PROYECTO DE EJECUCIÓN ESTRUCTURAL GRUPO G | (PIME) | Junio 2022

Alumna: Estefanía Ferrer Mena Profesora: Arianna Guardiola Víllora

INDICE

- 0. Definición del proyecto
- 1. Parámetros que caracterizan la ubicación del edificio
- 2. Definición de la campaña de prospección geotécnica
- 3. Definición de la estructura
- 4. Memoria de cargas
 - 4.1. Acciones permanentes (G)
 - 4.1.1. Distribución de acciones permanentes
 - 4.2. Acciones variables (Q)
 - 4.2.1. Sobrecarga de uso.
 - 4.2.1.1. Reducción de sobrecargas.
 - 4.2.2. Viento.
 - 4.2.3. Acciones térmicas.
 - 4.2.4. Carga de nieve.
 - 4.3. Acciones accidentales. (A)
 - 4.3.1. Sismo.
 - 4.3.2. Incendio.
 - 4.3.3. Impacto.
 - 4.4. Resumen de hipótesis de carga.
- 5. Combinación de acciones; estados límite.
 - 5.1. Coeficientes de seguridad.
 - 5.2. Coeficientes de simultaneidad.
 - 5.3. Comprobaciones de estados límite últimos (ELU).
 - 5.4. Comprobaciones de estados límite de servicio (ELS).
- 6. Predimensionado
 - 6.1. Definición material
 - 6.2. Cálculo de secciones.
 - 6.2.1. Soportes de hormigón armado.
 - 6.2.2. Soportes metálicos.
 - 6.2.3. Losas BubbleDeck.
 - 6.2.4. Muros de hormigón armado.
 - 6.3. Tipos de uniones y relajaciones.
 - 6.4. Descripción del tipo de sustentación.
- 7. Limitaciones adoptadas y justificación del CTE.

8. Cálculo con Architrave

- 8.1. Modelizado de la estructura.
 - 8.1.1. Modelo estructural.
 - 8.1.2. Geometría de los elementos resistentes.
 - 8.1.3. Acciones aplicadas debidas a cargas permanentes.
 - 8.1.4. Acciones aplicadas debidas a cargas variables.
 - 8.1.5. Acciones debidas al viento. (Aplicadas sobre áreas de reparto verticales)
- 8.2. Solicitaciones.
 - 8.2.1. Barras.
 - 8.2.2. Tensiones de membrana EF2D.
 - 8.2.3. Flexión de placa EF2D.
 - 8.2.4. Solicitaciones para dimensionar EF2D.
- 8.3. Estabilidad global.
 - 8.3.1. Excentricidad de la carga
 - 8.3.2. Equilibrio frente al vuelco.
- 8.4. Deformaciones.
 - 8.4.1. Localización puntos de control.
 - 8.4.2. Control de movimientos.
 - 8.4.3. Desplazamientos muro de sótano, EF2D.
- 8.5. Muestreo aleatorio.
- 8.6. Armado de muros.
 - 8.6.1. Abacos.
- 8.7. Comprobación de la cimentación

