several university groups and
other isolated minor works. Major works were done at the University of Surrey in
UK, the Computer Vision Centre at the Autonomous University of Barcelona in
Spain and the Oulu University in Finland.

All the presented approaches used colour properties or a combination of colour
and texture properties to characterize surface appearance. Therefore, previous to
proper surface grading overview we present literature approach to the colour and

texture properties.
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2.1 Surface features

2.1.1 Colour

Colour is a sensation created in response to the excitation of our visual system by
the electromagnetic radiation known as light |33,34|. More specifically, colour is the
perceptual result of light from the visible region of the electromagnetic spectrum
when this light meets the retina of the human eye. The visible region covers the

wavelengths from 400nm to 700nm (see Figure 2.1).

Figure 2.1: The visible light spectrum.
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The human retina has two kinds of receptors, rods and cones. The basic function
of rods is to provide monochromatic vision under low illumination levels. The rods
have a photosensitive pigment called rhodopsin. This pigment absorbs light most
strongly in the blue-green region of the spectrum. This part of human vision is
referred to as scotopic vision. Although rods are important for vision, they play no
role in image reproduction. The function of the cones is to provide colour vision at
normal levels of illumination. This is known as photopic vision. The human retina
has three types of cones and each one is sensitive to a different wavelength range of
the visible spectrum.

The area of science concerned with the description and specification of colour is
called colorimetry [33|. As we have three types of colour receptor cells (cones), tradi-
tionally, three numerical components have been used to describe colours. Therefore,
a colour can be specified by a vector with three components. The set of all colours
forms a vector space called colour space or colour model. The three components of

a colour can be defined in many different ways providing various colour spaces |33|.
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In 1931, the Commission Internationale de L'Eclairage (CIE) adopted standard
colour curves for a hypothetical standard observer. These colour curves specify how
a specific spectral power distribution (SPD) of an external stimulus (visible radiant
light incident on the eye) can be transformed into a set of three numbers that specify
the colour. The CIE colour specification system is based on the description of colour
as the luminance component Y and two other components X and Z. The spectral
weighting curves of X and Z have been standardized by the CIE based on statistics
from experiments involving human observers [33]. The corresponding colour space
is called the CIE XYZ colour space. The XYZ model is a device independent
colour space that is useful in applications where consistent colour representation
across devices with different characteristics is important. But, the CIE XYZ space
is perceptually highly non-uniform [34]. Thus, it is not adequate for quantitative
manipulations involving colour perception and is seldom used in image processing
applications.

Traditionally, colour images have been specified by the red, green and blue tris-
timulus values. This is the RGB colour space. The red, green and blue components
are called primary colours. In general, hardware devices such as video cameras,
colour image scanners and computer monitors process colour information based on
these primary colours. Other popular spaces in image processing are the YIQ (North
American TV standard), the HSI (Hue, Saturation and Intensity), and the HSV
(Hue, Saturation and Value) colour spaces used in computer graphics.

Although XYZ is used only indirectly, it has a significant role in image processing
since other colour spaces can be derived from it through mathematical transforms.
For example, the linear RGB colour space can be transformed to and from the CIE
XYZ colour space using a linear three-by-three matrix transform. Similarly, other
colour spaces, such as non-linear RGB, YIQ and HSI can be transformed to and
from the CIE XYZ space, but might require complex and non-linear computations.

The CIE has also derived and standardized two other colour spaces from the
CIE XYZ. These are the CIE Luv and CIE Lab colour spaces and both of them
are perceptually uniform [33]. The term ’perceptual’ refers to the way that humans

perceive colours. The term "uniform’ means that if we move in the colour space from
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one colour to another, from one coordinate to another, the perceptual difference will
be related to a measure of distance, commonly the Euclidean distance, and the same
distance will approximately relate to the same perceptual difference throughout the
colour space. Thus, we can measure colour differences close to the human perception
of colours. This makes these colour spaces useful for applications where colour
difference measurement plays an important role. This is the case of the surface
grading application presented in this thesis.

CIE Luv and CIE Lab are slightly different because of the different approaches to
their formulation [33,34|. Nevertheless, both spaces are equally good in perceptual
uniformity and provide good estimates of colour difference (distance) between two
colour vectors. CIE Luv is used for industries considering additive mixing such as
colour displays, TV and lighting [35], while CIE Lab is beginning to be used in
applications of colour image processing [36].

We used the CIE Lab and CIE Luv colour spaces in our approaches to surface
grading, and also did experiments with the RGB colour space in order to deter-
mine the advantages of using these perceptually uniform spaces. The RGB space
was chosen for comparative purposes because it is often used in image processing

applications [37].

2.1.2 Texture

Texture is related to some properties inherent to the surface of objects. Texture
plays an important role in human vision and its analysis is of great interest in
the area of computer vision. However, a formal approach or precise definition of
texture does not exist. From the point of view of image processing, one general
definition is: Tezture is something consisting of mutually related elements |38]. This
definition contains the two main elements of textures. Firstly, texture is formed
by simple components called tezture primitives. Secondly, texture is defined by the
spatial relationships between these simple components. Some examples of textures
are shown in Figure 2.2.

There are two main approaches to texture description: statistical and structural

[39]. Statistical description use feature vectors of texture properties which represent



2.1. Surface features 13

Figure 2.2: Some samples of textures.
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points in a multidimensional feature space. This is suitable for statistical pattern
recognition. In contrast, the structural approach is based on the analogy between
texture spatial relations and the structure of a formal language. The description of
a texture forms a language that can be represented by its grammar. A grammar is
constructed for each texture class. Then, the recognition process becomes a syntactic
analysis of the texture description.

Structural approaches are based on the theory of formal languages and they are
adequate for describing strong textures [40,41|. A texture image is defined as a
structure which is made up of a large ensemble of elements which have some kind of
order in their locations. This approach works well on deterministic textures (mainly
artificial textures), but most natural textures are not of this type.

From a statistical point of view, textured images are complicated pictorial pat-
terns from which sets of statistical measures are obtained to characterize them. The
simplest way to statistically characterize textures is to compile global statistics like
mean, standard deviation and histogram moments [29]|. However, the most popular
approximation is the co-occurrence matrices method [|42,43|. In this method ma-
trices are constructed by counting the number of occurrences of pixel pairs of given

grey levels at a given displacement. Statistics such as contrast, energy, entropy and
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others are computed from matrices to obtain texture features. A similar approach is
presented in the sum and difference histograms method |44|. Here, similar features
are computed from one-dimensional histograms containing the sum and difference
of pairs of pixels at a given displacement. Another approach in this category is the
statistical feature matrices method |45|, where three matrices of contrast, covariance,
and dissimilarity are directly computed from the texture images. Each entry in a
matrix contains the corresponding feature computed at different displacements. In
this case, the feature vector is directly formed using all the entries of the matrices.

Stochastic models such as Markov random fields or Gibbs random fields have also
been used to extract texture features [46 49|. These approaches consider textures
as different realizations of random processes. The features describing each texture
are the parameters of the model which is supposed to generate the given texture.
There are some difficulties with these methods such as how to chose an appropriate
order for the model. Recent works have extended these methods to multiresolution
approaches [50].

The mathematical morphology approach looks for spatial repetitiveness of shapes
in an image using structure primitives. These structuring elements usually consist
of some simple shape, such as a square or a line. When a binary textured image
is eroded by a structuring element, texture properties are present in the eroded
image |51|. Different structuring elements are applied to the textured image and the
number of pixels with unit value in the eroded image is counted. These numbers
are used to form a feature vector that characterizes the texture. Also, another
morphological texture description was derived by using the size distribution of a
sequence of opening and closing granulometries [52]. The mathematical approach
to texture is often successful in granulated materials, but its performance is reduced
significantly in other texture types.

Another alternative for texture description is to measure its fractal dimension
[53]. This approach was first introduced for modeling natural scenes [54]. It was
reported that the fractal dimension correlates very well with a human assessment
of surface roughness. Its main advantage lies in the fact that the fractal dimension

is invariant to scale an to linear transformation of data. Nevertheless, the fractal
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dimension on its own is not able to give complete description of natural textures.

Another category of texture characterization methods is based on features com-
puted from the power spectrum of the image. A two-dimensional power spectrum of
a texture image often reveals texture periodicity and directionality. A coarse texture
tends to generate low frequency components in its spectrum, while a fine texture
have high frequency components. Stripes in one direction cause the power spectrum
to concentrate near the line through the origin and perpendicular to this direction.
These methods [55,56] usually perform well in textures showing strong periodicity,
but performance deteriorates when periodicity weakens.

In recent years, wavelet theory has become an important framework for multi-
scale and texture image analysis [57,58]. In general, the wavelets transform an image
into a low resolution image and a series of detail images. The low resolution image
is obtained by applying iteratively a low pass filter to the image, while the detail
images are obtained applying a high pass filter at each step. The original image is
blurred at each iteration, and the information lost during each operation remains in
the corresponding detail image. Features such as the energy or mean deviation of
the detail images are the most commonly used for texture description [59 62].

Finally, another approach to texture characterization is the multi-channel spatial
filtering. Here, the methods try to imitate the behavior of the human vision system.
There is evidence that texture discrimination in the human vision system is achieved
by means of a set of parallel channels, each tuned for some specific feature. Each
channel performs a specific spatial filtering operation. Therefore, the human visual
system can be modeled as a set of spatial filters. The most common families of
spatial filters are the Gabor filters 63,64 and the local Discrete Cosine (DCT) and
Sine (DST) Transforms [65,66]. Gabor filters are basically directional filters, and
are therefore appropriate for strongly oriented textures. On the other hand, from
a theoretical point of view, local DCT and DST have better discriminatory power
than Gabor filters for randomly oriented textures. However, they are not tunable

and they cannot be used to capture some specific texture properties.
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2.1.3 Colour and Texture

Colour-texture representation is a current topic in computer vision. Although both,
colour and texture, are quite important properties of surfaces these two visual fea-
tures have been usually studied separately. The study of colour-texture representa-
tions has received increasing attention in recent years.

The objective of many works have been to find co-join representations of spatial
and chromatic information which capture the spatial dependence within and be-
tween the spectral bands. One of the most frequent approaches is the construction
of a feature vector mixing grey level texture features and colour features |67, 68|.
Another approach is to extend classical texture models, such as Markov random
fields and the autocorrelation function, to deal with multichannel images [69, 70].
Other works convert RGB values into a single code from which texture measure-
ments are computed as a grey scale image [71|. Spatio-chromatic representations
are computed in [72,73] over the smoothed Laplacian of image. Also, the structural
tensor that is commonly used to represent local texture properties is extended to
colour images in |74].

Finally, there are some works that have been influenced by known perceptual
mechanisms of the human visual system. Here, the iteration of colour with spatial
frequency of the coloured patterns is considered [75,76]. These works take into
account important conclusions from psychophysical experiments on colour texture
interaction [36,77 80|. They introduce a perceptual mechanism in order to simulate
the colour assimilation phenomenon of the human visual system. This phenomenon
consists of a spatial blurring of the colour representation when looking at colour
textures with high spatial frequencies.

Other works present a complementary operator to simulate another phenomenon
of the human visual system, the colour contrast, which appears when looking at
colour textures with low spatial frequencies [4,81,82].

In this thesis, the proposed method for the purpose of surface grading uses sta-
tistical description representing colour and texture properties. Colour and texture
are joined by creating feature vectors collecting global image statistics of both prop-

erties; mean, standard deviation and histogram moments. These global statistics
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are computed separately in each channel of perceptually uniform colour spaces (CIE
Lab or CIE Luv). We name this approach soft colour-texture descriptors method be-
cause it uses the less complex texture and colour descriptors known in literature [29].
This assertion is even more acceptable if we revise the classical approaches to texture
description mentioned above. In fact, surface grading is not a complex problem of
colour-texture recognition but differentiation. In Chapter 5 is demonstrated that soft

colour-texture descriptors are powerful enough to well discriminate surface grades.

2.2 Surrey works on surface grading

Since 1995 a group of people, mainly from the Image Processing Group at the
Electrical Engineering Department of the University of Surrey (UK), have been
working in the area of the automatic inspection of defects and surface grading of
ceramic tiles. Professor Maria Petrou has been the nexus and driving force behind
all these works |2, 3,83-94].

From the point of view of the surface grading question, the interesting part of
the work is mainly that done by Boukouvalas et al |2,3,83-85,89|. At a first stage
they proposed using the differences between colour histograms to solve the prob-
lem of shade grading (surface grading) of multi-coloured textured surfaces (random
pattern surfaces) [2,3]. However, colour histograms are very inefficient in terms
of memory requirements. A colour image acquired in RGB normally need 8 bits

22*memory positions) are

per colour channel at each pixel, so therefore 16Mbytes (
needed to store one colour histogram. However, in real images colour values tend
to be clustered around just a few locations. For instance, the image of a ceramic
tile may occupy only 80.000 different locations (234Kb). Apart from being highly
demanding in memory, this approach is computationally intensive because in order
to compare two histograms we have to parse all memory locations.

To save memory space and computational costs, they used the binary tree struc-
ture to store the colour histograms. A binary tree is defined as a finite set of elements

(nodes) which either is empty or consists of a root (node) with two disjoint binary

trees called the left and the right subtrees of the root |95].



2.2. Surrey works on surface grading 18

Figure 2.3: Ordered binary tree.
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Binary trees are frequently used to represent a set of data whose elements are

retrievable through a unique key (value). If a tree is organized in such a way that
for each node all values in the left subtree are less than the value of the parent node,
and those in the right subtree are greater than the value of the parent node, then
this tree is called ordered binary tree or search tree (see Figure 2.3). A search of a
value in a tree of n elements may be performed with only log n comparisons, if the
tree is balanced.

When a colour histogram is stored in a binary tree, the value of a node is a
particular RGB value. This is converted to a 24 bit-integer by concatenating the R,
G and B bytes. Each node also contains the number of pixels with the same RGB
value (repetitions). Therefore, only RGB combinations that exist in the image are
inserted in the tree, and the searching for existing nodes is very efficient.

They chose colour histograms because they are invariant to translation and rota-
tion about an axis perpendicular to the image plane, and change only slightly with
changes of viewing angle of view. In addition they are invariant to the exact spatial
distribution of the coloured pixels. This property is desirable when dealing which
random pattern surfaces, as often happens when dealing with ceramic tiles.

To perform the surface grading they compared the similarity (or dissimilarity) of
ceramic tiles by comparing the similarity of their colour histograms. The histograms
can be viewed as distributions, and, in statistics there are several methods to com-
pare two distributions [96]. They used the chi-square test and the linear correlation

coefficient.
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The chi-square statistic is defined as

)2
X2 :Z (Nzn'm)

where N; is the number of events observed in the ith bin, and n; is the number
expected according to some known distribution and the sum is over all bins. A large
value of y? indicates dissimilarity between the two distributions.

When comparing two binned data sets, with the same number of data points,
the equation adopts a different form. Let R; be the number of events in bin i for
the first data set, let S; be the number of events in the same bin for the second data

set. Then the chi-square statistic is

=) =S5y
- R, +S;
The linear correlation coefficient is another test which measures the association

between random variables. For pairs of quantities (z;, y;), i = 1, ..., N, the linear

correlation coefficient r is given by

r— il —2)(yi — 9)
\/Zz($1 — ) \/Zz(yl — )

(2.1)

where Z is the mean of the x; values and ¥ is the mean of the y; values.

The value of r is always in the range [-1, 1|. The correlation is called positive
or direct correlation when y tends to increase as z increases. If y tends to decrease
as ¢ increases the correlation is then called negative or inverse correlation. A value
near to zero in equation 2.1 indicates poor linear correlation between the variables
x and .

Some experiments were done to test this approach. The ground truth was formed
by three different models previously graded by human operators. For each model
there were three different grades, and for each grade there were approximately seven
samples or tiles, nearly sixty-three samples in total. Prior to colour grading, the

data was spatially and temporally corrected in order to compensate the non-uniform
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response of the illuminating system [2,83].

Some graphics showing model clustering when using the chi-square and the linear
correlation coefficient tests were provided. They deduced from these graphics that
the performance of the method was consistent with the colour grading of human
experts, but they did not provide accuracy results. The linear correlation coefficient
was finally chosen to measure similarity between histograms because it keeps the
histogram differences within a well defined range. This makes it possible to select

thresholds to define new surface grades.

Perceptual correction for colour grading using sensor transformations and

metameric data

In a second stage they improved the method by applying two perceptual correc-
tions. The first perceptual correction consisted of approximating the colours per-
ceived from electronic sensors to the human perception using metameric data [2,84|.
They reasoning behind this was as follows. All the colours that can be perceived by

a given observer can be computed using

C1 = piquion + paqiaces + ... + Pnq1nCln
Cy = p1gai10n + pagaacis + ... + Pn2nin (2.2)
C3 = pi1gzion + pagzas + ... + PnQ3n0n

where (C1,Cy,C3) are the tristimulus values forming the colour, p; i = 1..n
represents the spectral reflectance of a surface, a; i = 1..n is the spectral power
distribution of the illumination, and (g4, ¢2;, g3;)? = 1..n are the spectral sensitivities
of the observer’s sensors. The spectral range (the visible spectrum) is sampled in n
equidistant positions.

From 2.2 it is deduced that, under a given illuminant, the observer will record the
same tristimulus values for many different materials (surfaces). This phenomenon
is called metamerism. Metameric colour stimuli are colour stimuli with the same
tristimulus values but different spectral radiant power distributions. That is to say,

they have the same spectral distributions that yield the same colour for a given set
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of sensors (observer). Metameric colour stimuli are referred as metamers.
Two metameric colour stimuli (p1, pa, ..., pn) and (py, py, ..., p,), must satisfy the

following equations:

P1q11001 + P2qraQio + ... + PnGinCn = P;qnal + /3/2%20&2 + o + PlnChnOén
P1q2101 + P2gaaio + ... + PnGonCtn = Pl1€121a1 + PIQQ22042 + . + P;@C_I2n04n
P1q3101 + P2g3ai + ... + PnQ3n0n = P/1€I31a1 + P,QQ32042 + . + PInC_I:snOén

As the human eye (human observer) has different spectral responses from the
electronic sensors, different materials will appear as having the same colour to the
human eye and other different materials will appear as having the same colour to the
electronic sensors (the camera). They tried to correct this effect by introducing a
perceptual correction in the system. The term ’perceptual’ is referred to the attempt
of making the system work as close as possible to the human vision system.

In equation 2.2, if the observer is changed, we obtain the tristimulus values
(C},Cy,C3) that the new observer would record for the same surface, under the
same illumination. And that is the aim, to compute the colour not from the point

of view of the electronic sensor but from the point of view of the human eye.

Cy = p1a1101 + patips + oo+ Py,
Cy = pras 01 + Pagar0s + oo+ Prlio, On (2.3)
Cy = P13y 1 + PadisnQa + oo + Prlls, On

Ideally, by solving equations 2.2 (electronic sensors) for (p1, pa, ..., pn) and substi-
tuting them into equations 2.3 it would be possible to find the stimuli this particular
coloured surface would create to the second observer (human eye). However, system
2.2 is an under-determined system as in general n is much greater than 3 (typically
n — 31). They solved this problem by assuming that they were interested only in a
small subspace of the colour space which is coherent with the colour grading applica-
tion (low changes in the colour appearance). They assumed that the transformation
between the projections of two different sets of sensors was locally linear and could

be expressed by a unknown 3x3 matrix 7. This matrix represents the relation be-
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tween the two observers. The way they used to compute the 7' matrix was to use
pairs of corresponding triplets (C7,CJ,CJ) and (9, cd, Cgl) for j =1,2,...,m and
m > 3. The elements of the transformation matrix were determined in the least

square error sense by solving the following system of equations using singular value

decomposition:
cy o ooy cr Gy G
v 2, . ) ) ) tir ti2 ti3
c; C§5 C; c; ¢35 Cf
= to1 toa to3
, , , t31 32 133
cyrooyr oy oy oy of

They known the tristimulus values (C7,CJ, CJ) acquired by the electronic sen-
sor (camera’s CCD), but the tristimulus values corresponding with the human vi-
sion system where unknown, and could not be computed because the reflectance
functions (p1, pa, ..., pn) were also unknown. Therefore, in order to determine the
transformation matrix, they had to find a way to generate metameric reflectance
functions, and they made it by using the Monte Carlo Method for generating syn-
thetic metamers |1].

They did experiments with several sets of ceramic tiles (tile models) previously
graded by human operators. Each model had three different grades or surface classes.
They first extracted the transformation matrices for each set and then moved the
colour data to the CIE Lab colour space. Then, for each model, they plotted the
mean CIE Lab colour of each tile in this 3D colour space. The results showed better

interclass distances of the clusters (grades) after the sensor transformation.

