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Abstra
tThis thesis presents a 
ase of study of the development and performan
e analysisof a surfa
e grading appli
ation with real-time 
omplian
e. The appli
ation fo
useson the 
erami
 tile industry and aims to automate the inspe
tion pro
ess of surfa
egrading and removing human inspe
tors from this subje
tive and tedious task. First,an overview of surfa
e grading works is given. These works have been reported inre
ent years in many produ
tion areas su
h as 
erami
 tile, marble, granite andwood industries.We then address the issue of spatial and temporal uniformity in the a
quisitionsystem. In a surfa
e grading appli
ation it is 
ru
ial to ensure the uniform responseof the system through time and spa
e. Spatial and temporal uniformity is demon-strated and two illuminating systems (high frequen
y uniform �uores
ents and whiteLED arrays) are 
ompared from this point of view.All the results presented for surfa
e grading were obtained using real data fromthe 
erami
 tile industry. One of the aims of the thesis has been to build an ex-tensive image database of 
erami
 tile models representing the wide range of 
e-rami
 tile surfa
e 
lasses. The VxC TSG database is publi
 and 
an be a

essed atmiron.dis
a.upv.es/vision/vx
tsg/.Afterwards, we present a study of methodologies developed to obtain a fast anda

urate approa
h to surfa
e grading. From this study is extra
ted a method basedon soft 
olour-texture des
riptors 
omputed in per
eptually uniform 
olour spa
es.The method is parameterized and the involved fa
tors are studied using two statis-ti
al pro
edures; experimental design and logisti
 regression. Although it is not anew theoreti
al 
ontribution, we have found and demonstrate that a simple set ofglobal 
olour and texture statisti
s, together with well-known 
lassi�ers, are pow-erful enough to meet stringent fa
tory requirements for real-time and performan
e.Two approa
hes from literature were also implemented, parameterized and statisti-
ally studied for 
omparative purposes. These methods are Colour Histograms andCentile-LBP.Finally, we explore the method's 
apa
ity for on-line inspe
tion in a study ofreal-time 
omplian
e and parallelization based on 
luster and MPI te
hnologies.



ResumenEsta tesis presenta un 
aso de estudio para el desarrollo y análisis de una apli-
a
ión de grada
ión de super�
ies 
on restri

iones de tiempo real. La apli
a
ión se
entra en la industria 
erámi
a y su objetivo es automatizar el pro
eso de grada
iónde super�
ies sustituyendo a los operadores humanos en esta tarea tediosa y subje-tiva. En primer término, se presenta una revisión de los trabajos de grada
ión desuper�
ies presentes en la literatura. Estos trabajos han sido realizados en los últi-mos años en varias áreas produ
tivas, 
omo son las industrias del azulejo, mármol,granito y madera.Los resultados presentados en la tesis relativos a la grada
ión de super�
ies hansido obtenidos utilizando datos reales pro
edentes de la industria azulejera. Uno delos objetivos de la tesis ha sido 
onstruir una extensa base de datos de imágenesde azulejos que represente el amplio rango de 
lases de super�
ie presentes en laindustria azulejera. Esta base de datos se ha denomidado VxC TSG y es a

esibleen miron.dis
a.upv.es/vision/vx
tsg/. Previamente a la presenta
ión de la basede datos se pro
ede al estudio de la uniformidad espa
ial y temporal del sistemade adquisi
ión. En las apli
a
iones de grada
ión de super�
ies esta uniformidades 
ru
ial. Se demuestra la uniformidad espa
io-temporal al mismo tiempo que se
omparan dos modernos sistemas de ilumina
ión; los �uores
entes de alta fre
uen
iay los LEDs blan
os.Después se presenta un estudio de métodologías desarrolladas para obtener unaaproxima
ión rápida, �able y pre
isa para la grada
ión de super�
ies. Este estu-dio �naliza 
on la presenta
ión de un nuevo método basado en la 
omputa
ión dedes
riptores suaves de 
olor y textura en espa
ios de 
olor per
eptualmente uni-formes (soft 
olour-texture des
riptors method). Este método es parametrizado ylos fa
tores involu
rados son estudiados utilizando dos pro
edimientos estadísti
os;el diseño de experimentos y la regresión logísti
a. Aunque el método presentadono es una nueva 
ontribu
ión teóri
a, se demuestra que un 
onjunto sen
illo de es-tadísti
os globales de 
olor y textura, junto 
on 
lasi�
adores bien 
ono
idos, sonsu�
ientes para superar los requisitos soli
itados en fa
toría relativos a la pre
isión,�abilidad y 
apa
idad de inspe

ión en línea del sistema. Otros dos métodos pro
e-



ivdentes de la literatura son fa
torizados y estudiados utilizando los prodedimientosestadísti
os anteriormente men
ionados. Este trabajo es llevado a 
abo 
on �nes
omparativos.Finalmente, se estudia la 
apa
idad del sistema para una inspe

ión en línea del100% de la produ

ión. Este estudio in
luye la paraleliza
ión del método utilizandouna te
nología basada en MPI y 
lusters.



ResumEsta tesi presenta un 
as d'estudi per al desenvolupament i anàlisi d'una apli
a
ióde grada
ió de superfí
ies amb restri

ions de temps real. L'apli
a
ió se 
entra enla indústria 
eràmi
a i el seu obje
tiu és automatitzar el pro
és de grada
ió desuperfí
ies substituint als operadors humans en esta tas
a tediosa i subje
tiva. Enprimer terme, es presenta una revisió dels treballs de grada
ió de superfí
ies presentsen la literatura. Estos treballs han sigut realitzats en els últims anys en diversesàrees produ
tives, 
om són les indústries del taulellet, marbre, granit i fusta.Els resultats presentats en la tesi relativa a la grada
ió de superfí
ies han sigutobtinguts utilitzant dades reals pro
edents de la indústria del taulellet. Un delsobje
tius de la tesi ha sigut 
onstruir una extensa base de dades d'imatges de taulel-lets que represente l'ampli rang de 
lasses de superfí
ie presents en la indústriadel taulellet. Esta base de dades s'ha denomidado VxC TSG i és a

essible enmiron.dis
a.upv.es/vision/vx
tsg/. Prèviament a la presenta
ió de la base de dadeses pro
edix a l'estudi de la uniformitat espa
ial i temporal del sistema d'adquisi
ió.En les apli
a
ions de grada
ió de superfí
ies esta uniformitat és 
ru
ial. Es de-mostra la uniformitat espai-temporal alhora que es 
omparen dos moderns sistemesd'il·lumina
ió; els �uores
ents d'alta freqüèn
ia i els LEDs blan
s.Després es presenta un estudi de metodologies desenvolupades per a obtindreuna aproxima
ió ràpida, �able i pre
isa per a la grada
ió de superfí
ies. Este es-tudi porta a la presenta
ió d'un nou mètode basat en la 
omputa
ió de des
riptorssuaus de 
olor i textura en espais de 
olor per
eptualment uniformes (soft 
olour-texture des
riptors method). Este mètode és parametrizado i els fa
tors involu
ratssón estudiats utilitzant dos pro
ediments estadísti
s; el disseny d'experiments i la re-gressió logísti
a. En
ara que el mètode presentat no és una nova 
ontribu
ió teòri
a,es demostra que un 
onjunt senzill d'estadísti
s globals de 
olor i textura, junt amb
lassi�
adors ben 
oneguts, són su�
ients per a superar els requisits sol·li
itats enfa
toria relatius a la pre
isió, �abilitat i 
apa
itat d'inspe

ió en línia del sistema.Altres dos métodes pro
edents de la literatura són fa
torizats i estudiats en profun-ditat utilizant els mètodes estadísti
s me
ionats anteriorment. Este treball és dut aterme amb �ns 
omparatius.



viFinalment, s'estudia la 
apa
itat del sistema per a una inspe

ió en línia del100% de la produ

ió. Este estudi in
lou la paraleliza
ión del mètode utilitzant late
nologia basada en MPI i 
lusters.
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Chapter 1
Introdu
tion
In re
ent years, automati
 inspe
tion systems have be
ome of paramount impor-tan
e for industries with serial produ
tive plans. These industries are 
ommonly
hara
terized by the following items:

• Complex pro
esses formed by multiple stages at produ
tion lines.
• High produ
tion rates.
• High added value of every pie
e.
• Quality 
ontrol stage for the �nal produ
t.
• 100% inspe
tion at fa
tory rates.The 
erami
 tile industry is one 
lear example of this type of produ
tive systems.However, fa
tories 
ontinue to use human inspe
tors to grade tile quality. Theseoperators, lo
ated at the end of the produ
tion lines, inspe
t the �nal produ
t andare often a�e
ted by problems su
h as eye fatigue, si
kness or boredom. Further-more, the di�erent 
riteria of ea
h operator regarding tile defe
ts 
ould produ
e anon-uniform quality 
ontrol 
riterion.In this industry the great majority of tile faults are surfa
e defe
ts, thus, surfa
einspe
tion is an important quality 
ontrol subje
t to automate. But, this is a 
om-plex work whi
h is divided into several tasks due to the diversity of existing surfa
efaults. Surfa
e grading is one of the most important issues of surfa
e inspe
tion.1



1.1. Motivation and goals of this work 21.1 Motivation and goals of this workThere are many industries manufa
turing �at surfa
e materials that need to splittheir produ
tion into homogeneous series grouped by the global appearan
e of the�nal produ
t. These kinds of produ
ts are used as wall and �oor 
overings. Someof them are natural produ
ts su
h as marble, granite or wooden boards, and othersare arti�
ial, su
h as 
erami
 tiles.In these industries the quality 
ontrol stage is 
ru
ial in remaining 
ompetitive.One of the most important quality problems is the non-uniformity of the visualaspe
t of the produ
t within the same lot of a spe
i�
 model. As the �nal produ
tis used to form areas whi
h are supposed to be uniform in appearan
e, the presen
eof pie
es whi
h look slightly di�erent is 
onsidered a serious quality defe
t.Currently, industries rely on human operators to perform the task of surfa
e grad-ing. Human grading is subje
tive and often in
onsistent between di�erent graders.In the area of wood inspe
tion some observations showed low 
orresponden
e be-tween graders. In a test of four grades, di�erent grading operators agreed in only60% of the samples [1℄. Thus, automati
, reliable systems are needed. Also, real-time 
omplian
e is an important issue as systems need to be able to inspe
t globalprodu
tion at on-line rates.Surfa
e grading is related with the automati
 
lassi�
ation of �at pie
es present-ing random, pseudo-random or �xed surfa
e patterns. The aim of surfa
e grading isto split the produ
tion into di�erent 
lasses sorted by their global appearan
e whi
hdepends on 
olour and texture properties.In re
ent years many approa
hes to surfa
e grading have been developed (seeTable 1.1). Boukouvalas et al [2, 3℄ proposed 
olour histograms and dissimilaritymeasures of these distributions to grade 
erami
 tiles.Other works 
onsider spe
i�
 types of 
erami
 tiles; polished por
elain tiles, whi
himitate granite. These works in
lude texture features. Baldri
h et al [4,5℄ proposeda per
eptual approximation based on the use of dis
riminant features de�ned by hu-man 
lassi�ers at fa
tory. These features mainly 
on
erned grain distribution andsize. The method in
luded grain segmentation and features measurement. Lumbr-eras et al [6,7℄ joined 
olour and texture through multiresolution de
ompositions on



1.1. Motivation and goals of this work 3several 
olour spa
es. They tested 
ombinations of multiresolution de
ompositions
hemes (Mallat's, àtrous and wavelet pa
kets), de
omposition levels and 
olourspa
es (Grey, RGB, Otha and Karhunen-Loève transform). Peñaranda et al [8, 9℄used the �rst and se
ond histogram moments of ea
h RGB spa
e 
hannel.Kauppinnen et al [1, 10, 11℄ developed a method for grading wood based on thePer
entile (or 
entile) features of histograms 
al
ulated for RGB 
hannels. Kyllönenand Pietikäinen's approa
h [12℄ uses 
olour and texture features. They 
hose 
entilesfor 
olour, and LBP (Lo
al Binary Pattern) histograms for texture des
ription.Lebrun and Ma
aire [13℄ des
ribe the surfa
es of the Portuguese "Rosa Aurora"marble using the mean 
olour of the ba
kground and mean 
olour, absolute densityand 
ontrast of marble veins. They a
hieved good results but their approa
h is verydependent on the properties of this marble. Fernández et al [14℄ studied surfa
egrading for granite blo
ks. They used the histograms of the RGB 
olour spa
e(one for ea
h 
hannel) and a simple measure of dissimilarity; the sum of absolutedi�eren
es of ea
h bin-pairs of the histograms to be 
ompared. Finally, Kukkonenet al [15, 16℄ presented a system for grading 
erami
 tiles using spe
tral images.Spe
tral images have the drawba
k of produ
ing great amounts of data.Table 1.1: Summary of surfa
e grading literature.ground truth features real-time study a

ura
yBoukouvalas 
erami
 tiles 
olour no -Baldri
h polished tiles 
olour/texture no 99%Lumbreras polished tiles 
olour/texture no 92.7%Peñaranda polished tiles 
olour/texture yes -Kauppinen wood 
olour yes 72%Kyllönen wood 
olour/texture yes -Lebrun marble 
olour/texture no 98%Fernández granite 
olour no -Kukkonen 
erami
 tiles 
olour no 70%From the literature review (see Chapter 2 for more information) we dedu
edthat many of these approa
hes spe
ialized in a spe
i�
 type of surfa
e, others didnot a
hieve good enough a

ura
y or simply did not provide a

ura
y information,others did not 
arry out extensive studies of performan
e, and yet others did not



1.2. Previous works on 
erami
 tiles 4take into a

ount the time restri
tions of a real inspe
tion at fa
tory. As a result,we think surfa
e grading is still an open issue where more 
ontributions are possible.In this sense, the present thesis deals with some less explored aspe
ts in terms ofreal-time 
omplian
e and surfa
e grading performan
e.The main thesis goal has been to develop a generi
, fast and a

urate surfa
egrading method suitable for use in a wide range of surfa
es, also able to 
omplywith real-time requirements for on-line inspe
tion at fa
tory. This major aim is
omplemented with other goals, su
h as:
• In-depth study of the a
quisition system in order to demonstrate spatial andtemporal uniformity. This also involved the 
omparison of two modern illumi-nation systems.
• Building of an extensive image database of 
erami
 tiles for surfa
e grading.The aim of this database is to ensure extensive performan
e study and methods
omparison.
• In-depth study of methods based on statisti
al tools in order to obtain obje
-tive and valid 
on
lusions.
• Comparison with similar literature approa
hes.
• In-depth study of real-time 
omplian
e under real fa
tory 
onditions1.2 Previous works on 
erami
 tilesThe s
ope of the thesis is the surfa
e grading appli
ation, but this is not an isolatedwork. It stems from a more extensive work performed in re
ent years by the VxCgroup for the automation of 
erami
 tiles inspe
tion. VxC is a resear
h group lo
atedat Polyte
hni
 University of Valen
ia and spe
ialized in 
omputer vision topi
s.Work on 
erami
 tiles began in the se
ond part of 90's when a 
ollaborationagreement was established between the 
erami
 tile 
ompany Keraben S.A. and theVxC group. The aim of this proje
t was to develop a prototype able to automati
allyinspe
t a spe
i�
 surfa
e fault on 
erami
 tiles; the integrity defe
ts at tiles 
orners.



1.2. Previous works on 
erami
 tiles 5At that moment, losses of materials in 
orners were the most important surfa
efault representing 90% of surfa
e defe
ts. These looses were due to 
rashes in thetransportation of pie
es along the produ
tion lines. In [17�19℄ is summarized thework 
arried out for the development of this prototype. Finally, two prototypes weredeveloped. They were su

essfully tested at fa
tory during six months (see Figure1.1). The system was patented as an utility model and a se
ond te
hnologi
al
ompany was interested in its produ
tion and 
ommer
ialization. This 
ompanywent to bankrupt and �nally the 
ommer
ial system was not 
arried out. Later,interest on system was lost be
ause integrity defe
ts at fa
tories were drasti
allyredu
ed by modernizing transportation systems based on 
onveyor belts.Figure 1.1: One fa
tory prototype for the automati
 inspe
tion of integrity defe
tsin 
erami
 tiles 
orners.

After this �rst work, a FEDER-CICYT proje
t (1FD97-0999) related to au-tomation of 
erami
 tiles inspe
tion was 
arried out during �rst years of 00's. Inthis proje
t we developed a methodology for the surfa
e inspe
tion of �xed patternedtiles [20�23℄. The method performs a 
omparison with ideal referen
es free of faultsin order to extra
t the surfa
e defe
ts. Fast and a

urate approa
h to registrationbetween referen
e and inspe
ted tiles was spe
ially studied [20, 21℄. A
tually, theproje
t was more ambitious and in its initial planning also 
overed defe
ts dete
tionon random and pseudo-random patterned surfa
es. Although the work on these



1.3. Thesis outline 6items was started, a �nal method was not developed. The proje
t also 
overed theissue of surfa
e grading presented in this thesis and a very �rst approa
h was done us-ing image tessellation and 
olour des
ription of homogeneous and non-homogeneousregions [24℄.On
e the proje
t was �nished, work on surfa
e grading was 
ontinued as thesubje
t of the present thesis. A medium-size image database was 
olle
ted in 
ol-laboration with Keraben S.A. and new approa
hes to fast surfa
e grading derivedfrom [24℄ were studied. At the end of 2003 a new FEDER-CICYT proje
t (DPI2003-09173-C02-01) was assigned to VxC group. In this proje
t, whi
h is still not �nished,surfa
e grading is one of the main subje
ts. The performed work relative to surfa
egrading is 
olle
ted in [25�28℄ and the present thesis do
ument.1.3 Thesis outlineChapter 2 presents an overview of surfa
e grading works done in some industrialareas su
h as 
erami
 tile, parquet slab, woods, granite, marble. They in
ludemajor works by several university groups and other isolated minor works.The a
quisition system and the study of its uniform response through time andspa
e is des
ribed in Chapter 3. Spatial and time uniformity is of great importan
ein ensuring good surfa
e grading performan
e [1,2,4,8℄. Slight 
hanges in illumina-tion or a
quisition 
onditions 
ould easily introdu
e surfa
e mis
lassi�
ations. Anyalteration in the illumination 
onditions modify surfa
e 
olour property giving riseto a false 
hange in the surfa
e 
lass. We also present a study of di�erent illumi-nation systems from the point of view of spatial and time uniformity. The studiedsystems are; high frequen
y uniform �uores
ents and white LED arrays. The resultsshow that only �uores
ent systems provide su�
ient uniform response.Chapter 3 also presents the VxC TSG (VxC Tiles for Surfa
e Grading) whi
his an image database of 
erami
 tiles oriented to surfa
e grading. Creating and
ompiling this database has been one important goal of the thesis (see Figure 1.2).The VxC TSG is intended to be a tool for the s
ienti�
 
ommunity and future worksin the �eld of surfa
e grading. It is also the ground truth used in the thesis for testing



1.3. Thesis outline 7and 
omparing surfa
e grading approa
hes. VxC TSG is an extensive image database of 
erami
 tile models representing the wide range of surfa
e 
lasses in 
erami
tiles. It is publi
 and 
an be a

essed at miron.dis
a.upv.es/vision/vx
tsg/.Figure 1.2: Samples from VxC TSG image database. From up to down; threesamples of petra and mar�l models, ea
h one 
orresponding to a di�erent surfa
egrade.

Our sear
h for a fast and a

urate method for the purpose of surfa
e grading isrevised in Chapter 4. Here, we 
olle
t the previous works that �nally gave rise to thesoft 
olour-texture des
riptors method. Work relative to this preliminary approa
heshas been published in [25℄ and [26℄.In Chapter 5 we develop the in-detph statisti
al study performed to extra
t the�nal approa
h to surfa
e grading based on soft 
olour-texture des
riptors. Althoughthe method is not a new theoreti
al 
ontribution we have found and demonstrate thata simple set of global statisti
s softly des
ribing 
olour and texture [29℄ 
omputed inper
eptually uniform 
olour spa
es (CIE Lab or CIE Luv), together with well-known
lassi�ers [30℄, are enough to ful�l stringent fa
tory requirements. The two mainneeds of the industry are; on-line inspe
tion at fa
tory rates (real-time 
omplian
e)and a

urate performan
e in surfa
e grading. Produ
tion managers at fa
tories willonly a

ept an error rate 
lose to 5% before relying on these automati
 grading



1.3. Thesis outline 8systems. The method we present meets the �rst demand by using the simplestand fastest [to 
ompute℄ 
olour-texture features. The se
ond demand is met bya
hieving average a

ura
ies of more than 95% in many tests 
arried out using theVxC TSG database. We named this approa
h soft 
olour-texture des
riptors be
auseit uses the less 
omplex texture and 
olour des
riptors known in the literature [29℄.The method was extra
ted from a statisti
al pro
edure whi
h is a 
ombination ofexperimental design [31℄ and logisti
 regression [32℄ analysis. This pro
edure is usedto determine the best 
ombination of quantitative/
ategori
al fa
tors in terms of aset of experiments that maximize or minimize one response variable also involved inthe experiments. We used the a

ura
y rate of 
lassi�
ations as response variable.The soft 
olour-texture des
riptors method has been re
ently reported and a

eptedin [28℄ .Two methods from the surfa
e grading literature are also implemented and testedin Chapter 6 for 
omparison purposes. These methods are 
olour histograms [2, 3℄and 
entile-LPB [1, 12℄. We sele
ted these methods from literature be
ause theyare similar to ours; they are generi
 solutions with low 
omputational 
osts. Anexperimental design and logisti
 regression analysis was also performed using theVxC TSG database in order to determine the best 
ombination of proposed fa
torsproviding the best a

ura
y results. Results show that all methods are almost equalin a

ura
y performan
e but soft 
olour-texture des
riptors method a
hieved betterresults in timing 
osts.Chapter 7 presents a study of real-time 
omplian
e in
luding the parallelizationof the method proposed in Chapter 5. This study is an in-depth exploration of thereal-time 
omplian
e of the approa
h. We use the parallel ar
hite
ture provided bythe 
luster-MPI model. The method is easily translated to this ar
hite
ture and theresults demonstrate that, in 
onjun
tion with standard 
omputing te
hnologies, theapproa
h is able to inspe
t and grade more surfa
e area per time unit than fa
tories
an produ
e on a produ
tion line. Work relative to real-time 
omplian
e has beenpublished in [27℄.Finally, the 
on
lusions of all 
hapters and further work are summarized in Chap-ter 8.



Chapter 2
Overview of surfa
e grading works
This 
hapter is devoted to surfa
e grading literature. Although there are many worksin literature related to surfa
e grading, we have found they were not inter
onne
ted.These approa
hes were performed without establishing almost any referen
e amongthem and also does not exist a general term to des
ribe the automati
 inspe
tion ofsurfa
e materials in order to split their produ
tion into homogeneous series groupedby the global appearan
e. In this 
hapter we 
ompile and introdu
e these worksunifying them under the term of surfa
e grading works.We present an overview of surfa
e grading works found in literature and per-formed in several industrial areas su
h as 
erami
 tile, parquet slab, wood, graniteand marble. This overview in
lude major works by several university groups andother isolated minor works. Major works were done at the University of Surrey inUK, the Computer Vision Centre at the Autonomous University of Bar
elona inSpain and the Oulu University in Finland.All the presented approa
hes used 
olour properties or a 
ombination of 
olourand texture properties to 
hara
terize surfa
e appearan
e. Therefore, previous toproper surfa
e grading overview we present literature approa
h to the 
olour andtexture properties.

9



2.1. Surfa
e features 102.1 Surfa
e features2.1.1 ColourColour is a sensation 
reated in response to the ex
itation of our visual system bythe ele
tromagneti
 radiation known as light [33,34℄. More spe
i�
ally, 
olour is theper
eptual result of light from the visible region of the ele
tromagneti
 spe
trumwhen this light meets the retina of the human eye. The visible region 
overs thewavelengths from 400nm to 700nm (see Figure 2.1).Figure 2.1: The visible light spe
trum.

The human retina has two kinds of re
eptors, rods and 
ones. The basi
 fun
tionof rods is to provide mono
hromati
 vision under low illumination levels. The rodshave a photosensitive pigment 
alled rhodopsin. This pigment absorbs light moststrongly in the blue-green region of the spe
trum. This part of human vision isreferred to as s
otopi
 vision. Although rods are important for vision, they play norole in image reprodu
tion. The fun
tion of the 
ones is to provide 
olour vision atnormal levels of illumination. This is known as photopi
 vision. The human retinahas three types of 
ones and ea
h one is sensitive to a di�erent wavelength range ofthe visible spe
trum.The area of s
ien
e 
on
erned with the des
ription and spe
i�
ation of 
olour is
alled 
olorimetry [33℄. As we have three types of 
olour re
eptor 
ells (
ones), tradi-tionally, three numeri
al 
omponents have been used to des
ribe 
olours. Therefore,a 
olour 
an be spe
i�ed by a ve
tor with three 
omponents. The set of all 
oloursforms a ve
tor spa
e 
alled 
olour spa
e or 
olour model. The three 
omponents ofa 
olour 
an be de�ned in many di�erent ways providing various 
olour spa
es [33℄.