9. Cálculo de la cimentación profunda. Pilotes

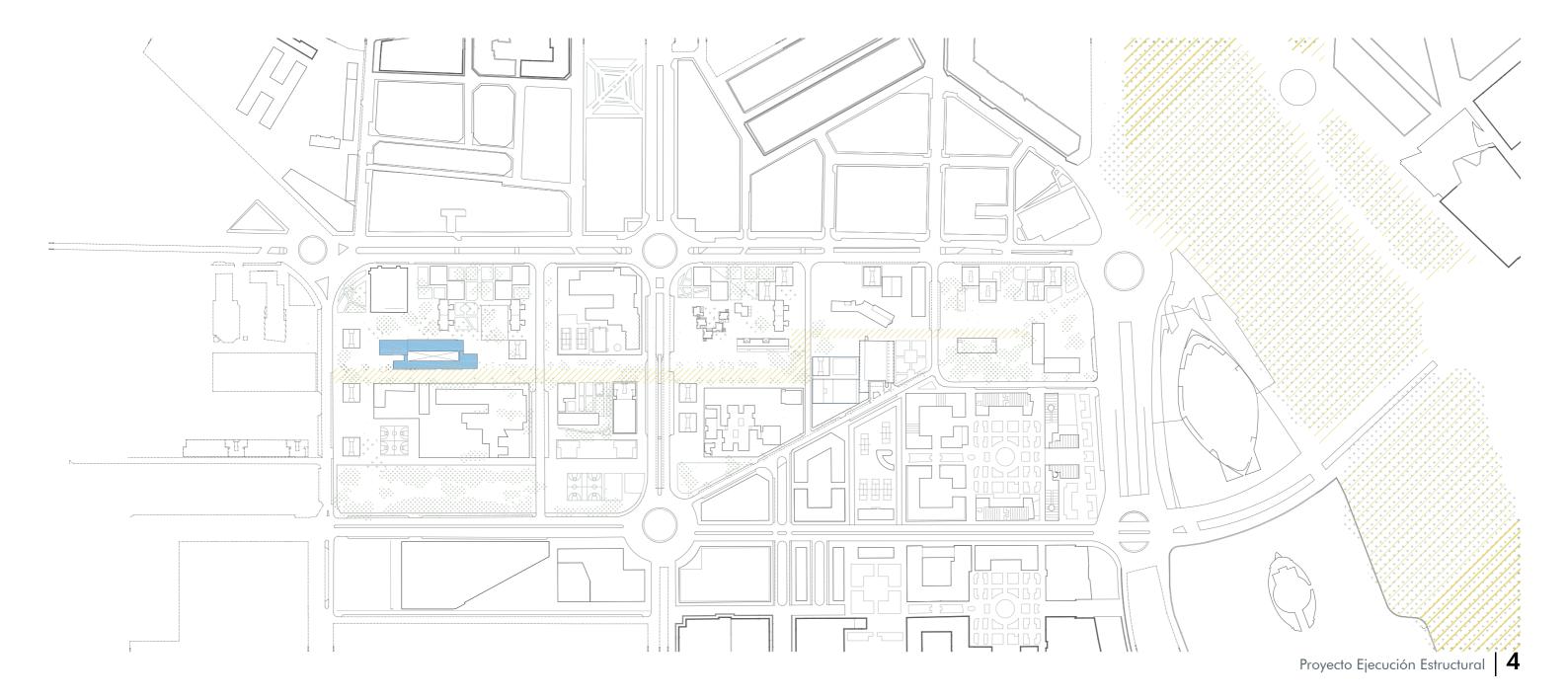
10. Acciones sísmicas

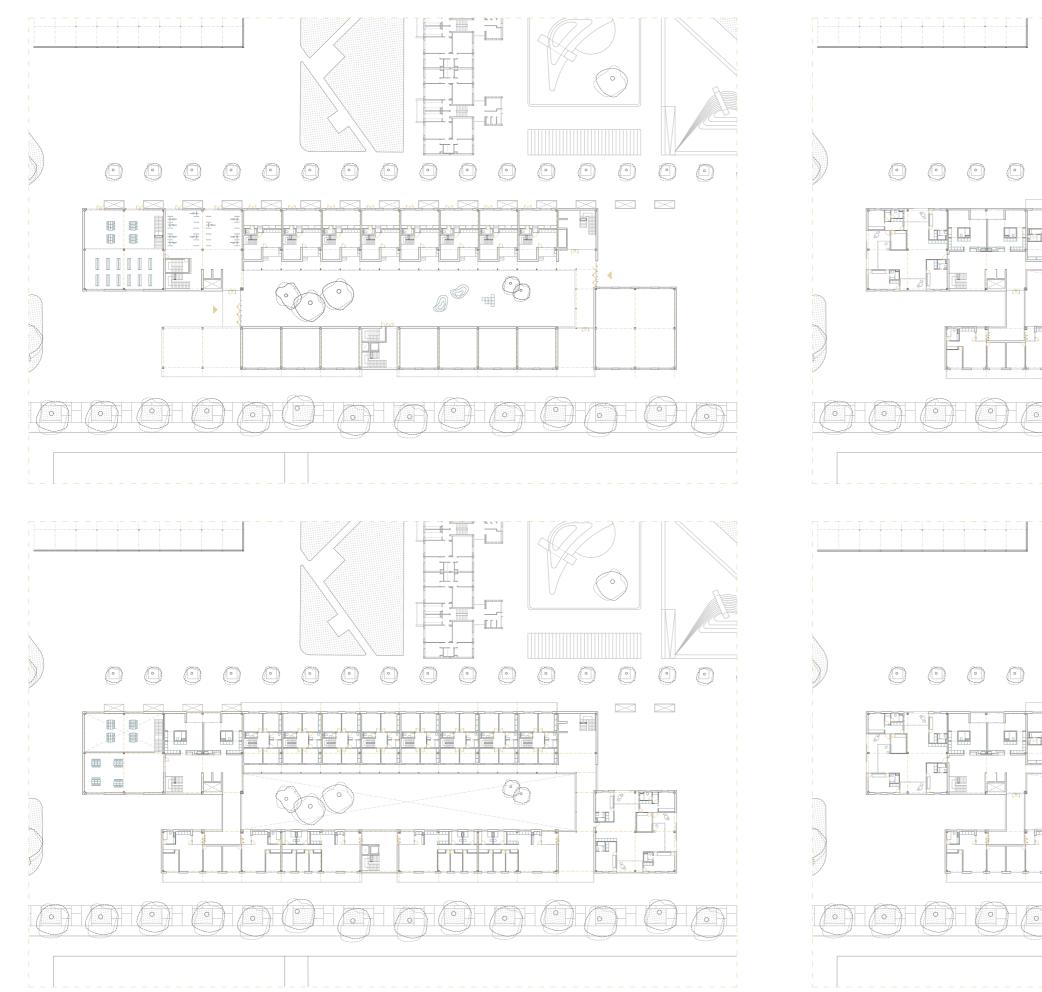
- 10.1. Información sísmica.
 - 10.1.1. Aceleración sísmica básica.
 - 10.1.2. Aceleración sísmica de cálculo.
 - 10.1.3. Espectro de respuesta.
- 10.2. Creación de una nueva hipótesis
- 10.3. Muestreo aleatorio

11. Presupuesto y mediciones

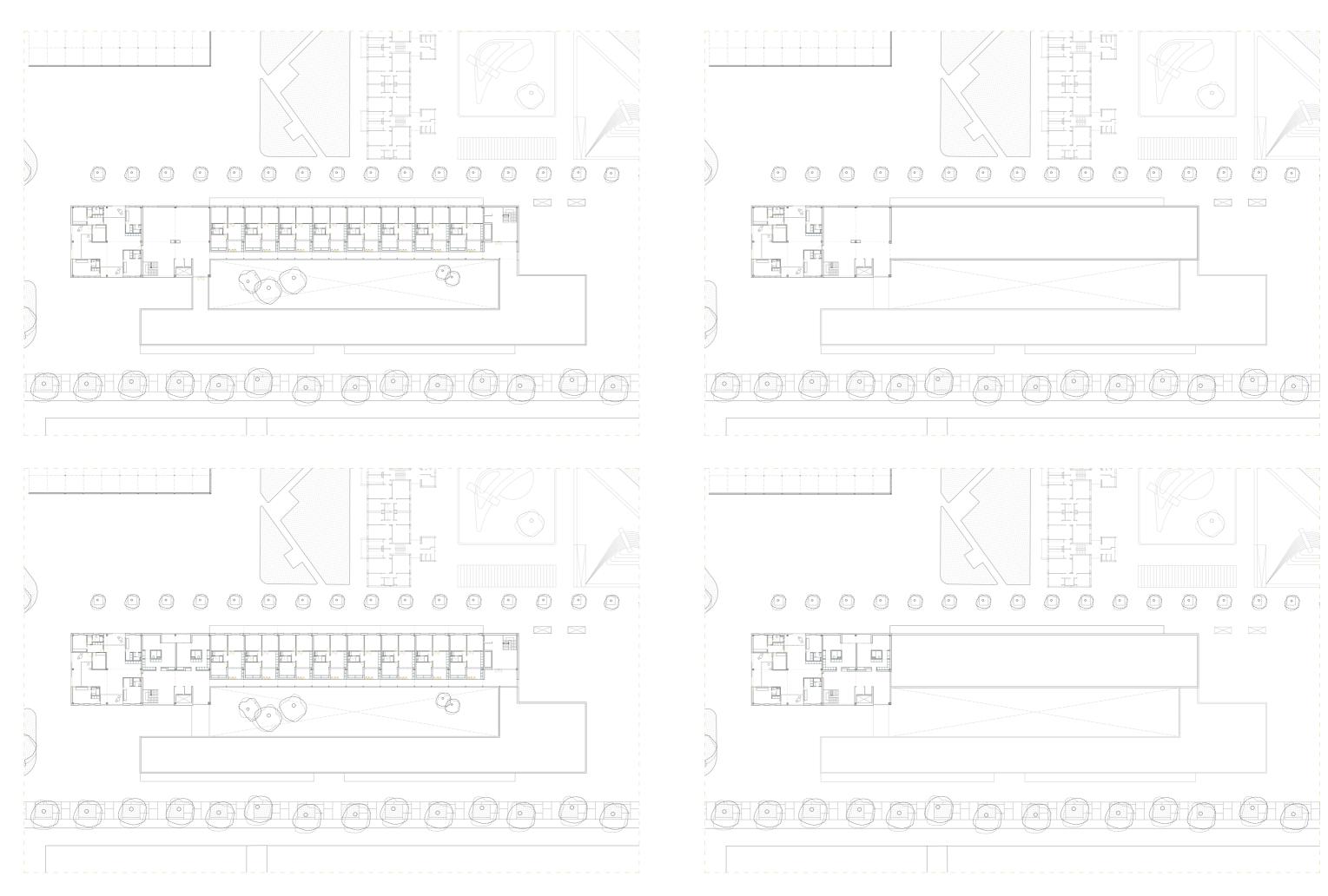
- 11.1. Presupuesto y mediciones
- 11.2. Análisis y comparación del presupuesto.

12. Referencias


Anejo 1. Planos constructivos


Anejo 2. Fichas técnicas y tablas

- A2.1 BubbleDeck
- A2.2 Falso techo KINGSPAN
- A2.3 Tablas. CT DB SE-AE
- A2.4 Mapa de peligrosidad sísmica de España 2015 (en valores de aceleración)
- A2.5 Listado por municipios del coeficiente de contribución K



DEFINICIÓN DEL PROYECTO

1,

PARÁMETROS QUE CARACTERIZAN LA UBICACIÓN DEL EDIFICIO

Entre los parámetros que determinan el terreno de nuestro emplazamiento se encuentran las cargas de nieve, de vinto, de sismo y la capacidad portante del suelo. Esta última es la que se va a explicar en este epígrafe, las demás se expondrán en el apartado 4 de dicha memoria.