Perceptual correction for colour grading of random textures

The second perceptual correction was to simulate the spatial blurring which
occurs in humans when we look texturized surfaces [2,85]. To do so, they first
removed the spatial blurring introduced by the electronic sensor, and then converted
the data to a pattern-colour separable space (opponent-colours space), where they

introduced blurring emulating the way the human visual system perceives colour
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texture. The data was finally converted to a perceptually uniform colour space
(CIE Lab), where the colour grading was performed. They reasoned as follows:

Every imaging system introduces some kind of degradation to the data it captures
and a common phenomenon when dealing with fine textures is the spatial blurring
that the imaging system introduces in the data. This phenomenon can be quantified
in terms of how spread a point source appears to be when its image is captured.
This is expressed by the point spread function (PSF) of the system. In order to
remove this spatial blurring there are various image restoration techniques which
rely on a priori knowledge of the PSF.

The degradation process is modeled by a function h(a:,y,x/, y/), which together
with an additive noise v(z,y) operates on an input image f(x,y) to produce a

degraded image g(z,y):

glo,y) = / / W, y,o gy ) dy + (e, y)

Image restoration is the process of obtaining an approximation to f(x,y) given
g(z,y) and some knowledge of the degradation process in the form of the function
h(z,y, z, y,). In the absence of noise the degraded image of a point source described
by f(z',y) = 6(z' —a,y — ) would be given by h(z,y, a, 3). Therefore h(z,y, o, 3)
is the PSF of the sensor, which in general is dependent on the position of the point
(cv, B) in the ideal picture.

The PSF can be computed from an image with sharp lines or step edges. In
order to derive the PSF of the electronic sensor, they used an special chart with
many edges and various known orientations. After obtaining the PSF they restored
the image by using Wiener filtering [96,97|.

The process mentioned above is done to remove the spatial blurring introduced
by the electronic sensor. In order to introduce the perceptual correction, the restored
data should be spatially blurred in agreement with the blurring of the human vision
system. In [98] experiments with human subjects indicate that the change in colour
appearance with spatial-frequency can be explained by assuming that signals from

three opponent-colour mechanisms are scaled by a gain factor that depends on the
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local spatial frequency content of the image. In this respect, Zhang and Wandell
proposed an extension of the CIE Lab space, based on a pattern-colour separable
transformation, called Spatial CIE Lab (S-CIELAB) [36].

The image is then initially transformed from the CIE XYZ space to the opponent-
colours space, where the three channels represent luminance, red-green and yellow-

blue. The transformation is defined by:

O, =0.279X +0.72Y — 0.107Z
Oy = —0.449X 4 0.29Y — 0.0077Z
O3 = 0.086X — 0.59Y + 0.501Z

Then the data of each channel are filtered by two-dimensional spatial kernels,

defined as the sum of some Gaussian functions:

_Z x—l—y)

where m is 3 for the luminance channel, and 2 for the chromatic channels and w;
and o?; are some parameters. w; and o2; values were determined from psychological
measurements of colour appearance on human subjects |36].

Finally, the blurred data are transformed back into CIE XYZ colour space and
from there to CIE Lab colour space.

Grading experiments were performed using the comparison between colour his-
tograms after transforming image data by means of the perceptual correction dis-
cussed above. The tile sets used in previous experiments were then re-graded intro-
ducing the new perceptual correction. The results showed better interclass distances
of clusters (grades) after the perceptual transformation. They used the minimum
interclass distance and the Bhattacharyya distance to compile interclass data before
and after the correction.

In all the works there is no study about the real-time compliance in order to en-
sure inspection of all tiles at factory rates. Also, there is no quantitative information

about the accuracy of the approach.
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2.3 CVC works on surface grading

The CVC is the Computer Vision Centre of the Autonomous University of Barcelona
(Spain). Several works in relation to an specific type of ceramic tile, the polished

porcelanic tile, were carried out between 1998 and 2002 |4-7,99].

Baldrich et al

Baldrich et al [4,5,100] made a perceptual approximation based on the use of
discriminant features defined by human classifiers at factory. They mixed colour and
texture information by means of local and global measures. They did not propose a
general texture colour representation. They dealt only with textures formed by the
non-oriented coloured-blobs randomly distributed on the polished tiles. The features
were mainly related to grain distribution and size, thus, the method includes grain
(blobs) segmentation and features measurement.

First, some human-defined characteristics for the task of surface grading, were

compiled at factory:

e Fine-grained vs. coarse-grained: defines the size of the grains.

Opened grain vs. closed grain: measure of the distance between grains of the

same size (density factor).

Light vs. dark grain colour: colour properties of a specific type of blob.

Light vs. dark background: colour properties of the background.

Light vs dark global colour: colour properties of the overall colour impression.
That characteristics were translated to the following global and local features:

e Global colour mean.

e Global colour standard deviation.

e Global mean colour of each type of blob.

e Global area of each type of blob.
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e [.ocal mean area of each type of blob.

e Local standard deviation of the area of each type of blob.

In order to compute this features, the coloured blobs first had to be segmented and
this was performed using a supervised clustering approach. They used the K-means
algorithm introducing an approximate rgb value for each colour center (each type of
blob). The clustering was performed over the RGB space considering the Euclidean
distance between rgb positions.

For the classification stage they used a discriminant analysis (Fisher discriminant
functions) to select the prototypes providing the maximum discrimination ratio from
a set of learning samples. With Fisher’s approach no a priori knowledge of data is
needed and it is able to select the best representation maximizing the ratio between
the inter-class covariance and the intra-class covariance. A linear transform W is ap-
plied over the feature vector z of a particular image obtaining a new representation;
y = W'z, in a new space where discrimination capability has been maximized.

The linear transformation W that optimizes the discrimination is obtained by
computing the most significant eigen vectors of the matrix S15,, assuring maxi-

mization of the following ratio:

WtS,w
WtS,w

where Wstands for the transpose of W, S,, is the within data sparse matrix and

the S, matrix is the between class sparse matrix. They are defined as:

Su=3" 3 (o — p)an — i)

i=1 zpe{Li}
Sp=">_ Nilps — p) (s — )’
=1

where ¢ is the number of possible classes and {L;} is the set of vectors that are
used as learning samples in the ¢ class. p; is the mean vector of the samples of the

1 class, N;is the number of learning samples in the ¢ class and p is the global mean
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vector.
From an image of a given tile the feature vector x is extracted and it is assigned

to the j class if
Wiy — Wtuj} < ’th — Wt,ui} Vi # j

where p; are the prototypes of the classes.

In order to remove spatial and time variations on the image data which occur
under non-constant illumination, they introduced a diagonal transform. This was
a simple diagonal matrix model. It was computed using a white pattern image
acquired periodically. The spatial distortions were modeled using a set of diagonal
transforms {S,}, one 3x3 matrix for each position z along the x axis where the
spatial variation occurs (they used a scan-line camera). Light variations due to time
were corrected in a similar way. A set of diagonal transforms were calculated {77 }.
This set models the distortions at time t; referring to instant t,. The final set of
diagonal transforms {D%} were Dl = S, T%.

They also introduced a perceptual correction based on the induction phenomenon.
This phenomenon is divided in two types: chromatic assimilation and chromatic con-
trast. The first one implies a change in the perceived chromaticity of a given stimulus
towards the chromaticity of its surround, whereas in the second the change is in the
opposite direction. Chromatic assimilation was measured using a psychophysical ap-
proach of colour appearance on human subjects [36]. This approach has been used
also, in Boukouvalas’ works [2,85] and other computer vision frameworks |75, 76].

Chromatic contrast is the complementary mechanism of the assimilation that
takes chromaticities of regions with spatial low frequency. They defined an operator
that enhances differences in transitions between lower frequency colour regions. The
final goal of this operator was to produce a sharpened image for a better segmenta-

tion of texture blobs. They used a standard sharpening filter:

SC(Iu ’7) =1I.— ’sz(IC)
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where I, is the c-th channel of a colour image I of dimensions NaM, V*(I.)
is the Laplacian of the image channel ¢ (V2(I) = §°I/0x* + 0°I/0y*) and 7 is a
constant that controls the amount of enhancement. This process is done for each
channel. Nonetheless, the Laplacian operator is very noise sensitive and in order to

avoid this problem the Laplacian of a Gaussian (LoG) is used.

Se(1,v) =1.— LoG(I,)

1 2 2 22402
LoG(I,) = — [1 _ M] 2ty

—_— € 20
mot 202

where the LoG(I) expression is centered on zero and with a Gaussian standard
deviation o.

What they finally used was a modification of this common sharpening operator.
Instead of operating in the RGB space they operated in the opponent space [92]
which provides more perceptual approach. Also they fit the operator output in the
neighborhood range of the input pixel. The expression of the new operator T is as
follows:

T(I)V,w = RGB(S(Opp(I), 7)max(],w))

min(I,w)

where the superindex and subindex maxz(I,w) and min(/,w) are the maximum
and minimum range for each pixel inside the neighborhood w.

They tested these algorithms with a set of six different tile models and 47 classes
(surface grades). The universe of samples was composed by 514 tiles. Each sample
was divided in three regions which finally resulted in 1542 images. One third of
the images were randomly selected for the training set and the remaining images
were selected for the test set. Average accuracy results were around 94% without
applying the perceptual sharpening correction and 99% when this correction was

applied [4].

Lumbreras et al
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Lumbreras et al [6,7,99] developed an approach to surface grading based on
multiresolution features. They combined colour and texture information through
the multiresolution decomposition of each space channel in order to take as feature
vector the energies and cross-correlations of the coefficient images. However, this
simple approach could be used in many different ways depending on several decisions:
the multiresolution decomposition scheme, the number of decomposition levels, the
space for colour representation, and finally, the classification features to be computed

from the decomposition. For each section they chose several options.

e Colour spaces: colour to gray conversion, raw RGB direct from the camera and
frame grabber, Ohta colour space [102] (generic Karhunen-Loéve transform),

and Specific Karhunen-Loéve transform.

e Decomposition schemes and bases: multiresolution analysis with Mallat’s al-
gorithm [58], A trous algorithm [103], wavelets packets [104]. Mallat’s anal-
ysis and wavelet packets were performed with Daubechies orthogonal bases,

whereas a trous decomposition used B-spline bases.

e Features: only the energy terms, all correlation signatures between decomposi-
tion levels but only within the same channel, and all the correlation signatures

between channels but only within the same level.

For the classification stage they used the same approximation used by Baldrich et
al. They did experiments to test the different multiresolution approaches. Sam-
ple universe comprised three models of polished porcelanic tiles. Each model was
divided into eight classes or grades according to the grading operators at factory,
each class contained 15 tiles. Also, two 512x512 images were captured for each
tile, corresponding to the middle part of the upper and lower half. Thus, in total
720 samples. One third of these samples were selected for the training set and the
remaining conformed the test set.

The results showed that no improvement in accuracy was achieved by using Otha
and specific K-L colour spaces. The best results for the three models were achieved
using the RGB colour space and the correlation signatures between channels only

within the same level. In this case, the accuracy in average was 92.7%.
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Baldrich and Lumbreras did not study the real-time requirements of the final
system at factory. Although real-time compliance was not studied, both methods

seem to have significant computational costs.

2.4 Oulu works on surface grading

In the area of wood inspection, a set of works have been delivered (1999-2002) from
the Machine Vision Group of the University of Oulu (Finland) |1,10-12,105-109].
In this case, the grading of lumber boards and parquet slabs is not related with the
overall texture and colour appearance of the surface. The grade of the wood piece
is assigned by detecting the wood defects (mainly knots) and then applying grade
rules related to the number and types of defects found in the inspection process [1].
Therefore, from the computer vision point of view, the problem becomes a question
of separating the surface into sound and faulty wood, and then classifying the defects
into different types.

They focused on techniques oriented to the detection of faulty and non-faulty
areas, choosing a non-segmenting approach in the sense they were not interested
in a fine segmentation of defects. In the approach, images are splitted into non-
overlapped rectangles which afterwards are classified as faulty or non-faulty. This
coarse approximation is sufficient for the purpose of the grading task which is much
closer to a global study of the appearance than an accurate splitting of the regions
[11].

Kauppinen started the approach to the problem using only colour information
derived from the percentile features of the RGB histograms [1,11]. The percentiles,
also called centiles, are calculated from a cumulative histogram Cy(z), which is
defined as a sum of all the values that are smaller than x or equal to x in the
normalized histogram Py (z), corresponding to the colour channel k. Finding a
value for a percentile involves finding the x when Cjy(x) is known, thus, requiring an

inverse function of Ci(z). If we denote the percentile feature with Fy(y) then

Fo(y) = Cil(y) ==
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where y is a value of the cumulative histogram in the range [0%,100%].

In the classification stage they used feature vectors composed of selected sets of
plain percentile features and differences of two percentile features either from the
same colour channel or from two different colour channels.

First experiments for testing the method were carried out with 150 images of
beech wood slabs used for training and 360 images used for grading test. To evaluate
defect detection and defect recognition (classify the fault within defect classes),
rectangular samples were collected from the training areas. The number of samples
obtained from the training areas was 26855, 16027 of sound wood and the remainder
including some kind of defect (15 classes of defects).

A set of 117 colour percentile features was calculated for the training samples.
A feature selection algorithm was used to reduce the number of vector components
keeping the best features for defect detection and recognition. The well-known k-NN
method was used for classification [30]|. Defect detection achieved a performance of
96%, whereas performance dropped to 80% in defect recognition. Finally, a grading
experiment was done using the non-segmenting method together with two different
sets of grading rules (UO and DTU rules). The grading performance was around
72% in both cases. This results were bellow factory requirements of a minimum
grading accuracy of 85%.

After this first approach, Niskanen, Silvén and Kauppinen continued the work
including texture properties [105,106]. They extended the method using the Local
Binary Pattern (LBP) texture operator, previously introduced by their colleagues
Ojala and Pietikiinen [108,109]| (see Figure 2.4). The original 3x3 neighborhood
is thresholded by the value of the center pixel. The values of the pixels in the
thresholded neighborhood (Figure 2.4b) are multiplied by the weights given to the
corresponding pixels (Figure 2.4¢). Finally, the values of the eight pixels are summed
to obtain the number of this texture unit.

In this case, for the classification task they chose a neural network based on a
Self-Organizing Map (SOM) algorithm which is used to visualize and interpret large
high-dimensional data sets by projecting them to a low-dimensional space that has

typically one or two dimensions [110,111].
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Figure 2.4: Computation of local binary pattern (LBP).
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For the experiments they used a test material consisting of pine boards. The size
of the detection SOM was 22x18 nodes. The feature sets used in the test consisted
of colour centiles and LBP values. The region size was 40x40 pixels because they
found it gave low error rates for the test material. Defect detection accuracy was
95% whereas defect recognition was 91%.

Kyllonen and Pietikdinen [12] also combined centile and LBP features but they
used a different approximation for classification. They combined the centile and
LBP features in one measure of distance and then used the k-NN classifier. For the
centile features they used the Euclidean distance in the feature space, and for LBP
they used a log-likelihood measure to compute the dissimilarity (distance) between

sample and reference histograms!.

N-1
L(S,R) == _ S,InR,
n=0

where N is the number of bins. S,, and R,, are the sample and reference proba-
bilities of bin n.

They joined these distances by simply adding them. Prior to this both distances
were normalized using:

dma:c davg

d

1Using LBP there are 2% possible combinations of texture numbers. Thus, texture description
of a region can be collected computing its LBP histogram.
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where d,in, dimae and dg,g are the min, max and average values of all the distances
found in the training set.

For the experiments they used the set of samples collected by Kauppinen [1,11].
The accuracy for defect detection was 97% and 88.4% for defect recognition, which
is an improvement on the results first obtained by Kauppinen (96% and 80%).

We can conclude that the inclusion of texture features, derived from the LBP
operator, significantly improved the results of defect recognition but not defect de-
tection. This is to be expected if we take into account that the success ratio using
only centiles was very high (96%) for defect detection.

Finally, Niskanen, Kauppinen and Silvén completed these works presenting a
study of the real-time aspects of the SOM-based inspection [107|. They focused
on the classification stage because they detected it was the bottleneck in real-time
inspection. More specifically, they studied how to accelerate the nearest vector
search of the SOM code. Some existing methods to accelerate the search were
tested; partial distance search (PDS), annulus testing (AT), sum of components
(SOC), dynamical hyperplanes shrinking search (DHSS), tree structure SOM (TS
SOM). And also they tested two own methods; mean tree (MT) and focused sparse
search (FSS). It was concluded that the optimal method was the DHSS, which limits

the search in the most discriminating direction.

2.5 Other minor works

Penaranda et al [8,9], like the CVC group, developed a surface grading application
for a specific type of ceramic tile, the polished porcelanic tile. A porcelain tile is
made up from a mixture of several proportions of grains of different colours and
sizes, having the visual appearance of a random texture. Their approach consisted
of calculating the histogram of each colour channel in the RGB space. Then, they
used the first and second moments of each histogram (average and variance) as
colour and texture features respectively. This simple approach with an in-depth
study of the inspection system permitted them to fulfil the real-time requirements

of on-line inspection. No accuracy results were provided, but, as far as we know,
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the system is installed and working at the factory for which it was developed.

Lebrun and Macaire [13] dealed with the surface grading of tiles extracted from
the Portuguese marble Rosa Aurora. They used four attributes to differentiate
between surface classes. The first was the predominant colour which corresponds
to the background colour. The mean colour of each channel in the RGB space was
used to measure this property. To compute the mean they only used the half of the
image pixels located around the largest colour histogram mode. Second attribute
was marble vein density. This was obtained by calculating the relative area of veins.
To do so, the veins had to be segmented from the background. This was performed
by using a simple, automatic threshold operation in the luminance channel, the
maximum entropy threshold [112]. The third attribute was vein colour which was
represented by the mean colour the veins. The final characteristic involved vein
contrast. The contrast was measured calculating the mean gradient in an edge
image of veins [113]. They achieved good results classifying nine selected samples
correctly. However, they used an approximation so related to the properties of the
Rosa Aurora marble that is difficult to extrapolate the method to other surface
types.

Kukkonen et al [15,16] tested the use of accurate spectral colour representation
to grade ceramic tiles. They used a spectral scan-line camera [114] manufactured
by SPECIM (Spectral Imaging Ltd). The spatial scanning resolution was of 97 lines
per tile, and the spectral resolution was of 237 channels from the range of 451 nm
to 700 nm (a bandwidth of 1.05 nm per channel). A spatial resolution of 330 x 97
pixels was used, having each pixel a rectangle size of 0.85 mm x 3.18 mm. Therefore,
the colour representation of each pixel was a vector composed by 237 equidistant
samples in the visible light spectrum. For the classification stage they used a neural
network called the Self-Organizing Map (SOM) [110|. The spectra vectors of tiles
were the input data for the neural network. They did experiments with five classes or
grades of a brown tile model. In each class there were five tiles, 25 samples in total.
Three tiles of each class were used to train the neural network and the remaining
tiles for testing. An accuracy rate of 70% was achieved with this method. They

also did experiments using only the RGB mean colour of each tile and the k-NN
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classifier. In this case, the percentage of success rose to 90%. The spectral method
did not achieve good results. Furthermore, spectral images have the drawback of
producing great amounts of data for processing which is not suitable for real-time
requirements.

Fernandez et al [14] studied the surface grading of granite tiles originating from
the Rosa Porrino variety located in Galicia. They only used colour information to
discriminate between surface classes. The basis of the method were the histograms of
each RGB channel and a simple measure of histogram similarity; the sum of absolute
differences of each bin-pairs. They carried out some experiments with a small set
of samples (only six tiles with three surface classes). No accuracy information was
provided but in the paper they admit that texture information would be necessary

to improve the results.

2.6 Conclusions

Many works on the issue of surface grading have been reported in recent years, but
many of them were very specialized in a specific type of surface, others did not
achieve good enough accuracy, and yet others did not take into account the time
restrictions of a real inspection at factory. As a result, we think surface grading is
still an open issue where more contributions are possible. In this sense, the present
thesis deals with some less explored aspects in terms of real-time compliance and
surface grading performance.

From the literature review we can deduce that there are no extensive experiments
of grading performance in the area of ceramic tiles. Only for a specific kind of
ceramic tile, the polished porcelanic tile, have there been extensive studies of grading
performance (CVC group and Penaranda). There is only one work dealing with
generic surfaces (Surrey group) but they used only surface colour property, and no
accuracy study was given.