2.1. Surfa
e features 11In 1931, the Commission Internationale de L'E
lairage (CIE) adopted standard
olour 
urves for a hypotheti
al standard observer. These 
olour 
urves spe
ify howa spe
i�
 spe
tral power distribution (SPD) of an external stimulus (visible radiantlight in
ident on the eye) 
an be transformed into a set of three numbers that spe
ifythe 
olour. The CIE 
olour spe
i�
ation system is based on the des
ription of 
olouras the luminan
e 
omponent Y and two other 
omponents X and Z. The spe
tralweighting 
urves of X and Z have been standardized by the CIE based on statisti
sfrom experiments involving human observers [33℄. The 
orresponding 
olour spa
eis 
alled the CIE XYZ 
olour spa
e. The XYZ model is a devi
e independent
olour spa
e that is useful in appli
ations where 
onsistent 
olour representationa
ross devi
es with di�erent 
hara
teristi
s is important. But, the CIE XYZ spa
eis per
eptually highly non-uniform [34℄. Thus, it is not adequate for quantitativemanipulations involving 
olour per
eption and is seldom used in image pro
essingappli
ations.Traditionally, 
olour images have been spe
i�ed by the red, green and blue tris-timulus values. This is the RGB 
olour spa
e. The red, green and blue 
omponentsare 
alled primary 
olours. In general, hardware devi
es su
h as video 
ameras,
olour image s
anners and 
omputer monitors pro
ess 
olour information based onthese primary 
olours. Other popular spa
es in image pro
essing are the YIQ (NorthAmeri
an TV standard), the HSI (Hue, Saturation and Intensity), and the HSV(Hue, Saturation and Value) 
olour spa
es used in 
omputer graphi
s.Although XYZ is used only indire
tly, it has a signi�
ant role in image pro
essingsin
e other 
olour spa
es 
an be derived from it through mathemati
al transforms.For example, the linear RGB 
olour spa
e 
an be transformed to and from the CIEXYZ 
olour spa
e using a linear three-by-three matrix transform. Similarly, other
olour spa
es, su
h as non-linear RGB, YIQ and HSI 
an be transformed to andfrom the CIE XYZ spa
e, but might require 
omplex and non-linear 
omputations.The CIE has also derived and standardized two other 
olour spa
es from theCIE XYZ. These are the CIE Luv and CIE Lab 
olour spa
es and both of themare per
eptually uniform [33℄. The term 'per
eptual' refers to the way that humansper
eive 
olours. The term 'uniform' means that if we move in the 
olour spa
e from



2.1. Surfa
e features 12one 
olour to another, from one 
oordinate to another, the per
eptual di�eren
e willbe related to a measure of distan
e, 
ommonly the Eu
lidean distan
e, and the samedistan
e will approximately relate to the same per
eptual di�eren
e throughout the
olour spa
e. Thus, we 
an measure 
olour di�eren
es 
lose to the human per
eptionof 
olours. This makes these 
olour spa
es useful for appli
ations where 
olourdi�eren
e measurement plays an important role. This is the 
ase of the surfa
egrading appli
ation presented in this thesis.CIE Luv and CIE Lab are slightly di�erent be
ause of the di�erent approa
hes totheir formulation [33, 34℄. Nevertheless, both spa
es are equally good in per
eptualuniformity and provide good estimates of 
olour di�eren
e (distan
e) between two
olour ve
tors. CIE Luv is used for industries 
onsidering additive mixing su
h as
olour displays, TV and lighting [35℄, while CIE Lab is beginning to be used inappli
ations of 
olour image pro
essing [36℄.We used the CIE Lab and CIE Luv 
olour spa
es in our approa
hes to surfa
egrading, and also did experiments with the RGB 
olour spa
e in order to deter-mine the advantages of using these per
eptually uniform spa
es. The RGB spa
ewas 
hosen for 
omparative purposes be
ause it is often used in image pro
essingappli
ations [37℄.2.1.2 TextureTexture is related to some properties inherent to the surfa
e of obje
ts. Textureplays an important role in human vision and its analysis is of great interest inthe area of 
omputer vision. However, a formal approa
h or pre
ise de�nition oftexture does not exist. From the point of view of image pro
essing, one generalde�nition is: Texture is something 
onsisting of mutually related elements [38℄. Thisde�nition 
ontains the two main elements of textures. Firstly, texture is formedby simple 
omponents 
alled texture primitives. Se
ondly, texture is de�ned by thespatial relationships between these simple 
omponents. Some examples of texturesare shown in Figure 2.2.There are two main approa
hes to texture des
ription: statisti
al and stru
tural[39℄. Statisti
al des
ription use feature ve
tors of texture properties whi
h represent



2.1. Surfa
e features 13Figure 2.2: Some samples of textures.

points in a multidimensional feature spa
e. This is suitable for statisti
al patternre
ognition. In 
ontrast, the stru
tural approa
h is based on the analogy betweentexture spatial relations and the stru
ture of a formal language. The des
ription ofa texture forms a language that 
an be represented by its grammar. A grammar is
onstru
ted for ea
h texture 
lass. Then, the re
ognition pro
ess be
omes a synta
ti
analysis of the texture des
ription.Stru
tural approa
hes are based on the theory of formal languages and they areadequate for des
ribing strong textures [40, 41℄. A texture image is de�ned as astru
ture whi
h is made up of a large ensemble of elements whi
h have some kind oforder in their lo
ations. This approa
h works well on deterministi
 textures (mainlyarti�
ial textures), but most natural textures are not of this type.From a statisti
al point of view, textured images are 
ompli
ated pi
torial pat-terns from whi
h sets of statisti
al measures are obtained to 
hara
terize them. Thesimplest way to statisti
ally 
hara
terize textures is to 
ompile global statisti
s likemean, standard deviation and histogram moments [29℄. However, the most popularapproximation is the 
o-o

urren
e matri
es method [42, 43℄. In this method ma-tri
es are 
onstru
ted by 
ounting the number of o

urren
es of pixel pairs of givengrey levels at a given displa
ement. Statisti
s su
h as 
ontrast, energy, entropy and



2.1. Surfa
e features 14others are 
omputed from matri
es to obtain texture features. A similar approa
h ispresented in the sum and di�eren
e histograms method [44℄. Here, similar featuresare 
omputed from one-dimensional histograms 
ontaining the sum and di�eren
eof pairs of pixels at a given displa
ement. Another approa
h in this 
ategory is thestatisti
al feature matri
es method [45℄, where three matri
es of 
ontrast, 
ovarian
e,and dissimilarity are dire
tly 
omputed from the texture images. Ea
h entry in amatrix 
ontains the 
orresponding feature 
omputed at di�erent displa
ements. Inthis 
ase, the feature ve
tor is dire
tly formed using all the entries of the matri
es.Sto
hasti
 models su
h asMarkov random �elds or Gibbs random �elds have alsobeen used to extra
t texture features [46�49℄. These approa
hes 
onsider texturesas di�erent realizations of random pro
esses. The features des
ribing ea
h textureare the parameters of the model whi
h is supposed to generate the given texture.There are some di�
ulties with these methods su
h as how to 
hose an appropriateorder for the model. Re
ent works have extended these methods to multiresolutionapproa
hes [50℄.The mathemati
al morphology approa
h looks for spatial repetitiveness of shapesin an image using stru
ture primitives. These stru
turing elements usually 
onsistof some simple shape, su
h as a square or a line. When a binary textured imageis eroded by a stru
turing element, texture properties are present in the erodedimage [51℄. Di�erent stru
turing elements are applied to the textured image and thenumber of pixels with unit value in the eroded image is 
ounted. These numbersare used to form a feature ve
tor that 
hara
terizes the texture. Also, anothermorphologi
al texture des
ription was derived by using the size distribution of asequen
e of opening and 
losing granulometries [52℄. The mathemati
al approa
hto texture is often su

essful in granulated materials, but its performan
e is redu
edsigni�
antly in other texture types.Another alternative for texture des
ription is to measure its fra
tal dimension[53℄. This approa
h was �rst introdu
ed for modeling natural s
enes [54℄. It wasreported that the fra
tal dimension 
orrelates very well with a human assessmentof surfa
e roughness. Its main advantage lies in the fa
t that the fra
tal dimensionis invariant to s
ale an to linear transformation of data. Nevertheless, the fra
tal



2.1. Surfa
e features 15dimension on its own is not able to give 
omplete des
ription of natural textures.Another 
ategory of texture 
hara
terization methods is based on features 
om-puted from the power spe
trum of the image. A two-dimensional power spe
trum ofa texture image often reveals texture periodi
ity and dire
tionality. A 
oarse texturetends to generate low frequen
y 
omponents in its spe
trum, while a �ne texturehave high frequen
y 
omponents. Stripes in one dire
tion 
ause the power spe
trumto 
on
entrate near the line through the origin and perpendi
ular to this dire
tion.These methods [55, 56℄ usually perform well in textures showing strong periodi
ity,but performan
e deteriorates when periodi
ity weakens.In re
ent years, wavelet theory has be
ome an important framework for multi-s
ale and texture image analysis [57,58℄. In general, the wavelets transform an imageinto a low resolution image and a series of detail images. The low resolution imageis obtained by applying iteratively a low pass �lter to the image, while the detailimages are obtained applying a high pass �lter at ea
h step. The original image isblurred at ea
h iteration, and the information lost during ea
h operation remains inthe 
orresponding detail image. Features su
h as the energy or mean deviation ofthe detail images are the most 
ommonly used for texture des
ription [59�62℄.Finally, another approa
h to texture 
hara
terization is the multi-
hannel spatial�ltering. Here, the methods try to imitate the behavior of the human vision system.There is eviden
e that texture dis
rimination in the human vision system is a
hievedby means of a set of parallel 
hannels, ea
h tuned for some spe
i�
 feature. Ea
h
hannel performs a spe
i�
 spatial �ltering operation. Therefore, the human visualsystem 
an be modeled as a set of spatial �lters. The most 
ommon families ofspatial �lters are the Gabor �lters [63,64℄ and the lo
al Dis
rete Cosine (DCT) andSine (DST) Transforms [65, 66℄. Gabor �lters are basi
ally dire
tional �lters, andare therefore appropriate for strongly oriented textures. On the other hand, froma theoreti
al point of view, lo
al DCT and DST have better dis
riminatory powerthan Gabor �lters for randomly oriented textures. However, they are not tunableand they 
annot be used to 
apture some spe
i�
 texture properties.



2.1. Surfa
e features 162.1.3 Colour and TextureColour-texture representation is a 
urrent topi
 in 
omputer vision. Although both,
olour and texture, are quite important properties of surfa
es these two visual fea-tures have been usually studied separately. The study of 
olour-texture representa-tions has re
eived in
reasing attention in re
ent years.The obje
tive of many works have been to �nd 
o-join representations of spatialand 
hromati
 information whi
h 
apture the spatial dependen
e within and be-tween the spe
tral bands. One of the most frequent approa
hes is the 
onstru
tionof a feature ve
tor mixing grey level texture features and 
olour features [67, 68℄.Another approa
h is to extend 
lassi
al texture models, su
h as Markov random�elds and the auto
orrelation fun
tion, to deal with multi
hannel images [69, 70℄.Other works 
onvert RGB values into a single 
ode from whi
h texture measure-ments are 
omputed as a grey s
ale image [71℄. Spatio-
hromati
 representationsare 
omputed in [72,73℄ over the smoothed Lapla
ian of image. Also, the stru
turaltensor that is 
ommonly used to represent lo
al texture properties is extended to
olour images in [74℄.Finally, there are some works that have been in�uen
ed by known per
eptualme
hanisms of the human visual system. Here, the iteration of 
olour with spatialfrequen
y of the 
oloured patterns is 
onsidered [75, 76℄. These works take intoa

ount important 
on
lusions from psy
hophysi
al experiments on 
olour textureintera
tion [36,77�80℄. They introdu
e a per
eptual me
hanism in order to simulatethe 
olour assimilation phenomenon of the human visual system. This phenomenon
onsists of a spatial blurring of the 
olour representation when looking at 
olourtextures with high spatial frequen
ies.Other works present a 
omplementary operator to simulate another phenomenonof the human visual system, the 
olour 
ontrast, whi
h appears when looking at
olour textures with low spatial frequen
ies [4, 81, 82℄.In this thesis, the proposed method for the purpose of surfa
e grading uses sta-tisti
al des
ription representing 
olour and texture properties. Colour and textureare joined by 
reating feature ve
tors 
olle
ting global image statisti
s of both prop-erties; mean, standard deviation and histogram moments. These global statisti
s
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e grading 17are 
omputed separately in ea
h 
hannel of per
eptually uniform 
olour spa
es (CIELab or CIE Luv). We name this approa
h soft 
olour-texture des
riptors method be-
ause it uses the less 
omplex texture and 
olour des
riptors known in literature [29℄.This assertion is even more a

eptable if we revise the 
lassi
al approa
hes to texturedes
ription mentioned above. In fa
t, surfa
e grading is not a 
omplex problem of
olour-texture re
ognition but di�erentiation. In Chapter 5 is demonstrated that soft
olour-texture des
riptors are powerful enough to well dis
riminate surfa
e grades.2.2 Surrey works on surfa
e gradingSin
e 1995 a group of people, mainly from the Image Pro
essing Group at theEle
tri
al Engineering Department of the University of Surrey (UK), have beenworking in the area of the automati
 inspe
tion of defe
ts and surfa
e grading of
erami
 tiles. Professor Maria Petrou has been the nexus and driving for
e behindall these works [2, 3, 83�94℄.From the point of view of the surfa
e grading question, the interesting part ofthe work is mainly that done by Boukouvalas et al [2, 3, 83�85, 89℄. At a �rst stagethey proposed using the di�eren
es between 
olour histograms to solve the prob-lem of shade grading (surfa
e grading) of multi-
oloured textured surfa
es (randompattern surfa
es) [2, 3℄. However, 
olour histograms are very ine�
ient in termsof memory requirements. A 
olour image a
quired in RGB normally need 8 bitsper 
olour 
hannel at ea
h pixel, so therefore 16Mbytes (224memory positions) areneeded to store one 
olour histogram. However, in real images 
olour values tendto be 
lustered around just a few lo
ations. For instan
e, the image of a 
erami
tile may o

upy only 80.000 di�erent lo
ations (234Kb). Apart from being highlydemanding in memory, this approa
h is 
omputationally intensive be
ause in orderto 
ompare two histograms we have to parse all memory lo
ations.To save memory spa
e and 
omputational 
osts, they used the binary tree stru
-ture to store the 
olour histograms. A binary tree is de�ned as a �nite set of elements(nodes) whi
h either is empty or 
onsists of a root (node) with two disjoint binarytrees 
alled the left and the right subtrees of the root [95℄.
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e grading 18Figure 2.3: Ordered binary tree.
root 12, 1

node node5, 6 15, 3

node 7, 3

root value, repetitions

node node

value < value_root value > value_root

node 4, 3Binary trees are frequently used to represent a set of data whose elements areretrievable through a unique key (value). If a tree is organized in su
h a way thatfor ea
h node all values in the left subtree are less than the value of the parent node,and those in the right subtree are greater than the value of the parent node, thenthis tree is 
alled ordered binary tree or sear
h tree (see Figure 2.3). A sear
h of avalue in a tree of n elements may be performed with only log n 
omparisons, if thetree is balan
ed.When a 
olour histogram is stored in a binary tree, the value of a node is aparti
ular RGB value. This is 
onverted to a 24 bit-integer by 
on
atenating the R,G and B bytes. Ea
h node also 
ontains the number of pixels with the same RGBvalue (repetitions). Therefore, only RGB 
ombinations that exist in the image areinserted in the tree, and the sear
hing for existing nodes is very e�
ient.They 
hose 
olour histograms be
ause they are invariant to translation and rota-tion about an axis perpendi
ular to the image plane, and 
hange only slightly with
hanges of viewing angle of view. In addition they are invariant to the exa
t spatialdistribution of the 
oloured pixels. This property is desirable when dealing whi
hrandom pattern surfa
es, as often happens when dealing with 
erami
 tiles.To perform the surfa
e grading they 
ompared the similarity (or dissimilarity) of
erami
 tiles by 
omparing the similarity of their 
olour histograms. The histograms
an be viewed as distributions, and, in statisti
s there are several methods to 
om-pare two distributions [96℄. They used the 
hi-square test and the linear 
orrelation
oe�
ient.
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e grading 19The 
hi-square statisti
 is de�ned as
χ2 =

∑

i

(Ni − ni)
2

niwhere Ni is the number of events observed in the ith bin, and ni is the numberexpe
ted a

ording to some known distribution and the sum is over all bins. A largevalue of χ2 indi
ates dissimilarity between the two distributions.When 
omparing two binned data sets, with the same number of data points,the equation adopts a di�erent form. Let Ri be the number of events in bin i forthe �rst data set, let Si be the number of events in the same bin for the se
ond dataset. Then the 
hi-square statisti
 is
χ2 =

∑

i

(Ri − Si)
2

Ri + SiThe linear 
orrelation 
oe�
ient is another test whi
h measures the asso
iationbetween random variables. For pairs of quantities (xi, yi), i = 1, ..., N, the linear
orrelation 
oe�
ient r is given by
r =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)
√
∑

i(yi − ȳ)
(2.1)where x̄ is the mean of the xi values and ȳ is the mean of the yi values.The value of r is always in the range [-1, 1℄. The 
orrelation is 
alled positiveor dire
t 
orrelation when y tends to in
rease as x in
reases. If y tends to de
reaseas x in
reases the 
orrelation is then 
alled negative or inverse 
orrelation. A valuenear to zero in equation 2.1 indi
ates poor linear 
orrelation between the variablesx and y.Some experiments were done to test this approa
h. The ground truth was formedby three di�erent models previously graded by human operators. For ea
h modelthere were three di�erent grades, and for ea
h grade there were approximately sevensamples or tiles, nearly sixty-three samples in total. Prior to 
olour grading, thedata was spatially and temporally 
orre
ted in order to 
ompensate the non-uniform
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e grading 20response of the illuminating system [2, 83℄.Some graphi
s showing model 
lustering when using the 
hi-square and the linear
orrelation 
oe�
ient tests were provided. They dedu
ed from these graphi
s thatthe performan
e of the method was 
onsistent with the 
olour grading of humanexperts, but they did not provide a

ura
y results. The linear 
orrelation 
oe�
ientwas �nally 
hosen to measure similarity between histograms be
ause it keeps thehistogram di�eren
es within a well de�ned range. This makes it possible to sele
tthresholds to de�ne new surfa
e grades.Per
eptual 
orre
tion for 
olour grading using sensor transformations andmetameri
 dataIn a se
ond stage they improved the method by applying two per
eptual 
orre
-tions. The �rst per
eptual 
orre
tion 
onsisted of approximating the 
olours per-
eived from ele
troni
 sensors to the human per
eption using metameri
 data [2,84℄.They reasoning behind this was as follows. All the 
olours that 
an be per
eived bya given observer 
an be 
omputed using
C1 = ρ1q11α1 + ρ2q12α2 + ..... + ρnq1nαn

C2 = ρ1q21α1 + ρ2q22α2 + ..... + ρnq2nαn

C3 = ρ1q31α1 + ρ2q32α2 + ..... + ρnq3nαn

(2.2)where (C1, C2, C3) are the tristimulus values forming the 
olour, ρi i = 1..nrepresents the spe
tral re�e
tan
e of a surfa
e, αi i = 1..n is the spe
tral powerdistribution of the illumination, and (q1i, q2i, q3i)i = 1..n are the spe
tral sensitivitiesof the observer's sensors. The spe
tral range (the visible spe
trum) is sampled in nequidistant positions.From 2.2 it is dedu
ed that, under a given illuminant, the observer will re
ord thesame tristimulus values for many di�erent materials (surfa
es). This phenomenonis 
alled metamerism. Metameri
 
olour stimuli are 
olour stimuli with the sametristimulus values but di�erent spe
tral radiant power distributions. That is to say,they have the same spe
tral distributions that yield the same 
olour for a given set
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e grading 21of sensors (observer). Metameri
 
olour stimuli are referred as metamers.Two metameri
 
olour stimuli (ρ1, ρ2, ..., ρn) and (ρ
′

1, ρ
′

2, ..., ρ
′

n), must satisfy thefollowing equations:
ρ1q11α1 + ρ2q12α2 + ..... + ρnq1nαn = ρ

′

1q11α1 + ρ
′

2q12α2 + ..... + ρ
′

nq1nαn

ρ1q21α1 + ρ2q22α2 + ..... + ρnq2nαn = ρ
′

1q21α1 + ρ
′

2q22α2 + ..... + ρ
′

nq2nαn

ρ1q31α1 + ρ2q32α2 + ..... + ρnq3nαn = ρ
′

1q31α1 + ρ
′

2q32α2 + ..... + ρ
′

nq3nαnAs the human eye (human observer) has di�erent spe
tral responses from theele
troni
 sensors, di�erent materials will appear as having the same 
olour to thehuman eye and other di�erent materials will appear as having the same 
olour to theele
troni
 sensors (the 
amera). They tried to 
orre
t this e�e
t by introdu
ing aper
eptual 
orre
tion in the system. The term 'per
eptual' is referred to the attemptof making the system work as 
lose as possible to the human vision system.In equation 2.2, if the observer is 
hanged, we obtain the tristimulus values
(C

′

1, C
′

2, C
′

3) that the new observer would re
ord for the same surfa
e, under thesame illumination. And that is the aim, to 
ompute the 
olour not from the pointof view of the ele
troni
 sensor but from the point of view of the human eye.
C

′

1 = ρ1q
′

11α1 + ρ2q
′

12α2 + ..... + ρnq
′

1nαn

C
′

2 = ρ1q
′

21α1 + ρ2q
′

22α2 + ..... + ρnq
′

2nαn

C
′

3 = ρ1q
′

31α1 + ρ2q
′

32α2 + ..... + ρnq
′

3nαn

(2.3)Ideally, by solving equations 2.2 (ele
troni
 sensors) for (ρ1, ρ2, ..., ρn) and substi-tuting them into equations 2.3 it would be possible to �nd the stimuli this parti
ular
oloured surfa
e would 
reate to the se
ond observer (human eye). However, system2.2 is an under-determined system as in general n is mu
h greater than 3 (typi
allyn = 31). They solved this problem by assuming that they were interested only in asmall subspa
e of the 
olour spa
e whi
h is 
oherent with the 
olour grading appli
a-tion (low 
hanges in the 
olour appearan
e). They assumed that the transformationbetween the proje
tions of two di�erent sets of sensors was lo
ally linear and 
ouldbe expressed by a unknown 3x3 matrix T. This matrix represents the relation be-
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e grading 22tween the two observers. The way they used to 
ompute the T matrix was to usepairs of 
orresponding triplets (Cj
1 , C

j
2, C

j
3) and (Cj′

1 , Cj′

2 , Cj′

3 ) for j = 1, 2, ..., m andm ≫ 3. The elements of the transformation matrix were determined in the leastsquare error sense by solving the following system of equations using singular valuede
omposition:

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They known the tristimulus values (Cj
1, C

j
2, C

j
3) a
quired by the ele
troni
 sen-sor (
amera's CCD), but the tristimulus values 
orresponding with the human vi-sion system where unknown, and 
ould not be 
omputed be
ause the re�e
tan
efun
tions (ρ1, ρ2, ..., ρn) were also unknown. Therefore, in order to determine thetransformation matrix, they had to �nd a way to generate metameri
 re�e
tan
efun
tions, and they made it by using the Monte Carlo Method for generating syn-theti
 metamers [1℄.They did experiments with several sets of 
erami
 tiles (tile models) previouslygraded by human operators. Ea
h model had three di�erent grades or surfa
e 
lasses.They �rst extra
ted the transformation matri
es for ea
h set and then moved the
olour data to the CIE Lab 
olour spa
e. Then, for ea
h model, they plotted themean CIE Lab 
olour of ea
h tile in this 3D 
olour spa
e. The results showed betterinter
lass distan
es of the 
lusters (grades) after the sensor transformation.Per
eptual 
orre
tion for 
olour grading of random texturesThe se
ond per
eptual 
orre
tion was to simulate the spatial blurring whi
ho

urs in humans when we look texturized surfa
es [2, 85℄. To do so, they �rstremoved the spatial blurring introdu
ed by the ele
troni
 sensor, and then 
onvertedthe data to a pattern-
olour separable spa
e (opponent-
olours spa
e), where theyintrodu
ed blurring emulating the way the human visual system per
eives 
olour
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e grading 23texture. The data was �nally 
onverted to a per
eptually uniform 
olour spa
e(CIE Lab), where the 
olour grading was performed. They reasoned as follows:Every imaging system introdu
es some kind of degradation to the data it 
apturesand a 
ommon phenomenon when dealing with �ne textures is the spatial blurringthat the imaging system introdu
es in the data. This phenomenon 
an be quanti�edin terms of how spread a point sour
e appears to be when its image is 
aptured.This is expressed by the point spread fun
tion (PSF) of the system. In order toremove this spatial blurring there are various image restoration te
hniques whi
hrely on a priori knowledge of the PSF.The degradation pro
ess is modeled by a fun
tion h(x, y, x
′

, y
′

), whi
h togetherwith an additive noise v(x, y) operates on an input image f(x, y) to produ
e adegraded image g(x, y):
g(x, y) =

∫ ∫

h(x, y, x
′

, y
′

)f(x
′

, y
′

)dx
′

dy
′

+ v(x, y)Image restoration is the pro
ess of obtaining an approximation to f(x, y) given
g(x, y) and some knowledge of the degradation pro
ess in the form of the fun
tion
h(x, y, x

′

, y
′

). In the absen
e of noise the degraded image of a point sour
e des
ribedby f(x
′

, y
′

) = δ(x
′

−α, y
′

−β) would be given by h(x, y, α, β). Therefore h(x, y, α, β)is the PSF of the sensor, whi
h in general is dependent on the position of the point
(α, β) in the ideal pi
ture.The PSF 
an be 
omputed from an image with sharp lines or step edges. Inorder to derive the PSF of the ele
troni
 sensor, they used an spe
ial 
hart withmany edges and various known orientations. After obtaining the PSF they restoredthe image by using Wiener �ltering [96, 97℄.The pro
ess mentioned above is done to remove the spatial blurring introdu
edby the ele
troni
 sensor. In order to introdu
e the per
eptual 
orre
tion, the restoreddata should be spatially blurred in agreement with the blurring of the human visionsystem. In [98℄ experiments with human subje
ts indi
ate that the 
hange in 
olourappearan
e with spatial-frequen
y 
an be explained by assuming that signals fromthree opponent-
olour me
hanisms are s
aled by a gain fa
tor that depends on the
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al spatial frequen
y 
ontent of the image. In this respe
t, Zhang and Wandellproposed an extension of the CIE Lab spa
e, based on a pattern-
olour separabletransformation, 
alled Spatial CIE Lab (S-CIELAB) [36℄.The image is then initially transformed from the CIE XYZ spa
e to the opponent-
olours spa
e, where the three 
hannels represent luminan
e, red-green and yellow-blue. The transformation is de�ned by:
O1 = 0.279X + 0.72Y − 0.107Z

O2 = −0.449X + 0.29Y − 0.0077Z

O3 = 0.086X − 0.59Y + 0.501ZThen the data of ea
h 
hannel are �ltered by two-dimensional spatial kernels,de�ned as the sum of some Gaussian fun
tions:
1

π

m
∑

i

wi

σ2
i

e
−(x2 + y2)

σ2
iwhere m is 3 for the luminan
e 
hannel, and 2 for the 
hromati
 
hannels and wiand σ2

i are some parameters. wi and σ2
i values were determined from psy
hologi
almeasurements of 
olour appearan
e on human subje
ts [36℄.Finally, the blurred data are transformed ba
k into CIE XYZ 
olour spa
e andfrom there to CIE Lab 
olour spa
e.Grading experiments were performed using the 
omparison between 
olour his-tograms after transforming image data by means of the per
eptual 
orre
tion dis-
ussed above. The tile sets used in previous experiments were then re-graded intro-du
ing the new per
eptual 
orre
tion. The results showed better inter
lass distan
esof 
lusters (grades) after the per
eptual transformation. They used the minimuminter
lass distan
e and the Bhatta
haryya distan
e to 
ompile inter
lass data beforeand after the 
orre
tion.In all the works there is no study about the real-time 
omplian
e in order to en-sure inspe
tion of all tiles at fa
tory rates. Also, there is no quantitative informationabout the a

ura
y of the approa
h.
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e grading 252.3 CVC works on surfa
e gradingThe CVC is the Computer Vision Centre of the Autonomous University of Bar
elona(Spain). Several works in relation to an spe
i�
 type of 
erami
 tile, the polishedpor
elani
 tile, were 
arried out between 1998 and 2002 [4�7, 99℄.Baldri
h et alBaldri
h et al [4, 5, 100℄ made a per
eptual approximation based on the use ofdis
riminant features de�ned by human 
lassi�ers at fa
tory. They mixed 
olour andtexture information by means of lo
al and global measures. They did not propose ageneral texture 
olour representation. They dealt only with textures formed by thenon-oriented 
oloured-blobs randomly distributed on the polished tiles. The featureswere mainly related to grain distribution and size, thus, the method in
ludes grain(blobs) segmentation and features measurement.First, some human-de�ned 
hara
teristi
s for the task of surfa
e grading, were
ompiled at fa
tory:
• Fine-grained vs. 
oarse-grained: de�nes the size of the grains.
• Opened grain vs. 
losed grain: measure of the distan
e between grains of thesame size (density fa
tor).
• Light vs. dark grain 
olour: 
olour properties of a spe
i�
 type of blob.
• Light vs. dark ba
kground: 
olour properties of the ba
kground.
• Light vs dark global 
olour: 
olour properties of the overall 
olour impression.That 
hara
teristi
s were translated to the following global and lo
al features:
• Global 
olour mean.
• Global 
olour standard deviation.
• Global mean 
olour of ea
h type of blob.
• Global area of ea
h type of blob.
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• Lo
al mean area of ea
h type of blob.
• Lo
al standard deviation of the area of ea
h type of blob.In order to 
ompute this features, the 
oloured blobs �rst had to be segmented andthis was performed using a supervised 
lustering approa
h. They used the K-meansalgorithm introdu
ing an approximate rgb value for ea
h 
olour 
enter (ea
h type ofblob). The 
lustering was performed over the RGB spa
e 
onsidering the Eu
lideandistan
e between rgb positions.For the 
lassi�
ation stage they used a dis
riminant analysis (Fisher dis
riminantfun
tions) to sele
t the prototypes providing the maximum dis
rimination ratio froma set of learning samples. With Fisher's approa
h no a priori knowledge of data isneeded and it is able to sele
t the best representation maximizing the ratio betweenthe inter-
lass 
ovarian
e and the intra-
lass 
ovarian
e. A linear transform W is ap-plied over the feature ve
tor x of a parti
ular image obtaining a new representation;

y = W tx, in a new spa
e where dis
rimination 
apability has been maximized.The linear transformation W that optimizes the dis
rimination is obtained by
omputing the most signi�
ant eigen ve
tors of the matrix S−1
w Sb, assuring maxi-mization of the following ratio:

W tSbW

W tSwWwhere W tstands for the transpose of W , Sw is the within data sparse matrix andthe Sb matrix is the between 
lass sparse matrix. They are de�ned as:
Sw =

c
∑

i=1

∑

xk∈{Li}

(xk − µi)(xk − µi)
t

Sb =

c
∑

i=1

Ni(µi − µ)(µi − µ)twhere c is the number of possible 
lasses and {Li} is the set of ve
tors that areused as learning samples in the i 
lass. µi is the mean ve
tor of the samples of the
i 
lass, Niis the number of learning samples in the i 
lass and µ is the global mean
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tor.From an image of a given tile the feature ve
tor x is extra
ted and it is assignedto the j 
lass if
∣

∣W tx − W tµj

∣

∣ <
∣

∣W tx − W tµi

∣

∣ ∀i 6= jwhere µi are the prototypes of the 
lasses.In order to remove spatial and time variations on the image data whi
h o

urunder non-
onstant illumination, they introdu
ed a diagonal transform. This wasa simple diagonal matrix model. It was 
omputed using a white pattern imagea
quired periodi
ally. The spatial distortions were modeled using a set of diagonaltransforms {Sx}, one 3x3 matrix for ea
h position x along the x axis where thespatial variation o

urs (they used a s
an-line 
amera). Light variations due to timewere 
orre
ted in a similar way. A set of diagonal transforms were 
al
ulated {T ti
x }.This set models the distortions at time ti referring to instant t0. The �nal set ofdiagonal transforms {Dti

x } were Dti
x = SxT

ti
x .They also introdu
ed a per
eptual 
orre
tion based on the indu
tion phenomenon.This phenomenon is divided in two types: 
hromati
 assimilation and 
hromati
 
on-trast. The �rst one implies a 
hange in the per
eived 
hromati
ity of a given stimulustowards the 
hromati
ity of its surround, whereas in the se
ond the 
hange is in theopposite dire
tion. Chromati
 assimilation was measured using a psy
hophysi
al ap-proa
h of 
olour appearan
e on human subje
ts [36℄. This approa
h has been usedalso, in Boukouvalas' works [2, 85℄ and other 
omputer vision frameworks [75, 76℄.Chromati
 
ontrast is the 
omplementary me
hanism of the assimilation thattakes 
hromati
ities of regions with spatial low frequen
y. They de�ned an operatorthat enhan
es di�eren
es in transitions between lower frequen
y 
olour regions. The�nal goal of this operator was to produ
e a sharpened image for a better segmenta-tion of texture blobs. They used a standard sharpening �lter:

Sc(I, γ) = Ic − γ∇2(Ic)



2.3. CVC works on surfa
e grading 28where Ic is the 
-th 
hannel of a 
olour image I of dimensions NxM , ∇2(Ic)is the Lapla
ian of the image 
hannel c (∇2(I) = ∂2I/∂x2 + ∂2I/∂y2) and γ is a
onstant that 
ontrols the amount of enhan
ement. This pro
ess is done for ea
h
hannel. Nonetheless, the Lapla
ian operator is very noise sensitive and in order toavoid this problem the Lapla
ian of a Gaussian (LoG) is used.
Sc(I, γ) = Ic − LoG(Ic)

LoG(Ic) = −
1

πσ4

[

1 −
x2 + y2

2σ2

]

e
x2

+y2

2σ2where the LoG(I) expression is 
entered on zero and with a Gaussian standarddeviation σ.What they �nally used was a modi�
ation of this 
ommon sharpening operator.Instead of operating in the RGB spa
e they operated in the opponent spa
e [92℄whi
h provides more per
eptual approa
h. Also they �t the operator output in theneighborhood range of the input pixel. The expression of the new operator T is asfollows:
T (I)−→γ ,w = RGB(S(Opp(I),−→γ )

max(I,w)
min(I,w) )where the superindex and subindex max(I, w) and min(I, w) are the maximumand minimum range for ea
h pixel inside the neighborhood w.They tested these algorithms with a set of six di�erent tile models and 47 
lasses(surfa
e grades). The universe of samples was 
omposed by 514 tiles. Ea
h samplewas divided in three regions whi
h �nally resulted in 1542 images. One third ofthe images were randomly sele
ted for the training set and the remaining imageswere sele
ted for the test set. Average a

ura
y results were around 94% withoutapplying the per
eptual sharpening 
orre
tion and 99% when this 
orre
tion wasapplied [4℄.Lumbreras et al
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e grading 29Lumbreras et al [6, 7, 99℄ developed an approa
h to surfa
e grading based onmultiresolution features. They 
ombined 
olour and texture information throughthe multiresolution de
omposition of ea
h spa
e 
hannel in order to take as featureve
tor the energies and 
ross-
orrelations of the 
oe�
ient images. However, thissimple approa
h 
ould be used in many di�erent ways depending on several de
isions:the multiresolution de
omposition s
heme, the number of de
omposition levels, thespa
e for 
olour representation, and �nally, the 
lassi�
ation features to be 
omputedfrom the de
omposition. For ea
h se
tion they 
hose several options.
• Colour spa
es: 
olour to gray 
onversion, raw RGB dire
t from the 
amera andframe grabber, Ohta 
olour spa
e [102℄ (generi
 Karhunen-Loève transform),and Spe
i�
 Karhunen-Loève transform.
• De
omposition s
hemes and bases: multiresolution analysis with Mallat's al-gorithm [58℄, À trous algorithm [103℄, wavelets pa
kets [104℄. Mallat's anal-ysis and wavelet pa
kets were performed with Daube
hies orthogonal bases,whereas à trous de
omposition used B-spline bases.
• Features: only the energy terms, all 
orrelation signatures between de
omposi-tion levels but only within the same 
hannel, and all the 
orrelation signaturesbetween 
hannels but only within the same level.For the 
lassi�
ation stage they used the same approximation used by Baldri
h etal. They did experiments to test the di�erent multiresolution approa
hes. Sam-ple universe 
omprised three models of polished por
elani
 tiles. Ea
h model wasdivided into eight 
lasses or grades a

ording to the grading operators at fa
tory,ea
h 
lass 
ontained 15 tiles. Also, two 512x512 images were 
aptured for ea
htile, 
orresponding to the middle part of the upper and lower half. Thus, in total720 samples. One third of these samples were sele
ted for the training set and theremaining 
onformed the test set.The results showed that no improvement in a

ura
y was a
hieved by using Othaand spe
i�
 K-L 
olour spa
es. The best results for the three models were a
hievedusing the RGB 
olour spa
e and the 
orrelation signatures between 
hannels onlywithin the same level. In this 
ase, the a

ura
y in average was 92.7%.



2.4. Oulu works on surfa
e grading 30Baldri
h and Lumbreras did not study the real-time requirements of the �nalsystem at fa
tory. Although real-time 
omplian
e was not studied, both methodsseem to have signi�
ant 
omputational 
osts.2.4 Oulu works on surfa
e gradingIn the area of wood inspe
tion, a set of works have been delivered (1999-2002) fromthe Ma
hine Vision Group of the University of Oulu (Finland) [1, 10�12, 105�109℄.In this 
ase, the grading of lumber boards and parquet slabs is not related with theoverall texture and 
olour appearan
e of the surfa
e. The grade of the wood pie
eis assigned by dete
ting the wood defe
ts (mainly knots) and then applying graderules related to the number and types of defe
ts found in the inspe
tion pro
ess [1℄.Therefore, from the 
omputer vision point of view, the problem be
omes a questionof separating the surfa
e into sound and faulty wood, and then 
lassifying the defe
tsinto di�erent types.They fo
used on te
hniques oriented to the dete
tion of faulty and non-faultyareas, 
hoosing a non-segmenting approa
h in the sense they were not interestedin a �ne segmentation of defe
ts. In the approa
h, images are splitted into non-overlapped re
tangles whi
h afterwards are 
lassi�ed as faulty or non-faulty. This
oarse approximation is su�
ient for the purpose of the grading task whi
h is mu
h
loser to a global study of the appearan
e than an a

urate splitting of the regions[11℄.Kauppinen started the approa
h to the problem using only 
olour informationderived from the per
entile features of the RGB histograms [1,11℄. The per
entiles,also 
alled 
entiles, are 
al
ulated from a 
umulative histogram Ck(x), whi
h isde�ned as a sum of all the values that are smaller than x or equal to x in thenormalized histogram Pk(x), 
orresponding to the 
olour 
hannel k. Finding avalue for a per
entile involves �nding the x when Ck(x) is known, thus, requiring aninverse fun
tion of Ck(x). If we denote the per
entile feature with Fk(y) then
Fk(y) = C−1

k (y) = x
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e grading 31where y is a value of the 
umulative histogram in the range [0%,100%℄.In the 
lassi�
ation stage they used feature ve
tors 
omposed of sele
ted sets ofplain per
entile features and di�eren
es of two per
entile features either from thesame 
olour 
hannel or from two di�erent 
olour 
hannels.First experiments for testing the method were 
arried out with 150 images ofbee
h wood slabs used for training and 360 images used for grading test. To evaluatedefe
t dete
tion and defe
t re
ognition (
lassify the fault within defe
t 
lasses),re
tangular samples were 
olle
ted from the training areas. The number of samplesobtained from the training areas was 26855, 16027 of sound wood and the remainderin
luding some kind of defe
t (15 
lasses of defe
ts).A set of 117 
olour per
entile features was 
al
ulated for the training samples.A feature sele
tion algorithm was used to redu
e the number of ve
tor 
omponentskeeping the best features for defe
t dete
tion and re
ognition. The well-known k-NNmethod was used for 
lassi�
ation [30℄. Defe
t dete
tion a
hieved a performan
e of96%, whereas performan
e dropped to 80% in defe
t re
ognition. Finally, a gradingexperiment was done using the non-segmenting method together with two di�erentsets of grading rules (UO and DTU rules). The grading performan
e was around72% in both 
ases. This results were bellow fa
tory requirements of a minimumgrading a

ura
y of 85%.After this �rst approa
h, Niskanen, Silvén and Kauppinen 
ontinued the workin
luding texture properties [105, 106℄. They extended the method using the Lo
alBinary Pattern (LBP) texture operator, previously introdu
ed by their 
olleaguesOjala and Pietikäinen [108, 109℄ (see Figure 2.4). The original 3x3 neighborhoodis thresholded by the value of the 
enter pixel. The values of the pixels in thethresholded neighborhood (Figure 2.4b) are multiplied by the weights given to the
orresponding pixels (Figure 2.4
). Finally, the values of the eight pixels are summedto obtain the number of this texture unit.In this 
ase, for the 
lassi�
ation task they 
hose a neural network based on aSelf-Organizing Map (SOM) algorithm whi
h is used to visualize and interpret largehigh-dimensional data sets by proje
ting them to a low-dimensional spa
e that hastypi
ally one or two dimensions [110, 111℄.
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e grading 32Figure 2.4: Computation of lo
al binary pattern (LBP).
6 5 3

7 5 2

9 3 7

1 1 0

1 0

1 0 1

1 2 4

8 16

32 64 128

1 2 0

8 0

32 0 128

(a) (b) (c) (d)

LBP = 1+2+8+32+128 = 171For the experiments they used a test material 
onsisting of pine boards. The sizeof the dete
tion SOM was 22x18 nodes. The feature sets used in the test 
onsistedof 
olour 
entiles and LBP values. The region size was 40x40 pixels be
ause theyfound it gave low error rates for the test material. Defe
t dete
tion a

ura
y was95% whereas defe
t re
ognition was 91%.Kyllönen and Pietikäinen [12℄ also 
ombined 
entile and LBP features but theyused a di�erent approximation for 
lassi�
ation. They 
ombined the 
entile andLBP features in one measure of distan
e and then used the k-NN 
lassi�er. For the
entile features they used the Eu
lidean distan
e in the feature spa
e, and for LBPthey used a log-likelihood measure to 
ompute the dissimilarity (distan
e) betweensample and referen
e histograms1.
L(S, R) = −

N−1
∑

n=0

SnlnRnwhere N is the number of bins. Sn and Rn are the sample and referen
e proba-bilities of bin n.They joined these distan
es by simply adding them. Prior to this both distan
eswere normalized using:
d =

d − dmin

dmax

d =
d

davg1Using LBP there are 2
8 possible 
ombinations of texture numbers. Thus, texture des
riptionof a region 
an be 
olle
ted 
omputing its LBP histogram.



2.5. Other minor works 33where dmin, dmax and davg are the min, max and average values of all the distan
esfound in the training set.For the experiments they used the set of samples 
olle
ted by Kauppinen [1,11℄.The a

ura
y for defe
t dete
tion was 97% and 88.4% for defe
t re
ognition, whi
his an improvement on the results �rst obtained by Kauppinen (96% and 80%).We 
an 
on
lude that the in
lusion of texture features, derived from the LBPoperator, signi�
antly improved the results of defe
t re
ognition but not defe
t de-te
tion. This is to be expe
ted if we take into a

ount that the su

ess ratio usingonly 
entiles was very high (96%) for defe
t dete
tion.Finally, Niskanen, Kauppinen and Silvén 
ompleted these works presenting astudy of the real-time aspe
ts of the SOM-based inspe
tion [107℄. They fo
usedon the 
lassi�
ation stage be
ause they dete
ted it was the bottlene
k in real-timeinspe
tion. More spe
i�
ally, they studied how to a

elerate the nearest ve
torsear
h of the SOM 
ode. Some existing methods to a

elerate the sear
h weretested; partial distan
e sear
h (PDS), annulus testing (AT), sum of 
omponents(SOC), dynami
al hyperplanes shrinking sear
h (DHSS), tree stru
ture SOM (TSSOM). And also they tested two own methods; mean tree (MT) and fo
used sparsesear
h (FSS). It was 
on
luded that the optimal method was the DHSS, whi
h limitsthe sear
h in the most dis
riminating dire
tion.2.5 Other minor worksPeñaranda et al [8, 9℄, like the CVC group, developed a surfa
e grading appli
ationfor a spe
i�
 type of 
erami
 tile, the polished por
elani
 tile. A por
elain tile ismade up from a mixture of several proportions of grains of di�erent 
olours andsizes, having the visual appearan
e of a random texture. Their approa
h 
onsistedof 
al
ulating the histogram of ea
h 
olour 
hannel in the RGB spa
e. Then, theyused the �rst and se
ond moments of ea
h histogram (average and varian
e) as
olour and texture features respe
tively. This simple approa
h with an in-depthstudy of the inspe
tion system permitted them to ful�l the real-time requirementsof on-line inspe
tion. No a

ura
y results were provided, but, as far as we know,



2.5. Other minor works 34the system is installed and working at the fa
tory for whi
h it was developed.Lebrun and Ma
aire [13℄ dealed with the surfa
e grading of tiles extra
ted fromthe Portuguese marble Rosa Aurora. They used four attributes to di�erentiatebetween surfa
e 
lasses. The �rst was the predominant 
olour whi
h 
orrespondsto the ba
kground 
olour. The mean 
olour of ea
h 
hannel in the RGB spa
e wasused to measure this property. To 
ompute the mean they only used the half of theimage pixels lo
ated around the largest 
olour histogram mode. Se
ond attributewas marble vein density. This was obtained by 
al
ulating the relative area of veins.To do so, the veins had to be segmented from the ba
kground. This was performedby using a simple, automati
 threshold operation in the luminan
e 
hannel, themaximum entropy threshold [112℄. The third attribute was vein 
olour whi
h wasrepresented by the mean 
olour the veins. The �nal 
hara
teristi
 involved vein
ontrast. The 
ontrast was measured 
al
ulating the mean gradient in an edgeimage of veins [113℄. They a
hieved good results 
lassifying nine sele
ted samples
orre
tly. However, they used an approximation so related to the properties of theRosa Aurora marble that is di�
ult to extrapolate the method to other surfa
etypes.Kukkonen et al [15, 16℄ tested the use of a

urate spe
tral 
olour representationto grade 
erami
 tiles. They used a spe
tral s
an-line 
amera [114℄ manufa
turedby SPECIM (Spe
tral Imaging Ltd). The spatial s
anning resolution was of 97 linesper tile, and the spe
tral resolution was of 237 
hannels from the range of 451 nmto 700 nm (a bandwidth of 1.05 nm per 
hannel). A spatial resolution of 330 x 97pixels was used, having ea
h pixel a re
tangle size of 0.85 mm x 3.18 mm. Therefore,the 
olour representation of ea
h pixel was a ve
tor 
omposed by 237 equidistantsamples in the visible light spe
trum. For the 
lassi�
ation stage they used a neuralnetwork 
alled the Self-Organizing Map (SOM) [110℄. The spe
tra ve
tors of tileswere the input data for the neural network. They did experiments with �ve 
lasses orgrades of a brown tile model. In ea
h 
lass there were �ve tiles, 25 samples in total.Three tiles of ea
h 
lass were used to train the neural network and the remainingtiles for testing. An a

ura
y rate of 70% was a
hieved with this method. Theyalso did experiments using only the RGB mean 
olour of ea
h tile and the k-NN
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lassi�er. In this 
ase, the per
entage of su

ess rose to 90%. The spe
tral methoddid not a
hieve good results. Furthermore, spe
tral images have the drawba
k ofprodu
ing great amounts of data for pro
essing whi
h is not suitable for real-timerequirements.Fernández et al [14℄ studied the surfa
e grading of granite tiles originating fromthe Rosa Porriño variety lo
ated in Gali
ia. They only used 
olour information todis
riminate between surfa
e 
lasses. The basis of the method were the histograms ofea
h RGB 
hannel and a simple measure of histogram similarity; the sum of absolutedi�eren
es of ea
h bin-pairs. They 
arried out some experiments with a small setof samples (only six tiles with three surfa
e 
lasses). No a

ura
y information wasprovided but in the paper they admit that texture information would be ne
essaryto improve the results.2.6 Con
lusionsMany works on the issue of surfa
e grading have been reported in re
ent years, butmany of them were very spe
ialized in a spe
i�
 type of surfa
e, others did nota
hieve good enough a

ura
y, and yet others did not take into a

ount the timerestri
tions of a real inspe
tion at fa
tory. As a result, we think surfa
e grading isstill an open issue where more 
ontributions are possible. In this sense, the presentthesis deals with some less explored aspe
ts in terms of real-time 
omplian
e andsurfa
e grading performan
e.From the literature review we 
an dedu
e that there are no extensive experimentsof grading performan
e in the area of 
erami
 tiles. Only for a spe
i�
 kind of
erami
 tile, the polished por
elani
 tile, have there been extensive studies of gradingperforman
e (CVC group and Peñaranda). There is only one work dealing withgeneri
 surfa
es (Surrey group) but they used only surfa
e 
olour property, and noa

ura
y study was given.The Oulu group 
arried out a large work in the area of wood inspe
tion, but thiswork fo
uses more on separating good and faulty wood areas than on a

omplishingthe grading task. Grading results are not su�
iently good. Other minor works deal
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lusions 36with very spe
i�
 types of surfa
es su
h as Rosa Aurora marble (Lebrun) and RosaPorriño granite (Fernández).We 
an also see that there is a la
k in the literature of real-time 
omplian
e inthe methods. Only two works pay attention to the time requirements of fa
toryprodu
tion lines (Peñaranda and Oulu group).In our work, we fo
us on the 
erami
 tile industry where there is a large demandfor automati
 grading. As far we know, we present the most extensive study ofsurfa
e grading performan
e in the area of 
erami
 tiles. We use the VxC TSGimage database whi
h is a wide representation of a typi
al fa
tory 
atalog withmany types of surfa
es, su
h as imitation marble, imitation granite, and stone.Both, texture and 
olour properties are used to su

essfully dis
riminate surfa
egrades. In addition, we present an in-depth study of real-time 
omplian
e. Thereal-time approa
h is based on the use of features with low 
omputational 
ost andparallel pro
essing te
hniques.



Chapter 3
VxC TSG image database
In this 
hapter we present the VxC TSG image database (VxC Tiles for Surfa
eGrading). Building this database has been one important goal of the present thesis.The VxC TSG is based on samples taken from the 
erami
 tile industry and is
omprised of 14 
erami
 tile models, 42 surfa
e grades and 960 pie
es. It was builtin the VxC laboratory in 
ollaboration with Keraben S.A. and is an extensive imagedatabase of 
erami
 tiles representing the wide range of surfa
e 
lasses in the 
erami
tile industry. VxC TSG is the ground truth used in the experiments of Chapters5 and 6, and is also intended to be a tool for the s
ienti�
 
ommunity working onsurfa
e grading. It is publi
 and available at miron.dis
a.upv.es/vision/vx
tsg/.Before des
ribing the image database itself, we des
ribe the a
quisition systemused to 
apture the digital images of tiles. We also present a study of the uniformresponse of the system through time and spa
e. This study is a subgoal of thesiswork. Spatial and temporal uniformity are of great importan
e in order to ensuresurfa
e grading performan
e [2�5, 9, 83℄. Slight 
hanges in illumination or a
quisi-tion 
onditions 
an easily produ
e di�erent grades for the same surfa
e and thenmis
lassi�
ations. In order to over
ome this problem we 
hose high quality 
ompo-nents for the a
quisition system; 
amera, illumination, and opti
s. In the literaturemany of the modern 
omponents were not available and system variability had tobe 
ompensated using data transformation algorithms. Our goal in this issue hasbeen to demonstrate that modern a
quisition 
omponents are able to meet spatialand temporal requirements without needing any transformation of the original data.37



3.1. A
quisition system 38The study of spatial and temporal uniformity was 
arried out 
omparing two mod-ern illumination systems; uniform high frequen
y �uores
ents and arrays of whiteLEDs.3.1 A
quisition systemThe a
quisition system (see Figure 3.1) 
ompromises the following high quality 
om-ponents:
• One Dalsa Trillium 
amera ( TR-31-02k25). This is a 
olour s
an line 
amerawith 3 CCDs (RGB). It provides 2048 pixels of horizontal resolution and amaximum a
quisition rate of 11kHz. This a
quisition rate is more than weneed in worst fa
tory 
onditions. As we use a resolution of 3.2 pixels permillimetre only 884 lines per se
ond are needed (see Chapter 7).
• One Nikkon opti
s (35mm, 1:2.0 mm).
• One Core
o-Imaging PC-DIG frame grabber with 4Mb of internal RAM and100MB/s of PCI transfer rate. We need only 111.3 millise
onds to transfer animage from the 
amera to the PC memory in the worst 
ase (2048x1900 RGBimages).
• High frequen
y and uniform �uores
ents (Mer
rom FXC2372-2). This illumi-nation system has two spe
ial high frequen
y �uores
ent lamps (60kHz) withuniform illuminan
e throughout its length. To over
oming variations withtime, the power supply is automati
ally regulated by a photoresistor lo
atednear the �uores
ents. The high frequen
y provides 135.8 luminan
e peaks forea
h s
anned line, thus, dark a
quisitions are not possible.
• Alternatively, another illumination system formed by two arrays of white LEDs(DCM Sistemes PRL 350). A priori, LEDs are supposed to be uniform in timebe
ause they use 
onstant DC power, and also they are supposed to be spatiallyuniform as they are arranged in line equidistantly.
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quisition system 39Figure 3.1: A
quisition system.
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In the VxC laboratory there is a prototype system whi
h is a repli
a of a se
tion ofa typi
al 
erami
 tile produ
tion line. The prototype 
ompromises a 
abin integratedin the produ
tion line as the a
quisition unit (see Figure 3.2) and one PC with theframe grabber and the I/O 
ard as the pro
essing unit. This prototype with theabove mentioned 
omponents has been used to 
apture the digital images for theVxC database.3.1.1 S
an Line CameraWe 
hose a s
an line 
amera with advan
ed properties to provide high quality a
-quisition and over
ome some 
ommon a
quisition problems.It has a 3 CCD sensor with a pre
isely-aligned beam-splitting prism to separatered, green and blue inputs. Colour sensitivity is mu
h better than using 1 CCD
amera be
ause in 1 CCD 
ameras the responses on red, green and blue 
hannelsare mixed in the same CCD.The 
amera is able to 
alibrate itself to improve 
olour balan
e and image �at-ness. It performs a video 
orre
tion that operates on a pixel-by-pixel basis andimplements a two point 
orre
tion for ea
h pixel . This 
orre
tion redu
es or elimi-nates image distortion 
aused by the following fa
tors:
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quisition system 40Figure 3.2: Prototype at VxC laboratory.

• Fixed Pattern Noise (FPN).
• Photo Response Non Uniformity (PRNU).
• Colour imbalan
e.
• Lens and light sour
e non-uniformity.The two point 
orre
tion is implemented for ea
h pixel on the CCD using:

Voutput = PRNU(pixel) ∗ Vinput + FPN(pixel)where Voutput is the output pixel value, Vinput is the input pixel value from theCDD, PRNU(pixel) is the PRNU 
orre
tion 
oe�
ient for this pixel and FPN(pixel)is the FPN 
oe�
ient for this pixel.The 
alibration algorithm is performed in two steps. The �xed o�set (FPN) isdetermined �rst by performing a 
alibration with no light (Dark Calibration). This
alibration determines how mu
h o�set to subtra
t per pixel in order to obtain �atoutput when the CDD is not exposed. The Dark Calibration is 
arried out 
overingthe lenses or/and 
losing the iris to the maximum.



3.1. A
quisition system 41White Light Calibration is performed next to determine the multipli
ation fa
torsrequired to bring ea
h pixel to the required value (balan
e target, usually 95% ofsaturation) for �at white output. The white light 
alibration also sets the analoggains in the 
amera appropriately to balan
e all the 
hannels (
olour balan
e). Whitelight 
alibration is more 
omplex than dark 
alibration be
ause the 
amera attemptsto 
reate a �at white image. This 
alibration 
orre
ts PRNU e�e
ts as well as non-uniform lighting and lens vignetting a�e
ts.White light 
alibration requires a 
lean, white referen
e. The quality of thereferen
e is important for proper 
alibration. White paper is often not su�
ientbe
ause the grain in the white paper will distort the 
orre
tion. Usually a whiteplasti
 referen
e, whi
h is more uniform, a
hieves better balan
ing.3.1.2 Opti
al lensesThe 
amera was equipped with a Nikkon opti
s (35mm, 1:2.0 mm). This is a 
ommonhigh quality lens, but as with most lenses, it 
an be a�e
ted by two major opti
al
olour aberrations; vignetting and 
hromati
 aberration [115℄. At present, some
ompanies 
an supply aberration-free lenses but they are made on demand, do not
ompletely remove the aberrations and are very expensive.Vinegtting is an unintended darkening of the image 
orners and is inherent tothe lens design. Chromati
 aberration appears be
ause 
ommon lenses refra
t lightdi�erentially as a fun
tion of wavelength. Short (blue appearing) wavelengths arerefra
ted more than long (red appearing) wavelengths. Thus, 
hromati
 aberrationsare introdu
ed.Some tests at the laboratory, 
arried out to prepare and 
alibrate the a
quisitionsystem, showed that the vignetting a�e
t growed as we used large openings of theiris. We a
hieved images free of vignetting by using small openings in 
ombinationwith the 
amera 
alibration pro
ess. With respe
t to 
hromati
 aberration, it isinherent to the lenses and is not time or 
amera dependent. Thus, the 
hromati
aberration introdu
ed is 
onstant in all a
quisitions and therefore is not relevantwhen we 
ompare 
olour di�eren
es rather than absolute 
olour values, as it o

ursin surfa
e grading appli
ation.