- Indicación del estado del solar

El solar elegido partiendo del Master Plan abarca un espacio bacante, parte de la actual acera y del parque existente.

- Descripción de los inmuebles o solares colindantes

No existen solares colindantes al edificio proyectado, las edificaciones más cercanas son las torres en H y los bloques lineales de tres alturas.

- Topografía y altimetría de la zona donde se ubicarán las edificaciones

En la zona de actuación no se encuentra desnivel.

- Características medioambientales:

Altitud = 13m

Pluviometría = clima de estepa local (precipitación aproximada de 427mm)

Distancia al mar = 3,5 Km

Variaciones térmicas anuales = la temperatura va aproximadamente de 6°C a 30°C

Exposición a la acción del viento = qe= 0,672

Sismicidad = moderada

- Accesos para los servicios de extinción de incendios

Por la calle Carrer de l'Arabista Ambrosio Huici.

- Hipótesis adoptadas relativas a las características del suelo:

Tipos de cimentación previstos = profunda

Cota de cimentación: Zc = 14,88 m

Tipo de estrato del terreno en el que está previsto cimentar = Arcillas medias, arenas y gravas

Profundidad el nivel freático = en torno a 7 m

Tensión admisible estimada: En caso de arcillas blandas, $\sigma c = 100$

Peso específico del terreno = 18 kN/m3

Ángulo de rozamiento interno del terreno = 15°

Coeficiente de Balasto = entre 15-30

- Información básica del suelo:

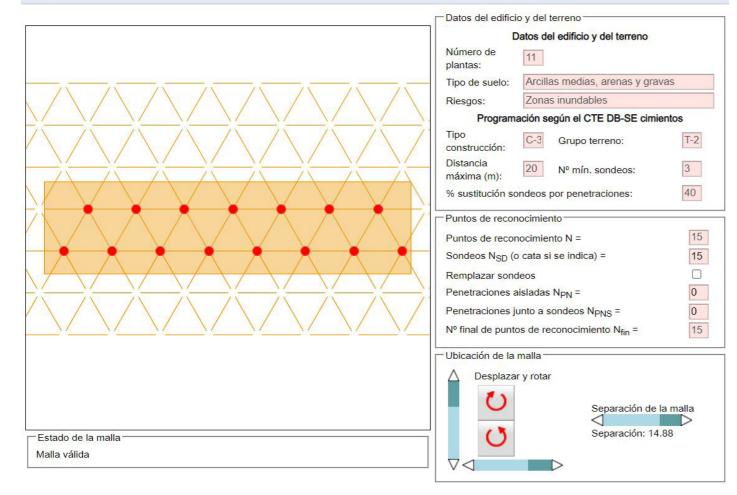
UTM X	726664.38693724
UTM Y	4370522.8934252
Municipio	VALENCIA
Comarca	l'Horta
Provincia	VALÈNCIA / VALENCIA
Número de hoja / Nombre	1514
Tipo de suelo	Arcillas medias, arenas y gravas
Geomorfología	Cuaternario
Litología	
Riesgos geotécnicos	Zonas inundables
Aceleración sísmica	0.06
Coeficiente de contribución	1
Tensión característica inicial	100
Espesor conocido de suelos blandos	No se conocen
Pendiente mayor de 15°	No
Trasladar datos a los impresos	Cerrar

DEFINICIÓN DE LA CAMPAÑA DE PROSPECCIÓN GEOTÉCNICA

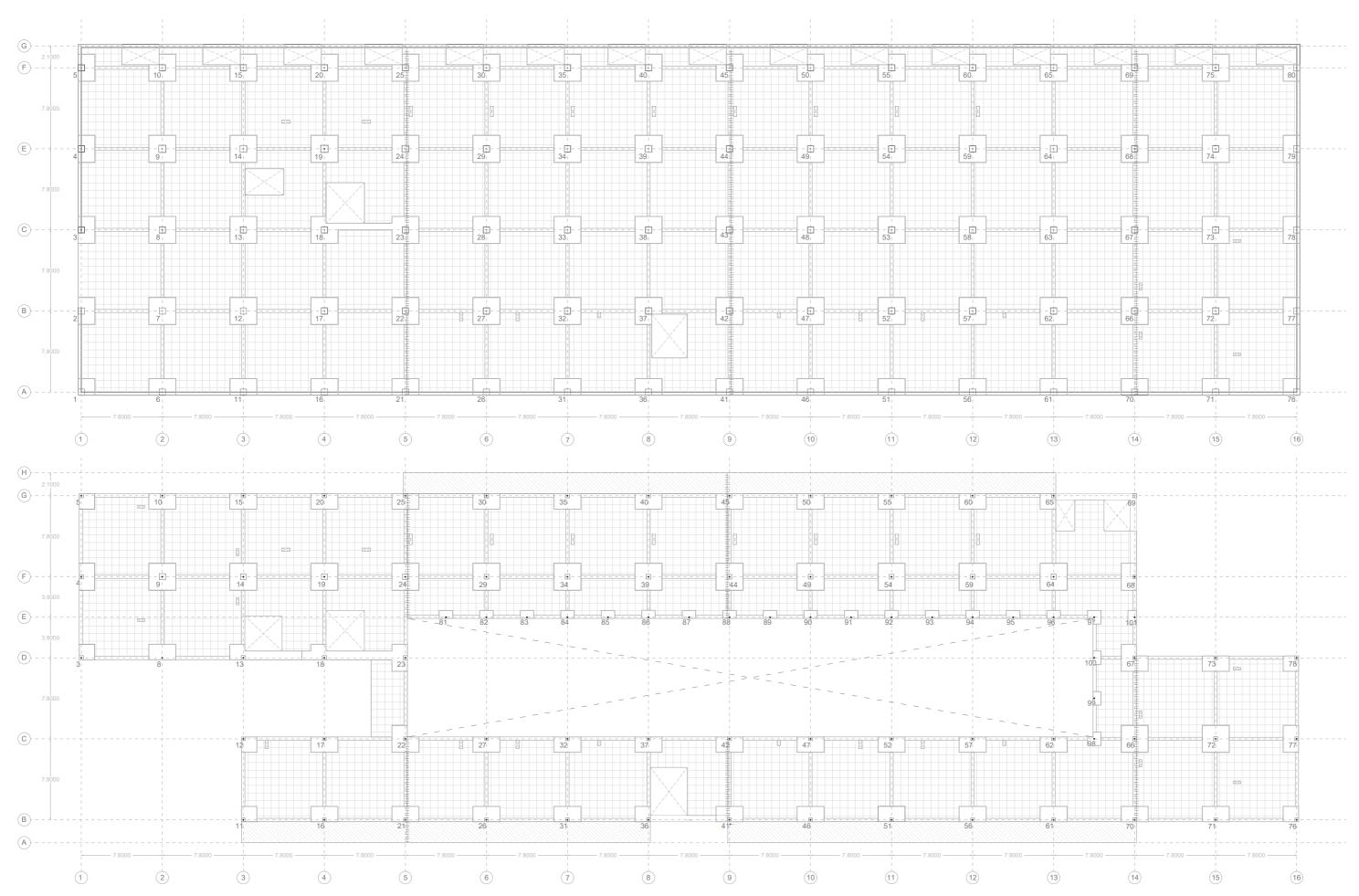
PLANIFICA	CIÓN DE	ESTUDIO GEOT	ÉCNICO S	SEGÚN O	GEG	
					N° REFERI	ENCIA:
1. DATOS I	PREVIOS					HOJA: 1
1.1. DATOS E	E IDENTIF	ICACIÓN				
EDIFICIO	VIVIENDA C	OLECTIVA EN NA ROVELL	_A			
	Dirección:					
	Localidad:	VALENCIA, VALENCIA				
Γ	Namahua					
PROMOTOR	Nombre:					
	Representad Dirección:	о рог.				
			Teléfono:		La mail:	
	Localidad:		releiono.		e-mail:	
AUTOR DEL	Nombre:	ESTEFANIA FERRER MEN	IA.			
PROYECTO	Dirección:					
	Localidad:	VALENCIA	Teléfono:		e-mail:	
1.2. DATOS E	EL SOLAF	र	•			
				\square		
				\boxtimes	Ш	
				\boxtimes		
	\boxtimes					
	\bowtie	П		П		
	_	Disponibilidad de agua		□ □ cí	Пио	
		Disponibilidad de agua		Sí sí	HNO	
		Servidumbres		🔀 sí	☐ NO	
		Indicar servidumbres: Uso actual:		SOLAR VAC	CIO.	
		Rellenos existentes. Es	spesor	sí	NO NO	Z _H =
1.3. DATOS [NEL EDIEIC	·10			_	
1.0. DA 100 L	JEE EDII 10					
				Sí	⊠ NO	
				∐ SÍ	NO NO	
Descripción previs BAJOS COMERO		yecto (Superficies, usos, etc	:.): PROYECTO	DE VIVIEND	DA COOPERATIVA, C	CON ZONAS COMUNES Y
Estructura (tipolog ALIGERADA	gía, materiales): PILARES DE HORMIGÃN	N ARMADO, M	UROS PERIM	IETRALES EN EL SO	TANO Y LOSA
1.4. DATOS [E LA URB	ANIZACIÓN				
Tipologías de edif M, ALTURA MÃX		ación de lindes, cotas de ra	sante, alturas i	máximas, etc.	: EDIFICACIÃN LINEA	AL, SEPARACIÃN DE 10
Urbanización ane	xa a realizar (\	√iales, jardines, rellenos est	ructurales pre\	vistos, etc.): JA	ARDINES Y ACCESO	AL APARCAMIENTO
1.5. DATOS C	OMPLEME	ENTARIOS				
CIMENTACIONES	S CERCANAS	(Tipos, profundidades, pato	ologías, etc.): (CIMENTACIÃI	N POR PILOTES DE L	AS TORRES
INFORMACIÓN H	HISTÓRICA DI	EL SUELO (problemas, etc.)): ZONA INUN	DABLE		
OTROS:						