The Oulu group carried out a large work in the area of wood inspection, but this
work focuses more on separating good and faulty wood areas than on accomplishing

the grading task. Grading results are not sufficiently good. Other minor works deal
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with very specific types of surfaces such as Rosa Aurora marble (Lebrun) and Rosa
Porrino granite (Fernandez).

We can also see that there is a lack in the literature of real-time compliance in
the methods. Only two works pay attention to the time requirements of factory
production lines (Pefiaranda and Oulu group).

In our work, we focus on the ceramic tile industry where there is a large demand
for automatic grading. As far we know, we present the most extensive study of
surface grading performance in the area of ceramic tiles. We use the VxC TSG
image database which is a wide representation of a typical factory catalog with
many types of surfaces, such as imitation marble, imitation granite, and stone.
Both, texture and colour properties are used to successfully discriminate surface
grades. In addition, we present an in-depth study of real-time compliance. The
real-time approach is based on the use of features with low computational cost and

parallel processing techniques.



Chapter 3

VxC TSG image database

In this chapter we present the VxC TSG image database (VxC Tiles for Surface
Grading). Building this database has been one important goal of the present thesis.
The VxC TSG is based on samples taken from the ceramic tile industry and is
comprised of 14 ceramic tile models, 42 surface grades and 960 pieces. It was built
in the VxC laboratory in collaboration with Keraben S.A. and is an extensive image
database of ceramic tiles representing the wide range of surface classes in the ceramic
tile industry. VxC TSG is the ground truth used in the experiments of Chapters
5 and 6, and is also intended to be a tool for the scientific community working on
surface grading. It is public and available at miron.disca. upv.es/vision/vrctsg /.
Before describing the image database itself, we describe the acquisition system
used to capture the digital images of tiles. We also present a study of the uniform
response of the system through time and space. This study is a subgoal of thesis
work. Spatial and temporal uniformity are of great importance in order to ensure
surface grading performance |2-5,9,83|. Slight changes in illumination or acquisi-
tion conditions can easily produce different grades for the same surface and then
misclassifications. In order to overcome this problem we chose high quality compo-
nents for the acquisition system; camera, illumination, and optics. In the literature
many of the modern components were not available and system variability had to
be compensated using data transformation algorithms. Our goal in this issue has
been to demonstrate that modern acquisition components are able to meet spatial

and temporal requirements without needing any transformation of the original data.

37
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The study of spatial and temporal uniformity was carried out comparing two mod-
ern illumination systems; uniform high frequency fluorescents and arrays of white

LEDs.

3.1 Acquisition system

The acquisition system (see Figure 3.1) compromises the following high quality com-

ponents:

e One Dalsa Trillium camera ( TR-31-02k25). This is a colour scan line camera
with 3 CCDs (RGB). It provides 2048 pixels of horizontal resolution and a
maximum acquisition rate of 11kHz. This acquisition rate is more than we
need in worst factory conditions. As we use a resolution of 3.2 pixels per

millimetre only 884 lines per second are needed (see Chapter 7).
e One Nikkon optics (35mm, 1:2.0 mm).

e One Coreco-Imaging PC-DIG frame grabber with 4Mb of internal RAM and
100MB/s of PCI transfer rate. We need only 111.3 milliseconds to transfer an
image from the camera to the PC memory in the worst case (2048x1900 RGB

images).

e High frequency and uniform fluorescents (Mercrom FXC2372-2). This illumi-
nation system has two special high frequency fluorescent lamps (60kHz) with
uniform illuminance throughout its length. To overcoming variations with
time, the power supply is automatically regulated by a photoresistor located
near the fluorescents. The high frequency provides 135.8 luminance peaks for

each scanned line, thus, dark acquisitions are not possible.

e Alternatively, another illumination system formed by two arrays of white LEDs
(DCM Sistemes PRL 350). A priori, LEDs are supposed to be uniform in time
because they use constant DC power, and also they are supposed to be spatially

uniform as they are arranged in line equidistantly.
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Figure 3.1: Acquisition system.
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In the VxC laboratory there is a prototype system which is a replica of a section of
a typical ceramic tile production line. The prototype compromises a cabin integrated
in the production line as the acquisition unit (see Figure 3.2) and one PC with the
frame grabber and the 1/O card as the processing unit. This prototype with the
above mentioned components has been used to capture the digital images for the

VxC database.

3.1.1 Scan Line Camera

We chose a scan line camera with advanced properties to provide high quality ac-
quisition and overcome some common acquisition problems.

It has a 3 CCD sensor with a precisely-aligned beam-splitting prism to separate
red, green and blue inputs. Colour sensitivity is much better than using 1 CCD
camera because in 1 CCD cameras the responses on red, green and blue channels
are mixed in the same CCD.

The camera is able to calibrate itself to improve colour balance and image flat-
ness. It performs a video correction that operates on a pixel-by-pixel basis and
implements a two point correction for each pixel . This correction reduces or elimi-

nates image distortion caused by the following factors:
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Figure 3.2: Prototype at VxC laboratory.

e Fixed Pattern Noise (FPN).

Photo Response Non Uniformity (PRNU).

Colour imbalance.

Lens and light source non-uniformity.

The two point correction is implemented for each pixel on the CCD using:

Voutput = PRNU (pizel) * Vippus + F PN (pizel)

where Vi, is the output pixel value, Vi, is the input pixel value from the
CDD, PRNU (pixel) is the PRNU correction coeflicient for this pixel and F'PN (pizel)
is the FPN coefficient for this pixel.

The calibration algorithm is performed in two steps. The fixed offset (FPN) is
determined first by performing a calibration with no light (Dark Calibration). This
calibration determines how much offset to subtract per pixel in order to obtain flat
output when the CDD is not exposed. The Dark Calibration is carried out covering

the lenses or/and closing the iris to the maximum.
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White Light Calibration is performed next to determine the multiplication factors
required to bring each pixel to the required value (balance target, usually 95% of
saturation) for flat white output. The white light calibration also sets the analog
gains in the camera appropriately to balance all the channels (colour balance). White
light calibration is more complex than dark calibration because the camera attempts
to create a flat white image. This calibration corrects PRNU effects as well as non-
uniform lighting and lens vignetting affects.

White light calibration requires a clean, white reference. The quality of the
reference is important for proper calibration. White paper is often not sufficient
because the grain in the white paper will distort the correction. Usually a white

plastic reference, which is more uniform, achieves better balancing.

3.1.2 Optical lenses

The camera was equipped with a Nikkon optics (35mm, 1:2.0 mm). This is a common
high quality lens, but as with most lenses, it can be affected by two major optical
colour aberrations; vignetting and chromatic aberration [115]. At present, some
companies can supply aberration-free lenses but they are made on demand, do not
completely remove the aberrations and are very expensive.

Vinegtting is an unintended darkening of the image corners and is inherent to
the lens design. Chromatic aberration appears because common lenses refract light
differentially as a function of wavelength. Short (blue appearing) wavelengths are
refracted more than long (red appearing) wavelengths. Thus, chromatic aberrations
are introduced.

Some tests at the laboratory, carried out to prepare and calibrate the acquisition
system, showed that the vignetting affect growed as we used large openings of the
iris. We achieved images free of vignetting by using small openings in combination
with the camera calibration process. With respect to chromatic aberration, it is
inherent to the lenses and is not time or camera dependent. Thus, the chromatic
aberration introduced is constant in all acquisitions and therefore is not relevant
when we compare colour differences rather than absolute colour values, as it occurs

in surface grading application.
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3.2 Study of spatial and temporal uniformity.

Spatial and temporal uniformity is crucial to ensuring surface grading performance.
Slight changes in illumination or acquisition conditions can easily introduce different
grades for the same surface and then misclassifications. In the surface grading
literature this question has been addressed compensating the system variability with
data transformation algorithms.

In |2,3| Boukouvalas et al captured a set of images of the same plain tile in all four
possible orientations. From these images they determined the spatial variation of the
illumination by averaging the four images and fitting the data with low-order two-
dimensional polynomial. The coefficients of this polynomial were computed using
least square error fitting. Temporal variability of the illumination was determined
by capturing a sequence of images of the same plain tile next to a reference surface
over a period of time. From these images a set of points (Ig, Ir) was collected
representing the mean intensities of the reference surface and the tile, respectively.
The intensity change of the tile and the reference surface was locally described by
a linear function, the slope of this function was computed with least square error
fitting again and used to overcome temporal variability in the illumination.

In [4,5] Baldrich et al modeled the global variability of the acquisition system
including illumination and sensor affects. They developed a method based on colour
constancy techniques using a diagonal matrix model. This was computed using a
white pattern image acquired periodically. Spatial distortions were modeled using a
set of diagonal transforms {5, }, one 3x3 matrix for each position = along the x axis
where the spatial variation occurs (they used a scan-line camera). Light variations
due to time were corrected in a similar way. A set of diagonal transforms were
calculated {T?%}. This set modeled the distortions at time ¢; referring to instant .
The final set of diagonal transforms was {D%} where Dl = S, T%.

When these works were reported many of the modern acquisition components
were not available and system variability had to be compensated using data trans-
formation methods. Our approach to this question has been to demonstrate that
modern acquisition components are sufficiently stable to meet spatial and temporal

uniformity requirements without transforming the original data.
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We carried out an experiment to determine the reliability of the acquisition sys-
tem in relation to spatial and temporal uniformity. This experiment also compared
two different modern illumination systems; uniform high frequency fluorescents and
arrays of white LEDs.

For each illumination system we captured repeatedly the images of six tiles, each
one corresponding to a different model. The tiles were chosen trying to cover a wide
range of surface types and colours (see Figure 3.3). The complete set of tiles was
acquired at random moments over 54 hours. We extended the experiment over 54
hours (two days and six hours) because this is the mean period at factories when
they produce a specific model, and we wanted to study the spatial and temporal
uniformity for a complete surface grading session. In total, the set of tiles was
captured 23 times. Environmental conditions were holded constant using an air

conditioner system for temperature and a closed cabin for illumination.

Figure 3.3: Tiles used in the study of spatial and temporal uniformity. From left to
right, up to down; venice, vega, blue venice, somport, mediterranea and granito.

In order to study the temporal response we measured the mean CIE Lab colour

of each piece. And also, in order to study spatial response we randomly oriented
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the pieces in each capture. The CIE Lab is a perceptually uniform colour space and
we can measure the perceptual difference between two colours using the Euclidean
distance in this space [33]. Thus, colour differences can be measured in a very similar
way to the human perception of colours.

In [116] Mahy and Oosterlink established that in CIE Lab a noticeable difference
of colour [for humans| begin at 2.3 or greater Euclidean distances. From this asser-
tion we can consider a system sufficiently stable if there is no Euclidean distance
above 2.3 when we calculate all the Euclidean distances between the first sample and
the rest. Figure 3.4 shows the system response for each tile over the 54 hours when
using fluorescents and LEDs respectively. In the results of fluorescents there was
no distance above 2.3, and all of them remain significantly far away from this limit.
Distances using LEDs did not remain under the noticeable difference showing a clear
degradation of the system with time, the noticeable difference was surpassed after
approximately 33 hours. LEDs experiment was repeated using a better performance
power supply but again the noticeable difference was exceeded after approximately
33 hours.

The goal of this study has been to determine whether or not the acquisition
system is stable enough for the surface grading purpose. The conclusion of the
study is that uniform high frequency fluorescents comply with spatial a temporal
uniformity, while the arrays of white LEDs are not appropriate when temporal
uniformity is required. A great part of the success of fluorescents is due to the
power supply circuit which is auto-regulated taking in account emitted light by
using a photoresistor located near the fluorescents. Thus, the system can respond

immediately to illumination changes and stabilize luminous power with time.
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Figure 3.4: System response over 54 hours using fluorescents and LEDs respectively.
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3.3 VxC TSG description.

Table 3.1: Models of the VxC TSG image database.

classes  tiles/class size (cm) pattern aspect
agata 13, 37, 38 16 33x33 fixed marble
antique 4,5, 8 14 23x33 pseudo-random  stone
berlin 2,3, 11 24 20x20 random granite
campinya 8,9, 25 30 20x20 pseudo-random  stone
firenze 9,14, 16 20 20x25 random stone
lima 1,4, 17 24 20x20 random granite
marfil 27, 32, 33 14 23x33 pseudo-random  marble
mediterranea 1,2,7 30 20x20 random stone
oslo 2,3, 7 24 20x20 random granite
petra 7,9, 10 28 16x16 random stone
santiago 22,24, 25 28 19x19 random stone
somport 34, 35, 38 28 19x19 random stone
vega 30, 31, 37 20 20x25 fixed marble
venice 12, 17, 18 20 20x25 pseudo-random  marble

The image database has been built in collaboration with Keraben S.A. which
is a large ceramic tile company (2nd in Spain by total turnover) located at Nules,
province of Castellon. Together with the R+D staff we studied their catalog and
chose a set of models intended to be a good representation of the wide variety of
surface classes that factories can produce. A catalog of 700 models is common in
these companies. But, in spite of this great number of models, almost all of them
imitate one of the following mineral textures; marble, granite or stone.

Due to the way that tiles are produced there are three basic types of surface
patterns; fixed, random and pseudo-random. Fixed pattern models are produced by
impressing the fix decorative motives on to the enameled tile surfaces. This is done
through silk-screen machines. Printing rollers are used to made pseudo-random
models. The patterns on the rollers are fixed but the part of each roller that is
impressed over the tile is randomly chosen by the moment that tile begin to pass
under the rollers. For random models several techniques may be used depending on
the model to be produce. One of these techniques consists of spreading pigments

over the tile using sponges. From the point of view of surface grading purposes fixed
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and pseudo-random pattern models can be considered subsets of random pattern
models.

The database is formed by the digital images of 960 tiles acquired from 14 dif-
ferent models, each one with three different surface classes (see Table 3.1). The
classes were given by specialized graders at the factory. Every model has two close
classes and one class distant to them. Surface classes (grades) are represented by
numbers and close numbers mean close classes. Thus, the database include “difficult
to discriminate” cases in each model. The tiles were collected directly from the end
of the production line, just before the tiles are graded and packed, or from stock
stored at the factory.

Figures 3.5, 3.6, 3.7 and 3.8 show VxC TSG samples itemized by aspect. Quality
of images was improved enhancing brightness and contrast independently in every
model.

In the case of granite models there were only six tiles per surface grade. The size
of these pieces was large, 50x50cm. To increase the number of samples in these mod-
els we decided to take four sub-samples of each piece with a size of 20x20cm. This
could be done because grains and tile colour were uniformily distributed through all

the surface of tiles.
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Figure 3.5: VxC TSG marble samples. From up to down; three samples of agata,
marfil, venice and vega models, each one corresponding to a different surface grade.
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Figure 3.6: VxC TSG granite samples. From up to down; three samples of berlin,
oslo and lima models, each one corresponding to a different surface grade.
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Figure 3.7: VxC TSG stone samples. From up to down; three samples of antique,
campinya, firenze and mediterranea models, each one corresponding to a different
surface grade.
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Figure 3.8: VxC TSG stone samples. From up to down; three samples of petra,
santiago and somport models, each one corresponding to a different surface grade.

3.4 Conclusions

In this chapter we have presented the VxC TSG database for surface grading which
has been one important goal of this thesis. The acquisition system, based on high
quality components, has been described and also a study about the spatial and
temporal uniformity of the system is performed. This study has been a thesis subgoal
planned at the beginning of the thesis work. Uniform high frequency fluorescents
and arrays of white LEDs are two modern illumination systems that have been
compared from the point of view of spatial and temporal uniformity. The conclusion

of the study is that the acquisition system using uniform high frequency fluorescents
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comply with spatial a temporal uniformity, while the arrays of white LEDs do not
provide temporal uniformity. LEDs clearly degrade the system with time surpassing
the noticeable difference limit after 33 hours of use.

Finally, and extensive image database of ceramic tiles for the purpose of surface
grading has been compiled. This database has been built in collaboration with the
R+D staff of Keraben S.A. intending to be representative of the wide range of surface
classes present in ceramic tile industry. Furthermore, the database is available for the
scientific community working on surface grading at miron.disca.upv.es/vision/vctsg)/.

The VxC database has already been used partially in [130].



Chapter 4

On the search for a fast and accurate

approach to surface grading

This chapter presents the first approaches we developed to solve the question of
fast and reliable surface grading of flat pieces decorated with random patterns.
In the first works, we used image tessellation and simple local statistics of colour
to describe surface appearance. The statistics were computed in a perceptually
uniform colour space, the CIE Lab. These first works did not achieve the minimum
accuracy requested at factory ( 95% of success ratio). Finally, we proposed a method
based on global colour and texture statistics, also computed in CIE Lab. This
method achieved accuracy compliance. CIE Lab was used to provide accuracy and
perceptual approach in colour difference computation. Experiments with RGB were
carried out to study CIE Lab reliability. These approaches were tested on a medium
sized image database of ceramic tiles. This database was the antecedent of the
VxC TSG image database presented in the previous chapter. Global statistics in
CIE Lab were also compared with two other methods from the literature; colour
histograms |2, 3] and centile-LBP [1,12].

After experiments and comparison we concluded that a simple collection of global
colour and texture statistics in the CIE Lab space was powerful enough to well
discriminate surface grades. The average success rate was over 95% in most tests,
improving on the methods in the literature and achieving factory compliance. The

approach based on global statistics in CIE Lab is the antecedent of the soft colour-
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texture descriptors method developed in the next chapter. Both global statistics in
CIE Lab and soft colour-texture descriptors are basically the same method but the
latter was extracted as a result of an extensive study based on statistical tools and

VxC TSG image database. Work presented in this chapter was reported in [25,26].

4.1 Image tessellation and local Lab statistics

The methods corresponding to this section split the image into squares of NzN
pixels. For each square two simple statistics, the mean and the standard deviation,
are computed in each CIE Lab colour space channel. As we will see, this local data
is used in several ways to perform the surface grading.

CIE Lab was designed to be perceptually uniform. The term ’perceptual’ is
referred to the way that humans perceive colours, and ’uniform’ implies that per-
ceptual difference between two coordinates (two colours) will be related to a measure
of distance, which commonly is the Euclidean distance. Thus, colour differences can
be measured in a way close to the human perception of colours.

The images of the ground truth (image data base) were acquired in RGB, and
therefore needed to be converted to CIE Lab coordinates using standard RGB to
CIE Lab transformation [33].

The experiments in this section we carried out using an image data base formed
by the digital RGB images of 276 tiles acquired from five different models, each
with three different surface classes or grades (see Table 4.1) given by specialized
graders at factory. For each model there were two close classes and one distant class.
The models were chosen to represent the great variety of models that factories can
produce. Almost all factory models imitate one of the following mineral textures;
marble, granite or stone. In this initial image data base there were no models
imitating granite. This type of tiles were added latter in the global Lab statistics
experiments.

Digital images of tiles were acquired using an spatially and temporally uniform
illumination system. Spatial and temporal uniformity is important in surface grading

[1,2,4,8] because variations on illumination can produce different shades for the same
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Table 4.1: Ground truth of ceramic tiles used in image tessellation and local Lab
statistics approaches.

classes tiles/class size (cm) pattern aspect
agata 13, 37, 38 16 33x33 fixed marble
firenze 9, 14, 16 20 20x25 random stone
toscana 13, 18, 19 16 33x33 random stone
vega 30, 31, 37 20 20x25 fixed marble
venice 12,17, 18 20 20x25 pseudo-random  marble

surface and consequently, misclassification. The illumination system was formed by
two special high frequency fluorescent lamps with uniform illumination along its
length. To overcome variations through time, the power supply was automatically
regulated by a photoresistor located near the fluorescents.

The first approach based on tessellation and local statistics uses the standard
deviation to sort squares from low to high variability. Then, a simple algorithm
seeks a slope exceeding a given threshold in the sorted vector of standard deviations.
The image is divided into two regions defined by squares variability; low and high
texturized regions (see Figure 4.1). Then, the mean colour vector of both regions
are computed and used to classify the tiles. The hypothesis is that tile surface can
be divided into two general regions, one with an homogeneous aspect, and another
with a texturized aspect. Each region seems to have a different general colour and
these two colours could be enough to characterize the tile tone or grade.

The classification results are presented in Table 4.2. We used the well known
k-NN classifier [30] with k factor equal to 1 and 3. Samples were divided into
training and test sets, 30% of samples were used for training and 70% for test.
The results show better performance for CIE Lab space. The method does not
achieve accuracy compliance and also it requires two non-automatic parameters;
the standard deviation threshold and the square size. Table 4.2 only shows the
estimated values of standard deviation, but the NzN size also had to be estimated.
This parameters were heuristically studied for each tile model. This non-automatic
procedure in parameter estimation is an important drawback.