3.2. Study of spatial and temporal uniformity. 423.2 Study of spatial and temporal uniformity.Spatial and temporal uniformity is 
ru
ial to ensuring surfa
e grading performan
e.Slight 
hanges in illumination or a
quisition 
onditions 
an easily introdu
e di�erentgrades for the same surfa
e and then mis
lassi�
ations. In the surfa
e gradingliterature this question has been addressed 
ompensating the system variability withdata transformation algorithms.In [2,3℄ Boukouvalas et al 
aptured a set of images of the same plain tile in all fourpossible orientations. From these images they determined the spatial variation of theillumination by averaging the four images and �tting the data with low-order two-dimensional polynomial. The 
oe�
ients of this polynomial were 
omputed usingleast square error �tting. Temporal variability of the illumination was determinedby 
apturing a sequen
e of images of the same plain tile next to a referen
e surfa
eover a period of time. From these images a set of points (IR, IT ) was 
olle
tedrepresenting the mean intensities of the referen
e surfa
e and the tile, respe
tively.The intensity 
hange of the tile and the referen
e surfa
e was lo
ally des
ribed bya linear fun
tion, the slope of this fun
tion was 
omputed with least square error�tting again and used to over
ome temporal variability in the illumination.In [4, 5℄ Baldri
h et al modeled the global variability of the a
quisition systemin
luding illumination and sensor a�e
ts. They developed a method based on 
olour
onstan
y te
hniques using a diagonal matrix model. This was 
omputed using awhite pattern image a
quired periodi
ally. Spatial distortions were modeled using aset of diagonal transforms {Sx}, one 3x3 matrix for ea
h position x along the x axiswhere the spatial variation o

urs (they used a s
an-line 
amera). Light variationsdue to time were 
orre
ted in a similar way. A set of diagonal transforms were
al
ulated {T ti
x }. This set modeled the distortions at time ti referring to instant t0.The �nal set of diagonal transforms was {Dti

x } where Dti
x = SxT

ti
x .When these works were reported many of the modern a
quisition 
omponentswere not available and system variability had to be 
ompensated using data trans-formation methods. Our approa
h to this question has been to demonstrate thatmodern a
quisition 
omponents are su�
iently stable to meet spatial and temporaluniformity requirements without transforming the original data.



3.2. Study of spatial and temporal uniformity. 43We 
arried out an experiment to determine the reliability of the a
quisition sys-tem in relation to spatial and temporal uniformity. This experiment also 
omparedtwo di�erent modern illumination systems; uniform high frequen
y �uores
ents andarrays of white LEDs.For ea
h illumination system we 
aptured repeatedly the images of six tiles, ea
hone 
orresponding to a di�erent model. The tiles were 
hosen trying to 
over a widerange of surfa
e types and 
olours (see Figure 3.3). The 
omplete set of tiles wasa
quired at random moments over 54 hours. We extended the experiment over 54hours (two days and six hours) be
ause this is the mean period at fa
tories whenthey produ
e a spe
i�
 model, and we wanted to study the spatial and temporaluniformity for a 
omplete surfa
e grading session. In total, the set of tiles was
aptured 23 times. Environmental 
onditions were holded 
onstant using an air
onditioner system for temperature and a 
losed 
abin for illumination.Figure 3.3: Tiles used in the study of spatial and temporal uniformity. From left toright, up to down; veni
e, vega, blue veni
e, somport, mediterranea and granito.

In order to study the temporal response we measured the mean CIE Lab 
olourof ea
h pie
e. And also, in order to study spatial response we randomly oriented



3.2. Study of spatial and temporal uniformity. 44the pie
es in ea
h 
apture. The CIE Lab is a per
eptually uniform 
olour spa
e andwe 
an measure the per
eptual di�eren
e between two 
olours using the Eu
lideandistan
e in this spa
e [33℄. Thus, 
olour di�eren
es 
an be measured in a very similarway to the human per
eption of 
olours.In [116℄ Mahy and Oosterlink established that in CIE Lab a noti
eable di�eren
eof 
olour [for humans℄ begin at 2.3 or greater Eu
lidean distan
es. From this asser-tion we 
an 
onsider a system su�
iently stable if there is no Eu
lidean distan
eabove 2.3 when we 
al
ulate all the Eu
lidean distan
es between the �rst sample andthe rest. Figure 3.4 shows the system response for ea
h tile over the 54 hours whenusing �uores
ents and LEDs respe
tively. In the results of �uores
ents there wasno distan
e above 2.3, and all of them remain signi�
antly far away from this limit.Distan
es using LEDs did not remain under the noti
eable di�eren
e showing a 
leardegradation of the system with time, the noti
eable di�eren
e was surpassed afterapproximately 33 hours. LEDs experiment was repeated using a better performan
epower supply but again the noti
eable di�eren
e was ex
eeded after approximately33 hours.The goal of this study has been to determine whether or not the a
quisitionsystem is stable enough for the surfa
e grading purpose. The 
on
lusion of thestudy is that uniform high frequen
y �uores
ents 
omply with spatial a temporaluniformity, while the arrays of white LEDs are not appropriate when temporaluniformity is required. A great part of the su

ess of �uores
ents is due to thepower supply 
ir
uit whi
h is auto-regulated taking in a

ount emitted light byusing a photoresistor lo
ated near the �uores
ents. Thus, the system 
an respondimmediately to illumination 
hanges and stabilize luminous power with time.



3.2. Study of spatial and temporal uniformity. 45Figure 3.4: System response over 54 hours using �uores
ents and LEDs respe
tively.
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3.3. VxC TSG des
ription. 463.3 VxC TSG des
ription.Table 3.1: Models of the VxC TSG image database.
lasses tiles/
lass size (
m) pattern aspe
tagata 13, 37, 38 16 33x33 �xed marbleantique 4, 5, 8 14 23x33 pseudo-random stoneberlin 2, 3, 11 24 20x20 random granite
ampinya 8, 9, 25 30 20x20 pseudo-random stone�renze 9, 14, 16 20 20x25 random stonelima 1, 4, 17 24 20x20 random granitemar�l 27, 32, 33 14 23x33 pseudo-random marblemediterranea 1, 2, 7 30 20x20 random stoneoslo 2, 3, 7 24 20x20 random granitepetra 7, 9, 10 28 16x16 random stonesantiago 22, 24, 25 28 19x19 random stonesomport 34, 35, 38 28 19x19 random stonevega 30, 31, 37 20 20x25 �xed marbleveni
e 12, 17, 18 20 20x25 pseudo-random marbleThe image database has been built in 
ollaboration with Keraben S.A. whi
his a large 
erami
 tile 
ompany (2nd in Spain by total turnover) lo
ated at Nules,provin
e of Castellón. Together with the R+D sta� we studied their 
atalog and
hose a set of models intended to be a good representation of the wide variety ofsurfa
e 
lasses that fa
tories 
an produ
e. A 
atalog of 700 models is 
ommon inthese 
ompanies. But, in spite of this great number of models, almost all of themimitate one of the following mineral textures; marble, granite or stone.Due to the way that tiles are produ
ed there are three basi
 types of surfa
epatterns; �xed, random and pseudo-random. Fixed pattern models are produ
ed byimpressing the �x de
orative motives on to the enameled tile surfa
es. This is donethrough silk-s
reen ma
hines. Printing rollers are used to made pseudo-randommodels. The patterns on the rollers are �xed but the part of ea
h roller that isimpressed over the tile is randomly 
hosen by the moment that tile begin to passunder the rollers. For random models several te
hniques may be used depending onthe model to be produ
e. One of these te
hniques 
onsists of spreading pigmentsover the tile using sponges. From the point of view of surfa
e grading purposes �xed



3.3. VxC TSG des
ription. 47and pseudo-random pattern models 
an be 
onsidered subsets of random patternmodels.The database is formed by the digital images of 960 tiles a
quired from 14 dif-ferent models, ea
h one with three di�erent surfa
e 
lasses (see Table 3.1). The
lasses were given by spe
ialized graders at the fa
tory. Every model has two 
lose
lasses and one 
lass distant to them. Surfa
e 
lasses (grades) are represented bynumbers and 
lose numbers mean 
lose 
lasses. Thus, the database in
lude �di�
ultto dis
riminate� 
ases in ea
h model. The tiles were 
olle
ted dire
tly from the endof the produ
tion line, just before the tiles are graded and pa
ked, or from sto
kstored at the fa
tory.Figures 3.5, 3.6, 3.7 and 3.8 show VxC TSG samples itemized by aspe
t. Qualityof images was improved enhan
ing brightness and 
ontrast independently in everymodel.In the 
ase of granite models there were only six tiles per surfa
e grade. The sizeof these pie
es was large, 50x50
m. To in
rease the number of samples in these mod-els we de
ided to take four sub-samples of ea
h pie
e with a size of 20x20
m. This
ould be done be
ause grains and tile 
olour were uniformily distributed through allthe surfa
e of tiles.



3.3. VxC TSG des
ription. 48Figure 3.5: VxC TSG marble samples. From up to down; three samples of agata,mar�l, veni
e and vega models, ea
h one 
orresponding to a di�erent surfa
e grade.



3.3. VxC TSG des
ription. 49Figure 3.6: VxC TSG granite samples. From up to down; three samples of berlin,oslo and lima models, ea
h one 
orresponding to a di�erent surfa
e grade.



3.3. VxC TSG des
ription. 50Figure 3.7: VxC TSG stone samples. From up to down; three samples of antique,
ampinya, �renze and mediterranea models, ea
h one 
orresponding to a di�erentsurfa
e grade.



3.4. Con
lusions 51Figure 3.8: VxC TSG stone samples. From up to down; three samples of petra,santiago and somport models, ea
h one 
orresponding to a di�erent surfa
e grade.

3.4 Con
lusionsIn this 
hapter we have presented the VxC TSG database for surfa
e grading whi
hhas been one important goal of this thesis. The a
quisition system, based on highquality 
omponents, has been des
ribed and also a study about the spatial andtemporal uniformity of the system is performed. This study has been a thesis subgoalplanned at the beginning of the thesis work. Uniform high frequen
y �uores
entsand arrays of white LEDs are two modern illumination systems that have been
ompared from the point of view of spatial and temporal uniformity. The 
on
lusionof the study is that the a
quisition system using uniform high frequen
y �uores
ents
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lusions 52
omply with spatial a temporal uniformity, while the arrays of white LEDs do notprovide temporal uniformity. LEDs 
learly degrade the system with time surpassingthe noti
eable di�eren
e limit after 33 hours of use.Finally, and extensive image database of 
erami
 tiles for the purpose of surfa
egrading has been 
ompiled. This database has been built in 
ollaboration with theR+D sta� of Keraben S.A. intending to be representative of the wide range of surfa
e
lasses present in 
erami
 tile industry. Furthermore, the database is available for thes
ienti�
 
ommunity working on surfa
e grading atmiron.dis
a.upv.es/vision/vx
tsg/.The VxC database has already been used partially in [130℄.



Chapter 4
On the sear
h for a fast and a

urateapproa
h to surfa
e grading
This 
hapter presents the �rst approa
hes we developed to solve the question offast and reliable surfa
e grading of �at pie
es de
orated with random patterns.In the �rst works, we used image tessellation and simple lo
al statisti
s of 
olourto des
ribe surfa
e appearan
e. The statisti
s were 
omputed in a per
eptuallyuniform 
olour spa
e, the CIE Lab. These �rst works did not a
hieve the minimuma

ura
y requested at fa
tory ( 95% of su

ess ratio). Finally, we proposed a methodbased on global 
olour and texture statisti
s, also 
omputed in CIE Lab. Thismethod a
hieved a

ura
y 
omplian
e. CIE Lab was used to provide a

ura
y andper
eptual approa
h in 
olour di�eren
e 
omputation. Experiments with RGB were
arried out to study CIE Lab reliability. These approa
hes were tested on a mediumsized image database of 
erami
 tiles. This database was the ante
edent of theVxC TSG image database presented in the previous 
hapter. Global statisti
s inCIE Lab were also 
ompared with two other methods from the literature; 
olourhistograms [2, 3℄ and 
entile-LBP [1, 12℄.After experiments and 
omparison we 
on
luded that a simple 
olle
tion of global
olour and texture statisti
s in the CIE Lab spa
e was powerful enough to welldis
riminate surfa
e grades. The average su

ess rate was over 95% in most tests,improving on the methods in the literature and a
hieving fa
tory 
omplian
e. Theapproa
h based on global statisti
s in CIE Lab is the ante
edent of the soft 
olour-53



4.1. Image tessellation and lo
al Lab statisti
s 54texture des
riptors method developed in the next 
hapter. Both global statisti
s inCIE Lab and soft 
olour-texture des
riptors are basi
ally the same method but thelatter was extra
ted as a result of an extensive study based on statisti
al tools andVxC TSG image database. Work presented in this 
hapter was reported in [25,26℄.4.1 Image tessellation and lo
al Lab statisti
sThe methods 
orresponding to this se
tion split the image into squares of NxNpixels. For ea
h square two simple statisti
s, the mean and the standard deviation,are 
omputed in ea
h CIE Lab 
olour spa
e 
hannel. As we will see, this lo
al datais used in several ways to perform the surfa
e grading.CIE Lab was designed to be per
eptually uniform. The term 'per
eptual' isreferred to the way that humans per
eive 
olours, and 'uniform' implies that per-
eptual di�eren
e between two 
oordinates (two 
olours) will be related to a measureof distan
e, whi
h 
ommonly is the Eu
lidean distan
e. Thus, 
olour di�eren
es 
anbe measured in a way 
lose to the human per
eption of 
olours.The images of the ground truth (image data base) were a
quired in RGB, andtherefore needed to be 
onverted to CIE Lab 
oordinates using standard RGB toCIE Lab transformation [33℄.The experiments in this se
tion we 
arried out using an image data base formedby the digital RGB images of 276 tiles a
quired from �ve di�erent models, ea
hwith three di�erent surfa
e 
lasses or grades (see Table 4.1) given by spe
ializedgraders at fa
tory. For ea
h model there were two 
lose 
lasses and one distant 
lass.The models were 
hosen to represent the great variety of models that fa
tories 
anprodu
e. Almost all fa
tory models imitate one of the following mineral textures;marble, granite or stone. In this initial image data base there were no modelsimitating granite. This type of tiles were added latter in the global Lab statisti
sexperiments.Digital images of tiles were a
quired using an spatially and temporally uniformillumination system. Spatial and temporal uniformity is important in surfa
e grading[1,2,4,8℄ be
ause variations on illumination 
an produ
e di�erent shades for the same



4.1. Image tessellation and lo
al Lab statisti
s 55Table 4.1: Ground truth of 
erami
 tiles used in image tessellation and lo
al Labstatisti
s approa
hes.
lasses tiles/
lass size (
m) pattern aspe
tagata 13, 37, 38 16 33x33 �xed marble�renze 9, 14, 16 20 20x25 random stonetos
ana 13, 18, 19 16 33x33 random stonevega 30, 31, 37 20 20x25 �xed marbleveni
e 12, 17, 18 20 20x25 pseudo-random marblesurfa
e and 
onsequently, mis
lassi�
ation. The illumination system was formed bytwo spe
ial high frequen
y �uores
ent lamps with uniform illumination along itslength. To over
ome variations through time, the power supply was automati
allyregulated by a photoresistor lo
ated near the �uores
ents.The �rst approa
h based on tessellation and lo
al statisti
s uses the standarddeviation to sort squares from low to high variability. Then, a simple algorithmseeks a slope ex
eeding a given threshold in the sorted ve
tor of standard deviations.The image is divided into two regions de�ned by squares variability; low and hightexturized regions (see Figure 4.1). Then, the mean 
olour ve
tor of both regionsare 
omputed and used to 
lassify the tiles. The hypothesis is that tile surfa
e 
anbe divided into two general regions, one with an homogeneous aspe
t, and anotherwith a texturized aspe
t. Ea
h region seems to have a di�erent general 
olour andthese two 
olours 
ould be enough to 
hara
terize the tile tone or grade.The 
lassi�
ation results are presented in Table 4.2. We used the well knownk-NN 
lassi�er [30℄ with k fa
tor equal to 1 and 3. Samples were divided intotraining and test sets, 30% of samples were used for training and 70% for test.The results show better performan
e for CIE Lab spa
e. The method does nota
hieve a

ura
y 
omplian
e and also it requires two non-automati
 parameters;the standard deviation threshold and the square size. Table 4.2 only shows theestimated values of standard deviation, but the NxN size also had to be estimated.This parameters were heuristi
ally studied for ea
h tile model. This non-automati
pro
edure in parameter estimation is an important drawba
k.A post-study of images and square sizes revealed that in several tile models more



4.1. Image tessellation and lo
al Lab statisti
s 56Figure 4.1: First approa
h to surfa
e grading based on tessellation and lo
al statis-ti
s. Sorted ve
tor of standard deviations and image splitting into two regions usingsquares variability.
standard
deviation

ordered squares

low variability

high
variability

seeking
window

Table 4.2: A

ura
y results for the �rst approa
h based on image tessellation andlo
al statisti
s. std deviation Lab RGBagata 0.5 97.0% 87.9%�renze 0.5 85.7% 78.6%tos
ana 1.0 75.8% 66.7%vega 0.6 90.2% 100%veni
e 1.0 88.1% 78.6%mean 87.4% 82.4%than two regions and mean 
olours 
ould be de�ned in relation to 
olour variabilityof squares. Thus, the method 
ould be extended dividing images into more regionsusing more standard deviation thresholds, but we though it would we 
omplex andnot interesting be
ause parameters (standard deviation thresholds and squares size)have to be determined non-automati
ally.In a se
ond approximation, we explored the dis
riminant properties of the or-dered standard deviation ve
tor. Figure 4.2 shows the averaged ve
tors of the or-dered standard deviation ve
tors belonging to ea
h 
lass (grade) of the tos
anamodel using 15x15 squares. Ea
h mean ve
tor was 
omputed using the half of thesamples of ea
h 
lass. Classi�
ation was performed using the square root of theleast-square-error (LSE) as a measure of distan
e between test tile ve
tor and the



4.1. Image tessellation and lo
al Lab statisti
s 57referen
e mean ve
tor of ea
h 
lass.Thus, the sorted standard deviation ve
tor isused as a signature of lo
al variability. The distan
es between referen
es and testsignatures are used to determine the surfa
e grade or 
lass.Figure 4.2: Se
ond approa
h to surfa
e grading based on tessellation and lo
alstatisti
s. Averaged ve
tors of ordered standard deviation ve
tors 
orresponding toea
h tos
ana 
lasses with a square size of 15x15 pixels.
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This method is simpler than previous one be
ause no threshold parameter isneeded for the standard deviation, only the squares resolution had to be studied.This method improves the �rst approa
h but still does not rea
h a

ura
y 
ompli-an
e. Tests using squares resolutions from 5x5 to 300x300 were performed. Table4.3 
olle
ts the best a

ura
y results among the di�erent square resolutions for ea
hmodel. RGB obtains the worst results.An evolution of this se
ond approa
h is 
arried out using the mean 
olour ofsquares instead of the standard deviation to 
ompute the distan
e between signa-tures. The ve
tor is again sorted by the standard deviation but values 
orrespond tothe mean 
olour of squares. In this 
ase, we used pure 
olour information plus thevariability represented by the order imposed with the standard deviation sorting.



4.1. Image tessellation and lo
al Lab statisti
s 58Table 4.3: A

ura
y results for the se
ond approa
h based on image tessellation andlo
al statisti
s. square size Lab RGBagata 80x80 95.8% 91.7%�renze 30x30 86.7% 76.7%tos
ana 30x30 83.3% 79.2%vega 70x70 100% 100%veni
e 25x25 83.3% 86.7%mean 89.8% 86.9%The results of this third approa
h are shown in Table 4.4. The method a
hievesvery good performan
e for three models but it drops signi�
antly in the remainingtwo models. After studying the visual properties of these groups of models, we 
on-
luded that the fundamental di�eren
e was the variability level. Tiles are formedby homogeneous and texturized (non-homogeneous) regions. In the �rst group ofmodels, homogeneous regions 
over great areas of tiles while in the se
ond grouptexturized areas 
over almost all the tile surfa
e. In the se
ond group, the standarddeviation values did not 
orrelate with the mean 
olours of squares while they didin the �rst group. On
e again RGB spa
e performed worse than CIE Lab.Table 4.4: A

ura
y results for the third approa
h based on image tessellation andlo
al statisti
s. Lab RGBagata 100% 100%�renze 100% 96.7%tos
ana 58.3% 54.2%vega 100% 40%veni
e 66.7% 76.7%mean 85.0% 73.5%Finally, we developed several multiresolution approa
hes. The idea was to usesome kind of multiresolution approa
h with the methods previously studied. Theimage s
ales we used were: 1.0, 0.5, 0.25, 0.12 and 0.06. The �rst multiresolutionapproximation is quite simple, it is a voting system. Ea
h sample is 
lassi�ed inevery s
ale, and the �nal 
lass is the most voted 
lass out of all the s
ales. This
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al Lab statisti
s 59approa
h is 
arried out using se
ond and third previous approa
hes.The se
ond multiresolution approximation is an extension of the approa
h basedon the ordered standard deviation ve
tor. We used an absolute measure, the area ofthe ordered standard deviation ve
tor (see Figure 4.3). This measure was 
omputedin all s
ales, and therefore a feature ve
tor of 5 areas was obtained for ea
h sample.Classi�
ation was performed using k-NN. Experiments were 
arried out using onlyCIE Lab.Figure 4.3: Se
ond multiresolution approa
h based on the 
omputation of areasbelonging to ordered standard deviation ve
tors in several image s
ales.
standard
deviation

ordered squares

vector area

Table 4.5: Lab a

ura
y results for the fourth approa
h based on image tessellationand lo
al statisti
s. Multiresolution approa
hes.standard mean std dev.deviation 
olour areasagata 100% 100% 100%�renze 90.0% 100% 90.0%tos
ana 83.3% 58.3% 95.8%vega 100% 100% 96.6%veni
e 86.7% 66.7% 93.3%mean 92.0% 85.0% 95.1%Table 4.5 shows multiresolution results. The �rst multiresolution approa
ha
hieves only a slight improvement using the ordered standard deviation ve
tor.However, the se
ond multiresolution approa
h based on the areas of the ordered stan-dard deviation ve
tors performs well ex
eeding in 0.1% fa
tory 
omplian
e (95%).



4.2. Global Lab statisti
s 60In spite of the good result a
hieved by the se
ond multiresolution approa
h, thedrawba
k of these methods is they need at least one parameter to be estimated forevery tile model. In next se
tion we present a method whi
h is parameter indepen-dent and dis
riminates surfa
e grades very well.4.2 Global Lab statisti
sThis method is even simpler than the previous approa
hes. Here, a set of globalstatisti
al features des
ribing 
olour and soft texture properties are 
olle
ted. Thefeatures are 
omputed in a per
eptually uniform 
olour spa
e, the CIE Lab. Thesestatisti
s form a feature ve
tor used in the 
lassi�
ation stage where the well knownk-NN method [30℄ was 
hosen as 
lassi�er.We propose several statisti
al features for des
ribing surfa
e appearan
e. Forea
h 
hannel we 
hose the mean, the standard deviation and the average deviation
ADev(z).

ADev(z) =
1

L

L
∑

i=1

|zi − m|wherez is the random variable, L size of the data set and m the mean value of zvalues.Also, by 
omputing the histogram of ea
h 
hannel we are able to 
al
ulate his-togram moments. Histogram moments are 
onsidered soft texture des
riptors [29℄.We de�ned two blo
ks of histogram moments; one from 2nd to 5th and the otherfrom 6th to 10th. The nth moment of z about the mean is de�ned as
µn(z) =

L
∑

i=1

(zi − m)np(zi)where z is the random variable, p(zi), i = 1, 2, ... , L the histogram, L the num-ber of di�erent variable values and m the mean value of z.The experiments were 
arried out using and extended image data set whi
hin
luded three new tile models for polished por
elani
 tiles were added (see Table4.6).



4.2. Global Lab statisti
s 61Table 4.6: New models added to the image database of 
erami
 tiles.
lasses tiles/
lass size (
m) pattern aspe
tberlin 2 ,3, 11 24 20x20 random granitelima 1, 7, 17 24 20x20 random graniteoslo 2, 3, 7 24 20x20 random graniteThe experiments were 
arried out for CIE Lab and RGB spa
es. Classi�
ationwas made using half of the samples as training set and the remaining half as testset. Values of 1, 3, 5 and 7 were used for the k fa
tor of the k-NN 
lassi�er.The performan
e results of several statisti
s sets are shown in Table 4.7. Thea

ura
y rates were 
omputed as the average a

ura
y ratios a
hieved over all mod-els. More 
ombinations of statisti
s were tested, but only the most prominent arepresented. The last two 
olumns 
orresponds to the averaged a

ura
y rate and the95% 
on�den
e intervals [122℄ respe
tively. The table is divided into two blo
ks, the�rst one 
orresponds with CIE Lab experiments. Here, the majority of sets have
on�den
e intervals under the minimum a

ura
y rate of 95% whi
h is the fa
toryperforman
e requirement. The best 
hoi
e was to use the mean 
olour plus thestandard deviation. Histogram moments did not introdu
e any improvement. These
ond blo
k 
olle
ts the results of RGB whi
h presents signi�
ant less dis
riminativepower than CIE Lab.



4.3. Literature methods 62Table 4.7: Best a

ura
y results of global Lab statisti
s method. From left to right;mean, standard deviation, average deviation, histogram moments from 2nd to 5th,histrogram moments from 6th to 10th, CIE Lab, RGB, a

ura
y and 95% 
on�den
eintervals. A

ura
y and 
on�den
e intervals are given in %.mean std dev ave dev 2-5 ms 6-10 ms Lab RGB a

. 
.i. 95%x x 86.8 [83.6, 89.7℄x x x 98.9 [97.7, 99.6℄x x x 97.0 [95.3, 98.4℄x x x x 96.8 [95.1, 98.3℄x x x x x 96.7 [94.8, 98.1℄x x 86.6 [83.4, 89.6℄x x x 92.1 [89.4, 94.3℄x x x 92.7 [90.1, 94.9℄x x x x 94.1 [91.7, 96.0℄x x x x x 93.3 [90.8, 95.4℄
4.3 Literature methodsWe sele
ted two methods from the literature for 
omparison purposes: 
olour his-tograms [2, 3℄ and 
entile-LBP [1, 12℄. We 
hose these methods be
ause they aresimilar to ours, both are generi
 solutions with low 
omputational 
osts. For in-depth information about these approa
hes review Chapters 2 and 6.We should point out that the 
entile-LBP method is not used in literature di-re
tly for wood grading but for surfa
e segmentation into sound wood and kno
ks.However, we use the method as a global surfa
e grader a
hieving good results.Colour histograms are 3D histograms whi
h are 
ompared using dissimilaritymeasures. In [2,3℄ they used the 
hi square test and the linear 
orrelation 
oe�
ientto measure histograms dissimilarities.Centiles [1, 12℄ are 
olour features 
al
ulated from the 
umulative histograms of
olour 
hannels 
orresponding to a given 
olour spa
e. A total number of 171 
entilesare 
ompiled to des
ribe the 
olour property of surfa
es. The Lo
al Binary Pattern(LBP) is a lo
al texture operator related to ea
h image pixel's neighbourhood. Thisoperator provides a number for ea
h pixel (texture unit) in the range [0, 255℄, thena histogram 
olle
ts the LBP texture des
ription of an image.



4.3. Literature methods 63In [12℄ 
entile and LBP features were 
ombined in one measure of distan
e andthen the k-NN 
lassi�er was used. For Centile features they used the Eu
lideandistan
e in the feature spa
e. For LBP they used a log-likelihood measure. Bothdistan
es were normalized using the min and max values of all the distan
es foundin the training set and then joined by simply adding them together.Experiments for 
olour histograms and 
entile-LBP were 
arried out. On
e again,
lassi�
ation was made using the half of the samples for training and the remain-ing half for testing. In 
entile-LBP experiments the original log-likelihood formula,the 
hi square test and the linear 
orrelation 
oe�
ient were used for measuringhistograms di�eren
es.Table 4.8: A

ura
y results of 
olour histograms and 
entile-LBP. From left to right;Chi square, linear 
orrelation and log-likehood distan
es, a

ura
y, 95% 
on�den
eintervals. A

ura
y and 
on�den
e intervals are given in %.Chi Corr. Log Lab RGB a

. 
.i. 95%Colour Histo. x x 90.3 [87.4, 92.8℄Colour Histo. x x 88.5 [85.4, 91.2℄Colour Histo. x x 88.9 [85.8, 91.5℄Colour Histo. x x 87.6 [84.5, 90.5℄Centile-LBP x x 94.4 [92.2, 96.4℄Centile-LBP x x 94.9 [92.6, 96.7℄Centile-LBP x x 91.3 [88.5, 93.6℄Centile-LBP x x 94.7 [92.4, 96.5℄Centile-LBP x x 95.4 [93.4, 97.2℄Centile-LBP x x 93.3 [90.8, 95.4℄The results of Table 4.8 show that 
entile-LBP a
hieves the best a

ura
y rateswhen using RGB, but neither method a
hieves fa
tory 
omplian
e be
ause noneof their 
on�den
e intervals are over the min a

ura
y rate (95%) requested atfa
tory. Compared with Table 4.7 Lab Statisti
s presents signi�
ant improvementin performan
e an also is the only method with 
on�den
e intervals 
ompletelysurpassing the min fa
tory a

ura
y limit.