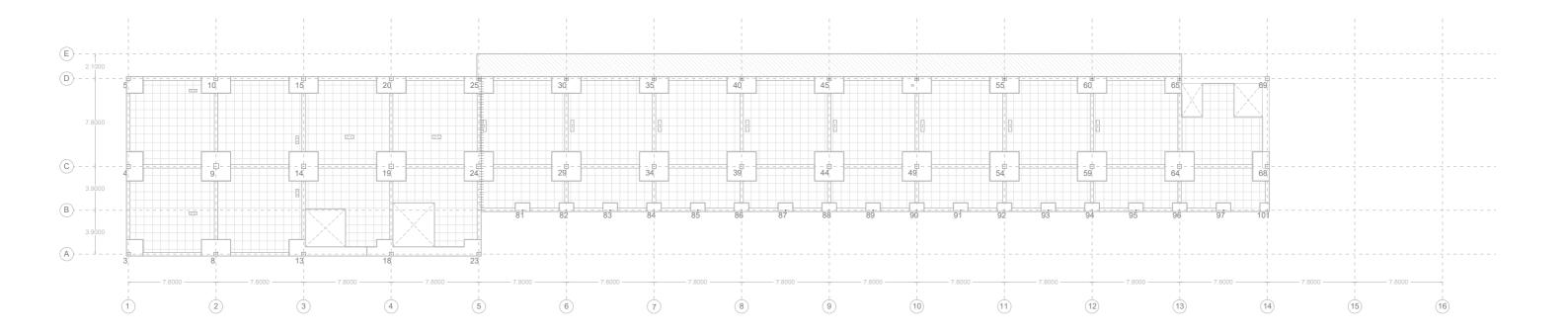
PLANIFICACIÓN DE ESTUDIO GEOTÉCNICO SEG	SÚN GEO	3		
2. INFORMACIÓN BÁSICA		N° REFER	RENCIA:	
			HOJA:	2
2.1. DEL EDIFICIO 2.1.1. ÁREA EQUIVALENTE DE CONTACTO CON EL TERRENO				
Coordenadas de los vértices Directamente en impr	reso			
	Lado	mayor rectángul	о В _м	= 112.8 m
	Lado	menor rectángul	o B _m	= 28.3 m
		$A_{EQ} = B_{M} \cdot B_{m}$	A_{EQ}	= 3192.24
2.1.2. PROFUNDIDAD MEDIA DE EXCAVACIÓN DE SÓTANOS			·	
			Z _x	= 6.2 m
2.1.3. TIPO DE CONSTRUCCIÓN SEGÚN CTE				
Número máximo de plantas incluyenc	do sótanos, á	ticos y casetone	s N _{Pla}	= 11
	Sup	erficie construid	a S _{CT}	= m ²
	TIPO DE C	CONSTRUCCIÓ	N	C-3
2.1.4. TENSIÓN MÁXIMA REPARTIDA DEL EDIFICIO SOBRE EL TERREN	O (CARGAS	SIN MAYORAF	₹)	
			σ_{M}	= 215,5 kN/m ²
2.1.5. DISTANCIA MÍNIMA ENTRE MEDIANERAS EXISTENTES O FUTURA	AS			
			X _M	= 10.0 m
2.2. DEL SUELO 2.2.1. PLANO GEOTÉCNICO DE UBICACIÓN Y COORDENADAS UTM				
	726664.3869	93724	Y: 4370	522.8934252
2.2.2. TIPO DE SUELO Y RIESGOS GEOTÉCNICOS CONOCIDOS	(de los mapa	as geotécnicos)		
SUELO: Arcillas medias, arenas y gravas				
RIESGOS: Zonas inundables				
2.2.3. PELIGROSIDAD SÍSMICA (del mapa de peligrosidad sísmica)				
Aceleración sísmica: a _b / g = 0.06 Coeficient	te de contribu	ıción: K = 1.0		
2.2.4. TENSIÓN CARACTERÍSTICA DEL SUELO (de la tabla T4)				
En caso de arcillas blandas y $Z_x > Z_f$ se tomará	el $\sigma_{_{\scriptscriptstyle C}}$ de las	arcillas media	s σ _c	$= 100.0 \text{ kN/m}^2$
2.2.5. ESPESOR DE SUELO BLANDO (de los mapas geotécnicos o de	e la tabla T4)			
En caso de arcillas bland	$das y Z_x > Z_f$	se tomará Z _f = 2	<u>7</u> x	
En caso de rellenos existent	tes y $Z_H > Z_f$	se tomará Z _f = Z	L _H Z _f	= 0.0 m
2.2.6. TIPOLOGÍA PROVISIONAL DE CIMENTACIÓN				
Peso	específico a	parente del sue	o γ _a	= 18.0 kN/m ³
Relación compensada de tensio	ones $r = \sigma_{M}$	$/(\sigma_{c} + (\gamma_{a} \cdot Z_{x}))$)) r	= 0.614839
TIPOLOGÍA PROVISIONAL DE C	CIMENTACIÓ	N (de la tabla T	5)	Superficial Profunda
2.2.7. INFORMACIÓN ADICIONAL SOBRE TIPO DE SUELO Y RIESGOS G	EOTÉCNICO	s		·
SUELO:				
RIESGOS:				
2.2.8. GRUPO DE TERRENO SEGÚN CTE				
	GRUI	PO DE TERREN	10	T-2