A post-study of images and square sizes revealed that in several tile models more
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Figure 4.1: First approach to surface grading based on tessellation and local statis-
tics. Sorted vector of standard deviations and image splitting into two regions using
squares variability.
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Table 4.2: Accuracy results for the first approach based on image tessellation and
local statistics.

std deviation Lab RGB

agata 0.5 97.0% 87.9%
firenze 0.5 85.7% 78.6%
toscana 1.0 75.8% 66.7%
vega 0.6 90.2% 100%
venice 1.0 88.1% 78.6%
mean 87.4% 82.4%

than two regions and mean colours could be defined in relation to colour variability
of squares. Thus, the method could be extended dividing images into more regions
using more standard deviation thresholds, but we though it would we complex and
not interesting because parameters (standard deviation thresholds and squares size)
have to be determined non-automatically.

In a second approximation, we explored the discriminant properties of the or-
dered standard deviation vector. Figure 4.2 shows the averaged vectors of the or-
dered standard deviation vectors belonging to each class (grade) of the toscana
model using 15x15 squares. Each mean vector was computed using the half of the
samples of each class. Classification was performed using the square root of the

least-square-error (LSE) as a measure of distance between test tile vector and the
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reference mean vector of each class. Thus, the sorted standard deviation vector is
used as a signature of local variability. The distances between references and test

signatures are used to determine the surface grade or class.

Figure 4.2: Second approach to surface grading based on tessellation and local
statistics. Averaged vectors of ordered standard deviation vectors corresponding to
each toscana classes with a square size of 15x15 pixels.
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This method is simpler than previous one because no threshold parameter is
needed for the standard deviation, only the squares resolution had to be studied.
This method improves the first approach but still does not reach accuracy compli-
ance. Tests using squares resolutions from 5x5 to 300x300 were performed. Table
4.3 collects the best accuracy results among the different square resolutions for each
model. RGB obtains the worst results.

An evolution of this second approach is carried out using the mean colour of
squares instead of the standard deviation to compute the distance between signa-
tures. The vector is again sorted by the standard deviation but values correspond to
the mean colour of squares. In this case, we used pure colour information plus the

variability represented by the order imposed with the standard deviation sorting.
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Table 4.3: Accuracy results for the second approach based on image tessellation and
local statistics.

square size Lab RGB

agata 80x80 95.8% 91.7%
firenze 30x30 86.7% 76.7%
toscana 30x30 83.3% 79.2%
vega 70x70 100%  100%
venice 25x25 83.3% 86.7%
mean 89.8% 86.9%

The results of this third approach are shown in Table 4.4. The method achieves
very good performance for three models but it drops significantly in the remaining
two models. After studying the visual properties of these groups of models, we con-
cluded that the fundamental difference was the variability level. Tiles are formed
by homogeneous and texturized (non-homogeneous) regions. In the first group of
models, homogeneous regions cover great areas of tiles while in the second group
texturized areas cover almost all the tile surface. In the second group, the standard
deviation values did not correlate with the mean colours of squares while they did

in the first group. Once again RGB space performed worse than CIE Lab.

Table 4.4: Accuracy results for the third approach based on image tessellation and
local statistics.

Lab RGB
agata 100%  100%
firenze  100% 96.7%
toscana 58.3% 54.2%
vega 100%  40%
venice  66.7% 76.7%
mean  85.0% 73.5%

Finally, we developed several multiresolution approaches. The idea was to use
some kind of multiresolution approach with the methods previously studied. The
image scales we used were: 1.0, 0.5, 0.25, 0.12 and 0.06. The first multiresolution
approximation is quite simple, it is a voting system. Each sample is classified in

every scale, and the final class is the most voted class out of all the scales. This
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approach is carried out using second and third previous approaches.

The second multiresolution approximation is an extension of the approach based
on the ordered standard deviation vector. We used an absolute measure, the area of
the ordered standard deviation vector (see Figure 4.3). This measure was computed
in all scales, and therefore a feature vector of 5 areas was obtained for each sample.

Classification was performed using k-NN. Experiments were carried out using only

CIE Lab.

Figure 4.3: Second multiresolution approach based on the computation of areas
belonging to ordered standard deviation vectors in several image scales.
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Table 4.5: Lab accuracy results for the fourth approach based on image tessellation
and local statistics. Multiresolution approaches.

standard mean std dev.

deviation colour areas
agata 100% 100% 100%
firenze 90.0% 100% 90.0%
toscana 83.3% 58.3% 95.8%

vega 100% 100% 96.6%
venice 86.7% 66.7% 93.3%
mean 92.0% 85.0% 95.1%

Table 4.5 shows multiresolution results. The first multiresolution approach
achieves only a slight improvement using the ordered standard deviation vector.
However, the second multiresolution approach based on the areas of the ordered stan-

dard deviation vectors performs well exceeding in 0.1% factory compliance (95%).
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In spite of the good result achieved by the second multiresolution approach, the
drawback of these methods is they need at least one parameter to be estimated for
every tile model. In next section we present a method which is parameter indepen-

dent and discriminates surface grades very well.

4.2 Global Lab statistics

This method is even simpler than the previous approaches. Here, a set of global
statistical features describing colour and soft texture properties are collected. The
features are computed in a perceptually uniform colour space, the CIE Lab. These
statistics form a feature vector used in the classification stage where the well known
k-NN method [30] was chosen as classifier.

We propose several statistical features for describing surface appearance. For

each channel we chose the mean, the standard deviation and the average deviation

ADeuv(z).

L
1
ADev(z) = 17 Z |z —m)|
i=1

wherez is the random variable, L size of the data set and m the mean value of 2
values.

Also, by computing the histogram of each channel we are able to calculate his-
togram moments. Histogram moments are considered soft texture descriptors |29].
We defined two blocks of histogram moments; one from 2nd to 5th and the other

from 6th to 10th. The nth moment of z about the mean is defined as

L
() = D (2 = m)"p()
i=1
where 2z is the random variable, p(z;), i = 1, 2, ..., L the histogram, L the num-

ber of different variable values and m the mean value of z.
The experiments were carried out using and extended image data set which

included three new tile models for polished porcelanic tiles were added (see Table

4.6).
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Table 4.6: New models added to the image database of ceramic tiles.

classes tiles/class size (cm) pattern aspect

berlin 2 3, 11 24 20x20 random  granite
lima 1,717 24 20x20 random  granite
oslo 2,3, 7 24 20x20 random  granite

The experiments were carried out for CIE Lab and RGB spaces. Classification
was made using half of the samples as training set and the remaining half as test
set. Values of 1, 3, 5 and 7 were used for the k factor of the k-NN classifier.

The performance results of several statistics sets are shown in Table 4.7. The
accuracy rates were computed as the average accuracy ratios achieved over all mod-
els. More combinations of statistics were tested, but only the most prominent are
presented. The last two columns corresponds to the averaged accuracy rate and the
95% confidence intervals [122] respectively. The table is divided into two blocks, the
first one corresponds with CIE Lab experiments. Here, the majority of sets have
confidence intervals under the minimum accuracy rate of 95% which is the factory
performance requirement. The best choice was to use the mean colour plus the
standard deviation. Histogram moments did not introduce any improvement. The
second block collects the results of RGB which presents significant less discriminative

power than CIE Lab.
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Table 4.7: Best accuracy results of global Lab statistics method. From left to right;
mean, standard deviation, average deviation, histogram moments from 2nd to 5th,
histrogram moments from 6th to 10th, CIE Lab, RGB, accuracy and 95% confidence
intervals. Accuracy and confidence intervals are given in %.

mean std dev ave dev 2-5ms 6-10ms Lab RGB acc. c.i. 95%
X b'e 86.8 [83.6, 89.7|

X X X 98.9 [97.7, 99.6]
X X X 97.0 [95.3, 98.4]
X X X X 96.8 [95.1, 98.3]
X X X X X 96.7 ]94.8, 98.1]
X X 866 [33.4, 89.0]
X X x 921 [89.4, 94.3]
x X X 92.7 [90.1, 94.9]
X X X b'e 94.1 [91.7, 96.0]
X X X X X 93.3 [90.8, 95.4|

4.3 Literature methods

We selected two methods from the literature for comparison purposes: colour his-
tograms |2, 3| and centile-LBP [1,12]|. We chose these methods because they are
similar to ours, both are generic solutions with low computational costs. For in-
depth information about these approaches review Chapters 2 and 6.

We should point out that the centile-LBP method is not used in literature di-
rectly for wood grading but for surface segmentation into sound wood and knocks.
However, we use the method as a global surface grader achieving good results.

Colour histograms are 3D histograms which are compared using dissimilarity
measures. In |2,3| they used the chi square test and the linear correlation coefficient
to measure histograms dissimilarities.

Centiles [1,12] are colour features calculated from the cumulative histograms of
colour channels corresponding to a given colour space. A total number of 171 centiles
are compiled to describe the colour property of surfaces. The Local Binary Pattern
(LBP) is a local texture operator related to each image pixel’s neighbourhood. This
operator provides a number for each pixel (texture unit) in the range |0, 255|, then

a histogram collects the LBP texture description of an image.
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In [12] centile and LBP features were combined in one measure of distance and
then the k-NN classifier was used. For Centile features they used the Euclidean
distance in the feature space. For LBP they used a log-likelihood measure. Both
distances were normalized using the min and max values of all the distances found
in the training set and then joined by simply adding them together.

Experiments for colour histograms and centile-LBP were carried out. Once again,
classification was made using the half of the samples for training and the remain-
ing half for testing. In centile-LBP experiments the original log-likelihood formula,
the chi square test and the linear correlation coefficient were used for measuring

histograms differences.

Table 4.8: Accuracy results of colour histograms and centile-LBP. From left to right;
Chi square, linear correlation and log-likehood distances, accuracy, 95% confidence
intervals. Accuracy and confidence intervals are given in %.

Chi Corr. Log Lab RGB acc. c.i. 95%

Colour Histo.  x x 00.3  [87.4, 92.8]
Colour Histo. X X 88.5 [85.4, 91.2]
Colour Histo.  x X 88.9 [85.8, 91.5]
Colour Histo. X X  87.6  [84.5, 90.5]
Centile-LBP X X 94.4 [92.2, 96.4]
Centile-LBP X x 94.9  [92.6, 96.7]
Centile-LBP X x 91.3  [88.5, 93.6]
Centile-LBP X X 94.7 [92.4, 96.5]
Centile- LBP x X 95.4 [93.4, 97.2]

Centile-LBP X X 933 [90.8, 95.4]

The results of Table 4.8 show that centile-LBP achieves the best accuracy rates
when using RGB, but neither method achieves factory compliance because none
of their confidence intervals are over the min accuracy rate (95%) requested at
factory. Compared with Table 4.7 Lab Statistics presents significant improvement
in performance an also is the only method with confidence intervals completely

surpassing the min factory accuracy limit.
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4.4 Conclusions

In this chapter we have presented several approaches to surface grading. First meth-
ods were based on image splitting into equally sized squares and simple local statis-
tics computed for each square. Only one of these methods achieved the accuracy
compliance requested at factory. An important drawback of all these methods is
that they needed to non-automatically estimate at least one parameter for every
tile model. Next, a method based on global statistics with no parameter estima-
tion was presented. Many combinations of the proposed statistics on colour and
texture achieved accuracy compliance clearly exceeding the minimum requested at
factory (95%). All the proposed methods use a perceptually uniform colour space,
the CIE Lab. Experiments using RGB were performed and this space showed less
discriminative power. Thus, perceptual approach based on CIE Lab appears as a
good choice.

For comparison purposes we selected two methods from the literature (colour
histograms and centile-LBP) and performed experiments using the same image
database. The results achieved by both approaches were worst than global Lab
statistics and also did not reach factory compliance.

Global statistics computed in CIE Lab is the antecedent of soft colour-texture
descriptors method which is in-depth developed in next chapter. Both, global statis-
tics in CIE Lab and soft colour-texture descriptors are basically the same method.
Once we found a fast method able to comply with factory requests, we decided to
study the approach in-depth, adding new factors such as new colour spaces (CIE
Luv and Grey scale), classifiers (leaving-one-out) and testing all the possible combi-
nations of soft colour-texture descriptors (mean, standard deviation, and histogram
moments from 2nd to 5th). To do so, we used statistical tools to manage the large
amount of resulting experiments and achieve objective and valid conclusions. We

also used an extensive image database, the VxC TSG.



Chapter 5

Extraction of soft colour-texture

descriptors method

In previous chapter we found a successful new approach to surface grading based
on global statistics of colour and texture computed in a perceptually uniform colour
space, the CIE Lab. This approach achieved factory compliance in accuracy perfor-
mance and also improved literature methods (colour histograms and centile-LBP).
Basing on this method in this chapter we present an extensive study in order to
extract a definitive method. The study includes more factors such as new colour
spaces (CIE Luv and Grey scale) and classifiers (leaving-one-out) and also all the
possible combinations of soft colour-texture descriptors (mean, standard deviation,
and histogram moments from 2nd to 5th) are tested in conjunction with the other
factors.

The resulting method from this in-depth study is named soft colour-texture de-
scriptors method. The method is extracted and validated using a statistical proce-
dure based on two statistical tools; ezperimental design |31 and logistic regression
analysis [32]. These tools in conjunction provide a way to determine the best com-
bination of quantitative/categorical factors related with a set of experiments. The
best combination is achieved by seeking to maximize or minimize one response vari-
able also involved in the experiments. In our case this output variable was the
classification accuracy rate.

Although the method is not a new theoretical contribution, we demonstrate that

65
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a simple set of global statistics of colour and texture, together with well-known
classifiers, are powerful enough to comply hard factory requirements for real-time
and performance. The two main requests of the industry are on-line inspection at
factory rates (real-time compliance) and a high performance surface grading system.
Production managers at factories will only accept an error rate close to 5% before
relying on these automatic grading systems. The method meets the first demand by
using the simplest and fastest [to compute| colour-texture features [29]. The second
demand is met by achieving average accuracies over 95% in many of the tests carried

out using the VxC TSG database described in Chapter 3.

5.1 CIE Lab and CIE Luv

The CIE (Commission Internationale de L’Eclairage) derived and standardized two
perceptually uniform colour spaces from the CIE XYZ; the CIE Luv and the CIE
Lab. The term ’perceptual’ refers to the way that humans perceive colours. The
term 'uniform’ means that if we move in the colour space from one colour to an-
other (from one coordinate to another) the perceptual difference will be related to
a measure of distance, commonly the Euclidean distance, and the same distance
will be approximately related to the same perceptual difference in all the colour
space. Thus, we can measure colour differences close to the human perception of
colours which makes these spaces useful for applications where colour difference mea-
surement plays an important role, as is the case of the surface grading application
presented in this thesis.

In fact, both spaces are only approximately uniform. However, them and their
colour-difference formulae are the best approximation to perceptually uniform spaces
and perceptual colour difference computation available at the moment [33, 116].
They are by far much more uniform than the XYZ7 and RGB colour spaces.

CIE Luv and CIE Lab are slightly different because of the different approaches to
their formulation |33,34|. Nevertheless, both spaces are equally good in perceptual
uniformity and provide good estimates of colour difference (distance) between two

colour vectors. Both spaces are used in colorimetry. The CIE Luv is mainly used for
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industries considering additive mixing such as colour displays, TV and lighting [35],
while the CIE Lab and the CMC difference formula have found wider acceptance in
colour control industries. They are commonly used in image processing applications
involving colour [117].

In CIE Lab and CIE Luv the L component is the same and represents lightness.
It extends form 0 (black) to 100 (white). Also, both spaces have the same oppo-
nent colour axes approximately representing red-green versus yellow-blue, which are
respectively a and b in the CIE Lab and » and v in the CIE Luv.

The database images were acquired originally in RG B, so conversion to Lab/ Luv
coordinates is needed. This conversion is done through the CIE XY Z colour space

[33].

Linear conversion from RGB to XY Z:

X 0.412453 0.357580 0.180423 R
Y | =] 0.212671 0.715160 0.072169 G
Z 0.019334 0.119193 0.950227 B

Nonlinear conversion from XY Z to CIE Lab:
116(Y/Y,)/? =16 if Y/Y, > 0.008856
903.3(Y/Y,) otherwise

b=200(f(Y/Y,) — f(Z/Z,))

where
t1/3 if Y/Y, > 0.008856

7.787t +16/116 otherwise

Nonlinear conversion from XY Z to CIE Luwv:

116(Y/Y,)/? —16 if Y/Y, > 0.008856
903.3(Y/Y,) otherwise

u=13L(w —u,)
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v=13L(v —v)

where
w=4X/X +15Y +3Z
w, =4X,/X, + 15Y, + 37,
v =9X/X+15Y +3Z
v, = 9X,/X, +15Y,, + 32,

X, Yy, and Z,, are the values of X, Y and Z for the illuminant (reference white
point). We followed the ITU-R Recommendation BT.709 [132,133], and used the
illuminant Dgs, where [X,,Y,, Z,] = [0.95045 1 1.088754].

In both spaces colour difference is calculated using the Euclidean distance:

AELab = \/(AL)2 + (ACL)2 + (Ab)2

AEru = /(DL? 1 (Bu) + (Do)

More sophisticated colour-difference formulae has been proposed [118]; CMC(l:¢c),
BFD(l:c), CIE94 and CIEDE2000. Some of these formulae were tested in previous
tests against the Euclidean distance and no improvement was achieved in surface
grading performance. Therefore, we used the Euclidean distance which is less ex-

pensive in computing costs.

5.2 Soft colour-texture descriptors

The mean colour vector was chosen as the colour feature of surfaces while texture
description was done using simple statistical features. In addition, the standard

deviation gives a measure of how the colour components vary along the image.

o(z) = \/Zz:gzi_l m)?

wherez is the random variable, L size of the data set and m the mean value of 2
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values.

By computing the image histogram for each component of the colour space we
can calculate the histogram moments. Second, third, fourth and fifth moments are
the simplest and fastest [to compute| approach for describing texture properties [29].

The nth moment of z about the mean is defined as:

L
pa(2) = > (2 —m)"p(=)
i=1
where z is the random variable, p(z;), i = 1, 2, ..., L the histogram, L the num-

ber of distinct variable values and m the mean value of z.

We call these set of features soft colour-texture descriptors because they ’softly’
compile colour and texture properties from the whole image without using "hard’
approaches to colour or texture description. Colour histograms can easily collect
80,000 bins (different colours) which are all used to compute histogram dissimilar-
ities. Centile-LBP approach uses 171 centile measures to compile colour property,
and LBP histograms of 256 components to collect texture property (see Chapter
6). We can consider that these approaches use "hard’ colour and texture descrip-
tors in comparison to our method which only uses the mean, standard deviation
and histogram moments from 2nd to 5th to compile colour and texture properties
(a maximum feature vector of 18 components). By comparison we named the pro-
posed method soft colour-texture descriptors. This assertion is even more acceptable
if we revise classical approaches to texture description in the literature (see texture
subject in Chapter 2). In the surface grading application we do not strictly compare
textures but global appearance differences, thus, the complex methods which com-
pile precise texture description are not needed as results obtained in present chapter

confirm.
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5.3 Classifiers

We used statistical pattern recognition for classification. Here, the samples are
formed by d-dimensional vectors which components x1, x», ..., x4 are observed fea-
tures. Each sample belongs to one class wy, ws, ..., w, where ¢ is the total number of
classes. The samples belonging to a class will be distributed in the d dimensional
space following an specific conditional probability function of density for this class;
p(z|w;).

From this point of view, if we want to assign one class to a new sample, minimiz-
ing the error rate, we should know the conditional probability P(w;|z), also known
as a posteriori probability, for each class. With this information, we can minimize

the error risk assigning to x the class w with the greatest a posterior: probability.

w= max {P(w;z)}

Wi=W1,...,We

This criterion is known as the Bayes Rule for the Minimum Frror Rate, and is
the basics of most statistical classification methods. There are different statistical
classifiers according to the approach used to estimate the a posteriori probabilities.
In fact, some methods estimate the conditional function density of a class; p(z|w;).
Then, in order to achieve the function of a posteriori probability the Bayes formula

is required:

p(efw) by

Pk =)

where p(z) is the probability of x happening, and P; is the probability of obtain-
ing a sample of class w; (also called a priori probability). As the denominator does

not depend on the class, the Bayes Rule can be rewritten as:

w=max {p(w|x)F}

Wi=wW1,...,

[t is possible to calculate the mean error probability (also called the error rate)

over a data set X if we use the Bayes Rule for the Minimum Error Rate. The error
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rate would be:

E= / {1— max  {P(wilz)| p(z)d(z) (5.1)

Wi=W1,5...,We

where x € X and {w; : i = 1, .., c} are the ¢ classes contained in X.