4.4. Con
lusions 644.4 Con
lusionsIn this 
hapter we have presented several approa
hes to surfa
e grading. First meth-ods were based on image splitting into equally sized squares and simple lo
al statis-ti
s 
omputed for ea
h square. Only one of these methods a
hieved the a

ura
y
omplian
e requested at fa
tory. An important drawba
k of all these methods isthat they needed to non-automati
ally estimate at least one parameter for everytile model. Next, a method based on global statisti
s with no parameter estima-tion was presented. Many 
ombinations of the proposed statisti
s on 
olour andtexture a
hieved a

ura
y 
omplian
e 
learly ex
eeding the minimum requested atfa
tory (95%). All the proposed methods use a per
eptually uniform 
olour spa
e,the CIE Lab. Experiments using RGB were performed and this spa
e showed lessdis
riminative power. Thus, per
eptual approa
h based on CIE Lab appears as agood 
hoi
e.For 
omparison purposes we sele
ted two methods from the literature (
olourhistograms and 
entile-LBP) and performed experiments using the same imagedatabase. The results a
hieved by both approa
hes were worst than global Labstatisti
s and also did not rea
h fa
tory 
omplian
e.Global statisti
s 
omputed in CIE Lab is the ante
edent of soft 
olour-texturedes
riptors method whi
h is in-depth developed in next 
hapter. Both, global statis-ti
s in CIE Lab and soft 
olour-texture des
riptors are basi
ally the same method.On
e we found a fast method able to 
omply with fa
tory requests, we de
ided tostudy the approa
h in-depth, adding new fa
tors su
h as new 
olour spa
es (CIELuv and Grey s
ale), 
lassi�ers (leaving-one-out) and testing all the possible 
ombi-nations of soft 
olour-texture des
riptors (mean, standard deviation, and histogrammoments from 2nd to 5th). To do so, we used statisti
al tools to manage the largeamount of resulting experiments and a
hieve obje
tive and valid 
on
lusions. Wealso used an extensive image database, the VxC TSG.



Chapter 5
Extra
tion of soft 
olour-texturedes
riptors method
In previous 
hapter we found a su

essful new approa
h to surfa
e grading basedon global statisti
s of 
olour and texture 
omputed in a per
eptually uniform 
olourspa
e, the CIE Lab. This approa
h a
hieved fa
tory 
omplian
e in a

ura
y perfor-man
e and also improved literature methods (
olour histograms and 
entile-LBP).Basing on this method in this 
hapter we present an extensive study in order toextra
t a de�nitive method. The study in
ludes more fa
tors su
h as new 
olourspa
es (CIE Luv and Grey s
ale) and 
lassi�ers (leaving-one-out) and also all thepossible 
ombinations of soft 
olour-texture des
riptors (mean, standard deviation,and histogram moments from 2nd to 5th) are tested in 
onjun
tion with the otherfa
tors.The resulting method from this in-depth study is named soft 
olour-texture de-s
riptors method. The method is extra
ted and validated using a statisti
al pro
e-dure based on two statisti
al tools; experimental design [31℄ and logisti
 regressionanalysis [32℄. These tools in 
onjun
tion provide a way to determine the best 
om-bination of quantitative/
ategori
al fa
tors related with a set of experiments. Thebest 
ombination is a
hieved by seeking to maximize or minimize one response vari-able also involved in the experiments. In our 
ase this output variable was the
lassi�
ation a

ura
y rate.Although the method is not a new theoreti
al 
ontribution, we demonstrate that65



5.1. CIE Lab and CIE Luv 66a simple set of global statisti
s of 
olour and texture, together with well-known
lassi�ers, are powerful enough to 
omply hard fa
tory requirements for real-timeand performan
e. The two main requests of the industry are on-line inspe
tion atfa
tory rates (real-time 
omplian
e) and a high performan
e surfa
e grading system.Produ
tion managers at fa
tories will only a

ept an error rate 
lose to 5% beforerelying on these automati
 grading systems. The method meets the �rst demand byusing the simplest and fastest [to 
ompute℄ 
olour-texture features [29℄. The se
onddemand is met by a
hieving average a

ura
ies over 95% in many of the tests 
arriedout using the VxC TSG database des
ribed in Chapter 3.5.1 CIE Lab and CIE LuvThe CIE (Commission Internationale de L'E
lairage) derived and standardized twoper
eptually uniform 
olour spa
es from the CIE XYZ; the CIE Luv and the CIELab. The term 'per
eptual' refers to the way that humans per
eive 
olours. Theterm 'uniform' means that if we move in the 
olour spa
e from one 
olour to an-other (from one 
oordinate to another) the per
eptual di�eren
e will be related toa measure of distan
e, 
ommonly the Eu
lidean distan
e, and the same distan
ewill be approximately related to the same per
eptual di�eren
e in all the 
olourspa
e. Thus, we 
an measure 
olour di�eren
es 
lose to the human per
eption of
olours whi
h makes these spa
es useful for appli
ations where 
olour di�eren
e mea-surement plays an important role, as is the 
ase of the surfa
e grading appli
ationpresented in this thesis.In fa
t, both spa
es are only approximately uniform. However, them and their
olour-di�eren
e formulae are the best approximation to per
eptually uniform spa
esand per
eptual 
olour di�eren
e 
omputation available at the moment [33, 116℄.They are by far mu
h more uniform than the XYZ and RGB 
olour spa
es.CIE Luv and CIE Lab are slightly di�erent be
ause of the di�erent approa
hes totheir formulation [33, 34℄. Nevertheless, both spa
es are equally good in per
eptualuniformity and provide good estimates of 
olour di�eren
e (distan
e) between two
olour ve
tors. Both spa
es are used in 
olorimetry. The CIE Luv is mainly used for
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onsidering additive mixing su
h as 
olour displays, TV and lighting [35℄,while the CIE Lab and the CMC di�eren
e formula have found wider a

eptan
e in
olour 
ontrol industries. They are 
ommonly used in image pro
essing appli
ationsinvolving 
olour [117℄.In CIE Lab and CIE Luv the L 
omponent is the same and represents lightness.It extends form 0 (bla
k) to 100 (white). Also, both spa
es have the same oppo-nent 
olour axes approximately representing red-green versus yellow-blue, whi
h arerespe
tively a and b in the CIE Lab and u and v in the CIE Luv.The database images were a
quired originally in RGB, so 
onversion to Lab/Luv
oordinates is needed. This 
onversion is done through the CIE XY Z 
olour spa
e[33℄.Linear 
onversion from RGB to XY Z:
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
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116(Y/Yn)
1/3 − 16 if Y/Yn > 0.008856

903.3(Y/Yn) otherwise

a = 500(f(X/Xn) − f(Y/Yn))

b = 200(f(Y/Yn) − f(Z/Zn))where
f(t) =







t1/3 if Y/Yn > 0.008856

7.787t + 16/116 otherwiseNonlinear 
onversion from XY Z to CIE Luv:
L =







116(Y/Yn)
1/3 − 16 if Y/Yn > 0.008856

903.3(Y/Yn) otherwise

u = 13L(u, − u,
n)
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v = 13L(v, − v,

n)where
u, = 4X/X + 15Y + 3Z

u,
n = 4Xn/Xn + 15Yn + 3Zn

v, = 9X/X + 15Y + 3Z

v,
n = 9Xn/Xn + 15Yn + 3Zn

Xn, Yn, and Zn are the values of X, Y and Z for the illuminant (referen
e whitepoint). We followed the ITU-R Re
ommendation BT.709 [132, 133℄, and used theilluminant D65, where [Xn Yn Zn] = [0.95045 1 1.088754].In both spa
es 
olour di�eren
e is 
al
ulated using the Eu
lidean distan
e:
△ELab =

√

(△L)2 + (△a)2 + (△b)2

△ELuv =
√

(△L)2 + (△u)2 + (△v)2More sophisti
ated 
olour-di�eren
e formulae has been proposed [118℄; CMC(l:
),BFD(l:
), CIE94 and CIEDE2000. Some of these formulae were tested in previoustests against the Eu
lidean distan
e and no improvement was a
hieved in surfa
egrading performan
e. Therefore, we used the Eu
lidean distan
e whi
h is less ex-pensive in 
omputing 
osts.5.2 Soft 
olour-texture des
riptorsThe mean 
olour ve
tor was 
hosen as the 
olour feature of surfa
es while texturedes
ription was done using simple statisti
al features. In addition, the standarddeviation gives a measure of how the 
olour 
omponents vary along the image.
σ(z) =

√

∑L
i=1(zi − m)2

L − 1wherez is the random variable, L size of the data set and m the mean value of z
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olour-texture des
riptors 69values.By 
omputing the image histogram for ea
h 
omponent of the 
olour spa
e we
an 
al
ulate the histogram moments. Se
ond, third, fourth and �fth moments arethe simplest and fastest [to 
ompute℄ approa
h for des
ribing texture properties [29℄.The nth moment of z about the mean is de�ned as:
µn(z) =

L
∑

i=1

(zi − m)np(zi)where z is the random variable, p(zi), i = 1, 2, ... , L the histogram, L the num-ber of distin
t variable values and m the mean value of z.
m =

L
∑

i=1

zip(zi)We 
all these set of features soft 
olour-texture des
riptors be
ause they 'softly'
ompile 
olour and texture properties from the whole image without using 'hard'approa
hes to 
olour or texture des
ription. Colour histograms 
an easily 
olle
t80,000 bins (di�erent 
olours) whi
h are all used to 
ompute histogram dissimilar-ities. Centile-LBP approa
h uses 171 
entile measures to 
ompile 
olour property,and LBP histograms of 256 
omponents to 
olle
t texture property (see Chapter6). We 
an 
onsider that these approa
hes use 'hard' 
olour and texture des
rip-tors in 
omparison to our method whi
h only uses the mean, standard deviationand histogram moments from 2nd to 5th to 
ompile 
olour and texture properties(a maximum feature ve
tor of 18 
omponents). By 
omparison we named the pro-posed method soft 
olour-texture des
riptors. This assertion is even more a

eptableif we revise 
lassi
al approa
hes to texture des
ription in the literature (see texturesubje
t in Chapter 2). In the surfa
e grading appli
ation we do not stri
tly 
omparetextures but global appearan
e di�eren
es, thus, the 
omplex methods whi
h 
om-pile pre
ise texture des
ription are not needed as results obtained in present 
hapter
on�rm.



5.3. Classi�ers 705.3 Classi�ersWe used statisti
al pattern re
ognition for 
lassi�
ation. Here, the samples areformed by d -dimensional ve
tors whi
h 
omponents x1, x2, ..., xd are observed fea-tures. Ea
h sample belongs to one 
lass w1, w2, ..., wc where c is the total number of
lasses. The samples belonging to a 
lass will be distributed in the d dimensionalspa
e following an spe
i�
 
onditional probability fun
tion of density for this 
lass;
p(x|wi).From this point of view, if we want to assign one 
lass to a new sample, minimiz-ing the error rate, we should know the 
onditional probability P (wi|x), also knownas a posteriori probability, for ea
h 
lass. With this information, we 
an minimizethe error risk assigning to x the 
lass w with the greatest a posteriori probability.

w = max
wi=w1,...,wc

{P (wi|x)}This 
riterion is known as the Bayes Rule for the Minimum Error Rate, and isthe basi
s of most statisti
al 
lassi�
ation methods. There are di�erent statisti
al
lassi�ers a

ording to the approa
h used to estimate the a posteriori probabilities.In fa
t, some methods estimate the 
onditional fun
tion density of a 
lass; p(x|wi).Then, in order to a
hieve the fun
tion of a posteriori probability the Bayes formulais required:
P (wi|x) =

p(x|wi)Pi

p(x)where p(x) is the probability of x happening, and Pi is the probability of obtain-ing a sample of 
lass wi (also 
alled a priori probability). As the denominator doesnot depend on the 
lass, the Bayes Rule 
an be rewritten as:
w = max

wi=w1,...,wc

{p(wi|x)Pi}It is possible to 
al
ulate the mean error probability (also 
alled the error rate)over a data set X if we use the Bayes Rule for the Minimum Error Rate. The error



5.3. Classi�ers 71rate would be:
E =

∫
[

1 − max
wi=w1,...,wc

{P (wi|x)

]

p(x)d(x) (5.1)where x ∈ X and {wi : i = 1, .., c} are the c 
lasses 
ontained in X.This expression is very useful be
ause it provides a way to 
ompute the bettererror rate that we 
an a
hieve from a data set without depending on the type of
lassi�er used. However, the expression 5.1 is not easy to 
al
ulate be
ause we needto know the a posteriori probabilities of the 
lasses.In the 
ase of the k nearest neighbours (k-NN) [30℄, is possible to a
hieve the aposteriori probability with the following formula.
P̂ (wi|x) =

ki

kwhere k is the total number of x neighbours used by the 
lassi�er, and ki is thenumber of them belonging to 
lass wi. The error estimation from the expression 5.3using P̂ (wi|x) provides a pessimisti
 estimation, although it is very appropriate whenthe k-NN 
lassi�er meets 
onvergen
e 
onditions [30℄. These 
onditions impose:1. k → ∞2. k/n → 0 when n → ∞where n is the number of elements in the data set used to design the k-NN 
lassi�er.In pra
ti
e, the number of samples are not usually large enough to meet 
onvergen
e
onditions. Thus, the error rate has to be estimated by another method.When estimating the P (wi|x) it is possible to use:
P̂ (wi|x) =

∑

u∈θki

1
d(u,x)

∑

v∈θk

1
d(v,x)

(5.2)where θk is set of neighbours of x, θki
is set of x neighbours with 
lass wi,and d(., .)is the distan
e between two samples [120℄. Equation 5.2 uses the distan
e betweenneighbours, this information is useful when the design of the k-NN 
lassi�er do not
omply with 
onvergen
e 
onditions, as o

urs is most 
ases.



5.3. Classi�ers 72In pra
ti
e, when estimating the error rate (accuracy rate = 1− error rate) themost frequently used method is the 
ount of errors. This method needs two datasets; the training set and the test set. Both are build from the 
olle
ted set of sampleswhi
h is 
ommonly 
alled the sample universe. The idea is to design a 
lassi�er fromthe training set and then estimate the error rate from the a

umulated errors when
lassifying the samples of the test set. Ideally, the training and test sets should be aslarge as possible and independent of ea
h other. Nevertheless, normally the size ofthe universe of samples is not enough to 
omply with these ideal 
onditions. Thus,the design of the training and test sets is parti
ularly important.There are several approa
hes to design the training and test sets in order toestimate the error rate; resubstitution, hold out, leaving-one-out, N-fold 
ross val-idation [30℄ and bootstrapping [121℄. For the methods of resubstitution, hold out,leaving-one-out and N-fold 
ross validation the estimated error rate (Ê) would fol-low a binomial distribution.
P (k) =





n

k



Ek(1 − E)n−k (5.3)where n is the number of samples of the test set, k is the number of errors madeby the 
lassi�er and E the real error rate, whi
h is unknown.Is it possible to 
al
ulate 
on�den
e intervals for the estimated error rate (Ê =

k/n) using the expression 5.3 [122℄. Figure 5.1 shows the 
on�den
e intervals at 95%for di�erent sized test data sets. Estimation varian
e 
an be 
omputed by means ofthe following expression [123℄:
var(Ê) =

E(1 − E)

nAs expe
ted, as larger the test set, the better estimation of the error rate.Now, we revise brie�y the 
hara
teristi
s of ea
h method for estimating the errorrate:
• Resubstitution, the training and the test sets are the same set; the original uni-verse of samples. The error rate estimation is optimisti
 be
ause the samples



5.3. Classi�ers 73Figure 5.1: 95% 
on�den
e intervals obtained from the estimated error rate for testsets with sizes; 10 (outside 
urves), 25, 50 , 100, 250, 2500 and 5000 (inside 
urves).
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Estimated error rateused for the design of the 
lassi�er are also used to test it.
• Hold-out, the universe of samples is splitted into two separated sets. Thedesirable proportion between them varies from one author to other. Somedefend the use of more samples in the training set [124℄, while others proposemore samples in the test set [123℄. In any 
ase, the error rate estimation willbe pessimisti
 be
ause all the information is not used neither for training ortesting. For this reason [30℄ proposes redesigning the 
lassi�er, on
e the errorrate has been obtained, using samples from both sets and verifying the errorrate using resubstitution.
• Leaving-one-out, this is a attempt to use the data as e�
iently as possible. Onesample is extra
ted from the universe of samples, the resulting set is now usedas the training set and the extra
ted sample as the test set. This is done for allsamples present in the original data set. The �nal error rate estimation will bethe per
entage of failed 
lassi�
ations. This method a
hieves an unbiased error
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ommended for small data sets where the previous approa
hesa
hieve poor estimations [125℄.
• N-fold 
ross validation, the universe of samples is split into N subsets of ap-proximately the same size. In the 
ase of strati�ed K-fold 
ross validation [123℄,the proportion among 
lasses should be held in ea
h subset. Ê is a
hieved by
omputing the mean of the error rates 
olle
ted for ea
h subset when using a
lassi�er designed without taking into a

ount this subset. With this methodthe estimation varian
e is less than with leaving-one-out. Also, the estimationis less pessimisti
 than using hold-out when the size of the subsets is not verysmall [123℄. If N is equal to the number of samples in the universe of samplesthen the appropriate method is leaving-one-out.
• Bootstrap, in this method b subsets are built with the same size from theuniverse of samples. Ea
h data set is generated by random extra
tion withrepla
ement, in other words, without eliminating the 
hosen samples from theuniverse of samples. The error rate estimation will be the mean of the b errorrates. The varian
e of this estimation 
an be a
hieved from the subsets errorvarian
es [123℄. This approa
h needs a large number of subsets to be e�e
tive(around 100 subsets or more).In our experiments we used the k-NN 
lassi�er with hold-out and leaving-one-outerror estimation be
ause the universe of samples for ea
h 
erami
 tile model was notvery large. The size varies from 42 to 90 samples (a mean of 68 samples per model).The N-fold 
ross validation and the Bootstrap methods need larger universes ofsamples, and were therefore not appropriate for our appli
ation.5.4 Experiments and resultsIn order to study the feasibility of the soft 
olour-texture des
riptors we 
arried outa statisti
al design of experiments. Our aim was to test several fa
tors to determinethe 
ombination of them providing the best a

ura
y results. These fa
tors were
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tors involved in the design of experiments of soft 
olour-texture de-s
riptors. Fa
tors ValuesColour spa
e CIE LabCIE LuvRGBGrey S
aleClassi�er k-NN with k=1,3,5,7k-loo with k=1,3,5,7Soft 
olour-texture meandes
riptors standard deviation2nd to 5th momentsrelated with 
olour spa
es, 
lassi�ers, and sets of soft 
olour-texture des
riptors asit is shown in Table 5.1.The 
hosen fa
tors and their possible values de�ned 4096 di�erent 
lassi�
ationexperiments for ea
h tile model. The ground truth (the VxC TSG image database)was formed by 14 tile models, thus, a total number of 57.344 experiments had to be
arried out. We de
ided to use a statisti
al tool, the experimental design [31, 119℄,in order to manage the large amount of experiments and results. This tool, in
ombination with the logisti
-regression [32℄, provides a methodology for �nding thebest 
ombination of fa
tors involved in a set of experiments to maximize or minimizeone response variable. In our 
ase, we sought to maximize 
lassi�
ation a

ura
yrates. This methodology follows the plan presented in the blo
k diagram in Figure5.2.We added the RGB and Grey spa
es to the 
olour spa
e fa
tor in order to testthe goodness of using the per
eptually uniform 
olour spa
es in 
omparison to a
ommon non per
eptually uniform spa
e (RGB) and when no 
olour information isprovided (Grey s
ale).
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k diagram for the sele
tion of the best 
ombination of fa
tors.
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Best combination5.4.1 Experimental designWhen we want to perform a 
omplex experiment or set of experiments e�
iently weneed a s
ienti�
 approa
h to experiment planning. Statisti
al design of experimentsrefers to the pro
ess of planning the experiment so that appropriate data 
an be
olle
ted for analysis with statisti
al methods and thus lead to obje
tive and valid
on
lusions. The statisti
al approa
h to planning experiments is 
alled design ofexperiments or experimental design.An experiment is a test or series of tests in whi
h 
hanges are made to the inputvariables of a pro
ess in order to observe and identify the reasons for the 
hangesthat may be observed in the output response. The general approa
h to planningand 
ondu
ting an experiment is 
alled experimentation strategy. There are several
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• Best-guess approa
h. From a set of fa
tors and their possible values, one
ombination is tested. Depending on the results, another test is done varyingone or two fa
tors while maintaining the values of the remaining fa
tors. Thisapproa
h 
an be 
ontinued almost inde�nitely.
• One-fa
tor-at-a-time. This method 
onsists of sele
ting a starting 
ombinationof fa
tors values and then su

essively varying ea
h fa
tor over its range withthe other fa
tors held 
onstant at the starting 
onditions. After all the testsare performed, a series of graphs are 
onstru
ted showing how the responsevariable is a�e
ted by varying ea
h fa
tor with all other fa
tors held 
onstant.The optimal 
ombination of fa
tors is determined using these graphs. Here,the iteration between fa
tors is ex
luded.
• Fa
torial. In this 
ase the fa
tors are varied together instead of one at a time to
olle
t the a�e
ts of iteration between fa
tors. This enables the experimenterto investigate the individual e�e
ts of ea
h fa
tor (or the main e�e
ts) anddetermine whether the fa
tors intera
t with ea
h other. This is an importantand useful feature in fa
torial experiment be
ause it makes the most e�
ientuse of the experimental data providing useful information on both the fa
torsand their iterations.In our design of experiments we 
hose the fa
torial approa
h, whi
h is the mostappropriate when dealing with several fa
tors [31℄. More spe
i�
ally, we used a
omplete fa
torial design. In this 
ase, the experimenter sele
ts a �xed number of'levels' or 'versions' for ea
h fa
tor and then 
arries out experiments with all thepossible 
ombinations. If there are l1 levels for the �rst fa
tor, l2 for the se
ond,..... and lk for the kth fa
tor, then this gives a l1 × l2 × ... × lk fa
torial design. Forexample, a fa
torial design 2× 3× 5 is formed by 2× 3× 5 = 30 single experiments.All the fa
tors in our design of experiments were 
ategori
al fa
tors (non quanti-tative). The 
olour spa
e 
ould adopt the lab, luv, rgb or grey values. The 
lassi�er
ould be 1-nn, 3-nn, 5-nn, 7-nn, 1-loo, 3-loo, 5-loo or 7-loo (
lassi�ers derived from
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h [30℄). And, the soft 
olour-texture des
riptors were binary fa
-tors; '1' present, '0' not present. Ea
h single experiment was the 
lassi�
ation of aset of test samples belonging to an spe
i�
 tile model. The sequen
e of experimentsfor ea
h tile model was as shown in Table 5.2. The fa
tors were varied in a nestedway using the algorithm 1. By doing this, we de�ned an experimental design withorthogonal fa
tors e�e
ts a
hieving independen
e between fa
tors, iterations andexperiments. Independent experiments lead to reliable results and 
on
lusions whenusing statisti
s methods.Algorithm 1 Nested variation of fa
tors for an orthogonal sequen
e of experiments.
for colour_space in [ lab luv rgb grey ]

do

   for classifier in [ 1-nn 3-nn 5-nn 7-nn 1-loo 3-loo 5-loo 7-loo ]

   do

      for mean in [ 0 1 ]

      do

         for standard_deviation in [ 0 1 ]

         do

            for 2nd moment in [ 0 1 ]

            do

               for 3rd moment in [ 0 1 ]

               do

                  for 4th moment in [ 0 1 ]

                  do

                     for 5th moment in [ 0 1 ]

                     do

                        EXPERIMENT

                     done

                  done

               done

            done

         done

      done

   done

done

5.4.2 Logisti
 regressionThe experimental design is used as the preliminary stage for modeling the behaviorof a pro
ess whi
h is 
hara
terized with k input fa
tors and one output variable,also 
alled the response variable. Commonly, on
e the experiments has been 
arriedout a

ording to the experimental design, a linear regression method is used tode�ne a predi
tive model of the pro
ess. For two fa
tors the linear regression model
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Table5.2:Orthogonalsequen
eofexperimentsforthesoft
olour-texturedes
riptors
method.Colour spa
e Classi�er Mean Std dev 2nd Mnt 3rd Mnt 4th Mnt 5th Mnt a

ura
y %lab 1-nn 0 0 0 0 0 1 xlab 1-nn 0 0 0 0 1 0 xlab 1-nn 0 0 0 0 1 1 x- - - - - - - - -lab 1-nn 1 1 1 1 1 1 xlab 3-nn 0 0 0 0 0 1 xlab 3-nn 0 0 0 0 1 0 xlab 3-nn 0 0 0 0 1 1 x- - - - - - - - -lab 3-nn 1 1 1 1 1 1 x- - - - - - - - -lab 7-loo 0 0 0 0 0 1 xlab 7-loo 0 0 0 0 1 0 xlab 7-loo 0 0 0 0 1 1 x- - - - - - - - -lab 7-loo 1 1 1 1 1 1 x- - - - - - - - -- - - - - - - - -luv 1-nn 0 0 0 0 0 1 xluv 1-nn 0 0 0 0 1 0 xluv 1-nn 0 0 0 0 1 1 x- - - - - - - - -luv 1-nn 1 1 1 1 1 1 x- - - - - - - - -- - - - - - - - -- - - - - - - - -grey 7-loo 1 1 1 1 1 1 x
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orresponds to:
y = β0 + β1x1 + β2x2 + β12x1x2where y is the response variable, the β ′s are parameters whose values are tobe determined, x1 is the variable that represents fa
tor 1, x2 is the variable thatrepresents fa
tor 2 and x1x2 represents the iteration between fa
tors x1 and x2. Theestimation of the β ′s parameters is done using the least square error �tting.The linear regression model for two fa
tors 
an be generalized to k fa
tors asfollows:

y = β0 +
I
∑

i=1

βixi +
I
∑

i=1

J
∑

j=1,

βijxixj + ... +
I
∑

i=1

J
∑

j=1,

...
K
∑

k=1,

βij...nxixj ...xkThis expression is simpli�ed if we 
onsider the iterations between fa
tors as newfa
tors.
y = β0 +

∑

βiXi (5.4)However, in our experiments the response variable y is an a

ura
y per
entageor probability. In these 
ases, the linear regression model does not 
orrespond to anormal distribution for the response variable, whi
h is desirable, but to an uniformdistribution (see Figure 5.3), and also, it 
ould give estimated values out of therange [0,1℄. In order to solve these problems a logisti
 regression model is 
ommonlyused. This model approximates the probability response to a normal distribution(the logisti
 S-shaped distribution is similar to the standard normal distribution)and also for
es the estimated probabilities to lie between 0 and 1. Furthermore, thelogisti
 model is easier to work with in most appli
ations.With the logisti
 regression model the response variable p is 
onverted into
log( p

1−p
) and the expression 5.4 is transformed to:
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 regression model vs linear regression model.
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p

1 − p
) = β0 +

∑

βiXiNow, the expe
ted probability or per
entage 
an be de�ned as:
p =

eβ0+
P

βiXi

1 + eβ0+
P

βiXi
(5.5)The β parameters of the logisti
 regression approa
h 
an be estimated using theMaximum Likelihood Estimation (MLE) or theWeighted Least Squares (WLS). MLEis used as an alternative to non-linear least squares (WLS) for nonlinear equations.In addition to the parameter estimation method, there are several approa
hes for
omputing the logisti
 model depending on the number of fa
tors taken into a

ount.The simplest way to determine the logisti
 model is to 
onsider all the fa
tors andtheir iterations. Then, we are for
ed to 
al
ulate all the β parameters for all fa
tors(or iteration of fa
tors) even if they are not signi�
ant in relation to the responsevariable. There are two other approa
hes whi
h do not 
onsider all the fa
tors anditerations, these are the stepwise methods:
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• Forward sele
tion, the pro
ess of forward sele
tion begins with an initial model.Then, new terms with greater signi�
an
e are added to the model while theglobal level of signi�
an
e remains below a given level of [�rst 
lass℄ risk (usu-ally 5-10%). The pro
ess 
ontinues until there is no fa
tor or iteration whi
hwhen added to the model keeps it under the risk level.
• Ba
kward elimination, now the starting point is the 
omplete logisti
 modelwith all the fa
tors and iterations. Fa
tors or iterations are eliminated one byone using a lower signi�
an
e order. The signi�
an
e of ea
h fa
tor is studied(p-value 
omputed) and the less signi�
ant (greater p-value) is eliminated.This pro
ess 
ontinues until the global signi�
an
e of the model rea
hes avalue below a previously determined level of risk.Many software implementing statisti
s methods in
lude options for 
omputing themost 
ommon regression methods. In our 
ase, we used the statisti
al pa
kageStatgraphi
s v5.1 for 
omputing the logisti
 regression models. This models were
omputed using MLE estimation and Forward sele
tion.5.4.3 Sele
tion of best 
ombinationsThe pro
edure for sele
ting the best 
ombination of fa
tors is the following:1. For ea
h input in the design of experiments (see Table 5.2) we 
ompute theoutput variable y using the a
hieved regression model y = β0 +

∑

βiXi. Thenwe 
ompute the predi
ted a

ura
y rate p = ey

1+ey .2. The best 
ombination of fa
tors will be the one whi
h the greatest predi
teda

ura
y rate.5.4.4 ResultsWe should point out that we used the experimental design in 
ombination with thelogisti
 regression model not to model the response of a pro
ess, but to �nd the best
ombination of fa
tors to a
hieve the maximum a

ura
y rates in a surfa
e gradingappli
ation. This is another usage of these methods [31, 32, 119℄.