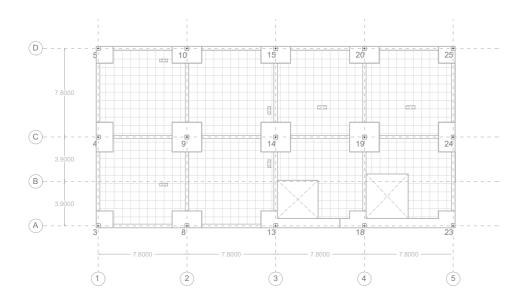
Proyecto Ejecución Estructural | 11


PLANIFICACIÓN DE ESTUDIO GEOTÉCNICO SEGÚN GEG (DRC/02/09)								
3. PROFUNDIDAD	Nº REFEREN							
CITICO CITABILA			н	IOJA:	3			
A. PROFUNDIDAD DE LA CAPA COMPETENTE DESCONOCIDA								
3.1.A. PROFUNDIDA	D POR EXCAVACIÓN C	SUELOS BLANDOS						
		Excavación sótanos Z _x =	6.2 m					
		Suelos blandos o rellenos Z _f =	= 0.0 m					
	Tipología superficial	$Z_{xf} = max(Z_x, Z_f)$						
	Tipología profunda	$Z_{xf} = \max(Z_{x}, Z_{f}, 12)$		Z _{xf} =	12.0 m			
3.2.A. PROFUNDIDA	D POR EMPOTRAMIEN	TO DE LA CIMENTACIÓN	I EN LA CAPA	DE AF	POYO			
				Z _e =	2.0 m			
3.3.A. PROFUNDIDA	D DE RECONOCIMIENT	TO POR DEBAJO DEL PL	ANO DE APOY	o'				
		$\lambda = B_{M} / B_{m} = 3.985866$						
		$F(\lambda) = 1.032924$						
	Tipología superficial	$r = \sigma_{M} / (\sigma_{c} + (\gamma_{a} \cdot Z_{x})) = 0.$	614839					
		$Z_c = F(\lambda) \cdot \sqrt{r \cdot A_{FQ}}$						
	Tipología profunda	$r_p = \sigma_M / (2000 \text{ kN/m}^2) = 0.$	06505					
		$Z_c = F(\lambda) \cdot \sqrt{r_p \cdot A_{EQ}}$						
	Pilotes columna	Diámetro pilote φ =	m					
		Z _c =	14,88 m					
3.4.A. PROFUNDIDA	D DE RECONOCIMIENT	TO TOTAL						
		Z _i = ma	$x (Z_{xf} + Z_e + Z_c, 6)$	Z _i =	29.0 m			

PLANIFICACIÓN	DE EST	TUDIO G	EOTÉCNI	CO SEGI	ÚN GEG		
. TRABAJOS D	F CAMP	O Y DE	I ABORAT	ORIO	N° l	REFERENCIA:	
						HOJA:	4
1.1. NÚMERO INICI		$\overline{}$			·s · · · · · · · · ·	TE\ N -	45
	o coordenadas)	Segun tablas	(por superficie,	verificación de dmax C	TE). N =	15
.2. TRABAJOS DE							
4.2.1. SONDEOS Y PEI				N I OS DE RE	CONOCIMIENTO	1	
		sondeos (N _S				N _{SD} =	
		al de sondeo	S:	L _s = N	SD · Zi	L _s =	435.0 m
		sondeos (% (_			
			s aisladas (si el			N _{PN} =	
			s junto a sonde	`	. ,	N _{PNS} =	
		al de puntos o	de reconocimien	to N _{fin} = N _{SD} +	+ N _{PN} + N _{PNS}	N _{fin} =	15
4.2.2. NÚMERO DE CA	TAS						
Determinación del es	-				$E(A_{EQ}/400) = 0$		
Caso C-0 y T-1 y N _{SD}	=0 para com	plementar las	penetraciones	CTE	$N_{ca2} = 0$		_
Otros (situación cime	ntación colino	dante, detecc	ión instalaciones	s, etc.)	N _{ca3} =	N _{ca} =	0
4.2.3. NÚMERO DE MU							
Testigos continuos a	rotación con	batería (D _m =	2 m)	Otro tipo o	de avance (D _m = 1'5		
	Número de	muestras		N _{mu} =	$1 + E(L_D / D_m)$	N _{mu} =	218
4.2.4. NÚMERO DE PIE	ZÓMETROS	i					
					N _{pz} = 1 + E	$(N_{SD}/2)$ $N_{pz} =$	8
4.2.5. OTROS (Geofísio	os, permeal	oilidad, presi	iómetros, molir	ete, placa d	e carga, etc)		
Geofísicos (Down-hole o cross	s-hole obligatorio					N _{ec1} =	
ermeabilidad						N _{ec2} =	
						N _{ec3} =	
						N _{ec4} =	
.3. TRABAJOS DE							
4.3.1. NÚMERO MÍNIM				208	1 -0.22		
		nsayos básico			I _{EB} = 0.32		
	Número mír	nimo de conju	ıntos de		N _{EB} = 1 + E(I _{EB} · N _E	_{nu}) N _{EB} =	70
4.3.2. NÚMERO DE EN	SAYOS QUÍ	MICOS					
	Del materia	l:			$N_{eq} = N_{SD}$	N _{eq} =	15
	Del agua (si	i se atraviesa	el nivel freático):	$N_{eqa} = E(N_{SD} / 2)$ 1	I N _{eqa} =	7
4.3.3. NÚMERO DE EN	SAYOS ESP	ECIALES	(de la tabla T	11)	_		
rcillas medias:	Edométricos	S			$N_{ed} = N_{EB} / 2$		
rcillas blandas:	Edométricos	s en Z _f			$N_{ed} = (N_{SD} \cdot Z_{xf} \cdot I_{E})$	$_{\rm B}$) / $\rm D_{\rm m}$ $\rm N_{\rm ed}$ =	0
uelos colapsables:	Edométrico	con humecta	ción a la presiór	n de cálculo	$N_{edc} = N_{SD} \cdot (Z_c / 3)$) N _{edc} =	0
rcillas expansivas:	Lambe				$N_{el} = 2 \cdot N_{EB}$	N _{el} =	0
	Presión	hinchamient	o en edómetro		$N_h = 2 \cdot N_{SD}$	N _h =	0
eslizamientos	Triaxial	CU		1 cada 3 m d	e talud en sondeos cercano	N _{tCU} =	2
aludes, excavaciones de sótano: endiente > 15º)	s, Triaxial	CD		1 cada 3 m d	e talud en sondeos cercano	os N _{tCD} =	0
ondelic r 10)	Corte d	irecto		1 cada 3 m d	e talud en sondeos cercano	N _{ec} =	0
4.3.4. OTROS (roca	s, etc.)						
						N _{el1} =	
						N _{el2} =	


E significa número entero de la expresión incluida entre paréntesis.