This expression is very useful because it provides a way to compute the better
error rate that we can achieve from a data set without depending on the type of
classifier used. However, the expression 5.1 is not easy to calculate because we need
to know the a posterior: probabilities of the classes.

In the case of the k nearest neighbours (k-NN) [30], is possible to achieve the a

posteriori probability with the following formula.
. ks
P(w;|x) = —
(wife) = 7

where k is the total number of z neighbours used by the classifier, and k; is the
number of them belonging to class w;. The error estimation from the expression 5.3
using P(wl\x) provides a pessimistic estimation, although it is very appropriate when

the k-NN classifier meets convergence conditions [30]. These conditions impose:

1. £k — o0

2. k/n — 0 when n — oo

where n is the number of elements in the data set used to design the k-NN classifier.
In practice, the number of samples are not usually large enough to meet convergence
conditions. Thus, the error rate has to be estimated by another method.

When estimating the P(w;|x) it is possible to use:

1
Zueeki d(u,z)

P(w;|x) = (5.2)

1
Zveek d(v,x)

where 6y, is set of neighbours of z, 6y, is set of x neighbours with class w;,and d(., .)
is the distance between two samples [120]. Equation 5.2 uses the distance between
neighbours, this information is useful when the design of the k-NN classifier do not

comply with convergence conditions, as occurs is most cases.
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In practice, when estimating the error rate (accuracy rate = 1 — error rate) the
most frequently used method is the count of errors. This method needs two data
sets; the training set and the test set. Both are build from the collected set of samples
which is commonly called the sample universe. The idea is to design a classifier from
the training set and then estimate the error rate from the accumulated errors when
classifying the samples of the test set. Ideally, the training and test sets should be as
large as possible and independent of each other. Nevertheless, normally the size of
the universe of samples is not enough to comply with these ideal conditions. Thus,
the design of the training and test sets is particularly important.

There are several approaches to design the training and test sets in order to
estimate the error rate; resubstitution, hold out, leaving-one-out, N-fold cross val-
idation |30] and bootstrapping |121]|. For the methods of resubstitution, hold out,
leaving-one-out and N-fold cross validation the estimated error rate (E) would fol-

low a binomial distribution.
n
P(k) = E*(1— By (5.3)
k

where n is the number of samples of the test set, k is the number of errors made
by the classifier and E the real error rate, which is unknown.

Is it possible to calculate confidence intervals for the estimated error rate (F =
k/n) using the expression 5.3 [122]. Figure 5.1 shows the confidence intervals at 95%
for different sized test data sets. Estimation variance can be computed by means of
the following expression [123]:

var(E) = M
As expected, as larger the test set, the better estimation of the error rate.
Now, we revise briefly the characteristics of each method for estimating the error

rate:

o Resubstitution, the training and the test sets are the same set; the original uni-

verse of samples. The error rate estimation is optimistic because the samples
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Figure 5.1: 95% confidence intervals obtained from the estimated error rate for test
sets with sizes; 10 (outside curves), 25, 50 , 100, 250, 2500 and 5000 (inside curves).
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used for the design of the classifier are also used to test it.

e Hold-out, the universe of samples is splitted into two separated sets. The
desirable proportion between them varies from one author to other. Some
defend the use of more samples in the training set [124], while others propose
more samples in the test set [123]. In any case, the error rate estimation will
be pessimistic because all the information is not used neither for training or
testing. For this reason |30| proposes redesigning the classifier, once the error
rate has been obtained, using samples from both sets and verifying the error

rate using resubstitution.

e Leaving-one-out, this is a attempt to use the data as efficiently as possible. One
sample is extracted from the universe of samples, the resulting set is now used
as the training set and the extracted sample as the test set. This is done for all
samples present in the original data set. The final error rate estimation will be

the percentage of failed classifications. This method achieves an unbiased error
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rate and it is recommended for small data sets where the previous approaches

achieve poor estimations [125].

e N-fold cross validation, the universe of samples is split into N subsets of ap-
proximately the same size. In the case of stratified K-fold cross validation |123],
the proportion among classes should be held in each subset. E is achieved by
computing the mean of the error rates collected for each subset when using a
classifier designed without taking into account this subset. With this method
the estimation variance is less than with leaving-one-out. Also, the estimation
is less pessimistic than using hold-out when the size of the subsets is not very
small [123]. If N is equal to the number of samples in the universe of samples

then the appropriate method is leaving-one-out.

e Bootstrap, in this method b subsets are built with the same size from the
universe of samples. Each data set is generated by random extraction with
replacement, in other words, without eliminating the chosen samples from the
universe of samples. The error rate estimation will be the mean of the b error
rates. The variance of this estimation can be achieved from the subsets error
variances [123|. This approach needs a large number of subsets to be effective

(around 100 subsets or more).

In our experiments we used the k-NN classifier with hold-out and leaving-one-out
error estimation because the universe of samples for each ceramic tile model was not
very large. The size varies from 42 to 90 samples (a mean of 68 samples per model).
The N-fold cross validation and the Bootstrap methods need larger universes of

samples, and were therefore not appropriate for our application.

5.4 Experiments and results

In order to study the feasibility of the soft colour-texture descriptors we carried out
a statistical design of experiments. Our aim was to test several factors to determine

the combination of them providing the best accuracy results. These factors were
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Table 5.1: Factors involved in the design of experiments of soft colour-texture de-
scriptors.

Factors Values
Colour space CIE Lab
CIE Luv
RGB
Grey Scale
Classifier k-NN with k=1,3,5,7

k-loo with k—1,3,5,7

Soft colour-texture mean
descriptors standard deviation
2nd to 5th moments

related with colour spaces, classifiers, and sets of soft colour-texture descriptors as
it is shown in Table 5.1.

The chosen factors and their possible values defined 4096 different classification
experiments for each tile model. The ground truth (the VxC TSG image database)
was formed by 14 tile models, thus, a total number of 57.344 experiments had to be
carried out. We decided to use a statistical tool, the experimental design [31,119|,
in order to manage the large amount of experiments and results. This tool, in
combination with the logistic-regression 32|, provides a methodology for finding the
best combination of factors involved in a set of experiments to maximize or minimize
one response variable. In our case, we sought to maximize classification accuracy
rates. This methodology follows the plan presented in the block diagram in Figure
5.2.

We added the RGB and Grey spaces to the colour space factor in order to test
the goodness of using the perceptually uniform colour spaces in comparison to a
common non perceptually uniform space (RGB) and when no colour information is

provided (Grey scale).
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Figure 5.2: Block diagram for the selection of the best combination of factors.
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5.4.1 Experimental design

When we want to perform a complex experiment or set of experiments efficiently we
need a scientific approach to experiment planning. Statistical design of experiments
refers to the process of planning the experiment so that appropriate data can be
collected for analysis with statistical methods and thus lead to objective and valid
conclusions. The statistical approach to planning experiments is called design of
experiments or erperimental design.

An experiment is a test or series of tests in which changes are made to the input
variables of a process in order to observe and identify the reasons for the changes
that may be observed in the output response. The general approach to planning

and conducting an experiment is called experimentation strategy. There are several
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strategies for planning an experiment:

e Best-guess approach. From a set of factors and their possible values, one
combination is tested. Depending on the results, another test is done varying
one or two factors while maintaining the values of the remaining factors. This

approach can be continued almost indefinitely.

e One-factor-at-a-time. This method consists of selecting a starting combination
of factors values and then successively varying each factor over its range with
the other factors held constant at the starting conditions. After all the tests
are performed, a series of graphs are constructed showing how the response
variable is affected by varying each factor with all other factors held constant.
The optimal combination of factors is determined using these graphs. Here,

the iteration between factors is excluded.

e Factorial. In this case the factors are varied together instead of one at a time to
collect the affects of iteration between factors. This enables the experimenter
to investigate the individual effects of each factor (or the main effects) and
determine whether the factors interact with each other. This is an important
and useful feature in factorial experiment because it makes the most efficient
use of the experimental data providing useful information on both the factors

and their iterations.

In our design of experiments we chose the factorial approach, which is the most
appropriate when dealing with several factors [31]. More specifically, we used a
complete factorial design. In this case, the experimenter selects a fixed number of
levels’ or ’versions’ for each factor and then carries out experiments with all the
possible combinations. If there are [; levels for the first factor, [, for the second,
..... and [, for the k™ factor, then this gives a [; x ly x ... x [}, factorial design. For
example, a factorial design 2 x 3 x 5 is formed by 2 x 3 x 5 = 30 single experiments.

All the factors in our design of experiments were categorical factors (non quanti-
tative). The colour space could adopt the lab, luv, rgb or grey values. The classifier

could be 1-nn, 3-nn, 5-nn, 7-nn, 1-loo, 3-loo, 5-loo or 7-loo (classifiers derived from
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the k-NN approach [30]). And, the soft colour-texture descriptors were binary fac-
tors; "1’ present, 0’ not present. Each single experiment was the classification of a
set of test samples belonging to an specific tile model. The sequence of experiments
for each tile model was as shown in Table 5.2. The factors were varied in a nested
way using the algorithm 1. By doing this, we defined an experimental design with
orthogonal factors effects achieving independence between factors, iterations and
experiments. Independent experiments lead to reliable results and conclusions when

using statistics methods.

Algorithm 1 Nested variation of factors for an orthogonal sequence of experiments.

for colour_space in [ lab luv rgb grey ]

do
for clasgifier in [ 1-nn 3-nn 5-nn 7-nn 1-1loo 3-1loo 5-1loo 7-loo ]
do
for mean in [ 0 1 ]
do
for standard_deviation in [ 0 1 ]
do
for 2 moment in [ 0 1 ]
do
for 3* moment in [ 0 1 ]
do
for 4 moment in [ 0 1 ]
do
for 5 moment in [ 0 1 ]
do
EXPERIMENT
done
done
done
done
done
done
done
done

5.4.2 Logistic regression

The experimental design is used as the preliminary stage for modeling the behavior
of a process which is characterized with k£ input factors and one output variable,
also called the response variable. Commonly, once the experiments has been carried
out according to the experimental design, a linear regression method is used to

define a predictive model of the process. For two factors the linear regression model
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Table 5.2: Orthogonal sequence of experiments for the soft colour-texture descriptors
method.

4th Mnt 5th Mnt accuracy %

3rd Mnt

Mean Std dev 2nd Mnt

Classifier

Colour space

1-nn

lab

1-nn

lab

1-nn

lab

eI T

1-nn
3-nn
3-nn
3-nn

lab
lab
lab
lab

3-nn

lab

7-loo

lab

7-1oo

lab

7-1oo

lab

7-loo

lab

1-nn

luv

1-nn

luv

1-nn

luv

1-nn

luv

7-loo

grey
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corresponds to:

y = Bo + Bz + Baxy + Biaz172

where y is the response variable, the ('s are parameters whose values are to
be determined, x; is the variable that represents factor 1, x5 is the variable that
represents factor 2 and z1x5 represents the iteration between factors xy and z5. The
estimation of the 3's parameters is done using the least square error fitting.

The linear regression model for two factors can be generalized to k factors as

follows:
I I J I J K
i=1 i=1 j=1, i=1 j=1, k=1,

This expression is simplified if we consider the iterations between factors as new

factors.

y=[o+ Z Bi X (5.4)

However, in our experiments the response variable y is an accuracy percentage
or probability. In these cases, the linear regression model does not correspond to a
normal distribution for the response variable, which is desirable, but to an uniform
distribution (see Figure 5.3), and also, it could give estimated values out of the
range [0,1|. In order to solve these problems a logistic regression model is commonly
used. This model approximates the probability response to a normal distribution
(the logistic S-shaped distribution is similar to the standard normal distribution)
and also forces the estimated probabilities to lie between 0 and 1. Furthermore, the
logistic model is easier to work with in most applications.

With the logistic regression model the response variable p is converted into

log(%;) and the expression 5.4 is transformed to:
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Figure 5.3: Logistic regression model vs linear regression model.
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log(72=) = B+ D2 4K,

Now, the expected probability or percentage can be defined as:

eﬁo-l-z BiX;

P = hrsa (5:5)

The (8 parameters of the logistic regression approach can be estimated using the
Mazimum Likelihood Estimation (MLE) or the Weighted Least Squares (WLS). MLE
is used as an alternative to non-linear least squares (WLS) for nonlinear equations.
In addition to the parameter estimation method, there are several approaches for
computing the logistic model depending on the number of factors taken into account.
The simplest way to determine the logistic model is to consider all the factors and
their iterations. Then, we are forced to calculate all the § parameters for all factors
(or iteration of factors) even if they are not significant in relation to the response
variable. There are two other approaches which do not consider all the factors and

iterations, these are the stepwise methods:
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o Forward selection, the process of forward selection begins with an initial model.
Then, new terms with greater significance are added to the model while the
global level of significance remains below a given level of [first class| risk (usu-
ally 5-10%). The process continues until there is no factor or iteration which

when added to the model keeps it under the risk level.

e Backward elimination, now the starting point is the complete logistic model
with all the factors and iterations. Factors or iterations are eliminated one by
one using a lower significance order. The significance of each factor is studied
(p-value computed) and the less significant (greater p-value) is eliminated.
This process continues until the global significance of the model reaches a

value below a previously determined level of risk.

Many software implementing statistics methods include options for computing the
most common regression methods. In our case, we used the statistical package
Statgraphics v5.1 for computing the logistic regression models. This models were

computed using MLE estimation and Forward selection.

5.4.3 Selection of best combinations

The procedure for selecting the best combination of factors is the following;:

1. For each input in the design of experiments (see Table 5.2) we compute the

output variable y using the achieved regression model y = Gy + > 3;X;. Then

eY
1+ey”

we compute the predicted accuracy rate p =

2. The best combination of factors will be the one which the greatest predicted

accuracy rate.

5.4.4 Results

We should point out that we used the experimental design in combination with the
logistic regression model not to model the response of a process, but to find the best
combination of factors to achieve the maximum accuracy rates in a surface grading

application. This is another usage of these methods [31,32,119].
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Diagram in Figure 5.2 shows the steps to be taken to make an experimental
design and select the best combination of factors for each tile model. However, the
experimental designs of all models can be grouped into a single one if we re-define
the output response y as the achieved mean accuracy computed over all models.
We carried out the 4096 experimental design of each model, 57.344 experiments in
total, and grouped the results in a new 4096 experimental design where the output
response y was the mean accuracy of all models.

We used the Statgraphics v5.1 software and computed the logistic regression
model (see Figure 5.5). The high adjusted percentage of deviance explained by
model (81%) indicated the model was very good. After this and following the
diagram (Figure 5.2), we carried out the selection of best combinations as it is
explained in section 5.4.3 and obtained a table similar to 5.2 with the predicted
accuracy rates for each experiment or combination of factors. We sorted the results
using the predicted accuracy rate (equation 5.5). The 30 best combinations are
shown in Table 5.3. From the complete sorted table of results we extracted the

following summary of results.

1. Best combination corresponds to CIE Lab, 1-loo and all soft colour-texture

descriptors. This combination achieved an accuracy rate of 97.4% .

2. A number of 237 combinations (5,8% of total combinations) achieved an ac-

curacy rate over 95%.
3. All the combinations over 95% used CIE Lab or CIE Luv spaces.

4. Best combination using RGB space achieved 93.6% of accuracy, although its

presence in best combinations was very low (Figure 5.4).

5. Best combination using Grey space achieved 90.8% of accuracy, although its

presence in best combinations was almost null (Figure 5.4).

6. Best combinations make wide use of CIE Lab and CIE Luv spaces (Figure
5.4).

7. The classifiers from best to worst are 1-loo, 3-loo, 5-loo, 7-loo, 1-nn, 3-nn, 5-nn

and 7-nn (Figure 5.4).
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8. The very best combinations use all or almost all soft colour-texture descriptors

(Table 5.3).
From this summary of results we can conclude:

1. The method we extract from the design of experiments and logistic regression
methods uses CIE Lab colour space, 1-loo classifier and all soft colour-texture

descriptors.

2. The perceptually uniform colour spaces CIE Lab and CIE Luv achieve by far

the best performance.

3. RGB colour space provides less performance, and although it reaches some
accuracy rates around 93%, the percentage using RGB in sets of best combi-

nations is almost null.
4. Grey space provides the worst performance as expected.

5. Best classifiers are the derived from the leaving-one-out method. Therefore,

we should use 1-NN method using as more training samples as possible.

6. Using all soft colour-texture descriptors gives the best discriminant power.
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Figure 5.4: Presence in percentage of colour spaces and classifiers in best combina-

tions sets.
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Figure 5.5: Computed logistic regression model for soft colour-texture descriptors

method.
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.255156
.105141
.193629
.213016
.0656253
.152144
.114159
.00596527
.136091
.0445569
.125391
.109549
.0273054
.144568
.0892126
.222829
.168171
.000901265
.110032
.0489122

0.0111142
0.0142337
0.0162755
0.0165152
0.0129068
0.0145836
0.0128619
0.0144461
0.0127805
0.014215
0.0125395
0.00357258
0.00647503
0.00347998
0.00349194
0.00348728
0.00348982
0.0176259
0.0199877
0.0175457
0.0198475
0.0174863
0.019625
0.0172447
0.0212053
0.0230624
0.0209448
0.0226799
0.0203991
0.0222191
0.0198791
0.0213999
0.0233727
0.0209092
0.0230209
0.0206141
0.0224077
0.0200229
0.00872695
0.0104852
0.0104693

0.876823
2.02693
2.13715
1.95
1.48082
1.90562
1.40181
1.82549
1.26972
1.59026
0.513104
0.937053
0.90953
0.770441
0.808694
0.786636
0.763617
0.831391
0.742075
0.851603
0.774796
0.900198
0.823963
1.2374
0.936482
1.16433
0.892116
0.994052
0.872763
0.956421
1.13359
0.896238
0.973064
0.865396
0.914651
0.800252
0.845209
1.0009
0.895805
0.952265

Percentage of deviance explained by model = 80.9518

Adjusted percentage

80.8989



N° Exp. Space Classifier Mean Std dev 2nd Mnt 3rd Mnt 4th Mnt 5th Mnt p*100 c.i. 95%
620 lab 1loo 1 1 1 0 1 1 96.60  [95.26, 97.68]
636 lab 1loo 1 1 1 0 1 1 96.60  [95.26, 97.68]
720 lab 3loo 1 0 1 1 1 1 96.60  [95.26, 97.68]
736 lab 3loo 1 0 1 1 1 1 96.60  [95.26, 97.68|
1646 luv 1loo 1 1 1 1 0 1 96.64  [95.38, 97.76]
1662 luv 1loo 1 1 1 1 0 1 96.64  [95.38, 97.76]
1608 luv 1loo 1 0 0 1 1 1 96.66  [95.38, 97.76]
1624 luv 1loo 1 0 0 1 1 1 96.66  [95.38, 97.76]
623 lab 1loo 1 1 1 1 1 0 96.67  [95.38, 97.76]
639 lab 1loo 1 1 1 1 1 0 96.67  [95.38, 97.76]
622 lab 1loo 1 1 1 1 0 1 96.75  [95.50, 97.85]
638 lab 1loo 1 1 1 1 0 1 96.75  [95.50, 97.85]
1776 luv 3loo 1 1 1 1 1 1 96.76  [95.50, 97.85]
1792 luv 3loo 1 1 1 1 1 1 96.76  [95.50, 97.85]
744 lab 3loo 1 1 0 1 1 1 96.86  [95.63, 97.94]
760 lab 3loo 1 1 0 1 1 1 96.86  [95.63, 97.94]
592 lab 1loo 1 0 1 1 1 1 96.87  [95.63, 97.94]
608 lab 1loo 1 0 1 1 1 1 96.87  [95.63, 97.94]
1616 luv 1loo 1 0 1 1 1 1 96.95  [95.75, 98.02]
1632 luv 1loo 1 0 1 1 1 1 96.95 [95.75, 98.02]
1640 luv 1loo 1 1 0 1 1 1 97.00 [95.75, 98.02]
1656 luv 1loo 1 1 0 1 1 1 97.00 [95.75, 98.02]
616 lab 1loo 1 1 0 1 1 1 97.10  [95.87, 98.11]
632 lab 1100 1 1 0 1 1 1 97.10  [95.87, 98.11]
752 lab 3loo 1 1 1 1 1 1 97.13  [95.87, 98.11]
768 lab 3100 1 1 1 1 1 1 97.13  [95.87, 98.11]
1648 luv 1loo 1 1 1 1 1 1 97.27  ]96.12, 98.28]
1664 luv 1loo 1 1 1 1 1 1 97.27  [96.12, 98.28]
624 lab 1loo 1 1 1 1 1 1 97.36  [96.25, 98.36]
640 lab 1loo 1 1 1 1 1 1 97.36  [96.25, 98.36]
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5.5 Conclusions

In this chapter we have extracted a final approach to surface grading. This ap-
proach is based on the use of soft colour-tezture descriptors in conjunction with the
perceptually uniform colour space CIE Lab and the well known classifier 1-leaving-
one-out (1-NN method using as more training samples as possible). The method has
been extracted from two statistical tools; the design of experiments and the logistic
regression. These tools provided us a method with which to study and determine
the best combination of factors to maximize the accuracy rate. The studied factors
have been several colour spaces, classifiers, and sets of soft colour-texture descrip-
tors. A total of 57.344 independent experiments were carried out exploring all the
combinations of factors over all the models of the VxC TSG database.