5.4. Experiments and results 83Diagram in Figure 5.2 shows the steps to be taken to make an experimentaldesign and sele
t the best 
ombination of fa
tors for ea
h tile model. However, theexperimental designs of all models 
an be grouped into a single one if we re-de�nethe output response y as the a
hieved mean a

ura
y 
omputed over all models.We 
arried out the 4096 experimental design of ea
h model, 57.344 experiments intotal, and grouped the results in a new 4096 experimental design where the outputresponse y was the mean a

ura
y of all models.We used the Statgraphi
s v5.1 software and 
omputed the logisti
 regressionmodel (see Figure 5.5). The high adjusted per
entage of devian
e explained bymodel (81%) indi
ated the model was very good. After this and following thediagram (Figure 5.2), we 
arried out the sele
tion of best 
ombinations as it isexplained in se
tion 5.4.3 and obtained a table similar to 5.2 with the predi
teda

ura
y rates for ea
h experiment or 
ombination of fa
tors. We sorted the resultsusing the predi
ted a

ura
y rate (equation 5.5). The 30 best 
ombinations areshown in Table 5.3. From the 
omplete sorted table of results we extra
ted thefollowing summary of results.1. Best 
ombination 
orresponds to CIE Lab, 1-loo and all soft 
olour-texturedes
riptors. This 
ombination a
hieved an a

ura
y rate of 97.4% .2. A number of 237 
ombinations (5,8% of total 
ombinations) a
hieved an a
-
ura
y rate over 95%.3. All the 
ombinations over 95% used CIE Lab or CIE Luv spa
es.4. Best 
ombination using RGB spa
e a
hieved 93.6% of a

ura
y, although itspresen
e in best 
ombinations was very low (Figure 5.4).5. Best 
ombination using Grey spa
e a
hieved 90.8% of a

ura
y, although itspresen
e in best 
ombinations was almost null (Figure 5.4).6. Best 
ombinations make wide use of CIE Lab and CIE Luv spa
es (Figure5.4).7. The 
lassi�ers from best to worst are 1-loo, 3-loo, 5-loo, 7-loo, 1-nn, 3-nn, 5-nnand 7-nn (Figure 5.4).
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ombinations use all or almost all soft 
olour-texture des
riptors(Table 5.3).From this summary of results we 
an 
on
lude:1. The method we extra
t from the design of experiments and logisti
 regressionmethods uses CIE Lab 
olour spa
e, 1-loo 
lassi�er and all soft 
olour-texturedes
riptors.2. The per
eptually uniform 
olour spa
es CIE Lab and CIE Luv a
hieve by farthe best performan
e.3. RGB 
olour spa
e provides less performan
e, and although it rea
hes somea

ura
y rates around 93%, the per
entage using RGB in sets of best 
ombi-nations is almost null.4. Grey spa
e provides the worst performan
e as expe
ted.5. Best 
lassi�ers are the derived from the leaving-one-out method. Therefore,we should use 1-NN method using as more training samples as possible.6. Using all soft 
olour-texture des
riptors gives the best dis
riminant power.
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e in per
entage of 
olour spa
es and 
lassi�ers in best 
ombina-tions sets.

 0

 10

 20

 30

 40

 50

 60

 70

greyrgbluvlab

%
 o

f p
re

se
nc

e
Colour Spaces

in   500 best combinations
in 1000 best combinations
in 1500 best combinations
in 2000 best combinations

 0

 10

 20

 30

 40

 50

 60

 70

7-nn5-nn3-nn1-nn7-loo5-loo3-loo1-loo

%
 o

f p
re

se
nc

e

Classifiers

in   500 best combinations
in 1000 best combinations
in 1500 best combinations
in 2000 best combinations



5.4. Experiments and results 86Figure 5.5: Computed logisti
 regression model for soft 
olour-texture des
riptorsmethod.
Dependent variable: accuracy/100

Sample sizes: n_tests

Factors: Spa, Clas, Mean, Stdv, M2, M3, M4, M5

Estimated Regression Model (Maximum Likelihood)

------------------------------------------------------------

                                       Standard    Estimated

Parameter               Estimate         Error    Odds Ratio

------------------------------------------------------------

CONSTANT                2.01982       0.0111142             

Spa=grey               -0.13145       0.0142337    0.876823

Spa=lab                 0.706523      0.0162755    2.02693

Spa=luv                 0.759474      0.0165152    2.13715

Clas=1loo               0.66783       0.0129068    1.95

Clas=1nn                0.392598      0.0145836    1.48082

Clas=3loo               0.644807      0.0128619    1.90562

Clas=3nn                0.337767      0.0144461    1.40181

Clas=5loo               0.601846      0.0127805    1.82549

Clas=5nn                0.238795      0.014215     1.26972

Clas=7loo               0.463897      0.0125395    1.59026

Mean=0                 -0.667277      0.00357258   0.513104

Stdv=0                 -0.0650154     0.00647503   0.937053

M2=0                   -0.094827      0.00347998   0.90953

M3=0                   -0.260792      0.00349194   0.770441

M4=0                   -0.212335      0.00348728   0.808694

M5=0                   -0.239989      0.00348982   0.786636

Spa=grey*Clas=1lo      -0.269689      0.0176259    0.763617

Spa=grey*Clas=1nn      -0.184656      0.0199877    0.831391

Spa=grey*Clas=3lo      -0.298305      0.0175457    0.742075

Spa=grey*Clas=3nn      -0.160635      0.0198475    0.851603

Spa=grey*Clas=5lo      -0.255156      0.0174863    0.774796

Spa=grey*Clas=5nn      -0.105141      0.019625     0.900198

Spa=grey*Clas=7lo      -0.193629      0.0172447    0.823963

Spa=lab*Clas=1loo       0.213016      0.0212053    1.2374

Spa=lab*Clas=1nn       -0.0656253     0.0230624    0.936482

Spa=lab*Clas=3loo       0.152144      0.0209448    1.16433

Spa=lab*Clas=3nn       -0.114159      0.0226799    0.892116

Spa=lab*Clas=5loo      -0.00596527    0.0203991    0.994052

Spa=lab*Clas=5nn       -0.136091      0.0222191    0.872763

Spa=lab*Clas=7loo      -0.0445569     0.0198791    0.956421

Spa=luv*Clas=1loo       0.125391      0.0213999    1.13359

Spa=luv*Clas=1nn       -0.109549      0.0233727    0.896238

Spa=luv*Clas=3loo      -0.0273054     0.0209092    0.973064

Spa=luv*Clas=3nn       -0.144568      0.0230209    0.865396

Spa=luv*Clas=5loo      -0.0892126     0.0206141    0.914651

Spa=luv*Clas=5nn       -0.222829      0.0224077    0.800252

Spa=luv*Clas=7loo      -0.168171      0.0200229    0.845209

Spa=grey*Stdv=0         0.000901265   0.00872695   1.0009

Spa=lab*Stdv=0         -0.110032      0.0104852    0.895805

Spa=luv*Stdv=0         -0.0489122     0.0104693    0.952265

------------------------------------------------------------

Percentage of deviance explained by model = 80.9518

Adjusted percentage = 80.8989
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Table5.3:Thirtybest
ombinationsoffa
tors.Predi
teda

ura
y(p*100)and

on�den
eintervalsaregivenin%.

No Exp. Spa
e Classi�er Mean Std dev 2nd Mnt 3rd Mnt 4th Mnt 5th Mnt p*100 
.i. 95%620 lab 1loo 1 1 1 0 1 1 96.60 [95.26, 97.68℄636 lab 1loo 1 1 1 0 1 1 96.60 [95.26, 97.68℄720 lab 3loo 1 0 1 1 1 1 96.60 [95.26, 97.68℄736 lab 3loo 1 0 1 1 1 1 96.60 [95.26, 97.68℄1646 luv 1loo 1 1 1 1 0 1 96.64 [95.38, 97.76℄1662 luv 1loo 1 1 1 1 0 1 96.64 [95.38, 97.76℄1608 luv 1loo 1 0 0 1 1 1 96.66 [95.38, 97.76℄1624 luv 1loo 1 0 0 1 1 1 96.66 [95.38, 97.76℄623 lab 1loo 1 1 1 1 1 0 96.67 [95.38, 97.76℄639 lab 1loo 1 1 1 1 1 0 96.67 [95.38, 97.76℄622 lab 1loo 1 1 1 1 0 1 96.75 [95.50, 97.85℄638 lab 1loo 1 1 1 1 0 1 96.75 [95.50, 97.85℄1776 luv 3loo 1 1 1 1 1 1 96.76 [95.50, 97.85℄1792 luv 3loo 1 1 1 1 1 1 96.76 [95.50, 97.85℄744 lab 3loo 1 1 0 1 1 1 96.86 [95.63, 97.94℄760 lab 3loo 1 1 0 1 1 1 96.86 [95.63, 97.94℄592 lab 1loo 1 0 1 1 1 1 96.87 [95.63, 97.94℄608 lab 1loo 1 0 1 1 1 1 96.87 [95.63, 97.94℄1616 luv 1loo 1 0 1 1 1 1 96.95 [95.75, 98.02℄1632 luv 1loo 1 0 1 1 1 1 96.95 [95.75, 98.02℄1640 luv 1loo 1 1 0 1 1 1 97.00 [95.75, 98.02℄1656 luv 1loo 1 1 0 1 1 1 97.00 [95.75, 98.02℄616 lab 1loo 1 1 0 1 1 1 97.10 [95.87, 98.11℄632 lab 1loo 1 1 0 1 1 1 97.10 [95.87, 98.11℄752 lab 3loo 1 1 1 1 1 1 97.13 [95.87, 98.11℄768 lab 3loo 1 1 1 1 1 1 97.13 [95.87, 98.11℄1648 luv 1loo 1 1 1 1 1 1 97.27 [96.12, 98.28℄1664 luv 1loo 1 1 1 1 1 1 97.27 [96.12, 98.28℄624 lab 1loo 1 1 1 1 1 1 97.36 [96.25, 98.36℄640 lab 1loo 1 1 1 1 1 1 97.36 [96.25, 98.36℄
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lusions 885.5 Con
lusionsIn this 
hapter we have extra
ted a �nal approa
h to surfa
e grading. This ap-proa
h is based on the use of soft 
olour-texture des
riptors in 
onjun
tion with theper
eptually uniform 
olour spa
e CIE Lab and the well known 
lassi�er 1-leaving-one-out (1-NN method using as more training samples as possible). The method hasbeen extra
ted from two statisti
al tools; the design of experiments and the logisti
regression. These tools provided us a method with whi
h to study and determinethe best 
ombination of fa
tors to maximize the a

ura
y rate. The studied fa
torshave been several 
olour spa
es, 
lassi�ers, and sets of soft 
olour-texture des
rip-tors. A total of 57.344 independent experiments were 
arried out exploring all the
ombinations of fa
tors over all the models of the VxC TSG database.The extra
ted method a
hieves 97.4% predi
ted mean a

ura
y and 97.6% mea-sured mean a

ura
y of all models. The 
omputed 
on�den
e interval is [96.25%,98.36%℄ whi
h 
learly surpasses the fa
tory requirement for performan
e. In addi-tion, many tests using the per
eptually uniform spa
es CIE Lab or CIE Luv, theleaving-one-out 
lassi�ers and several 
ombinations of soft 
olour-texture des
riptorssurpassed the fa
tory minimum a

ura
y of 95%.The results show that RGB, a 
ommon 
olour spa
e but non per
eptually uni-form, provide less dis
riminative power. Per
eptually uniform 
olour spa
es are
loser to the human per
eption of 
olours, therefore, it 
an be 
onsidered logi
al ifthey provide better performan
e when 
arrying out visual tasks done by humans. Asexpe
ted, the worst results 
ome from the Grey spa
e whi
h only makes use of lightintensity omitting 
olour information. From the in-depth statisti
al study it is also
on
luded that all the soft 
olour-texture des
riptors 
ontribute to a
hieve a

ura
yperforman
e and also the 
lasi�ers devired from the leaving one out method performbetter, thus we should sele
t the 1-NN method using as more training samples aspossible.Finally, we report that soft 
olour-texture des
riptors method is a good 
hoi
ewhen a deep 
olour-texture des
ription is not needed. This is the 
ase of the sur-fa
e grading appli
ation where the pie
es are graded taking into a

ount the globalappearan
e of 
olour and texture. Lo
al des
ription is not needed, hard des
ription



5.5. Con
lusions 89of 
olour and texture is not ne
essary. Furthermore, soft 
olour-texture des
riptorsmethod is a good 
hoi
e for real-time 
omplian
e be
ause it uses the less expensivefeatures of texture and 
olour from the point of view of 
omputational 
osts.



Chapter 6
Literature methods
This 
hapter deals with the implementation and in-depth study of two methods fromthe literature of surfa
e grading. These methods are the 
olour histograms [2,3℄ and
entile-LBP [1, 12℄. We performed this study for 
omparison purposes with themethod presented in previous 
hapter based on soft 
olour-texture des
riptors. We
hose them be
ause they are similar to ours, both are generi
 solutions with low
omputational 
osts. Also, a review of the literature presented in Chapter 2 showsthat no more methods are available for 
omparison be
ause the rest of them dealwith spe
i�
 surfa
e types or use hard 
olour-texture des
ription with expensive
omputational 
osts.Again we use the statisti
al tools of experimental design and logisti
 regression toin-depth study the methods using several fa
tors. Experiments in
luded the fa
torsof 
olour spa
e, 
lassi�er and inter-histograms distan
e. In order to perform a proper
omparison we also used the VxC TSG image database, the ground truth used inprevious 
hapter.6.1 Colour histogramsBasi
ally 
olour histograms are 3D histograms where ea
h axis represents one 
olourspa
e 
hannel. Colour histograms are 
ompared using dissimilarity measures be-tween histograms. This approa
h to surfa
e grading was developed by Boukouvalaset al [2,3℄. They proposed to use the di�eren
es between 
olour histograms to solve90



6.1. Colour histograms 91the problem of shade grading (surfa
e grading) of multi-
oloured textured surfa
es(random pattern surfa
es). However, 
olour histograms are ine�
ient in terms ofmemory requirements. A 
olour image a
quired in RGB normally need 8 bits per
olour 
hannel at ea
h pixel, so 16Mbytes (224memory positions) are needed to storeone 
olour histogram. Nevertheless, in real images 
olour values tend to be 
lusteredaround a few lo
ations. For instan
e, the image of a 
erami
 tile may o

upy only80.000 di�erent lo
ations (234Kb). Apart from being highly demanding in mem-ory, this approa
h is 
omputationally intensive be
ause in order to 
ompare twohistograms all memory lo
ations have to be parsed.To save memory and 
omputational 
osts binary trees are used to store the
olour histograms. Binary trees are frequently used to represent a set of data whoseelements are retrievable through a unique key (value). If a tree is organized in su
ha way that for ea
h node all values in the left subtree are less than the value of theparent node, and those in the right subtree are greater than the value of the parentnode, then this tree is 
alled ordered binary tree or sear
h tree. A sear
h of a valuein a tree of n elements may be performed with only log n 
omparisons, if the tree isbalan
ed.When a 
olour histogram is stored in a binary tree, the value of a node is aparti
ular RGB value. This is 
onverted to a 24 bit-integer by 
on
atenating the R,G and B bytes. Ea
h node also 
ontains the number of pixels with the same RGBvalue (repetitions). Therefore, only RGB 
ombinations that exist in the image areinserted in the tree, and the sear
hing of existing nodes is very e�
ient.Colour histograms are invariant to translation and rotation about an axis perpen-di
ular to the image plane, and 
hange only slightly under 
hanges of angle of view.And also they are invariant to exa
t spatial distribution of the 
oloured pixels. Thisproperty is desirable when dealing whi
h random pattern surfa
es, as often o

urswhen we deal with 
erami
 tile models. The method based on soft 
olour-texturedes
riptors is also invariant to translation, rotation and exa
t spatial distributionof 
oloured pixels.To perform the surfa
e grading, the similarity (or dissimilarity) of 
erami
 tiles is
ompared using the similarity of their 
olour histograms. As the histograms 
an be



6.1. Colour histograms 92viewed as distributions we 
an use statisti
al methods to 
ompare two distributions[96℄. Boukouvalas et al used the 
hi-square test and the linear 
orrelation 
oe�
ient.The 
hi-square statisti
 is de�ned as:
χ2 =

∑

i

(Ni − ni)
2

niwhere Ni is the number of events observed in the ith bin, and ni is the numberexpe
ted a

ording to some known distribution and the sum is over all bins. A largevalue of χ2 indi
ates dissimilarity between the two distributions.When 
omparing two binned data sets, with the same number of data points,the equation adopts a di�erent form. Let Ri be the number of events in bin i forthe �rst data set, let Si be the number of events in the same bin for the se
ond dataset. Then the 
hi-square statisti
 is:
χ2 =

∑

i

(Ri − Si)
2

Ri + SiThe linear 
orrelation 
oe�
ient is another test whi
h measures the asso
iationbetween random variables. For pairs of quantities (xi, yi), i = 1, ..., N, the linear
orrelation 
oe�
ient r is given by:
r =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)
√
∑

i(yi − ȳ)where x̄ is the mean of the xi values and ȳ is the mean of the yi values.The value of r is always in the range [-1, 1℄. The 
orrelation is 
alled positiveor dire
t 
orrelation when y tends to in
rease as x in
reases. If y tends to de
reaseas x in
reases the 
orrelation is then 
alled negative or inverse 
orrelation. A valuenear to zero in the previous equation indi
ates poor linear 
orrelation between thevariables r and y.See Chapter 2 for more information about 
olour histograms.



6.2. Centile-LPB 936.2 Centile-LPBThis method pro
eeds from the area of wood inspe
tion. In this 
ase, the gradingof lumber boards and parquet slabs is not related to the overall texture and 
olourappearan
e of the surfa
e. The grade of the wood pie
e is assigned by dete
ting thewood defe
ts (mainly knots) and then applying grade rules related to the numberand 
lasses of defe
ts found in the inspe
tion pro
ess [1℄. Thus, from the pointof view of the 
omputer vision, the problem be
omes a question of separating thesurfa
e into sound and faulty wood, and 
lassifying the defe
ts into their di�erenttypes. However, we should point out that we use this method not in the literaturesense but to 
ompile global des
ription of 
olour and texture and dire
tly gradesurfa
es.Kauppinen started the approa
h to the problem using only 
olour informationwhi
h was derived from the per
entile features of the RGB histograms [1, 11℄. Theper
entiles, also 
alled 
entiles, are 
al
ulated from a 
umulative histogram Ck(x),whi
h is de�ned as a sum of all the values that are smaller than x or equal to x inthe normalized histogram Pk(x), 
orresponding to the 
olour 
hannel k. Finding avalue for a per
entile involves �nding the x when Ck(x) is known, thus, requiring aninverse fun
tion of Ck(x). If we denote the per
entile feature with Fk(y) then
Fk(y) = C−1

k (y) = xwhere y is a value of the 
umulative histogram in the range [0%,100%℄.In the 
lassi�
ation stage feature ve
tors 
omposed of sele
ted sets of plain 
en-tile features are used, and also di�eren
es of two 
entile features either from thesame 
olour 
hannel or from two di�erent 
olour 
hannels are used. Spe
i�
ally, inimplementing the method we used the 
entiles from 5 to 95 step 5 of ea
h 
hannel,di�eren
es inside 
hannels between 
orrelative positions separated 5 steps, and also,inter-
hannel di�eren
es between the same positions every 5 steps. A total numberof 171 features were 
omputed for a three dimensional 
hannel. Finally, Kauppinenused the well-known k-NN method to perform the 
lassi�
ation.After this �rst approa
h, Niskanen, Silvén and Kauppinen 
ontinued the work
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luding texture properties [105, 106℄. They extended the method using the Lo
alBinary Pattern (LBP) texture operator, previously introdu
ed by their 
olleaguesOjala and Pietikäinen [108,109℄. The original 3x3 neighborhood is thresholded by thevalue of the 
enter pixel. The values of the pixels in the thresholded neighborhoodare multiplied by the weights given to the 
orresponding pixels. Finally, the valuesof the eight pixels are summed to obtain the number of this texture unit. Niskanenet al used Self Organizing Maps (SOM) 
ombining Centile and LBP properties inorder to 
arry out the 
lassi�
ation task.Kyllönen and Pietikäinen [12℄ also 
ombined 
entile and LBP features but theyused a di�erent approximation for 
lassi�
ation. They 
ombined the 
entile andLBP features in one measure of distan
e and then used the k-NN 
lassi�er. Forthe 
entile features they used the Eu
lidean distan
e in the feature spa
e, and forLBP they used a log-likelihood measure to 
ompute the dissimilarity (distan
e)between sample and referen
e histograms. When using LBP there are 28 possible
ombinations of texture numbers. Thus, the texture des
ription of a region 
an be
olle
ted 
omputing its LBP histogram.The log-likelihood measure to 
ompute the dissimilarity was:
L(S, R) = −

N−1
∑

n=0

SnlnRnwhere N is the number of bins. Sn and Rn are the sample and referen
e proba-bilities of bin n.They joined these distan
es by simply adding them. Prior to this, both distan
eswere normalized using:
d =

d − dmin

dmax

d =
d

davgwhere dmin, dmax and davg are the min, max and average values of all the distan
esfound in the training set.
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hose this last approximation of 
entile-LBP to 
ompare with our method be-
ause SOMs are relatively 
omplex systems for 
lassi�
ation whi
h also need sophis-ti
ated training pro
edures. See Chapter 2 for more details about the 
entile-LBPmethod.6.3 Experimental design and resultsWe used the fa
tors of 
olour spa
e and 
lassi�er in the same way as they wereused for the soft 
olour-texture des
riptors, and added a new fa
tor related to themeasurement of dissimilarity between histograms, the distan
e measure fa
tor (seeTable 6.1). In both methods the histogram representation of data is used and soa measure of dissimilarity is needed. We 
hose the distan
es used in the methodsin the literature; the 
hi-square statisti
, the linear 
orrelation 
oe�
ient and thelog-likelihood measure.For ea
h tile model 96 independent experiments are de�ned and applying thedesign of experiments to the ground truth formed by the 14 models of the VxC TSGdatabase, a total number of 1344 experiments had to be performed.Table 6.1: Fa
tors involved in the design of experiments of 
olour histograms and
entile-LBP. Fa
tors ValuesColour spa
e CIE LabCIE LuvRGBGrey S
aleClassi�er k-NN with k=1,3,5,7k-loo with k=1,3,5,7Distan
e measure Chi-square statisti
Linear 
orrelation 
oe�
ientLog-likelihood measureOn
e again, all the fa
tors in our design of experiments were 
ategori
al fa
tors(non quantitative). The 
olour spa
e 
ould adopt the lab, luv, rgb or grey values.
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lassi�er 
ould be 1-nn, 3-nn, 5-nn, 7-nn, 1-loo, 3-loo, 5-loo or 7-loo. In ad-dition, the measure of distan
e among histograms 
ould be the 
hi-square test, thelinear 
orrelation 
oe�
ient or the log-likehood measure proposed for the 
entile-LBP method. In ea
h single experiment a set of test samples belonging to an spe
i�
tile model was 
lassi�ed using referen
e sets of samples. The sequen
e of experi-ments for ea
h tile model was 
arried out as shown in Table 6.2. The fa
tors werevaried in a nested way using an algorithm similar to the algorithm 1, shown in theprevious 
hapter. Again, an experimental design with orthogonal fa
tors e�e
ts wasde�ned a
hieving independen
e between fa
tors, iterations and experiments.As in the previous experimental design of soft 
olour-texture des
riptors, theexperiments of all models were grouped in a single one rede�ning the output responseas the a
hieved mean a

ura
y 
omputed over all models. The 96 tests of theexperimental design were 
arried out for ea
h model, 1.344 experiments in total, andthe results grouped into a new 96 experimental design where the output response wasthe mean a

ura
y of all models. Then, we 
omputed the logisti
 regression models(see Figures 6.1 and 6.2). Both models a
hieved a very high adjusted per
entageof devian
e explained by model (96% and 97.4%), whi
h indi
ates good regressionmodels.Then, we 
arried out the sele
tion of best 
ombinations and obtained a tablesimilar to 6.2 with the predi
ted a

ura
y rates for ea
h experiment. The resultswere sorted using the predi
ted a

ura
y rate. The 30 best 
ombinations of ea
happroa
h are shown in Tables 6.3 and 6.4.From the results and �gures we extra
t the following 
on
lusions.Colour histograms1. Best a

ura
y result (97.8%) is a
hieved using RGB 
olour spa
e, Chi-squaredistan
e and one leaving-one-out 
lassi�er. This result from the experimentaldesign meets the proposed method in literature.2. The overall best performan
e of 
olour spa
es is for RGB followed by CIE Lab.3. Chi-square statisti
 is 
learly the best distan
e, followed by linear 
orrelation.