Proyecto Ejecución Estructural | 12


Asignación del número de puntos de reconocimiento

DEFINICIÓN DE LA ESTRUCTURA

BubbleDeck. 0,35 m

Losa maciza. 0,15 m

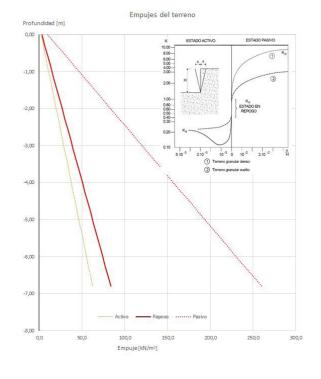
Junta de dilatación

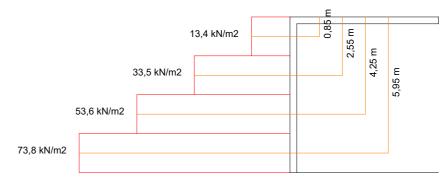
MEMORIA DE CARGAS

H5. Planta 2 (+7 m)		H8. Planta 5 (+16,6 m)	
F6. Losa maciza de hormigón armado HA-25, canto 15 cm Falso techo de madera de roble, 11 mm de espesor Terrazo sobre mortero, 50 mm espesor	3,75 kN/m2 0,15 kN/m2 0,80 kN/m2 4,70 kN/m2	Cubierta plana, recrecido, con impermeabilización vista protegida Rellenos de tierra, 200 mm	1,5 kN/m2 4,00 kN/m3 11,75 kN/m2
F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm Falso techo F60. Kingspan; Clase 2 Parque y tarima de 20 mm de espesor sobre rastreles	6,25 kN/m2 0,38 kN/m2 0,40 kN/m3 7,03 kN/m2	Falso techo de madera de roble, 11 mm de espesor Terrazo sobre mortero, 50 mm espesor F7. Forjado de losa aligerada con sistema Bubbledeck, 340mm	0,15 kN/m2 0,80 kN/m2 4,70 kN/m2 6,25 kN/m2
H4. Planta 1 (+3,8 m) F2. Forjado de losa aligerada con sistema Bubbledeck, 340mm Terrazo sobre mortero, 50 mm espesor	6,25 kN/m2 0,80 kN/m2 7,05 kN/m2	F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm Falso techo F60. Kingspan; Clase 2 Parque y tarima de 20 mm de espesor sobre rastreles F6. Losa maciza de hormigón armado HA-25, canto 15 cm	6,25 kN/m2 0,38 kN/m2 0,40 kN/m3 7,03 kN/m2 3,75 kN/m2
F4. Caviti C-50, 175 kg/m2 HA-25 10cm 25kN/m3 · 0,10 m	1,75 kN/m2 2,50 kN/m2 4,25kN/m2	F2. Forjado de losa aligerada con sistema Bubbledeck, 340mm Terrazo sobre mortero, 50 mm espesor	6,25 kN/m2 0,80 kN/m2 7,05 kN/m2
F2. Forjado de losa aligerada con sistema Bubbledeck, 340mm Terrazo sobre mortero, 50 mm espesor F3. Forjado de losa aligerada con sistema Bubbledeck, 340mm Rellenos de tierra, 200 mm	6,25 kN/m2 0,80 kN/m2 7,05 kN/m2 6,25 kN/m2 4,00 kN/m3 10,25 kN/m2	F6. Losa maciza de hormigón armado HA-25, canto 15 cm Falso techo de madera de roble, 11 mm de espesor Terrazo sobre mortero, 50 mm espesor H7. Planta 4 (+13,4 m)	0,15 kN/m2 0,80 kN/m2 4,70 kN/m2
Acabado pulido, no se termina con pavimento H3. Planta baja (0 m)		F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm Falso techo F60. Kingspan; Clase 2 Parque y tarima de 20 mm de espesor sobre rastreles	6,25 kN/m2 0,38 kN/m2 0,40 kN/m3 7,03 kN/m2
H2. Planta sótano -1 (-3,4 m) F1. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	F2. Forjado de losa aligerada con sistema Bubbledeck, 340mm Terrazo sobre mortero, 50 mm espesor	6,25 kN/m2 0,80 kN/m2 7,05 kN/m2
F1. Forjado de losa aligerada con sistema Bubbledeck, 340mm Acabado pulido, no se termina con pavimento	6,25 kN/m2	H6. Planta 3 (+10,2 m)	
H1. Planta sótano -2 (-6,8 m)		Terrazo sobre mortero, 50 mm espesor	0,80 kN/m2 4,70 kN/m2
detalles constructivos del Catálago de Elementos Constructivos del CTE. Elementos Horizontales (H)		F6. Losa maciza de hormigón armado HA-25, canto 15 cm Falso techo de madera de roble, 11 mm de espesor	3,75 kN/m2 0,15 kN/m2
A continuación se enumeran los valores asignados a las acciones permanente tructivos y su peso propio, estos se basan en las indicaciones del Anejo C del		Falso techo F60. Kingspan; Clase 2 Parque y tarima de 20 mm de espesor sobre rastreles	0,38 kN/m2 0,40 kN/m3 7,03 kN/m2
4.1. Acciones permanentes (G)		F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2

F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	Elementos Verticales (V)	
Falso techo F60. Kingspan; Clase 2 Parque y tarima de 20 mm de espesor sobre rastreles	0,38 kN/m2 0,40 kN/m3	V1. Planta baja (0 m)	
raique y latima de 20 mm de espesor sobre rasileies	7,03 kN/m2	VI. Flama baja (V m)	
F	0.75111/	CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
F6. Losa maciza de hormigón armado HA-25, canto 15 cm Falso techo de madera de roble, 11 mm de espesor	3,75 kN/m2 0,15 kN/m2	TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
Terrazo sobre mortero, 50 mm espesor	0,80 kN/m2	191. Bobie noja de ladinio nocco con disianie infermedio	1,70 KI4/III2
	4,70 kN/m2	TB2. Tabiquería de placas de yeso	1,00 kN/m2
H9. Planta 6 (+19,8 m)		H2. Planta 1 (+3,8 m)	
F2. Forjado de losa aligerada con sistema Bubbledeck, 340mm Terrazo sobre mortero, 50 mm espesor	6,25 kN/m2 0,80 kN/m2	CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
Terrazo sobre monero, so min espesor	7,05 kN/m2	TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	TB2. Tabiquería de placas de yeso	1,00 kN/m2
Falso techo F60. Kingspan; Clase 2 Parque y tarima de 20 mm de espesor sobre rastreles	0,38 kN/m2 0,40 kN/m3		
	7,03 kN/m2	H3. Planta 2 (+7 m)	
F6. Losa maciza de hormigón armado HA-25, canto 15 cm	3,75 kN/m2	CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
Falso techo de madera de roble, 11 mm de espesor Terrazo sobre mortero, 50 mm espesor	0,15 kN/m2 0,80 kN/m2	TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
Terrazo sobre menero, se min espesor	4,70 kN/m2	101. Dobie noja de ladinio noeco con disianie iniermedio	1,70 KI4/III2
F8. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	TB2. Tabiquería de placas de yeso	1,00 kN/m2
Cubierta plana, recrecido,	1,5 kN/m2		
Terrazo sobre mortero, 50 mm espesor	0,80 kN/m2	H4. Planta 3 (+10,2 m)	
	8,55 kN/m2	CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
1110 Planta 7 (1 02 m)			•
H10. Planta 7 (+23 m)		TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
F2. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	TB2. Tabiquería de placas de yeso	1,00 kN/m2
Terrazo sobre mortero, 50 mm espesor	0,80 kN/m2 7,05 kN/m2		
FF F : I I I I I I I I I I I I I I I I I		H5. Planta 4 (+13,4 m)	
F5. Forjado de losa aligerada con sistema Bubbledeck, 340mm Falso techo F60. Kingspan; Clase 2	6,25 kN/m2 0,38 kN/m2	CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
Parque y tarima de 20 mm de espesor sobre rastreles	0,40 kN/m3 7,03 kN/m2	CR2. Antepecho ladrillo grueso < 14 cm, altura: 1,2 m	2,00 kN/m
		TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
H11. Planta 8 (+26,2 m)		TB2. Tabiquería de placas de yeso	1,00 kN/m2
F9. Forjado de losa aligerada con sistema Bubbledeck, 340mm Cubierta invertida con acabado de grava	6,25 kN/m2 2,50 kN/m2	H6. Planta 5 (+16,6 m)	
	8,75 kN/m2		
		CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
		TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2