The extracted method achieves 97.4% predicted mean accuracy and 97.6% mea-
sured mean accuracy of all models. The computed confidence interval is [96.25%,
98.36%)| which clearly surpasses the factory requirement for performance. In addi-
tion, many tests using the perceptually uniform spaces CIE Lab or CIE Luv, the
leaving-one-out classifiers and several combinations of soft colour-texture descriptors
surpassed the factory minimum accuracy of 95%.

The results show that RGB, a common colour space but non perceptually uni-
form, provide less discriminative power. Perceptually uniform colour spaces are
closer to the human perception of colours, therefore, it can be considered logical if
they provide better performance when carrying out visual tasks done by humans. As
expected, the worst results come from the Grey space which only makes use of light
intensity omitting colour information. From the in-depth statistical study it is also
concluded that all the soft colour-texture descriptors contribute to achieve accuracy
performance and also the clasifiers devired from the leaving one out method perform
better, thus we should select the 1-NN method using as more training samples as
possible.

Finally, we report that soft colour-texture descriptors method is a good choice
when a deep colour-texture description is not needed. This is the case of the sur-
face grading application where the pieces are graded taking into account the global

appearance of colour and texture. Local description is not needed, hard description
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of colour and texture is not necessary. Furthermore, soft colour-texture descriptors
method is a good choice for real-time compliance because it uses the less expensive

features of texture and colour from the point of view of computational costs.



Chapter 6

Literature methods

This chapter deals with the implementation and in-depth study of two methods from
the literature of surface grading. These methods are the colour histograms [2,3] and
centile-LBP |1,12|. We performed this study for comparison purposes with the
method presented in previous chapter based on soft colour-texture descriptors. We
chose them because they are similar to ours, both are generic solutions with low
computational costs. Also, a review of the literature presented in Chapter 2 shows
that no more methods are available for comparison because the rest of them deal
with specific surface types or use hard colour-texture description with expensive
computational costs.

Again we use the statistical tools of experimental design and logistic regression to
in-depth study the methods using several factors. Experiments included the factors
of colour space, classifier and inter-histograms distance. In order to perform a proper
comparison we also used the VxC TSG image database, the ground truth used in

previous chapter.

6.1 Colour histograms

Basically colour histograms are 3D histograms where each axis represents one colour
space channel. Colour histograms are compared using dissimilarity measures be-
tween histograms. This approach to surface grading was developed by Boukouvalas

et al [2,3]|. They proposed to use the differences between colour histograms to solve

90
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the problem of shade grading (surface grading) of multi-coloured textured surfaces
(random pattern surfaces). However, colour histograms are inefficient in terms of
memory requirements. A colour image acquired in RGB normally need 8 bits per

2?"memory positions) are needed to store

colour channel at each pixel, so 16Mbytes (
one colour histogram. Nevertheless, in real images colour values tend to be clustered
around a few locations. For instance, the image of a ceramic tile may occupy only
80.000 different locations (234Kb). Apart from being highly demanding in mem-
ory, this approach is computationally intensive because in order to compare two
histograms all memory locations have to be parsed.

To save memory and computational costs binary trees are used to store the
colour histograms. Binary trees are frequently used to represent a set of data whose
elements are retrievable through a unique key (value). If a tree is organized in such
a way that for each node all values in the left subtree are less than the value of the
parent node, and those in the right subtree are greater than the value of the parent
node, then this tree is called ordered binary tree or search tree. A search of a value
in a tree of n elements may be performed with only log n comparisons, if the tree is
balanced.

When a colour histogram is stored in a binary tree, the value of a node is a
particular RGB value. This is converted to a 24 bit-integer by concatenating the R,
G and B bytes. Each node also contains the number of pixels with the same RGB
value (repetitions). Therefore, only RGB combinations that exist in the image are
inserted in the tree, and the searching of existing nodes is very efficient.

Colour histograms are invariant to translation and rotation about an axis perpen-
dicular to the image plane, and change only slightly under changes of angle of view.
And also they are invariant to exact spatial distribution of the coloured pixels. This
property is desirable when dealing which random pattern surfaces, as often occurs
when we deal with ceramic tile models. The method based on soft colour-texture
descriptors is also invariant to translation, rotation and exact spatial distribution
of coloured pixels.

To perform the surface grading, the similarity (or dissimilarity) of ceramic tiles is

compared using the similarity of their colour histograms. As the histograms can be
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viewed as distributions we can use statistical methods to compare two distributions
[96]. Boukouvalas et al used the chi-square test and the linear correlation coefficient.

The chi-square statistic is defined as:

where N; is the number of events observed in the ith bin, and n; is the number
expected according to some known distribution and the sum is over all bins. A large
value of x? indicates dissimilarity between the two distributions.

When comparing two binned data sets, with the same number of data points,
the equation adopts a different form. Let R; be the number of events in bin i for
the first data set, let S; be the number of events in the same bin for the second data

set. Then the chi-square statistic is:

2 (R —5)?
X _; R, + 5,

The linear correlation coefficient is another test which measures the association
between random variables. For pairs of quantities (z;, y;), i — 1, ..., N, the linear

correlation coefficient r is given by:

_ > i@ =) (yi — )
Vil — 1)y — )

r

where Z is the mean of the x; values and ¢ is the mean of the y; values.

The value of r is always in the range |-1, 1|. The correlation is called positive
or direct correlation when y tends to increase as x increases. If y tends to decrease
as x increases the correlation is then called negative or inverse correlation. A value
near to zero in the previous equation indicates poor linear correlation between the
variables r and y.

See Chapter 2 for more information about colour histograms.
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6.2 Centile-LPB

This method proceeds from the area of wood inspection. In this case, the grading
of lumber boards and parquet slabs is not related to the overall texture and colour
appearance of the surface. The grade of the wood piece is assigned by detecting the
wood defects (mainly knots) and then applying grade rules related to the number
and classes of defects found in the inspection process [1]. Thus, from the point
of view of the computer vision, the problem becomes a question of separating the
surface into sound and faulty wood, and classifying the defects into their different
types. However, we should point out that we use this method not in the literature
sense but to compile global description of colour and texture and directly grade
surfaces.

Kauppinen started the approach to the problem using only colour information
which was derived from the percentile features of the RGB histograms [1,11]. The
percentiles, also called centiles, are calculated from a cumulative histogram Cj(x),
which is defined as a sum of all the values that are smaller than x or equal to x in
the normalized histogram Py (z), corresponding to the colour channel k. Finding a
value for a percentile involves finding the = when Cj(z) is known, thus, requiring an

inverse function of Ci(z). If we denote the percentile feature with Fy(y) then

Fuly) = Cily) ==

where y is a value of the cumulative histogram in the range [0%,100%].

In the classification stage feature vectors composed of selected sets of plain cen-
tile features are used, and also differences of two centile features either from the
same colour channel or from two different colour channels are used. Specifically, in
implementing the method we used the centiles from 5 to 95 step 5 of each channel,
differences inside channels between correlative positions separated 5 steps, and also,
inter-channel differences between the same positions every 5 steps. A total number
of 171 features were computed for a three dimensional channel. Finally, Kauppinen
used the well-known k-NN method to perform the classification.

After this first approach, Niskanen, Silvén and Kauppinen continued the work
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including texture properties [105,106]. They extended the method using the Local
Binary Pattern (LBP) texture operator, previously introduced by their colleagues
Ojala and Pietikiinen [108,109]. The original 3x3 neighborhood is thresholded by the
value of the center pixel. The values of the pixels in the thresholded neighborhood
are multiplied by the weights given to the corresponding pixels. Finally, the values
of the eight pixels are summed to obtain the number of this texture unit. Niskanen
et al used Self Organizing Maps (SOM) combining Centile and LBP properties in
order to carry out the classification task.

Kyllonen and Pietikdinen [12| also combined centile and LBP features but they
used a different approximation for classification. They combined the centile and
LBP features in one measure of distance and then used the k-NN classifier. For
the centile features they used the Euclidean distance in the feature space, and for
LBP they used a log-likelihood measure to compute the dissimilarity (distance)
between sample and reference histograms. When using LBP there are 2% possible
combinations of texture numbers. Thus, the texture description of a region can be
collected computing its LBP histogram.

The log-likelihood measure to compute the dissimilarity was:

N-1
L(S,R) ==Y _ S,InR,
n=0

where NNV is the number of bins. S,, and R,, are the sample and reference proba-
bilities of bin n.
They joined these distances by simply adding them. Prior to this, both distances

were normalized using:

dmax

d

d

= davg

where d,in, dinae and dgyg are the min, max and average values of all the distances

found in the training set.
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We chose this last approximation of centile-LBP to compare with our method be-
cause SOMs are relatively complex systems for classification which also need sophis-
ticated training procedures. See Chapter 2 for more details about the centile-LBP

method.

6.3 Experimental design and results

We used the factors of colour space and classifier in the same way as they were
used for the soft colour-texture descriptors, and added a new factor related to the
measurement of dissimilarity between histograms, the distance measure factor (see
Table 6.1). In both methods the histogram representation of data is used and so
a measure of dissimilarity is needed. We chose the distances used in the methods
in the literature; the chi-square statistic, the linear correlation coefficient and the
log-likelihood measure.

For each tile model 96 independent experiments are defined and applying the
design of experiments to the ground truth formed by the 14 models of the VxC TSG

database, a total number of 1344 experiments had to be performed.

Table 6.1: Factors involved in the design of experiments of colour histograms and
centile-LBP.

Factors Values
Colour space CIE Lab
CIE Luv
RGB
Grey Scale
Classifier k-NN with k=1,3,5,7

k-loo with k=1,3,5,7

Distance measure Chi-square statistic
Linear correlation coefficient
Log-likelihood measure

Once again, all the factors in our design of experiments were categorical factors

(non quantitative). The colour space could adopt the lab, luv, rgh or grey values.
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The classifier could be 1-nn, 3-nn, 5-nn, 7-nn, 1-loo, 3-loo, 5-loo or 7-loo. In ad-
dition, the measure of distance among histograms could be the chi-square test, the
linear correlation coefficient or the log-likehood measure proposed for the centile-
LBP method. In each single experiment a set of test samples belonging to an specific
tile model was classified using reference sets of samples. The sequence of experi-
ments for each tile model was carried out as shown in Table 6.2. The factors were
varied in a nested way using an algorithm similar to the algorithm 1, shown in the
previous chapter. Again, an experimental design with orthogonal factors effects was
defined achieving independence between factors, iterations and experiments.

As in the previous experimental design of soft colour-texture descriptors, the
experiments of all models were grouped in a single one redefining the output response
as the achieved mean accuracy computed over all models. The 96 tests of the
experimental design were carried out for each model, 1.344 experiments in total, and
the results grouped into a new 96 experimental design where the output response was
the mean accuracy of all models. Then, we computed the logistic regression models
(see Figures 6.1 and 6.2). Both models achieved a very high adjusted percentage
of deviance explained by model (96% and 97.4%), which indicates good regression
models.

Then, we carried out the selection of best combinations and obtained a table
similar to 6.2 with the predicted accuracy rates for each experiment. The results
were sorted using the predicted accuracy rate. The 30 best combinations of each
approach are shown in Tables 6.3 and 6.4.

From the results and figures we extract the following conclusions.
Colour histograms

1. Best accuracy result (97.8%) is achieved using RGB colour space, Chi-square
distance and one leaving-one-out classifier. This result from the experimental

design meets the proposed method in literature.
2. The overall best performance of colour spaces is for RGB followed by CIE Lab.

3. Chi-square statistic is clearly the best distance, followed by linear correlation.
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The log-likehood measure does not work properly for colour histograms.

4. Best classifiers stem from the leaving-one-out approach. Therefore, we should

select the 1-NN method using as more training samples as possible.

Centile-LBP

1. Best accuracy result (98.3%) is achieved using CIE Lab colour space, linear
correlation distance for LBP histograms and one leaving-one-out classifier. In
this case, the method extracted from the experimental design does not coincide
with the proposed in literature (RGB colour space, log-likehood distance and
k-NN classifier).

2. CIE Lab followed by RGB are the colour spaces giving best results.

3. All the distances show good behavior, but the linear correlation gives the best

performance.

4. Best classifiers are the derived from the leaving-one-out approach. Again, we

should select the 1-NN method using as more training samples as possible.
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Table 6.2: Orthogonal sequence of experiments for the colour histograms and centile-

LBP methods.

Colour space Classifier Distance accuracy %
lab 1-nn chi-square X
lab 1-nn correlation X
lab 1-nn log-likehood X
lab 3-nn chi-square X
lab 3-nn correlation X
lab 3-nn log-likehood X
lab 7-loo chi-square X
lab 7-loo correlation X
lab 7-loo log-likehood X
luv 1-nn chi-square X
luv 1-nn correlation X
luv 1-nn log-likehood X
luv 7-loo chi-square X
luv 7-loo correlation X
luv 7-loo log-likehood X

grey 1-nn chi-square X
grey 1-nn correlation X
grey 1-nn log-likehood X
grey 7-loo chi-square X
grey 7-loo correlation X
grey 7-loo log-likehood X
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Figure 6.1: Computed logistic regression model for colour histograms.

Logistic Regression

Dependent variable: accuracy/100
Sample sizes: n_tests
Factors: Spa, Dis, Clas

Estimated Regression Model (Maximum Likelihood)

Standard Estimated
Parameter Estimate Error 0dds Ratio
CONSTANT 0.588225 0.0827639
Spa=grey 0.875956 0.109761 2.40117
Spa=lab 1.17319 0.120174 3.23228
Spa=luv 1.24737 0.117719 3.48117
Dis=chi 2.0869 0.115529 8.05992
Dis=corr 1.82857 0.107692 6.22498
Clas=11loo0 0.227155 0.104175 1.25502
Clas=1nn -0.150119 0.113644 0.860606
Clas=31loo 0.325216 0.104668 1.38433
Clas=3nn 0.125589 0.11613 1.13382
Clas=5lo0 0.400251 0.10472 1.4922
Clas=5nn 0.0639772 0.115304 1.06607
Clas=71loo0 0.343234 0.103363 1.4095
Spa=grey*Dis=chi -2.24924 0.0960474 0.105479
Spa=grey*Dis=corr -2.08892 0.0880021 0.12382
Spa=lab*Dis=chi -1.51507 0.106083 0.219793
Spa=lab*Dis=corr -1.47667 0.095813 0.228398
Spa=luv*Dis=chi -2.01041 0.103336 0.133934
Spa=luv*Dis=corr -1.96702 0.093971 0.139873
Spa=grey*Clas=11lo0 0.407846 0.142735 1.50358
Spa=grey*Clas=1nn 0.290179 0.146772 1.33667
Spa=grey*Clas=31o0 0.422044 0.143303 1.52508
Spa=grey*Clas=3nn 0.114563 0.149548 1.12138
Spa=grey*Clas=5lo0 0.411459 0.14192 1.50902
Spa=grey*Clas=5nn 0.0141489 0.147173 1.01425
Spa=grey*Clas=71lo0 0.313169 0.136576 1.36775
Spa=lab*Clas=11lo0 0.248035 0.157121 1.2815
Spa=lab*Clas=1nn -0.0438777 0.158413 0.957071
Spa=lab*Clas=31oo0 0.255287 0.158025 1.29083
Spa=lab*Clas=3nn -0.231686 0.160787 0.793195
Spa=lab*Clas=51o0 0.171913 0.155418 1.18757
Spa=lab*Clas=5nn -0.125283 0.16093 0.882248
Spa=lab*Clas=71o0 0.20717 0.151614 1.23019
Spa=luv*Clas=11loo 0.551315 0.158477 1.73553
Spa=luv*Clas=1nn 0.0748652 0.154739 1.07774
Spa=luv*Clas=31loo 0.371197 0.155113 1.44947
Spa=luv*Clas=3nn -0.00367895 0.158814 0.996328
Spa=luv*Clas=5loo0 0.27189 0.151869 1.31244
Spa=luv*Clas=5nn -0.0908977 0.156081 0.913111
Spa=luv*Clas=71oo0 0.284234 0.147342 1.32874
Dis=chi*Clas=11lo0 0.900621 0.142402 2.46113
Dis=chi*Clas=1nn 0.0995474 0.132334 1.10467
Dis=chi*Clas=31lo0 0.702057 0.139227 2.0179
Dis=chi*Clas=3nn 0.0583487 0.135531 1.06008
Dis=chi*Clas=51lo00 0.508544 0.13549 1.66287
Dis=chi*Clas=5nn 0.0595543 0.133344 1.06136
Dis=chi*Clas=71lo0 0.318586 0.129355 1.37518
Dis=corr*Clas=11loo 0.74998 0.131465 2.11696
Dis=corr*Clas=1nn 0.19488 0.128234 1.21517
Dis=corr*Clas=31loo 0.621296 0.130495 1.86134
Dis=corr*Clas=3nn 0.00917647 0.129328 1.00922
Dis=corr*Clas=5loo 0.364569 0.126336 1.43989
Dis=corr*Clas=5nn 0.0317999 0.127666 1.03231
Dis=corr*Clas=71loo 0.134646 0.120905 1.14413

Percentage of deviance explained by model = 98.7064
Adjusted percentage = 96.0086
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Figure 6.2: Computed logistic regression model for centile-LBP.

Logistic Regression

Dependent variable: accuracy/100

Sample sizes: n_tests
Factors: Spa, Dis, Clas

Estimated Regression Model (Maximum Likelihood)

Standard
Error

Estimated
0dds Ratio

CONSTANT

Spa=grey

Spa=lab

Spa=1luv

Dis=chi

Dis=corr

Clas=1l1loo0

Clas=1nn

Clas=31lo0

Clas=3nn

Clas=51o0

Clas=5nn

Clas=71loo0
Spa=grey*Clas=11lo0
Spa=grey*Clas=1nn
Spa=grey*Clas=31o0
Spa=grey*Clas=3nn
Spa=grey*Clas=5100
Spa=grey*Clas=5nn
Spa=grey*Clas=7100
Spa=lab*Clas=11lo0
Spa=lab*Clas=1nn
Spa=lab*Clas=31o00
Spa=lab*Clas=3nn
Spa=lab*Clas=51o0
Spa=lab*Clas=5nn
Spa=lab*Clas=71o0
Spa=luv*Clas=11o0
Spa=luv*Clas=1nn
Spa=luv*Clas=31oo0
Spa=luv*Clas=3nn
Spa=luv*Clas=51o00
Spa=luv*Clas=5nn
Spa=luv*Clas=71o0
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.50628
.188014
.306623
.105861
.147246
.45345
.79341
.26328
.514671
.14671
.340032
.661778
.239453
.311246
.38216
.148233
.466824
.124236
.120554
.120522
.334304
.198711
.166218
.00792229
-0.
.19113
.868065
.502609
.652074
.328953
.674476
.192762
.324074

15237

0.0905594
0.114461
0.129802
0.117977
0.0370227
0.0373627
0.148945
0.152151
0.140771
0.140611
0.136281
0.134495
0.121283
0.186357
0.190007
0.174727
0.179055
0.16865
0.172121
0.155215
0.224951
0.213777
0.215086
0.202645
0.201052
0.194394
0.183204
0.182459
0.192278
0.176162
0.181608
0.170968
0.176328
0.157786

0.602733
1.20685
0.735928
1.11167
1.15864
4.27785
2.21092
3.537
1.67309
3.14783
1.40499
1.93824
0.787058
0.732534
0.682386
0.86223
0.62699
0.883171
0.886429
1.12809
0.715836
1.21983
0.846862
0.992109
0.858671
1.21062
0.419763
0.60495
0.520964
0.719677
0.509423
0.824679
0.723197

Percentage of deviance explained by model = 98.5128
Adjusted percentage = 93.2502
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Table 6.3: Thirty best combinations of factors using colour histograms. Predicted
accuracy (p*100) and confidence intervals are given in %.