6.3. Experimental design and results 97The log-likehood measure does not work properly for 
olour histograms.4. Best 
lassi�ers stem from the leaving-one-out approa
h. Therefore, we shouldsele
t the 1-NN method using as more training samples as possible.Centile-LBP1. Best a

ura
y result (98.3%) is a
hieved using CIE Lab 
olour spa
e, linear
orrelation distan
e for LBP histograms and one leaving-one-out 
lassi�er. Inthis 
ase, the method extra
ted from the experimental design does not 
oin
idewith the proposed in literature (RGB 
olour spa
e, log-likehood distan
e andk-NN 
lassi�er).2. CIE Lab followed by RGB are the 
olour spa
es giving best results.3. All the distan
es show good behavior, but the linear 
orrelation gives the bestperforman
e.4. Best 
lassi�ers are the derived from the leaving-one-out approa
h. Again, weshould sele
t the 1-NN method using as more training samples as possible.
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e of experiments for the 
olour histograms and 
entile-LBP methods.Colour spa
e Classi�er Distan
e a

ura
y %lab 1-nn 
hi-square xlab 1-nn 
orrelation xlab 1-nn log-likehood xlab 3-nn 
hi-square xlab 3-nn 
orrelation xlab 3-nn log-likehood x- - - -lab 7-loo 
hi-square xlab 7-loo 
orrelation xlab 7-loo log-likehood x- - - -- - - -luv 1-nn 
hi-square xluv 1-nn 
orrelation xluv 1-nn log-likehood x- - - -luv 7-loo 
hi-square xluv 7-loo 
orrelation xluv 7-loo log-likehood x- - - -- - - -- - - -grey 1-nn 
hi-square xgrey 1-nn 
orrelation xgrey 1-nn log-likehood x- - - -grey 7-loo 
hi-square xgrey 7-loo 
orrelation xgrey 7-loo log-likehood x
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 regression model for 
olour histograms.
Logistic Regression

Dependent variable: accuracy/100

Sample sizes: n_tests

Factors: Spa, Dis, Clas

Estimated Regression Model (Maximum Likelihood)

------------------------------------------------------------

                                       Standard    Estimated

Parameter               Estimate         Error    Odds Ratio

------------------------------------------------------------

CONSTANT                0.588225      0.0827639             

Spa=grey                0.875956      0.109761     2.40117

Spa=lab                 1.17319       0.120174     3.23228

Spa=luv                 1.24737       0.117719     3.48117

Dis=chi                 2.0869        0.115529     8.05992

Dis=corr                1.82857       0.107692     6.22498

Clas=1loo               0.227155      0.104175     1.25502

Clas=1nn               -0.150119      0.113644     0.860606

Clas=3loo               0.325216      0.104668     1.38433

Clas=3nn                0.125589      0.11613      1.13382

Clas=5loo               0.400251      0.10472      1.4922

Clas=5nn                0.0639772     0.115304     1.06607

Clas=7loo               0.343234      0.103363     1.4095

Spa=grey*Dis=chi       -2.24924       0.0960474    0.105479

Spa=grey*Dis=corr      -2.08892       0.0880021    0.12382

Spa=lab*Dis=chi        -1.51507       0.106083     0.219793

Spa=lab*Dis=corr       -1.47667       0.095813     0.228398

Spa=luv*Dis=chi        -2.01041       0.103336     0.133934

Spa=luv*Dis=corr       -1.96702       0.093971     0.139873

Spa=grey*Clas=1loo      0.407846      0.142735     1.50358

Spa=grey*Clas=1nn       0.290179      0.146772     1.33667

Spa=grey*Clas=3loo      0.422044      0.143303     1.52508

Spa=grey*Clas=3nn       0.114563      0.149548     1.12138

Spa=grey*Clas=5loo      0.411459      0.14192      1.50902

Spa=grey*Clas=5nn       0.0141489     0.147173     1.01425

Spa=grey*Clas=7loo      0.313169      0.136576     1.36775

Spa=lab*Clas=1loo       0.248035      0.157121     1.2815

Spa=lab*Clas=1nn       -0.0438777     0.158413     0.957071

Spa=lab*Clas=3loo       0.255287      0.158025     1.29083

Spa=lab*Clas=3nn       -0.231686      0.160787     0.793195

Spa=lab*Clas=5loo       0.171913      0.155418     1.18757

Spa=lab*Clas=5nn       -0.125283      0.16093      0.882248

Spa=lab*Clas=7loo       0.20717       0.151614     1.23019

Spa=luv*Clas=1loo       0.551315      0.158477     1.73553

Spa=luv*Clas=1nn        0.0748652     0.154739     1.07774

Spa=luv*Clas=3loo       0.371197      0.155113     1.44947

Spa=luv*Clas=3nn       -0.00367895    0.158814     0.996328

Spa=luv*Clas=5loo       0.27189       0.151869     1.31244

Spa=luv*Clas=5nn       -0.0908977     0.156081     0.913111

Spa=luv*Clas=7loo       0.284234      0.147342     1.32874

Dis=chi*Clas=1loo       0.900621      0.142402     2.46113

Dis=chi*Clas=1nn        0.0995474     0.132334     1.10467

Dis=chi*Clas=3loo       0.702057      0.139227     2.0179

Dis=chi*Clas=3nn        0.0583487     0.135531     1.06008

Dis=chi*Clas=5loo       0.508544      0.13549      1.66287

Dis=chi*Clas=5nn        0.0595543     0.133344     1.06136

Dis=chi*Clas=7loo       0.318586      0.129355     1.37518

Dis=corr*Clas=1loo      0.74998       0.131465     2.11696

Dis=corr*Clas=1nn       0.19488       0.128234     1.21517

Dis=corr*Clas=3loo      0.621296      0.130495     1.86134

Dis=corr*Clas=3nn       0.00917647    0.129328     1.00922

Dis=corr*Clas=5loo      0.364569      0.126336     1.43989

Dis=corr*Clas=5nn       0.0317999     0.127666     1.03231

Dis=corr*Clas=7loo      0.134646      0.120905     1.14413

------------------------------------------------------------

Percentage of deviance explained by model = 98.7064

Adjusted percentage = 96.0086
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 regression model for 
entile-LBP.
Logistic Regression

Dependent variable: accuracy/100

Sample sizes: n_tests

Factors: Spa, Dis, Clas

Estimated Regression Model (Maximum Likelihood)

------------------------------------------------------------

                                       Standard    Estimated

Parameter               Estimate         Error    Odds Ratio

------------------------------------------------------------

CONSTANT                2.12407       0.0905594             

Spa=grey               -0.50628       0.114461     0.602733

Spa=lab                 0.188014      0.129802     1.20685

Spa=luv                -0.306623      0.117977     0.735928

Dis=chi                 0.105861      0.0370227    1.11167

Dis=corr                0.147246      0.0373627    1.15864

Clas=1loo               1.45345       0.148945     4.27785

Clas=1nn                0.79341       0.152151     2.21092

Clas=3loo               1.26328       0.140771     3.537

Clas=3nn                0.514671      0.140611     1.67309

Clas=5loo               1.14671       0.136281     3.14783

Clas=5nn                0.340032      0.134495     1.40499

Clas=7loo               0.661778      0.121283     1.93824

Spa=grey*Clas=1loo     -0.239453      0.186357     0.787058

Spa=grey*Clas=1nn      -0.311246      0.190007     0.732534

Spa=grey*Clas=3loo     -0.38216       0.174727     0.682386

Spa=grey*Clas=3nn      -0.148233      0.179055     0.86223

Spa=grey*Clas=5loo     -0.466824      0.16865      0.62699

Spa=grey*Clas=5nn      -0.124236      0.172121     0.883171

Spa=grey*Clas=7loo     -0.120554      0.155215     0.886429

Spa=lab*Clas=1loo       0.120522      0.224951     1.12809

Spa=lab*Clas=1nn       -0.334304      0.213777     0.715836

Spa=lab*Clas=3loo       0.198711      0.215086     1.21983

Spa=lab*Clas=3nn       -0.166218      0.202645     0.846862

Spa=lab*Clas=5loo      -0.00792229    0.201052     0.992109

Spa=lab*Clas=5nn       -0.15237       0.194394     0.858671

Spa=lab*Clas=7loo       0.19113       0.183204     1.21062

Spa=luv*Clas=1loo      -0.868065      0.182459     0.419763

Spa=luv*Clas=1nn       -0.502609      0.192278     0.60495

Spa=luv*Clas=3loo      -0.652074      0.176162     0.520964

Spa=luv*Clas=3nn       -0.328953      0.181608     0.719677

Spa=luv*Clas=5loo      -0.674476      0.170968     0.509423

Spa=luv*Clas=5nn       -0.192762      0.176328     0.824679

Spa=luv*Clas=7loo      -0.324074      0.157786     0.723197

------------------------------------------------------------

Percentage of deviance explained by model = 98.5128

Adjusted percentage = 93.2502
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ombinations of fa
tors using 
olour histograms. Predi
teda

ura
y (p*100) and 
on�den
e intervals are given in %.No Exp. Spa
e Distan
e Classi�er p*100 
.i. 95%79 grey 
hi 5loo 93.23 [91.44, 94.75℄49 rgb 
hi 1nn 93.24 [90.72, 95.96℄52 rgb 
hi 7nn 93.55 [91.20, 95.74℄39 luv 
orr 5loo 93.90 [92.26, 95.41℄78 grey 
hi 3loo 94.00 [92.38, 95.50℄16 lab 
orr 7loo 94.26 [96.62, 95.68℄51 rgb 
hi 5nn 94.26 [91.92, 96.26℄77 grey 
hi 1loo 94.47 [92.85, 95.87℄32 luv 
hi 7loo 94.57 [92.97, 95.96℄50 rgb 
hi 3nn 94.58 [92.16, 96.43℄64 rgb 
orr 7loo 94.76 [93.21, 96.14℄38 luv 
orr 3loo 95.32 [93.81, 96.60℄15 lab 
orr 5loo 95.48 [94.05, 96.78℄31 luv 
hi 5loo 95.66 [94.17, 96.87℄63 rgb 
orr 5loo 96.01 [94.65, 97.23℄8 lab 
hi 7loo 96.09 [94.77, 97.32℄37 luv 
orr 1loo 96.18 [94.77, 97.32℄30 luv 
hi 3loo 96.48 [95.14, 97.59℄14 lab 
orr 3loo 96.49 [95.14, 97.59℄56 rgb 
hi 7loo 96.57 [95.26, 97.68℄13 lab 
orr 1loo 96.57 [95.26, 97.68℄62 rgb 
orr 3loo 96.65 [95.38, 97.76℄61 rgb 
orr 1loo 96.75 [95.50, 97.85℄7 lab 
hi 5loo 96.81 [95.50, 97.85℄55 rgb 
hi 5loo 97.30 [96.12, 98.28℄29 luv 
hi 1loo 97.32 [96.12, 98.28℄6 lab 
hi 3loo 97.38 [96.25, 98.37℄54 rgb 
hi 3loo 97.59 [96.50, 98.54℄5 lab 
hi 1loo 97.61 [96.50, 98.54℄53 rgb 
hi 1loo 97.82 [96.50, 98.54℄



6.3. Experimental design and results 102Table 6.4: Thirty best 
ombinations of fa
tors using 
entile-LBP. Predi
ted a

ura
y(p*100) and 
on�den
e intervals are given in %.No Exp. Spa
e Distan
e Classi�er p*100 
.i. 95%1 lab 
hi 1-nn 94.67 [92.41, 96.60℄56 rgb 
hi 7-loo 94.74 [93.21, 96.14℄65 rgb log 1-nn 94.87 [92.65, 96.77℄9 lab 
orr 1-nn 94.88 [92.65, 96.77℄64 rgb 
orr 7-loo 94.95 [93.45, 96.33℄77 grey 
hi 1-loo 94.97 [93.45, 96.33℄85 grey 
orr 1-loo 95.16 [93.69, 96.51℄49 rgb 
hi 1-nn 95.36 [93.14, 97.11℄57 rgb 
orr 1-nn 95.54 [93.39, 97.27℄24 lab log 7-loo 95.95 [94.53, 97.14℄71 rgb log 5-loo 96.34 [95.01, 97.50℄8 lab 
hi 7-loo 96.34 [95.01, 97.50℄16 lab 
orr 7-loo 96.48 [95.14, 97.59℄55 rgb 
hi 5-loo 96.70 [95.38, 97.76℄70 rgb log 3-loo 96.73 [95.50, 97.85℄63 rgb 
orr 5-loo 96.83 [95.63, 97.94℄23 lab log 5-loo 96.93 [95.63, 97.94℄54 rgb 
hi 3-loo 97.05 [95.88, 98.12℄62 rgb 
orr 3-loo 97.17 [96.00, 98.20℄7 lab 
hi 5-loo 97.23 [96.00, 98.20℄69 rgb log 1-loo 97.28 [96.12, 98.28℄15 lab 
orr 5-loo 97.34 [96.12, 98.28℄53 rgb 
hi 1-loo 97.55 [96.37, 98.45℄61 rgb 
orr 1-loo 97.64 [96.50, 98.54℄22 lab log 3-loo 97.76 [96.63, 98.62℄6 lab 
hi 3-loo 97.98 [96.88, 98.77℄21 lab log 1-loo 97.99 [96.88, 98.77℄14 lab 
orr 3-loo 98.06 [97.01, 98.87℄5 lab 
hi 1-loo 98.19 [97.14, 98.95℄13 lab 
orr 1-loo 98.26 [97.27, 99.03℄



6.3. Experimental design and results 103Figure 6.3: Presen
e in per
entage of 
olour spa
es in best 
ombinations of 
olourhistograms and 
entile-LBP.
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6.3. Experimental design and results 104Figure 6.4: Presen
e in per
entage of distan
es in best 
ombinations of 
olour his-tograms and 
entile-LBP.
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6.3. Experimental design and results 105Figure 6.5: Presen
e in per
entage of 
lassi�ers in best 
ombinations of 
olour his-tograms and 
entile-LBP.
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6.4. Comparison with soft 
olour-texture des
riptors method 106Table 6.5: Best results of surfa
e grading approa
hes.fa
tors predi
ted 
.i. 95% measureda

ura
y a

ura
ySoft 
olour-texture CIE Lab, 1-loo, 97.36% [96.25%, 98.38%℄ 96.70%des
riptors all des
riptorsColour histograms RGB, 1-loo, 97.82% [96.50%, 98.54%℄ 98.67%Chi squareCentile-LBP CIE Lab, 1-loo, 98.26% [97.27%, 99.03%℄ 98.25%linear 
orrelation6.4 Comparison with soft 
olour-texture des
rip-tors methodIn all methods the a
hieved performan
e is very good and quite similar, predi
teda

ura
y varies in less than 1%. Also, for all of them 
on�den
e intervals andpredi
ted a

ura
y ex
eed fa
tory demands of 95% (see Table 6.5).Per
eptually uniform 
olour spa
es, CIE Lab and CIE Luv, work �ne with soft
olour-texture des
riptors while RGB and CIE Lab provide good behavior in 
olourhistograms and 
entile-LBP approa
hes respe
tively.It is in timing 
osts where the di�eren
es arise among methods. In Figure 6.6they are 
ompared by timing 
osts (measured in a 
ommon PC) for ten of thefourteen tile models. The soft 
olour-texture des
riptors method provides the bestperforman
e in timing 
osts, 
losely followed by 
entile-LBP. The 
olour histogramsapproa
h 
ompile by far the worst timing despite this method does not need totranslate the image data, originally in RGB, into CIE Lab spa
e. Also, this methodpresents irregular timing for the same data size. The berlin, lima and oslo modelsshare the data size (tile and image size) but the method a
hieves signi�
ant timingdi�eren
es among them. This e�e
t is due to the use of binary trees to store the
olour histograms of images. Those images with larger number of di�erent 
olourswill need larger trees and more time to 
ompute the di�eren
es between histograms.This timing dependen
e related to data values does not appear in the other two



6.4. Comparison with soft 
olour-texture des
riptors method 107methods whose 
omputational 
osts only depend on the image size and algorithm;
Θ(n) + C where n is the image size and C is a 
onstant related with the algorithmused for implementing the approa
h.Figure 6.6: Timing 
omparison of surfa
e grading approa
hes using the best 
ombi-nation of fa
tors.
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Chapter 7
Study of real-time 
omplian
e
This 
hapter 
on
erns the study of the real time 
omplian
e of the inspe
tion systemworking with the proposed method1 based on soft 
olour-texture des
riptors. In theprevious 
hapter we 
on
luded this approa
h is faster than the other two methodsin the literature. Also, the method a
hieves very good surfa
e grading performan
e(97.4%) di�ering from the 
entile-LBP result by only 0.9 (
entile-LBP is the best ina

ura
y among the 
ompared approa
hes).First, we studied the sequential timing for the worst possible 
ase at fa
tory. Thisstudy was done using a modern PC (Pentium IV at 3,2GHz) and it was 
on
ludedthat parallelization 
ould be ne
essary in some 
ases. The parallelization pro
edurewas 
arry out using a 
luster-MPI s
heme.Before parallelization, a preliminary study on the in�uen
e of data s
aling ona

ura
y results was performed to determine the real image resolution needed forsurfa
e grading. The original images were a
quired with a 3.2 pixels per millimetreresolution be
ause the system was also designed to dete
t small surfa
e defe
ts.Nevertheless, we suspe
ted this resolution might be ex
essive for the surfa
e gradingpurpose. The experiments using lower image resolutions demonstrate we were rightand a resolution of 0.8 pixels per millimetre is su�
ient to surpass the minimuma

ura
y limit (95%) requested at fa
tory.1CIE Lab 
olour spa
e, 1-loo 
lassi�er and all soft 
olour-texture des
riptors.108



7.1. Sequential inspe
tion pro
ess 1097.1 Sequential inspe
tion pro
essFirst, we 
arried out a study for determining the real-time 
omplian
e using onlyone 
omputer and then the need for parallelization. We used a modern PC2 to studythe timing 
osts of the inspe
tion pro
ess, whi
h is divided into four subpro
esses:1. Image a
quisition: the tile image was 
aptured using a Dalsa Trillium s
anline 
amera 
onne
ted to a Core
o-Imaging PC-DIG grabber (see Chapter 3for more details). Image a
quisition in
ludes the time needed to transfer imagedata from grabber to the 
omputer memory, 111 millise
onds in the worst 
ase
orresponding to 50x50
m pie
es (2048x1900 RGB images).2. Tile extra
tion: this 
orresponds to segmentation of the tile surfa
e from theba
kground and also tile repositioning and reorientation to fa
ilitate 
ompu-tation of its features (see next se
tion 7.2 and Appendix A).3. Computation of features: the 
omputation of all soft 
olour-texture des
riptorsof the global image.4. Surfa
e grade 
lassi�
ation.The worst 
ase at fa
tory 
orresponds with the inspe
tion of 50x50
m pie
es (thelarger manufa
tured tiles) whi
h 
an be produ
ed at 20 pie
es per minute. Thus,there are three se
onds to perform all the inspe
tion pro
esses for ea
h tile.As the image a
quisition is done using a s
an line 
amera, the image is only 
om-pleted after all the pie
e has passed under the 
amera. The pie
es are 20 
entimetersapart. As the produ
tion ratio is 20 pie
es per minute, 140 meters pass under theinspe
tion system every 60 se
onds, then, the spatial separation of 0.20 meters be-tween tiles 
orresponds with 857 millise
onds. If we subtra
t the time needed totransfer the image from the grabber to the 
omputer memory (111 millise
onds), wehave 746 millise
onds to perform the other three inspe
tion pro
esses.Table 7.1 shows the measured timing 
osts of the inspe
tion pro
esses. The totaltime needed to inspe
t a pie
e for surfa
e grading 
learly ex
eeds the 3 se
ond time2Pentium IV at 3,2 GHz. 1GB of memory at 400 MHz.



7.1. Sequential inspe
tion pro
ess 110Table 7.1: Timing 
osts of sequential inspe
tion pro
esses.Pro
esses millise
ondsA
quisition 2254Tile extra
tion 1093Computation of features 2520Classi�
ation 0Total 5867limit imposed by the worst 
ase. Therefore, in this 
ases, parallelization is neededto provide 100% inspe
tion at on-line rates.Parallelization 
an be applied using two s
hemes:1. By dividing the image data into n sub-images (as many as there are 
ompu-tation nodes involved in the parallel ar
hite
ture). Ea
h node performs thetile extra
tion and 
omputation of features to its 
orresponding sub-image andthen returns the 
omputed features.2. By transferring 
omplete images to ea
h node. In this 
ase, ea
h node extra
tsthe tile surfa
e and 
omputes the features of 
omplete images. When a node�nalizes, it returns the 
omputed features to the Master node and 
lassi�
ationis then performed. The Master node is also assigned the task of a
quiring tileimages (see Figure 7.4). When the Master has a new image to inspe
t it usesa simple algorithm to determine whi
h node is free in the 
luster.Parallelization 
annot be applied to a
quisition task neither 
lassi�
ation. Thesetwo tasks will be performed only by one node. Also, if we study the approa
h usedfor tile extra
tion (see next se
tion and Appendix A), it is easy to realize that in the�rst s
heme for parallelization tile extra
tion is a nonsense operation when usingsub-images. Tile extra
tion 
annot be performed with partial images. Thus, in the�rst 
ase, the parallelization is only possible for the 
omputation of features. But,although parallelization would redu
e the time for the 
omputation of soft 
olour-texture des
riptors, it is not enough to a
hieve real-time 
omplian
e be
ause the



7.2. Tile extra
tion 111Figure 7.1: A
quired tile presenting a slightly in
lination.

time for a
quisition and tile extra
tion ex
eeds the 3 se
ond limit. Therefore we
hose the se
ond approa
h to parallelization be
ause in this 
ase 
omplete imagesare used and thus tile extra
tion 
an be in
luded in parallelization.7.2 Tile extra
tionOn
e the image has been a
quired, the tile must be extra
ted from the ba
kgroundand �tted to a non-in
lined square so the features 
an be properly 
omputed. Whentiles pass under the a
quisition system, a perfe
t alignment of the pie
e with thes
an line 
amera is not assured. Usually the images present an aspe
t similar tothat shown in Figure 7.1, where the tile is slightly rotated or in
lined.We used an image registration methodology in order to perform tile extra
tionand its adjustment to a non-in
lined re
tangle. This methodology was taken froma development that we performed in previous works for the dete
tion of defe
ts in�xed pattern 
erami
 tiles [20�23℄. The registration method is explained in detailin Appendix A of present do
ument.The aim of the tile extra
tion pro
ess is to obtain images of tiles free of ba
k-ground and in
lination (see Figure 7.2). After this, the image is ready for the



7.3. Data s
aling vs real-time 
omplian
e 112Figure 7.2: Tile extra
ted from ba
kground, positioned at origin (left-upper 
orner)and registered with a non-in
lined re
tangle.


omputation of the soft 
olour-texture des
riptors whi
h are only 
on
erned withtile surfa
e.7.3 Data s
aling vs real-time 
omplian
eOn
e we extra
ted the best surfa
e grading method based on soft 
olour-texturedes
riptors, we planned a study on the in�uen
e of the image resolution on a

ura
yas a �rst approximation to the issue of real-time 
omplian
e.For the experiments in Chapters 5 and 6 we used the original resolution ofthe VxC TSG images, 3.2 pixels per millimetre. This high resolution was sele
tedbe
ause the system was also designed to dete
t small surfa
e defe
ts. However,we thought this resolution might be ex
essive for the purpose of surfa
e grading.For surfa
e grading we need measures of global appearan
e rather than �ne lo
alinformation.As the data size is a primary fa
tor in the 
omputational 
osts, we studied theevolution of a

ura
y using smaller image resolutions. We repeated 
lassi�
ation ofthe VxC TSG models using the method extra
ted in Chapter 5 and di�erent imageresolutions or s
ales. We used the s
ales 1.0, 0.50, 0.25, 0.12, 0.06 and measured thea

ura
y over all models 
omputing the a
hieved mean a

ura
y.



7.3. Data s
aling vs real-time 
omplian
e 113Figure 7.3: A

ura
y versus s
ale using the extra
ted soft 
olour-texture des
riptorsmethod.
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The in�uen
e of the s
ale on a

ura
y is shown in Figure 7.3. S
ales 1.0 and 0.25are only separated by a loose of 2% in a

ura
y. The 0.25 s
ale ex
eeds the fa
torylimit using an amount of data 16 times smaller (more than one order of magnitude).Thus, the resolution 
ould be redu
ed from 3.2 to 0.8 pixels per millimetre with-out a signi�
ant loose of dis
riminant power (95.5%) 
omplying with the fa
toryrequirement for grading performan
e. Also interesting is the result obtained usingthe 0.5 s
ale. Here, with an amount of data four times smaller, the a

ura
y almostremains equal (only droops 0.2%, from 97.6% to 97.4%). A resolution of 1.6 pixelsper millimetre 
an be also a good 
hoi
e to a
hieve real-time 
omplian
e.The previous timing table (Table 7.1) is up-dated to take into a

ount the newimage resolutions as shown in Table 7.2.With the improvement introdu
ed using the new resolutions the parallelizationapproa
h is not needed if a resolution of 0.8 pixels per millimetre is 
hosen. Never-theless, if we prefer to give priority to the grading performan
e or add more surfa
einspe
tion tasks, a parallelization study would be useful.



7.4. MPI-Cluster ar
hite
ture 114Table 7.2: Timing 
osts of sequential inspe
tion pro
esses using new image resolu-tions. Pro
esses 3.2 1.6 0.8(pixels/mm) (pixels/mm) (pixels/mm)A
quisition 2254 2254 2254Tile extra
tion 1093 250 47Computation of features 2520 630 150Classi�
ation 0 0 0Total time 5867 3134 2451(in millise
onds)7.4 MPI-Cluster ar
hite
tureFor parallelization we 
hose the ar
hite
ture based on the union of the 
luster hard-ware and the MPI (Message Passing Interfa
e) software. From the point of viewof parallel ar
hite
tures, a 
luster is a 
olle
tion of 
omplete 
omputers with dedi-
ated inter
onne
ts. Typi
ally, all the ma
hines in the 
luster are set up to fun
tionidenti
ally, they have the same instru
tion set and operating system. Cluster build-ing te
hnology is usually standard; mi
ropro
essors, and inter
onne
tion networks.Clusters are more 
heaper than spe
ialized parallel systems and they provide easyand a�ordable a

ess to parallel pro
essing.Clusters were �rst used to serve multiprogramming workloads. In multiprogram-ming 
lusters, a single front-end ma
hine usually a
ts as an intermediary betweena 
olle
tion of 
ompute servers an a large number of users at terminals on remotema
hines. However, 
lusters are in
reasingly being used as parallel ma
hines, of-ten 
alled networks of workstations (NOWs) [126℄. A major in�uen
e on 
lustershas been the in
rease in popular domain software, su
h as PVM (Parallel VirtualMa
hine) [127℄ and MPI (Message Passing Interfa
e) [128℄. This allows users tofarm jobs over a 
olle
tion of ma
hines or to run a parallel program on a number ofma
hines 
onne
ted by a lo
al area network.Both, PVM and MPI are software libraries for parallelization using 
lusters andC (also Fortran) standard programs. We de
ided to use the MPI software be
ause it



7.5. Parallelization experiments and results 115is oriented to a
hieving higher 
ommuni
ation performan
e when the same kind ofhosts are 
onne
ted [129℄ (homogeneous networks). This is our 
ase, and also mu
hof the parallelization s
heme is based on network transfer performan
e.In
luding a 
luster to in
rease surfa
e inspe
tion 
apabilities means that theprevious inspe
tion system ar
hite
ture has to be re-designed (see Chapter 3) asshown in Figure 7.4.The ma
hine 
onne
ted with the 
amera and sensors through the frame grabberand I/O 
ard is the Master node and, on
e the image of one tile is a
quired, itmanages the distribution of work among the nodes of the 
luster and also 
olle
tsthe results. When the soft 
olour-texture des
riptors are available the Master nodeperforms the 
lassi�
ation and �nally grade the 
erami
 tile.When the Master node has a new tile image it uses a simple algorithm to de-termine whi
h node is free in the 
luster. Then, the image is sent to this nodewhi
h 
arries out the tile extra
tion and 
omputation of features. Finally, the nodereturns the 
omputed features to the Master whi
h performs the �nal 
lassi�
ationor surfa
e grading.7.5 Parallelization experiments and resultsFor the �rst experiment we used the 'Mer
urio' 
luster lo
ated at the GAP Lab-oratory (Parallel Ar
hite
tures Group) in the Polyte
hni
 University of Valen
ia.This ma
hine is formed by 21 nodes, one of whi
h is the Master node. Ea
h nodeis equipped with a Pentium III bi-pro
essor at 1GHz and 1GByte of RAM mem-ory. All nodes are inter
onne
ted using a high performan
e Ethernet network witha 1Gb bandwidth. The software for parallelization installed in the 
luster was theMPI version 1.2.The experiment 
onsisted in measuring 
omputing times when using a growingnumber of nodes. The parallel algorithm 
orresponds with the se
ond s
heme ofparallelization (see se
tion 7.1), based on the distribution of whole images to thefree nodes in the 
luster. The nodes extra
t the tile and 
ompute of features. Thesoft 
olour-texture des
riptors are sent to the Master node whi
h �nally performs
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Figure7.4:Theinspe
tionsystemwitha
lusterpro
essingunitforparallelization.
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7.5. Parallelization experiments and results 117Table 7.3: Timing of parallelization in Mer
urio 
luster using di�erent image reso-lutions (time in millise
onds).Number of Nodes 3.2 1.6 0.8(pixels/mm) (pixels/mm) (pixels/mm)1 11321 2825 7042 5727 1431 3573 3867 964 2404 2935 732 1835 2379 596 1486 1989 496 1247 1725 434 1088 1541 385 969 1386 346 8610 1261 315 7811 1207 301 7512 1152 288 7213 1113 278 6914 1048 262 6515 1018 254 6316 995 248 6217 974 243 6018 963 240 6019 946 236 5920 907 226 56the surfa
e grade 
lassi�
ation. Table 7.3 and Figure 7.5 show the results for imageresolutions of 3.2, 1.6 and 0.8 pixels per millimetre.Figure 7.5 shows that parallelization rea
hes saturation when we use more than10 nodes. We a
hieve su

ess in parallelization when the required time is under 746millise
onds whi
h is the time remaining after the image a
quisition at the Masternode. From this point of view, the 3.2 resolution does not su

eed be
ause the timeneeded using 20 nodes is 907 millise
onds. Using more nodes 
ould lead to a
hievetimes under the limit of 746 millise
onds, but a 
luster of 20 nodes (or more) is fartoo expensive, both e
onomi
ally and spatially. The prototype at fa
tory shouldbe equipped with a reasonable number of nodes to take into a

ount e
onomi
 andspatial 
osts. The best relation between a

ura
y and number of nodes is a
hievedusing four nodes and a resolution of 1.6 pixels per millimetre. This 
on�guration is