TB2. Tabiquería de placas de yeso	1,00 kN/m2
H7. Planta 6 (+19,8 m)	
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
CR2. Antepecho ladrillo grueso < 14 cm, altura: 1,2 m	2,00 kN/m
TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
TB2. Tabiquería de placas de yeso	1,00 kN/m2
H8. Planta 7 (+23 m)	
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
TB2. Tabiquería de placas de yeso	1,00 kN/m2
H9. Planta 8 (+26,2 m)	
CR2. Antepecho ladrillo grueso < 14 cm, altura: 1,2 m	2,00 kN/m
Escaleras (E)	
E1. Escalera de losa de hormigón armado con acabado cerámico Baldosa hidráulica o cerámica, 0,05 m de espesor total Peldañeado de hormigón Losa maciza de hormigón, gruso 0,20m	0,80 kN/m2 1,25 kN/m2 5,00 kN/m2 7,05 kN/m2
Ascensor (A)	
A1. Ascensor Personas (75Kg · 6 personas) Cabina Contrapeso Cables y poleas Motor	450 kg 300 kg 750 kg 300 kg 300 kg 2.100 kg 21 kN
Ascensor de 3m2 (21 kN/3m2)	7kN/m2

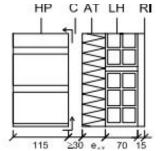

Empuje del terreno

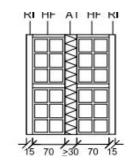

Para el cálculo del empuje del terreno en reposo sobre los muros del sótano se han utilizado las tablas de cálculo de excel. En ellas se aportan los datos conocidos del terreno, entre ellos el nivél freático situado a un nivél inferior que nuestra cota del aparcamiento.

CALCULO DEL EMI	PUJE TOTAL	SOBRE EL	MURO
Ángulo de rozamiento inter	no	ф	20,0 1
Peso específico suelo	[kNlm³]	γ	18,0
Profundidad máxima	[m]	Z _{mex}	6,80
Profundidad nivel freático	[m]	h	7,00
Sobrecarga superficial	[kNlm²]	s	5,00

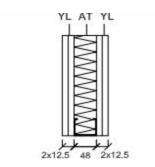
De este modo se obtiene el valor de las cargas a distintas profundidades permitiendo así representar la distribución del empuje del terreno simplificada aplicada por escalones de carga.

Tipo de empuje	Activo K. 0,490	Reposo K _• 0,658	Pasivo K, 2,040
Profundidad z; [m]	Emp	ouje total	[kN/m²]
0,00	2,5	3,3	10,2
-0,28	5,0	6,6	20,6
-0,57	7,5	10,0	31,0
-0,85	10,0	13,4	41,4
-1,13	12,5	16,7	51,8
-1,42	15,0	20,1	62,2
-1,70	17,5	23,4	72,6
-1,98	20,0	26,8	83,0
-2,27	22,5	30,1	93,4
-2,55	25,0	33,5	103,8
-2,83	27,5	36,8	114,2
-3,12	30,0	40,2	124,6
-3,40	32,5	43,6	135,0
-3,68	35,0	46,9	145,4
-3,97	37,5	50,3	155,8
-4,25	40,0	53,6	166,2
-4,53	42,5	57,0	176,6
-4,82	45,0	60,3	187,0
-5,10	47,5	63,7	197,4
-5,38	50,0	67,0	207,8
-5,67	52,5	70,4	218,2
-5,95	55,0	73,8	228,6
-6,23	57,5	77,1	239,0
-6,52	60,0	80,5	249,4
-6,80	62,5	83,8	259,8



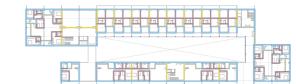

Escalones de carga

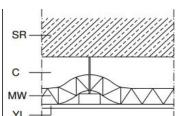
Instalaciones (I)

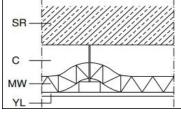

Detalles constructivos

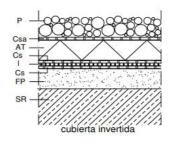
Fachada de ladrillo cara-

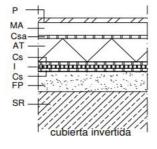
Medianera entre viviendas

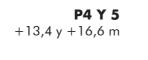

Partición de placa de yeso


P1 +3,8 m


P2 Y 3 +7 y + 10,2 m


Pavimento de madera


Falso techo de placa de yeso


Cubierta ajardinada y antepecho de ladrillo caravista

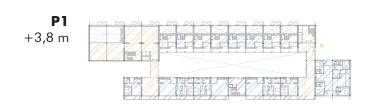
Cubierta invertida con acabado de grava

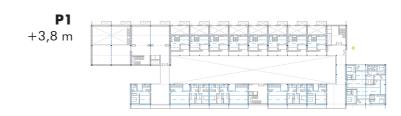
Cubierta invertida transita-

P6 Y 7 +19,8 y +23 m

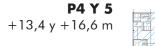
P8 +26,2 m

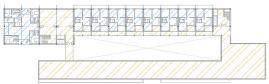
Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m = 7 kN/m

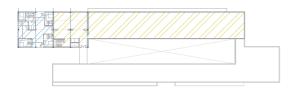

CERRAMIENTOS Y COMPARTIMENTACIONES


- Vidrio armado 6 mm espesor = 0,35 kN/m
- Tabicón u hoja simple de albañilería; grueso total < 0.14 m = 5 kN/m
- Tabiquería = 1 kN/m2
- Antepecho ladrillo grueso < 14 cm, altura: 1,2 m = 2 kN/m

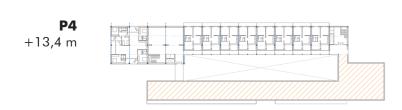
PAVIMENTOS FALSOS TECHOS

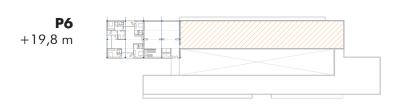


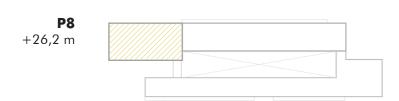




P6 Y 7 +19,8 y +23 m






- Pavimento de madera; grueso total < 0,08 m = 1 kN/m2
- Pavimentocerámico; grueso total < 0,08 m = 1 kN/m2

CUBIERTAS

- Terreno , como en jardineras, incluyendo material de drenaje = 20 kN/m3

- Cubiertas transitables accesibles sólo privadamente = 1 kN/m2

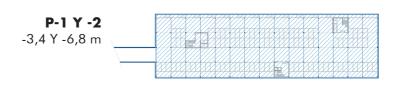
 Cubierta accesible para manteni
 - miento. Cubierta con inclinación inferior a 20° = 1 kN/m2

4.2. Acciones variables (Q)

A. Zonas residenciales

4.2.1. Sobrecarga de uso.

A continuación se enumeran los valores asignados a las acciones variables, en concereto la sobrecarga de uso. Los valores se obtienen de la Tabla 3.1 VAlores caracteristicos de las sobrecargas de uso del DBSE-AE.