N° Exp. Space Distance Classifier p*100 c.i. 95%

79 grey chi 5loo 93.23  [91.44, 94.75]
49 rgh chi 1nn 93.24  [90.72, 95.96]
52 rgh chi nn 93.55  [91.20, 95.74|
39 luv corr 5loo 93.90 [92.26, 95.41|
78 grey chi 3loo 94.00 [92.38, 95.50|
16 lab corT 7loo 94.26  [96.62, 95.68]
ol rgh chi onn 94.26  [91.92, 96.26]
7 grey chi 1loo 94.47  [92.85, 95.87]
32 luv chi 7loo 94.57  |92.97, 95.96|
50 rgh chi 3nn 94.58  [92.16, 96.43|
64 rgb corr 7loo 94.76  [93.21, 96.14]
38 luv corT 3loo 95.32  [93.81, 96.60]
15 lab corr 5loo 95.48  [94.05, 96.78]
31 luv chi bloo 95.66  [94.17, 96.87|
63 rgh corr 5loo 96.01  [94.65, 97.23|
8 lab chi 7loo 96.09 |94.77, 97.32]
37 luv corr 1loo 96.18  [94.77, 97.32]
30 luv chi 3o 96.48  [95.14, 97.59)
14 lab corr 3loo 96.49 [95.14, 97.59|
o6 rgh chi 7loo 96.57  |95.26, 97.68|
13 lab corr 1loo 96.57  |95.26, 97.68|
62 rgh corr 3loo 96.65  [95.38, 97.76]
61 rgh corr oo 9675 [95.50, 97.85]
7 lab chi bloo 96.81  [95.50, 97.85|
55 rgh chi 5loo 97.30 [96.12, 98.28|
29 luv chi 1loo 97.32  |96.12, 98.28|
6 lab chi 3loo  97.38  [96.25, 98.37|
54 rgh chi sloo  97.59  [96.50, 98.54|
5 lab chi oo 97.61  [96.50, 98.54]

23 rgh chi 1loo 97.82  [96.50, 98.54|
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Table 6.4: Thirty best combinations of factors using centile-LBP. Predicted accuracy
(p*100) and confidence intervals are given in %.

N° Exp. Space Distance Classifier p*100 c.i. 95%
1 lab chi lnn 94.67  [92.41, 96.60]
56 rgh chi 7-1oo 94.74  [93.21, 96.14]
65 rgh log 1-nn 94.87 192.65, 96.77|
9 lab corr 1-nn 94.88 ]92.65, 96.77|
64 rgh corr 7-loo 94.95 ]93.45, 96.33|
77 grey chi 1-loo 94.97 [93.45, 96.33]
85 grey corr 1-loo 95.16  [93.69, 96.51]
49 rgh chi lun 95.36  [93.14, 97.11]
57 rgh corr I-nn 95.54  193.39, 97.27|
24 lab log 7-loo 95.95 |94.53, 97.14|
71 rgh log 5-loo 96.34  [95.01, 97.50]
8 lab chi 7loo  96.34  [95.01, 97.50|
16 lab corr 7-loo 96.48 [95.14, 97.59]
5} rgh chi 5-loo 96.70 |95.38, 97.76|
70 rgh log 3-loo 96.73  ]95.50, 97.85|
63 rgh corr 5-loo 96.83  ]95.63, 97.94|
23 lab log 5-loo 96.93  [95.63, 97.94]
54 rgh chi 3-loo 97.05 [95.88, 98.12]
62 rgh corr 3-loo 97.17  ]96.00, 98.20|
7 lab chi 5-loo 97.23  196.00, 98.20|
69 rgh log 1-loo 97.28 ]96.12, 98.28|
15 lab corT 5-loo 97.34 [96.12, 98.28]
53 rgb chi ldoo  97.55 [96.37, 98.45]
61 rgh corr 1-loo 97.64 |96.50, 98.54]
22 lab log 3-loo 97.76 |96.63, 98.62|
6 lab chi 3-loo 97.98 ]96.88, 98.77|
21 lab log l-loo  97.99  [96.88, 98.77|
14 lab corr 3loo  98.06 [97.01, 98.87]
5 lab chi oo 98.19 [97.14, 98.95]
13 lab corr 1-loo 98.26  |97.27, 99.03|
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Figure 6.3: Presence in percentage of colour spaces in best combinations of colour
histograms and centile-LBP.
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Figure 6.4: Presence in percentage of distances in best combinations of colour his-

tograms and centile-LBP.
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Figure 6.5: Presence in percentage of classifiers in best combinations of colour his-

tograms and centile-LBP.
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Table 6.5: Best results of surface grading approaches.

factors predicted c.i. 95% measured
accuracy accuracy
Soft colour-texture  CIE Lab, 1-loo, 97.36% [96.25%, 98.38%| 96.70%
descriptors all descriptors

Colour histograms RGB, 1-loo, 97.82% [96.50%, 98.54%)| 98.67%
Chi square

Centile-LBP CIE Lab, 1-loo, 98.26% [97.27%, 99.03%)| 98.25%
linear correlation

6.4 Comparison with soft colour-texture descrip-
tors method

In all methods the achieved performance is very good and quite similar, predicted
accuracy varies in less than 1%. Also, for all of them confidence intervals and
predicted accuracy exceed factory demands of 95% (see Table 6.5).

Perceptually uniform colour spaces, CIE Lab and CIE Luv, work fine with soft
colour-texture descriptors while RGB and CIE Lab provide good behavior in colour
histograms and centile-LBP approaches respectively.

It is in timing costs where the differences arise among methods. In Figure 6.6
they are compared by timing costs (measured in a common PC) for ten of the
fourteen tile models. The soft colour-texture descriptors method provides the best
performance in timing costs, closely followed by centile-LBP. The colour histograms
approach compile by far the worst timing despite this method does not need to
translate the image data, originally in RGB, into CIE Lab space. Also, this method
presents irregular timing for the same data size. The berlin, lima and oslo models
share the data size (tile and image size) but the method achieves significant timing
differences among them. This effect is due to the use of binary trees to store the
colour histograms of images. Those images with larger number of different colours
will need larger trees and more time to compute the differences between histograms.

This timing dependence related to data values does not appear in the other two
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methods whose computational costs only depend on the image size and algorithm;

©(n) + C where n is the image size and C' is a constant related with the algorithm

used for implementing the approach.

Figure 6.6: Timing comparison of surface grading approaches using the best combi-
nation of factors.
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Chapter 7

Study of real-time compliance

This chapter concerns the study of the real time compliance of the inspection system
working with the proposed method' based on soft colour-texture descriptors. In the
previous chapter we concluded this approach is faster than the other two methods
in the literature. Also, the method achieves very good surface grading performance
(97.4%) differing from the centile-LBP result by only 0.9 (centile-LBP is the best in
accuracy among the compared approaches).

First, we studied the sequential timing for the worst possible case at factory. This
study was done using a modern PC (Pentium IV at 3,2GHz) and it was concluded
that parallelization could be necessary in some cases. The parallelization procedure
was carry out using a cluster-MPI scheme.

Before parallelization, a preliminary study on the influence of data scaling on
accuracy results was performed to determine the real image resolution needed for
surface grading. The original images were acquired with a 3.2 pixels per millimetre
resolution because the system was also designed to detect small surface defects.
Nevertheless, we suspected this resolution might be excessive for the surface grading
purpose. The experiments using lower image resolutions demonstrate we were right
and a resolution of 0.8 pixels per millimetre is sufficient to surpass the minimum

accuracy limit (95%) requested at factory.

LCIE Lab colour space, 1-loo classifier and all soft colour-texture descriptors.

108
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7.1 Sequential inspection process

First, we carried out a study for determining the real-time compliance using only
one computer and then the need for parallelization. We used a modern PC? to study

the timing costs of the inspection process, which is divided into four subprocesses:

1. Image acquisition: the tile image was captured using a Dalsa Trillium scan
line camera connected to a Coreco-Imaging PC-DIG grabber (see Chapter 3
for more details). Image acquisition includes the time needed to transfer image
data from grabber to the computer memory, 111 milliseconds in the worst case

corresponding to 50x50cm pieces (2048x1900 RGB images).

2. Tile extraction: this corresponds to segmentation of the tile surface from the
background and also tile repositioning and reorientation to facilitate compu-

tation of its features (see next section 7.2 and Appendix A).

3. Computation of features: the computation of all soft colour-texture descriptors

of the global image.

4. Surface grade classification.

The worst case at factory corresponds with the inspection of 50x50cm pieces (the
larger manufactured tiles) which can be produced at 20 pieces per minute. Thus,
there are three seconds to perform all the inspection processes for each tile.

As the image acquisition is done using a scan line camera, the image is only com-
pleted after all the piece has passed under the camera. The pieces are 20 centimeters
apart. As the production ratio is 20 pieces per minute, 140 meters pass under the
inspection system every 60 seconds, then, the spatial separation of 0.20 meters be-
tween tiles corresponds with 857 milliseconds. If we subtract the time needed to
transfer the image from the grabber to the computer memory (111 milliseconds), we
have 746 milliseconds to perform the other three inspection processes.

Table 7.1 shows the measured timing costs of the inspection processes. The total

time needed to inspect a piece for surface grading clearly exceeds the 3 second time

ZPentium IV at 3,2 GHz. 1GB of memory at 400 MHz.
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Table 7.1: Timing costs of sequential inspection processes.

Processes milliseconds
Acquisition 2254
Tile extraction 1093
Computation of features 2520
Classification 0
Total 5867

limit imposed by the worst case. Therefore, in this cases, parallelization is needed
to provide 100% inspection at on-line rates.

Parallelization can be applied using two schemes:

1. By dividing the image data into n sub-images (as many as there are compu-
tation nodes involved in the parallel architecture). Each node performs the
tile extraction and computation of features to its corresponding sub-image and

then returns the computed features.

2. By transferring complete images to each node. In this case, each node extracts
the tile surface and computes the features of complete images. When a node
finalizes, it returns the computed features to the Master node and classification
is then performed. The Master node is also assigned the task of acquiring tile
images (see Figure 7.4). When the Master has a new image to inspect it uses

a simple algorithm to determine which node is free in the cluster.

Parallelization cannot be applied to acquisition task neither classification. These
two tasks will be performed only by one node. Also, if we study the approach used
for tile extraction (see next section and Appendix A), it is easy to realize that in the
first scheme for parallelization tile extraction is a nonsense operation when using
sub-images. Tile extraction cannot be performed with partial images. Thus, in the
first case, the parallelization is only possible for the computation of features. But,
although parallelization would reduce the time for the computation of soft colour-

texture descriptors, it is not enough to achieve real-time compliance because the
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Figure 7.1: Acquired tile presenting a slightly inclination.

time for acquisition and tile extraction exceeds the 3 second limit. Therefore we
chose the second approach to parallelization because in this case complete images

are used and thus tile extraction can be included in parallelization.

7.2 Tile extraction

Once the image has been acquired, the tile must be extracted from the background
and fitted to a non-inclined square so the features can be properly computed. When
tiles pass under the acquisition system, a perfect alignment of the piece with the
scan line camera is not assured. Usually the images present an aspect similar to
that shown in Figure 7.1, where the tile is slightly rotated or inclined.

We used an image registration methodology in order to perform tile extraction
and its adjustment to a non-inclined rectangle. This methodology was taken from
a development that we performed in previous works for the detection of defects in
fixed pattern ceramic tiles [20 23]. The registration method is explained in detail
in Appendix A of present document.

The aim of the tile extraction process is to obtain images of tiles free of back-

ground and inclination (see Figure 7.2). After this, the image is ready for the
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Figure 7.2: Tile extracted from background, positioned at origin (left-upper corner)
and registered with a non-inclined rectangle.

computation of the soft colour-texture descriptors which are only concerned with

tile surface.

7.3 Data scaling vs real-time compliance

Once we extracted the best surface grading method based on soft colour-texture
descriptors, we planned a study on the influence of the image resolution on accuracy
as a first approximation to the issue of real-time compliance.

For the experiments in Chapters 5 and 6 we used the original resolution of
the VxC TSG images, 3.2 pixels per millimetre. This high resolution was selected
because the system was also designed to detect small surface defects. However,
we thought this resolution might be excessive for the purpose of surface grading.
For surface grading we need measures of global appearance rather than fine local
information.

As the data size is a primary factor in the computational costs, we studied the
evolution of accuracy using smaller image resolutions. We repeated classification of
the VxC TSG models using the method extracted in Chapter 5 and different image
resolutions or scales. We used the scales 1.0, 0.50, 0.25, 0.12, 0.06 and measured the

accuracy over all models computing the achieved mean accuracy.
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Figure 7.3: Accuracy versus scale using the extracted soft colour-texture descriptors
method.
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The influence of the scale on accuracy is shown in Figure 7.3. Scales 1.0 and 0.25
are only separated by a loose of 2% in accuracy. The 0.25 scale exceeds the factory
limit using an amount of data 16 times smaller (more than one order of magnitude).
Thus, the resolution could be reduced from 3.2 to 0.8 pixels per millimetre with-
out a significant loose of discriminant power (95.5%) complying with the factory
requirement for grading performance. Also interesting is the result obtained using
the 0.5 scale. Here, with an amount of data four times smaller, the accuracy almost
remains equal (only droops 0.2%, from 97.6% to 97.4%). A resolution of 1.6 pixels
per millimetre can be also a good choice to achieve real-time compliance.

The previous timing table (Table 7.1) is up-dated to take into account the new
image resolutions as shown in Table 7.2.

With the improvement introduced using the new resolutions the parallelization
approach is not needed if a resolution of 0.8 pixels per millimetre is chosen. Never-
theless, if we prefer to give priority to the grading performance or add more surface

inspection tasks, a parallelization study would be useful.
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Table 7.2: Timing costs of sequential inspection processes using new image resolu-
tions.

Processes 3.2 1.6 0.8

(pixels/mm) (pixels/mm) (pixels/mm)

Acquisition 2254 2254 2254
Tile extraction 1093 250 47
Computation of features 2520 630 150
Classification 0 0 0
Total time 5867 3134 2451

(in milliseconds)

7.4 MPI-Cluster architecture

For parallelization we chose the architecture based on the union of the cluster hard-
ware and the MPI (Message Passing Interface) software. From the point of view
of parallel architectures, a cluster is a collection of complete computers with dedi-
cated interconnects. Typically, all the machines in the cluster are set up to function
identically, they have the same instruction set and operating system. Cluster build-
ing technology is usually standard; microprocessors, and interconnection networks.
Clusters are more cheaper than specialized parallel systems and they provide easy
and affordable access to parallel processing.

Clusters were first used to serve multiprogramming workloads. In multiprogram-
ming clusters, a single front-end machine usually acts as an intermediary between
a collection of compute servers an a large number of users at terminals on remote
machines. However, clusters are increasingly being used as parallel machines, of-
ten called networks of workstations (NOWs) [126]. A major influence on clusters
has been the increase in popular domain software, such as PVM (Parallel Virtual
Machine) [127] and MPI (Message Passing Interface) [128]. This allows users to
farm jobs over a collection of machines or to run a parallel program on a number of
machines connected by a local area network.

Both, PVM and MPI are software libraries for parallelization using clusters and

C (also Fortran) standard programs. We decided to use the MPI software because it
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is oriented to achieving higher communication performance when the same kind of
hosts are connected [129] (homogeneous networks). This is our case, and also much
of the parallelization scheme is based on network transfer performance.

Including a cluster to increase surface inspection capabilities means that the
previous inspection system architecture has to be re-designed (see Chapter 3) as
shown in Figure 7.4.

The machine connected with the camera and sensors through the frame grabber
and 1/O card is the Master node and, once the image of one tile is acquired, it
manages the distribution of work among the nodes of the cluster and also collects
the results. When the soft colour-texture descriptors are available the Master node
performs the classification and finally grade the ceramic tile.

When the Master node has a new tile image it uses a simple algorithm to de-
termine which node is free in the cluster. Then, the image is sent to this node
which carries out the tile extraction and computation of features. Finally, the node
returns the computed features to the Master which performs the final classification

or surface grading.

7.5 Parallelization experiments and results

For the first experiment we used the 'Mercurio’ cluster located at the GAP Lab-
oratory (Parallel Architectures Group) in the Polytechnic University of Valencia.
This machine is formed by 21 nodes, one of which is the Master node. Each node
is equipped with a Pentium III bi-processor at 1GHz and 1GByte of RAM mem-
ory. All nodes are interconnected using a high performance Ethernet network with
a 1Gb bandwidth. The software for parallelization installed in the cluster was the
MPI version 1.2.

The experiment consisted in measuring computing times when using a growing
number of nodes. The parallel algorithm corresponds with the second scheme of
parallelization (see section 7.1), based on the distribution of whole images to the
free nodes in the cluster. The nodes extract the tile and compute of features. The

soft colour-texture descriptors are sent to the Master node which finally performs
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Table 7.3: Timing of parallelization in Mercurio cluster using different image reso-
lutions (time in milliseconds).

Number of Nodes 3.2 1.6 0.8
(pixels/mm) (pixels/mm) (pixels/mm)

1 11321 2825 704
2 D727 1431 357
3 3867 964 240
4 2935 732 183
5 2379 296 148
6 1989 496 124
7 1725 434 108
8 1541 385 96
9 1386 346 86
10 1261 315 78
11 1207 301 75
12 1152 288 72
13 1113 278 69
14 1048 262 65
15 1018 254 63
16 995 248 62
17 974 243 60
18 963 240 60
19 946 236 29
20 907 226 o6

the surface grade classification. Table 7.3 and Figure 7.5 show the results for image
resolutions of 3.2, 1.6 and 0.8 pixels per millimetre.

Figure 7.5 shows that parallelization reaches saturation when we use more than
10 nodes. We achieve success in parallelization when the required time is under 746
milliseconds which is the time remaining after the image acquisition at the Master
node. From this point of view, the 3.2 resolution does not succeed because the time
needed using 20 nodes is 907 milliseconds. Using more nodes could lead to achieve
times under the limit of 746 milliseconds, but a cluster of 20 nodes (or more) is far
too expensive, both economically and spatially. The prototype at factory should
be equipped with a reasonable number of nodes to take into account economic and
spatial costs. The best relation between accuracy and number of nodes is achieved

using four nodes and a resolution of 1.6 pixels per millimetre. This configuration is
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Figure 7.5: Timing evolution in Mercurio cluster using several image resolutions.
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under the time limit (746 milliseconds) and uses a reduced number of nodes. More
nodes, or a resolution of 0.8 pixels/mm, can be chosen if we plan to introduce more
inspection tasks in addition to surface grading. The computational costs of these
new tasks should be studied in conjunction with the surface grading application.

In a second experiment we tested the surface grading application using a high
performance cluster; the 1350 IBM cluster. This machine is called 'Hyades” and is
located at the Computing Centre of the Polytechnic University of Valencia. This
cluster, used for supercomputing tasks, has 60 nodes equipped with Intel Xeon bi-
processors at 2,4 GHz and 1GB of RAM memory. The nodes are interconnected
using a Myrinet which provides a bandwidth of 2Gb per second. This cluster is an
IBM machine made for supercomputing applications and is much more expensive
than Mercurio. With this experiment we tried to determine if it is worthwhile to use
high performance clusters for the application of surface grading. Only 14 nodes were
available when we carried out our experiments, but that was enough for comparison
purposes (see Table 7.4).

From the timing comparison of Figure 7.6 we can conclude that Hyades performs

significatively better when using a reduced number of nodes, however, the timing
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Table 7.4: Timing of parallelization in Hyades machine using several image resolu-
tions (time in milliseconds).

Number of Nodes 3.2 1.6 0.8
(pixels/mm) (pixels/mm) (pixels/mm)

1 5739 1373 341
2 3037 765 193
3 3130 770 166
4 2362 563 147
Y 1862 461 101
6 1542 399 91
7 1376 345 84
8 1266 321 85
9 1201 302 74
10 1151 285 71
11 1118 276 68
12 1084 269 66
13 1030 256 64
14 1003 251 62

Figure 7.6: Timing comparison between Mercurio and Hyades clusters using several
image resolutions.
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costs of both machines quickly become similar from the third node on. Individually
a Xeon bi-processor clearly performs better than a Pentium III bi-processor in per-
formance, but this individual advantage does not transfer to the cluster scheme of
parallelization.