7.5. Parallelization experiments and results 118Figure 7.5: Timing evolution in Mer
urio 
luster using several image resolutions.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  5  10  15  20

tim
e 

in
 m

ill
is

ec
on

ds

number of nodes

3.2 pixels per millimetre
1.6 pixels per millimetre
0.8 pixels per millimetre

under the time limit (746 millise
onds) and uses a redu
ed number of nodes. Morenodes, or a resolution of 0.8 pixels/mm, 
an be 
hosen if we plan to introdu
e moreinspe
tion tasks in addition to surfa
e grading. The 
omputational 
osts of thesenew tasks should be studied in 
onjun
tion with the surfa
e grading appli
ation.In a se
ond experiment we tested the surfa
e grading appli
ation using a highperforman
e 
luster; the 1350 IBM 
luster. This ma
hine is 
alled 'Hyades' and islo
ated at the Computing Centre of the Polyte
hni
 University of Valen
ia. This
luster, used for super
omputing tasks, has 60 nodes equipped with Intel Xeon bi-pro
essors at 2,4 GHz and 1GB of RAM memory. The nodes are inter
onne
tedusing a Myrinet whi
h provides a bandwidth of 2Gb per se
ond. This 
luster is anIBM ma
hine made for super
omputing appli
ations and is mu
h more expensivethan Mer
urio. With this experiment we tried to determine if it is worthwhile to usehigh performan
e 
lusters for the appli
ation of surfa
e grading. Only 14 nodes wereavailable when we 
arried out our experiments, but that was enough for 
omparisonpurposes (see Table 7.4).From the timing 
omparison of Figure 7.6 we 
an 
on
lude that Hyades performssigni�
atively better when using a redu
ed number of nodes, however, the timing



7.5. Parallelization experiments and results 119Table 7.4: Timing of parallelization in Hyades ma
hine using several image resolu-tions (time in millise
onds).Number of Nodes 3.2 1.6 0.8(pixels/mm) (pixels/mm) (pixels/mm)1 5739 1373 3412 3037 765 1933 3130 770 1664 2362 563 1475 1862 461 1016 1542 399 917 1376 345 848 1266 321 859 1201 302 7410 1151 285 7111 1118 276 6812 1084 269 6613 1030 256 6414 1003 251 62
Figure 7.6: Timing 
omparison between Mer
urio and Hyades 
lusters using severalimage resolutions.
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osts of both ma
hines qui
kly be
ome similar from the third node on. Individuallya Xeon bi-pro
essor 
learly performs better than a Pentium III bi-pro
essor in per-forman
e, but this individual advantage does not transfer to the 
luster s
heme ofparallelization.Mer
urio and Hyades ma
hines were 
ompared also using the Speedup and Ef-�
ien
y whi
h are two 
lassi
al measures for 
hara
terizing parallelization results(see Figure 7.7). Speedup is the relation between the time needed to 
arry out thetask in only one node and the time needed for the same task using n nodes. TheE�
ien
y is the relation between the real and the ideal Speedup. The ideal Speedupusing 2 nodes is 2, two nodes should double system speed, three nodes should trebleand so on.Figure 7.7 shows 
lear advantage of Mer
urio 
luster whi
h a
hieves better per-forman
e in Speedup and E�
ien
y. We 
onlude that high performan
e equipmentHyades does not provide enough bene�ts to justify the investment 
osts.
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lusions 121Figure 7.7: Speedup and E�
ien
y in Mer
urio and Hyades.
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7.6 Con
lusionsIn this 
hapter we have studied the real-time 
omplian
e of the surfa
e gradingmethod proposed in this thesis, whi
h is also the fastest among the 
ompared meth-ods. The method was extra
ted in Chapter 5 and is based on soft 
olour-texturedes
riptors using the CIE Lab 
olour spa
e, the 1-leaving-one-out 
lassi�er and all
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lusions 122the des
riptors.We 
arried out all the studies with referen
e to the worst 
ase at fa
tory; 50x50
mtiles at a ratio of 20 tiles per minute. This gives 3 se
onds to inspe
t and grade ea
htile. Firstly, we studied the method's timing requirements with a standard modern
omputer. The result was unsu

essful be
ause the 
omputing time required foronly one tile was of 5.867 se
onds whi
h ex
eeds the limit.Se
ondly, we studied the in�uen
e of the image resolution on a

ura
y. Theoriginal resolution was high, 3.2 pixels per millimetre, be
ause the system was de-signed not only for surfa
e grading but also for dete
ting small defe
ts. We testedlower resolutions and a
hieved an a

ura
y over 95% for resolutions of 1.6 and 0.8pixels per millimetre. The 
orresponding 
omputing times were of 3134 and 2451millise
onds respe
tively. Thus, 0.8 resolution 
omplies with real-time requirements.Although parallelization is not stri
tly needed we de
ided to perform this studybe
ause it 
ould be of interest if we want to prioritize a

ura
y performan
e or planto add more inspe
tion tasks to the system. We 
hose the 
luster-MPI s
heme be-
ause it provides easy, a�ordable a

ess to parallel pro
essing. We �rst 
arried outthe experiments with a medium-level performan
e 
luster 
alled Mer
urio. Mer
uriois 
omposed of Pentium III bi-pro
essors at 1GHz using a standard 1Gb Ethernet forinter
onne
tion. The timing results showed that the best relation between numberof nodes and a

ura
y was a
hieved using four nodes and a resolution of 1.6 pixelsper millimetre. Four is a reasonable number of nodes for the 
luster if we think interms of e
onomi
 and spatial 
osts. The spa
e o
uppied by the inspe
tion systemat fa
tory is an important issue be
ause more spa
e makes the system less opera-tive. Finally we repeated the surfa
e grading experiments in a high performan
ema
hine 
alled Hyades whi
h was 
omposed of Xeon bi-pro
essors at 2.4 GHz andone Myrinet network at 2Gb per se
ond. In timing, Hyades only a
hieved 
lear bet-ter performan
e using less than 3 nodes. Mer
urio surpassed Hyades in two 
lassi
almeasures of parallelization performan
e; Speedup and E�
ien
y. The di�eren
e in
ost between both systems and the a
hieved results led us to 
on
lude that it is notworthwhile investing in a high performan
e 
luster.



Chapter 8
Con
lusions, dis
ussion and furtherwork
In this thesis we have presented a 
ase of study of the development and performan
eanalysis of a surfa
e grading appli
ation with real-time 
omplian
e. The appli
ationfo
uses on the 
erami
 tile industry and aims to automate the inspe
tion pro
essof surfa
e grading and removing human inspe
tors from this subje
tive and tedioustask. From the overview of surfa
e grading works we 
on
luded that many of themwere very spe
ialized in a spe
i�
 type of surfa
e, others did not a
hieve good enougha

ura
y, and yet others did not take into a

ount the real-time restri
tions of afa
tory inspe
tion. Therefore, we though surfa
e grading was still an open issuewhere more 
ontributions were possible. In this sense, this thesis dealed with lessexplored aspe
ts related to real-time 
omplian
e and surfa
e grading performan
e.In Chapter 3 we addressed the question of spatial and temporal uniformity in thea
quisition system. We performed a study of spatial and temporal uniformity 
om-paring two modern illumination systems; �uores
ents and white LED arrays. Theresults showed that only �uores
ent systems were able to provide su�
ient uniformresponse for the appli
ation of surfa
e grading. In this 
hapter was also presentedthe VxC TSG (VxC Tiles for Surfa
e Grading) whi
h is an image database of 
e-rami
 tiles oriented to surfa
e grading. Creating and 
ompiling this database wasone of the thesis goals. It has been the ground truth used for testing and 
omparingsurfa
e grading approa
hes presented in Chapters 5 and 6. VxC TSG is an extensive123
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lusions, dis
ussion and further work 124image data base of 
erami
 tile models representing the wide range of surfa
e 
lassesin 
erami
 tiles, and also, it is intended to be a tool for the s
ienti�
 
ommunity andfuture works in the �eld of surfa
e grading (miron.dis
a.upv.es/vision/vx
tsg/).In Chapter 4, �rst works seeking for a fast and a

urate method of surfa
e grad-ing were revised. Here, we presented the preliminary works that �nally gave rise tothe soft 
olour-texture des
riptors method. First, we studied methods based on im-age tessellation and lo
al statisti
s of 
olour. These methods did not a
hieved goodenough a

ura
y and only one of them, using multiresolution te
hniques, a
hievedfa
tory 
omplian
e ex
eeding 95% of minimum a

ura
y. However, all these meth-ods have an important drawba
k, they need to non-automati
ally estimate at leastone parameter for every tile model. Then, we proposed a generi
 method with no pa-rameter estimation needed. This method used global statisti
s of 
olour and texture
omputed in a per
eptually uniform 
olour spa
e, the CIE Lab. Global statisti
sin CIE Lab a
hieved fa
tory 
omplian
e in a

ura
y improving also two literaturemethods; 
olour histograms and 
entile-LBP. In these works we used a medium-sizedimage database of 
erami
 tiles, the ante
edent of VxC TSG.Global statisti
s 
omputed in CIE Lab is the ante
edent of soft 
olour-texturedes
riptors method whi
h was in-depth studied in 
hapter 5. Both, global statisti
sin CIE Lab and soft 
olour-texture des
riptors are basi
ally the same method. On
ewe found a fast method able to 
omply with fa
tory requests, we de
ided to in-depthstudy the approa
h using several fa
tors su
h as 
olour spa
es (CIE Lab, CIE Luv,RGB and Grey s
ale), 
lassi�ers (k-NN and leaving-one-out) and testing all thepossible 
ombinations of soft 
olour-texture des
riptors (mean, standard deviation,and histogram moments from 2nd to 5th). To do so, statisti
al tools were used inorder to manage the large amount of experiments and a
hieve obje
tive 
on
lusions.These statisti
al tools were the design of experiments and the logisti
 regression.They provided a pro
edure with whi
h to study and determine the best 
ombinationof fa
tors to maximize the a

ura
y rate. The extra
ted method a
hieved 97.4% ofpredi
ted mean a

ura
y and 97.6% of measured mean a

ura
y over all models.The 
omputed 
on�den
e interval was [96.25%, 98.36%℄ whi
h 
learly surpassesthe fa
tory requirement for performan
e. From the in-depth statisti
al study it
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lusions, dis
ussion and further work 125was also 
on
luded that RGB, a 
ommon 
olour spa
e non-per
eptually uniform,provides less dis
riminative power, all the soft 
olour-texture des
riptors 
ontributeto a
hieve a

ura
y performan
e, and also the 
lassi�ers derived from the leavingone out method perform better.In Chapter 6, two methods from the surfa
e grading literature were implementedand tested for 
omparison purposes. These methods were 
olour histograms and
entile-LPB. We 
hose these methods from literature be
ause they were similar toours; they are generi
 solutions with low 
omputational 
osts. With these methodswas also performed a statisti
al analysis using again experimental design and logisti
regression. The results showed that all approa
hes are almost equal in a

ura
yperforman
e if we 
ompare with soft 
olour-texture des
riptors method. However,soft 
olour-texture des
riptors method a
hieved better results in timing 
osts. Colourhistograms a
hieved 97.8% in mean predi
ted a

ura
y and 98.3% the 
entile-LBPmethod. Predi
ted a

ura
ies and 
on�den
e intervals of both approa
hes ex
eededfa
tory demands of 95%.The 
entile-LBP method from literature did not used the overall texture and
olour appearan
e of surfa
es to grade wood boards. The grade of wood pie
es wasassigned by dete
ting the wood defe
ts and then applying grade rules related to thenumber and 
lasses of defe
ts found. Therefore, the problem be
ame a questionof separating the surfa
e into sound and faulty wood, and 
lassifying the defe
tsinto their di�erent types. However, we should point out that we used this methodnot in the literature sense but to 
ompile global des
ription of 
olour and textureand then dire
tly grade surfa
es. Thus, the fa
t that 
entile-LBP a
hieved the bestperforman
e in a

ura
y and also 
losely followed soft 
olour-texture des
riptorsmethod in timing 
osts is an interesting result.Finally, in Chapter 7 we presented a study of real-time 
omplian
e in
ludingthe parallelization of the method extra
ted in Chapter 5. The study was performedhaving as referen
e the worst 
ase at fa
tory; 50x50
m tiles at a ratio of 20 tilesper minute. Thus, we had 3 se
onds to inspe
t and grade ea
h tile. Firstly, westudied the timing requirements of the method using a standard modern 
omputer.The result was unsu

essful be
ause the 
omputing time required for only one tile
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lusions, dis
ussion and further work 126was of 5.867 se
onds surpassing the 3 se
onds limit. Then, we performed a studyabout the in�uen
e of the image resolution on a

ura
y. The original resolutionwas high, 3.2 pixels per millimetre, be
ause the system was designed not only forsurfa
e grading but also for dete
ting small defe
ts. We tested lower resolutionsand a
hieved an a

ura
y over the limit of 95% for the resolutions of 1.6 and 0.8pixels per millimetre. The 
orresponding 
omputing times were of 3124 and 2451millise
onds respe
tively. Therefore, 0.8 resolution 
omplied real time requirements.Although parallelization was not stri
tly needed we de
ided to perform this studybe
ause it 
ould be of interest if we want to prioritize a

ura
y performan
e or plan toadd more inspe
tion tasks to the system. We 
hose the 
luster-MPI s
heme be
auseit provides easy, a�ordable a

ess to parallel pro
essing. We �rst 
arried out the ex-periments with a medium-level performan
e 
luster 
alled Mer
urio. Timing resultsshowed that the best relation between number of nodes and a

ura
y was a
hievedusing four nodes and a resolution of 1.6 pixels per millimetre. We repeated the sur-fa
e grading experiments in a high performan
e ma
hine 
alled Hyades. In timing,Hyades only a
hieved 
learly better performan
e using less than 3 nodes. Mer
uriosurpassed Hyades in two 
lassi
al measures of parallelization performan
e; Speedupand E�
ien
y. The di�eren
e in 
ost between both systems and the a
hieved resultsled us to 
on
lude that it was not worthwhile to invest in a high performan
e 
luster.In previous paragraphs we have summarized thesis 
on
lusions. Now, we pro
eedto dis
uss some issues:
• At the beginning of the thesis, in Chapter 1, is established that the di�erent
riteria of ea
h operator (human grader) regarding tile defe
ts 
ould produ
e anon-uniform quality 
ontrol 
riterion. This assertion seems to be 
orroboratedwith a study in the area of wood grading where in a test of four grades di�erenthuman graders agreed only in 60% of the samples [1℄. However, we a
hievedvery high a

ura
y performan
e in experiments using an image database of tilespreviously graded by human operators at fa
tory. Thus, the idea of a non-uniform quality 
ontrol 
riterion of human operators 
annot be established asa general rule, at least in the surfa
e grading of 
erami
 tiles.
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• In Chapter 4 the method based on global statisti
s in CIE Lab improvedliterature methods in a

ura
y. Also, literature approa
hes (
olour histogramsand 
entile-LBP) did not a
hieve fa
tory 
omplian
e be
ause their 
on�den
eintervals performed under the minimum fa
tory demand on a

ura
y (95%).However, when we 
arried out the in-depth statisti
al studies using the largeVxC TSG image database, all the methods were very good and quite similarin performan
e a
hieving fa
tory 
omplian
e. We think this was due to thefollowing fa
tors: a larger image database was used, the a
quisition systemwas better 
alibrated for the a
quisition of VxC TSG and also the imageswere improved for ea
h tile model using brightness and 
ontrast 
ontrol.
• We used per
eptually uniform 
olour spa
es (CIE Lab and CIE Luv) be
ausewe though they will perform better than non-uniform spa
es (RGB) as theyare 
loser to human per
eption of 
olours. However, from the experiments,although per
eptually uniform spa
es showed good behaviour, they do notalways perform better (p.e. 
olour histograms perform better using RGB).
• In this thesis we have presented and tested general methods for the purposeof surfa
e grading. Nevertheless, the ground truth has been 
omprised only ofsamples pro
eeding from the 
erami
 tile area and it 
ould be interesting totest the approa
hes using other surfa
e types.
• The studied approa
hes are able to di�erentiate surfa
e grades in 'a poste-riori' study on
e the 
erami
 tiles have been graded. However, at fa
tory ismore interesting a method able to automati
ally determine when a 'new grade'appears at produ
tion line. This would involve the use of thresholds with asurfa
e grade measure (i.e. distan
e in a spa
e of features des
ribing 
olourand texture).Further work would in
lude the following items:
• Extend the image database adding more types of surfa
e, i.e. natural surfa
essu
h as marble, granite or wood and also other arti�
ial stu� su
h as textilefabri
s.



Chapter 8. Con
lusions, dis
ussion and further work 128
• Test the studied methods with the new surfa
e types.
• Study and develop methods able to dete
t 
hanges of surfa
e grades at pro-du
tion lines.
• Develop a prototype to test the system and methods under real 
onditions atfa
tory.



Appendix A
Image registration method for
erami
 tiles
A.1 Introdu
tionThis appendix presents an image registration method 
arried out for the purpose of
erami
 tiles inspe
tion. Tile registration is the �rst step in dete
ting surfa
e faultswhen a '
ompare with a referen
e' te
hnique is used. The presented method isbased on edge dete
tion te
hniques, used to extra
t the bounding re
tangle de�nedby tiles. This method only uses a redu
ed set of border tile points, obtained withthe minimum 
ross entropy thresholding algorithm, and �ts them to straight linesusing the least-squares method. An outlier dete
tion test is in
luded to eliminatethe in�uen
e of ba
kground noisy points or tile border defe
ts. The bounding tilere
tangle is then registered with respe
t to a referen
e tile using simple geometri
almapping. Several experiments were made to show the feasibility of the method fromthe point of view of registration quality.In the appli
ation of surfa
e grading the registration method is applied to performthe tile extra
tion from ba
kground and �t the tile boundary into a non-in
linedre
tangle. This is ne
essary for proper 
omputation of 
olour-texture features. Asa referen
e we used a re
tangle with the dimensions of the original tile, with theupper-left 
orner positioned at origin and without any in
lination.129



A.2. Registration method 130A.2 Registration methodIn [20, 21℄ we studied several approa
hes for tile edge dete
tion and boundary re
t-angle extra
tion. The proposed approa
h used tile border pixels to adjust the fourstraight lines that 
ompose the tile re
tangle. These border points are obtained byseparating the tile from the image ba
kground using an optimal threshold level. Todo so, the minimum 
ross entropy thresholding algorithm [131℄ was sele
ted due tothe a

ura
y of the obtained results.For any image this algorithm sele
ts the histogram threshold that minimizes the
ross entropy between the thresholded image and the original image, in other words,the threshold whi
h minimizes the 'error' between both images.For every threshold t

η1(t) =

∑

fi<t fi

N1

η2(t) =

∑

fi≥t fi

N2where fi is the histogram value for the i level in the original image and gi ∈

(η1, η2) is the thresholded image. The 
ross entropy between both images 
an be
omputed as:
η(t) =

∑

fi<t

filog

(

fi

η1(t)

)

+
∑

fi≥t

filog

(

fi

η2(t)

)The optimum threshold level is sele
ted by:
to = min(η(t))Using NP evenly spa
ed horizontal and verti
al s
an lines, the outermost pointsof ea
h tile border are sele
ted 
reating four sets of N edge points (PUP , PDOWN ,

PLEFT , PRIGHT ). For ea
h set of lateral points, a straight line is �tted using theleast-squares method.Let PUP = {p0(x0, y0), ..., pN−1(xN−1, yN−1)} be the set of NP edge points of theupper side. A line y = aUP + bUP x 
an be �tted using the standard formulation:
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y = aUP + bUP x = E(y) − E(x)

σ2
X

σ2
XY

+
σ2

X

σ2
XY

· xPro
eeding in a similar way, the remaining lateral lines 
an be 
omputed (aDOWN ,
bDOWN), (aLEFT , bLEFT ), (aRIGHT , bRIGHT ). During this stage, an outlier dete
tiontest is applied to eliminate the outlying points that sometimes appear due to theba
kground noise or border tile defe
ts. This pro
ess works as follows:Repeat1. From the point set PUP 
omputes the line parameters aUP , bUP .2. For ea
h point pi(xi, yi) 
omputes its distan
e to the line:

Di = |yi − aUP + bUP xi|.If Di ≤ kσ2
y then do nothing, else extra
t pi(xi, yi) from PUP .Until (no point is extra
ted)Those points lying further than one and a half standard deviations (k=1.5) fromthe 
omputed line are 
onsidered outliers, and dis
harged the line parameters being
omputed again. The �tting pro
ess is repeated, usually two or three iterations,until all the remaining points ful�ll the 
ondition.Figure A.1 shows the progressive approximation of the �tted line to the 
orre
tedge points, for the left side. After three steps, the furthest edge points are dis-
harged and the 
orre
t line �tting is produ
ed using the remaining points. FigureA.2 shows the results obtained after applying this pro
edure on several tile images.Some points lying outside the tile area 
an be seen.On
e the bounding re
tangle is obtained, the four 
orner 
o-ordinates are 
om-puted and the inverse geometri
 mapping is applied as follows:





xr
i

yr
i



 = S ·





cosα −sinα

sinα cosα



 ·





xi

yi



 +





dx

dy



where pi(xi, yi) and pr
i (x

r
i , y

r
i ) i = 1..4 are the test and referen
e tile 
orners, dx
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Figure A.1: Line �tting pro
ess.

Figure A.2: Tile re
tangles obtained on several test images.



A.2. Registration method 133Figure A.3: Transformation mapping from test tile to referen
e tile.

and dy are the displa
ements between the top left points in the two tiles, α is therotation angle, and S is the s
ale fa
tor. (O, X, Y ) is the image referen
e 
oordinatesystem (see Figure A.3).Then, it is possible to determine the parameters of the transformation mappingby minimizing the sum of the squared errors:
E =

4
∑

i=1

[xr
i − S (xicosα − yisinα) − dx]2 + [yr

i − S (xisinα − yicosα) − dy]2Repla
ing (S · cosα)by 'a' and (S · sinα) by 'b':
E =

4
∑

i=1

[xr
i − S (a · xi − b · yi) − dx]2 + [yr

i − S (b · xi − a · yi) − dy]2Deriving E with respe
t to a, b, dx, and dy and equaling to zero, the followinglinear system of equations appears:
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from whi
h the optimal parameters of the geometri
al transformation 
an beobtained.This approa
h saves a great deal of 
omputing time as it dire
tly 
al
ulates theexa
t inverse transformation needed to registrate test tiles onto referen
e tiles.A.3 Experiments and resultsTwo image data sets were used to validate the method. The �rst data set was
onstru
ted in 
ontrolled 
onditions. Five 
olour images of di�erent tile modelswere a
quired in the laboratory and were used as the 'fault free' referen
e dataset. For ea
h referen
e image, a set of geometri
al transformations were arti�
iallyperformed, with x and y displa
ement ranging from -10 to +10 pixels (step 0.5) androtations ranging from -2.0o to +2.0o (step 0.25o). As result, a set of N = 28577test images was produ
ed for ea
h tile model.After applying the registration method, the displa
ements and rotation param-eters (dx, dy, α) were obtained for ea
h test image i, and the mean square errorswith respe
t to the original ones (d,x, d,y, α,) were 
omputed as follows:
Ex =

N
∑

i=1

(d,
x(i) − dx(i))

2/N

Ey =
N
∑

i=1

(d,
y(i) − dy(i))

2/N

Eα =
N
∑

i=1

(α,(i) − α(i))2/Nwhere Ex and Ey are measured in pixels, and Eα in degrees.



A.3. Experiments and results 135Table A.1: Experiments with arti�
ially introdu
ed transformations.Tile model Ex(pixels) Ey(pixels) Eα(degrees)�renze 0.191 0.268 0.014bis
uit 0.229 0.166 0.011tos
ana 0.230 0.357 0.030veni
e 0.214 0.195 0.013austin 0.291 0.360 0.024Mean 0.231 0.269 0.018The a
hieved results (Table A.1) showed the good behaviour of this method,with a mean in the displa
ement errors lower than 0.3 pixels and a mean in therotation errors lower than 0.02o. We used a redu
ed set of NP= 20 edge points. Thes
ale fa
tor error ES was negligible (S = 1).A similarity measure was also introdu
ed to 
ompare the resulting registeredtest image with respe
t to the referen
e. The similarity measure EP used in theseexperiments was the sum of the absolute di�eren
es of both images, that is themean grey level error per pixel. For 
omparison purposes, a relative measure εP ,normalized with the image dynami
 range, was also 
omputed as follows:
Ei

P =

m
∑

x=1

n
∑

y=1

|fi(x, y) − f:ref(x, y)| /(m · n)

EP =

(

N
∑

i=1

Ei
P

)

/N

εP = 100 ·

(

∑N
i=1 Ei

P

△fi

)

/Nwhere fi(x, y) is the test image i and f:ref(x, y) is the referen
e image, (m, n) isthe image size, and △fi is the dynami
 range of the image i. Be
ause all tiles usedin this experiment were fault-free, the 
omputed errors were only due to registrationerrors.Table A.2 shows the a
hieved results. These results show that lower relativepixel errors are obtained in the 
ase of bright tiles. Dark tile models produ
e highermean errors on the registration parameters and, 
onsequently, greater relative pixel



A.3. Experiments and results 136Table A.2: Absolute and relative mean pixel errors.Tile model △fi EP εP (%)�renze 256 3.790 1.49bis
uit 222 3.789 1.67tos
ana 184 3.278 1.78veni
e 170 3.306 1.92austin 119 3.498 2.94Table A.3: Absolute and relative mean pixel errors obtained with real images.Tile model △fi EP εP (%)�renze 255 2.337 0.917bis
uit 222 2.211 0.996tos
ana 184 2.363 1.284veni
e 170 2.343 1.378austin 119 1.792 1.506errors. However, the absolute mean pixel error is nearly 
onstant in all 
ases. Thisis be
ause higher registration error involves more points that are di�erent in bothimages. This is, however, 
ompensated by lower grey level di�eren
es in the 
ase ofdark tiles.The se
ond image data set was obtained under real 
onditions on the laboratoryline prototype. Eleven tile samples of �ve fault-free tile models were used. Forea
h model the �rst tile passing under the 
amera was 
onsidered as the referen
etile, and the ten remaining tiles were used as test tiles. As there was no previousknowledge about the translation or rotation parameter of the test tiles with respe
tto the referen
e tile, the above similarity measurements were used to 
ompare them.The a
hieved results are shown in Table A.3.These results 
an not be extrapolated due to the use of a redu
ed set of samples.The method has an stable behaviour with di�erent tile models under real 
onditions.Figure A.4 shows the results obtained applying the registration method to faultytiles (spots, sti
ks). To visualise the quality of the registration, Figure A.4.d showsthe error map, that is the di�eren
e between the referen
e tile (A.4.a) and theregistered test tiles (A.4.b-
), with a threshold of 50. It 
an be seen how the defe
ts



A.3. Experiments and results 137Figure A.4: Tile registration examples.

appear 
learly in the error map. Continuous lateral errors also appear, in some
ases, probably due to small di�eren
es in size between refren
e and test tiles.
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