Mercurio and Hyades machines were compared also using the Speedup and Ef-
ficiency which are two classical measures for characterizing parallelization results
(see Figure 7.7). Speedup is the relation between the time needed to carry out the
task in only one node and the time needed for the same task using n nodes. The
Efficiency is the relation between the real and the ideal Speedup. The ideal Speedup
using 2 nodes is 2, two nodes should double system speed, three nodes should treble
and so on.

Figure 7.7 shows clear advantage of Mercurio cluster which achieves better per-
formance in Speedup and Efficiency. We conlude that high performance equipment

Hyades does not provide enough benefits to justify the investment costs.
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Figure 7.7:

Speedup and Efficiency in Mercurio and Hyades.
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7.6 Conclusions

In this chapter we have studied the real-time compliance of the surface grading

method proposed in this thesis, which is also the fastest among the compared meth-

ods. The method was extracted in Chapter 5 and is based on soft colour-tezture

descriptors using the CIE Lab colour space, the 1-leaving-one-out classifier and all
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the descriptors.

We carried out all the studies with reference to the worst case at factory; 50x50cm
tiles at a ratio of 20 tiles per minute. This gives 3 seconds to inspect and grade each
tile. Firstly, we studied the method’s timing requirements with a standard modern
computer. The result was unsuccessful because the computing time required for
only one tile was of 5.867 seconds which exceeds the limit.

Secondly, we studied the influence of the image resolution on accuracy. The
original resolution was high, 3.2 pixels per millimetre, because the system was de-
signed not only for surface grading but also for detecting small defects. We tested
lower resolutions and achieved an accuracy over 95% for resolutions of 1.6 and 0.8
pixels per millimetre. The corresponding computing times were of 3134 and 2451
milliseconds respectively. Thus, 0.8 resolution complies with real-time requirements.

Although parallelization is not strictly needed we decided to perform this study
because it could be of interest if we want to prioritize accuracy performance or plan
to add more inspection tasks to the system. We chose the cluster-MPI scheme be-
cause it provides easy, affordable access to parallel processing. We first carried out
the experiments with a medium-level performance cluster called Mercurio. Mercurio
is composed of Pentium III bi-processors at 1GHz using a standard 1Gb Ethernet for
interconnection. The timing results showed that the best relation between number
of nodes and accuracy was achieved using four nodes and a resolution of 1.6 pixels
per millimetre. Four is a reasonable number of nodes for the cluster if we think in
terms of economic and spatial costs. The space ocuppied by the inspection system
at factory is an important issue because more space makes the system less opera-
tive. Finally we repeated the surface grading experiments in a high performance
machine called Hyades which was composed of Xeon bi-processors at 2.4 GHz and
one Myrinet network at 2Gb per second. In timing, Hyades only achieved clear bet-
ter performance using less than 3 nodes. Mercurio surpassed Hyades in two classical
measures of parallelization performance; Speedup and Efficiency. The difference in
cost between both systems and the achieved results led us to conclude that it is not

worthwhile investing in a high performance cluster.



Chapter 8

Conclusions, discussion and further

work

In this thesis we have presented a case of study of the development and performance
analysis of a surface grading application with real-time compliance. The application
focuses on the ceramic tile industry and aims to automate the inspection process
of surface grading and removing human inspectors from this subjective and tedious
task. From the overview of surface grading works we concluded that many of them
were very specialized in a specific type of surface, others did not achieve good enough
accuracy, and yet others did not take into account the real-time restrictions of a
factory inspection. Therefore, we though surface grading was still an open issue
where more contributions were possible. In this sense, this thesis dealed with less
explored aspects related to real-time compliance and surface grading performance.

In Chapter 3 we addressed the question of spatial and temporal uniformity in the
acquisition system. We performed a study of spatial and temporal uniformity com-
paring two modern illumination systems; fluorescents and white LED arrays. The
results showed that only fluorescent systems were able to provide sufficient uniform
response for the application of surface grading. In this chapter was also presented
the VxC TSG (VxC Tiles for Surface Grading) which is an image database of ce-
ramic tiles oriented to surface grading. Creating and compiling this database was
one of the thesis goals. It has been the ground truth used for testing and comparing

surface grading approaches presented in Chapters 5 and 6. VxC TSG is an extensive
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image data base of ceramic tile models representing the wide range of surface classes
in ceramic tiles, and also, it is intended to be a tool for the scientific community and
future works in the field of surface grading (miron.disca.upv.es/vision/vectsg/).

In Chapter 4, first works seeking for a fast and accurate method of surface grad-
ing were revised. Here, we presented the preliminary works that finally gave rise to
the soft colour-texture descriptors method. First, we studied methods based on im-
age tessellation and local statistics of colour. These methods did not achieved good
enough accuracy and only one of them, using multiresolution techniques, achieved
factory compliance exceeding 95% of minimum accuracy. However, all these meth-
ods have an important drawback, they need to non-automatically estimate at least
one parameter for every tile model. Then, we proposed a generic method with no pa-
rameter estimation needed. This method used global statistics of colour and texture
computed in a perceptually uniform colour space, the CIE Lab. Global statistics
in CIE Lab achieved factory compliance in accuracy improving also two literature
methods; colour histograms and centile-LBP. In these works we used a medium-sized
image database of ceramic tiles, the antecedent of VxC TSG.

Global statistics computed in CIE Lab is the antecedent of soft colour-tezture
descriptors method which was in-depth studied in chapter 5. Both, global statistics
in CIE Lab and soft colour-texture descriptors are basically the same method. Once
we found a fast method able to comply with factory requests, we decided to in-depth
study the approach using several factors such as colour spaces (CIE Lab, CIE Luv,
RGB and Grey scale), classifiers (k-NN and leaving-one-out) and testing all the
possible combinations of soft colour-texture descriptors (mean, standard deviation,
and histogram moments from 2nd to 5th). To do so, statistical tools were used in
order to manage the large amount of experiments and achieve objective conclusions.
These statistical tools were the design of experiments and the logistic regression.
They provided a procedure with which to study and determine the best combination
of factors to maximize the accuracy rate. The extracted method achieved 97.4% of
predicted mean accuracy and 97.6% of measured mean accuracy over all models.
The computed confidence interval was [96.25%, 98.36%| which clearly surpasses

the factory requirement for performance. From the in-depth statistical study it
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was also concluded that RGB, a common colour space non-perceptually uniform,
provides less discriminative power, all the soft colour-texture descriptors contribute
to achieve accuracy performance, and also the classifiers derived from the leaving
one out method perform better.

In Chapter 6, two methods from the surface grading literature were implemented
and tested for comparison purposes. These methods were colour histograms and
centile-LPB. We chose these methods from literature because they were similar to
ours; they are generic solutions with low computational costs. With these methods
was also performed a statistical analysis using again experimental design and logistic
regression. The results showed that all approaches are almost equal in accuracy
performance if we compare with soft colour-texzture descriptors method. However,
soft colour-texture descriptors method achieved better results in timing costs. Colour
histograms achieved 97.8% in mean predicted accuracy and 98.3% the centile-LBP
method. Predicted accuracies and confidence intervals of both approaches exceeded
factory demands of 95%.

The centile-LBP method from literature did not used the overall texture and
colour appearance of surfaces to grade wood boards. The grade of wood pieces was
assigned by detecting the wood defects and then applying grade rules related to the
number and classes of defects found. Therefore, the problem became a question
of separating the surface into sound and faulty wood, and classifying the defects
into their different types. However, we should point out that we used this method
not in the literature sense but to compile global description of colour and texture
and then directly grade surfaces. Thus, the fact that centile-LBP achieved the best
performance in accuracy and also closely followed soft colour-texzture descriptors
method in timing costs is an interesting result.

Finally, in Chapter 7 we presented a study of real-time compliance including
the parallelization of the method extracted in Chapter 5. The study was performed
having as reference the worst case at factory; 50x50cm tiles at a ratio of 20 tiles
per minute. Thus, we had 3 seconds to inspect and grade each tile. Firstly, we
studied the timing requirements of the method using a standard modern computer.

The result was unsuccessful because the computing time required for only one tile
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was of 5.867 seconds surpassing the 3 seconds limit. Then, we performed a study
about the influence of the image resolution on accuracy. The original resolution
was high, 3.2 pixels per millimetre, because the system was designed not only for
surface grading but also for detecting small defects. We tested lower resolutions
and achieved an accuracy over the limit of 95% for the resolutions of 1.6 and 0.8
pixels per millimetre. The corresponding computing times were of 3124 and 2451
milliseconds respectively. Therefore, 0.8 resolution complied real time requirements.

Although parallelization was not strictly needed we decided to perform this study
because it could be of interest if we want to prioritize accuracy performance or plan to
add more inspection tasks to the system. We chose the cluster-MPI scheme because
it provides easy, affordable access to parallel processing. We first carried out the ex-
periments with a medium-level performance cluster called Mercurio. Timing results
showed that the best relation between number of nodes and accuracy was achieved
using four nodes and a resolution of 1.6 pixels per millimetre. We repeated the sur-
face grading experiments in a high performance machine called Hyades. In timing,
Hyades only achieved clearly better performance using less than 3 nodes. Mercurio
surpassed Hyades in two classical measures of parallelization performance; Speedup
and Efficiency. The difference in cost between both systems and the achieved results
led us to conclude that it was not worthwhile to invest in a high performance cluster.

In previous paragraphs we have summarized thesis conclusions. Now, we proceed

to discuss some issues:

e At the beginning of the thesis, in Chapter 1, is established that the different
criteria of each operator (human grader) regarding tile defects could produce a
non-uniform quality control criterion. This assertion seems to be corroborated
with a study in the area of wood grading where in a test of four grades different
human graders agreed only in 60% of the samples |1|. However, we achieved
very high accuracy performance in experiments using an image database of tiles
previously graded by human operators at factory. Thus, the idea of a non-
uniform quality control criterion of human operators cannot be established as

a general rule, at least in the surface grading of ceramic tiles.
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e In Chapter 4 the method based on global statistics in CIE Lab improved
literature methods in accuracy. Also, literature approaches (colour histograms
and centile-LBP) did not achieve factory compliance because their confidence
intervals performed under the minimum factory demand on accuracy (95%).
However, when we carried out the in-depth statistical studies using the large
VxC TSG image database, all the methods were very good and quite similar
in performance achieving factory compliance. We think this was due to the
following factors: a larger image database was used, the acquisition system
was better calibrated for the acquisition of VxC TSG and also the images

were improved for each tile model using brightness and contrast control.

e We used perceptually uniform colour spaces (CIE Lab and CIE Luv) because
we though they will perform better than non-uniform spaces (RGB) as they
are closer to human perception of colours. However, from the experiments,
although perceptually uniform spaces showed good behaviour, they do not

always perform better (p.e. colour histograms perform better using RGB).

e In this thesis we have presented and tested general methods for the purpose
of surface grading. Nevertheless, the ground truth has been comprised only of
samples proceeding from the ceramic tile area and it could be interesting to

test the approaches using other surface types.

e The studied approaches are able to differentiate surface grades in 'a poste-
riori’ study once the ceramic tiles have been graded. However, at factory is
more interesting a method able to automatically determine when a 'new grade’
appears at production line. This would involve the use of thresholds with a
surface grade measure (i.e. distance in a space of features describing colour

and texture).
Further work would include the following items:

e Extend the image database adding more types of surface, i.e. natural surfaces
such as marble, granite or wood and also other artificial stuff such as textile

fabrics.
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e Test the studied methods with the new surface types.

e Study and develop methods able to detect changes of surface grades at pro-

duction lines.

e Develop a prototype to test the system and methods under real conditions at

factory.



Appendix A

Image registration method for

ceramic tiles

A.1 Introduction

This appendix presents an image registration method carried out for the purpose of
ceramic tiles inspection. Tile registration is the first step in detecting surface faults
when a ’compare with a reference’ technique is used. The presented method is
based on edge detection techniques, used to extract the bounding rectangle defined
by tiles. This method only uses a reduced set of border tile points, obtained with
the minimum cross entropy thresholding algorithm, and fits them to straight lines
using the least-squares method. An outlier detection test is included to eliminate
the influence of background noisy points or tile border defects. The bounding tile
rectangle is then registered with respect to a reference tile using simple geometrical
mapping. Several experiments were made to show the feasibility of the method from
the point of view of registration quality.

In the application of surface grading the registration method is applied to perform
the tile extraction from background and fit the tile boundary into a non-inclined
rectangle. This is necessary for proper computation of colour-texture features. As
a reference we used a rectangle with the dimensions of the original tile, with the

upper-left corner positioned at origin and without any inclination.
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A.2 Registration method

In [20,21] we studied several approaches for tile edge detection and boundary rect-
angle extraction. The proposed approach used tile border pixels to adjust the four
straight lines that compose the tile rectangle. These border points are obtained by
separating the tile from the image background using an optimal threshold level. To
do so, the minimum cross entropy thresholding algorithm [131] was selected due to
the accuracy of the obtained results.

For any image this algorithm selects the histogram threshold that minimizes the
cross entropy between the thresholded image and the original image, in other words,
the threshold which minimizes the ’error’ between both images.

For every threshold ¢

m(t) = L?\Zt d
n2(t) = Zijfz

where f; is the histogram value for the ¢ level in the original image and ¢; €
(m1,m2) is the thresholded image. The cross entropy between both images can be

computed as:

n(t) =Y filog ( f(it)

fi<t m

)+ X (5)

The optimum threshold level is selected by:

to = min(n(t))

Using Np evenly spaced horizontal and vertical scan lines, the outermost points
of each tile border are selected creating four sets of N edge points (Pyp, Ppown,
Prepr, Prigur). For each set of lateral points, a straight line is fitted using the
least-squares method.

Let Pyp = {po(z0,Y0), .-, Pn—1(Tn—1,yn—-1)} be the set of Np edge points of the

upper side. A line y = ayp + bypx can be fitted using the standard formulation:
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ok | ok
y=ayp+bypr=E(y) — E(r)5—+ 55— 2
Oxy 9xvy
Proceeding in a similar way, the remaining lateral lines can be computed (apow v,
bpown)s (aLerT, brEFT), (ARIGHT, DRIGHT). During this stage, an outlier detection

test is applied to eliminate the outlying points that sometimes appear due to the

background noise or border tile defects. This process works as follows:

Repeat

1. From the point set Pyp computes the line parameters ayp, byp.

2. For each point p;(z;,y;) computes its distance to the line:

D; = |y; — ayp + bupz;l.

If D, < l{;ag then do nothing, else extract p;(x;,y;) from Pyp.
Until (no point is extracted)

Those points lying further than one and a half standard deviations (k=1.5) from
the computed line are considered outliers, and discharged the line parameters being
computed again. The fitting process is repeated, usually two or three iterations,
until all the remaining points fulfill the condition.

Figure A.1 shows the progressive approximation of the fitted line to the correct
edge points, for the left side. After three steps, the furthest edge points are dis-
charged and the correct line fitting is produced using the remaining points. Figure
A.2 shows the results obtained after applying this procedure on several tile images.
Some points lying outside the tile area can be seen.

Once the bounding rectangle is obtained, the four corner co-ordinates are com-

puted and the inverse geometric mapping is applied as follows:

cosay  —Ssina T d,
= S . . +
sino coso Vi d,

where p;(x;,y;) and pl (2], yl) i = 1..4 are the test and reference tile corners, d,
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Figure A.1: Line fitting process.
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Figure A.2: Tile rectangles obtained on several test images.
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Figure A.3: Transformation mapping from test tile to reference tile.

Q » X

P"(x",y")

and d,, are the displacements between the top left points in the two tiles, « is the
rotation angle, and S is the scale factor. (O, X,Y") is the image reference coordinate
system (see Figure A.3).

Then, it is possible to determine the parameters of the transformation mapping

by minimizing the sum of the squared errors:

S (x;sina — y;cosa) — d@/]2

[

4
E = Z zh — 8 (zco500 — yssina) — dx]’ + [yl —
1=1

Replacing (S - cosa)by ’a’ and (S - sina) by b

4
E = Z S(a-zi—b-y)—de]> + [yl —S(b-2;—a-y) —dy]’

i=1

Deriving F with respect to a, b, dz, and dy and equaling to zero, the following

linear system of equations appears:
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Zz(ifzz + yz2) 0 Zz 5”3 Zz ?/z2 a Zz(xffz + YY)
0 Yo+ =y X b o > — yly:)
Zi xzz - Zz yi2 n 0 dx ;T
Zi Z/z2 Zz %2 0 oL dy | i Zz yi i

from which the optimal parameters of the geometrical transformation can be
obtained.
This approach saves a great deal of computing time as it directly calculates the

exact inverse transformation needed to registrate test tiles onto reference tiles.

A.3 Experiments and results

Two image data sets were used to validate the method. The first data set was
constructed in controlled conditions. Five colour images of different tile models
were acquired in the laboratory and were used as the ’'fault free’ reference data
set. For each reference image, a set of geometrical transformations were artificially
performed, with z and y displacement ranging from -10 to +10 pixels (step 0.5) and
rotations ranging from -2.0° to +2.0° (step 0.25°). As result, a set of N = 28577
test images was produced for each tile model.

After applying the registration method, the displacements and rotation param-
eters (dz, dy, ) were obtained for each test image i, and the mean square errors

with respect to the original ones (d'z, d'y, o) were computed as follows:

E, Z(d;(i) — d.(i))*/N

where E, and F, are measured in pixels, and E, in degrees.
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Table A.1: Experiments with artificially introduced transformations.

Tile model F, (pixels) FEy(pixels) F,(degrees)

firenze 0.191 0.268 0.014
biscuit 0.229 0.166 0.011
toscana 0.230 0.357 0.030
venice 0.214 0.195 0.013
austin 0.291 0.360 0.024
Mean 0.231 0.269 0.018

The achieved results (Table A.1) showed the good behaviour of this method,
with a mean in the displacement errors lower than 0.3 pixels and a mean in the
rotation errors lower than 0.02°. We used a reduced set of Np— 20 edge points. The
scale factor error Eg was negligible (S = 1).

A similarity measure was also introduced to compare the resulting registered
test image with respect to the reference. The similarity measure Ep used in these
experiments was the sum of the absolute differences of both images, that is the
mean grey level error per pixel. For comparison purposes, a relative measure cp,

normalized with the image dynamic range, was also computed as follows:

E;’ = ZZ |f2($7y) - f:ref(x>y)| /(m . n)

rz=1 y=1

Ep = (fj E@) /N

(s
ep =100 - (W) /N

where f;(x,y) is the test image ¢ and f,.f(x,y) is the reference image, (m, n) is
the image size, and A f; is the dynamic range of the image 7. Because all tiles used
in this experiment were fault-free, the computed errors were only due to registration
errors.

Table A.2 shows the achieved results. These results show that lower relative
pixel errors are obtained in the case of bright tiles. Dark tile models produce higher

mean errors on the registration parameters and, consequently, greater relative pixel
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Table A.2: Absolute and relative mean pixel errors.

Tile model Af, Ep ep(%)

firenze 256  3.790 1.49
biscuit 222 3.789  1.67
toscana 184 3.278 1.78
venice 170 3.306  1.92
austin 119 3.498 2.94

Table A.3: Absolute and relative mean pixel errors obtained with real images.

Tile model Af;, Ep ep(%)

firenze 255  2.337 0.917
biscuit 222 2.211 0.996
toscana 184 2.363 1.284
venice 170 2.343 1.378
austin 119 1.792 1.506

errors. However, the absolute mean pixel error is nearly constant in all cases. This
is because higher registration error involves more points that are different in both
images. This is, however, compensated by lower grey level differences in the case of
dark tiles.

The second image data set was obtained under real conditions on the laboratory
line prototype. Eleven tile samples of five fault-free tile models were used. For
each model the first tile passing under the camera was considered as the reference
tile, and the ten remaining tiles were used as test tiles. As there was no previous
knowledge about the translation or rotation parameter of the test tiles with respect
to the reference tile, the above similarity measurements were used to compare them.
The achieved results are shown in Table A.3.

These results can not be extrapolated due to the use of a reduced set of samples.
The method has an stable behaviour with different tile models under real conditions.
Figure A.4 shows the results obtained applying the registration method to faulty
tiles (spots, sticks). To visualise the quality of the registration, Figure A.4.d shows
the error map, that is the difference between the reference tile (A.4.a) and the

registered test tiles (A.4.b-c), with a threshold of 50. It can be seen how the defects
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Figure A.4: Tile registration examples.

appear clearly in the error map. Continuous lateral errors also appear, in some

cases, probably due to small differences in size between refrence and test tiles.
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