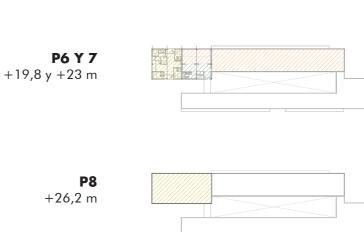

kN/m2

	•
A1. Vivienda	2
C Zonas de acceso público *	kN/m2
C1. Zonas con mesas y sillas (comedor comunitario) * A las zonas de uso comunitario al no estar totalmente definidas les he puesto una sobrecarga de uso y sillas, ya que se podría encontrar en estos lugares.	3 de zona con mesas
D Zona comercial	kN/m2
D1. Locales comerciales	5
E Zonas de tráfico y aparcamiento para vehículos ligeros	kN/m2
E1. Automóviles	2
G Cubiertas parcialmente accesibles	kN/m2
G1. Cubierta de grava accesibles únicamente para conservación G2. Cubierta vegetal	1 3

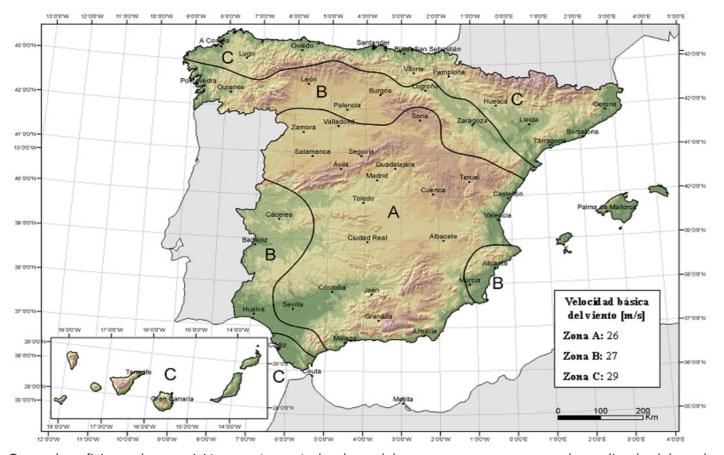
4.2.1.1. Reducción de sobrecargas

No en necesario aplicarán coeficientes de reducción de sobrecargas como sugiere la Tabla 3.2. Coeficientes de reducción de sobrecargas debido a la variabilidad de usos que tiene el edifcio y por ello de las sobrecagas. A continuación, se indican los valores citados y su ubicación en el edificio.

SOBRECARGAS DE USOS



Cálculo de la tensión máxima transmitida al terreno		TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
Se suman las cargas permanentes y las variables de uso para evaluar la tensión sobre el terreno.		TB2. Tabiquería de placas de yeso	1,00 kN/m2
Cargas peranentes		P6. Planta 3 (+10,2 m)	
P1. Planta sótano -2 (-6,8 m)		F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2
F1. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2
P2 . Planta sótano -1 (-3,4 m)		F6. Losa maciza de hormigón armado, falso techo y terrazo	4,70 kN/m2
F1. Forjado de losa aligerada con sistema Bubbledeck, 340mm	6,25 kN/m2	CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
	- / /	TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
P3. Planta baja (0 m)		TB2. Tabiquería de placas de yeso	1,00 kN/m2
F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2		,
F3. Forjado de losa aligerada Rellenos de tierra	10,25 kN/m2	P7. Planta 4 (+13,4 m)	
F4. Caviti C-50, 175 kg/m2	4,25kN/m2	F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m	F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2
TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2	F6. Losa maciza de hormigón armado, falso techo y terrazo	4,70 kN/m2
TB2. Tabiquería de placas de yeso	1,00 kN/m2	F7. Forjado de losa aligerada, cubierta pana y rellenos de tierra	11,75 kN/m2
		CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
P4. Planta 1 (+3,8 m)		CR2. Antepecho ladrillo grueso < 14 cm, altura: 1,2 m	2,00 kN/m
F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2	TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2	TB2. Tabiquería de placas de yeso	1,00 kN/m2
F6. Losa maciza de hormigón armado, falso techo y terrazo	4,70 kN/m2		
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m	P8. Planta 5 (+16,6 m)	
TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2	F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2
TB2. Tabiquería de placas de yeso	1,00 kN/m2	F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2
		F6. Losa maciza de hormigón armado, falso techo y terrazo	4,70 kN/m2
P5. Planta 2 (+7 m)		CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m
F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2	TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2
F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2	TB2. Tabiquería de placas de yeso	1,00 kN/m2
F6. Losa maciza de hormigón armado, falso techo y terrazo	4,70 kN/m2		
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m	Duamada Eia	ausića Estaustural 25


P9. Planta 6 (+19,8 m)		Sobrecarga de uso	
F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2	P1. Planta sótano -2 (-6,8 m)	
F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2	E1. Automóviles	2 kN/m2
F6. Losa maciza de hormigón armado, falso techo y terrazo	4,70 kN/m2	P2. Planta sótano -1 (-3,4 m) E1. Automóviles	2 kN/m2
F8. Forjado de losa aligerada, cubierta plana y terrazo	8,55 kN/m2	P3. Planta baja (0 m)	
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m	A1. Vivienda C1. Zonas con mesas y sillas (comedor comunitario)	2 kN/m2 3 kN/m2
CR2. Antepecho ladrillo grueso < 14 cm, altura: 1,2 m	2,00 kN/m	D1. Locales comerciales G2. Cubierta vegetal	5 kN/m2 3 kN/m2
TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2	P4. Planta 1 (+3,8 m)	
TB2. Tabiquería de placas de yeso	1,00 kN/m2	A1. Vivienda C1. Zonas con mesas y sillas (comedor comunitario)	2 kN/m2 3 kN/m2
P10. Planta 7 (+23 m)		P5. Planta 2 (+7 m) A1. Vivienda	2 kN/m2
F2. Forjado de losa aligerada, pavimento de terrazo	7,05 kN/m2	C1. Zonas con mesas y sillas (comedor comunitario)	3 kN/m2
F5. Forjado de losa aligerada, falso techo y tarima de madera	7,03 kN/m2	P6. Planta 3 (+10,2 m) A1. Vivienda	2 kN/m2
CR1. Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7,00 kN/m	C1. Zonas con mesas y sillas (comedor comunitario)	3 kN/m2
TB1. Doble hoja de ladrillo hueco con aislante intermedio	1,70 kN/m2	P7. Planta 4 (+13,4 m) A1. Vivienda	2 kN/m2
TB2. Tabiquería de placas de yeso	1,00 kN/m2	C1. Zonas con mesas y sillas (comedor comunitario) G2. Cubierta vegetal	3 kN/m2 3 kN/m2
P11. Planta 8 (+26,2 m)		P8. Planta 5 (+16,6 m) A1. Vivienda C1. Zonas con mesas y sillas (comedor comunitario)	2 kN/m2 3 kN/m2
F9. Forjado de losa aligerada, cubierta acabado de grava	8,75 kN/m2	P9. Planta 6 (+19,8 m)	<u>,</u> <u>-</u>
CR2. Antepecho ladrillo grueso < 14 cm, altura: 1,2 m	2,00 kN/m	A1. Vivienda C1. Zonas con mesas y sillas (comedor comunitario)	2 kN/m2 3 kN/m2
Escaleras (E)		P10. Planta 7 (+23 m)	
E1. Escalera de losa de hormigón armado con acabado cerámico	7,05 kN/m2	A1. Vivienda C1. Zonas con mesas y sillas (comedor comunitario)	2 kN/m2 3 kN/m2
Ascensor (A)		P11. Planta 8 (+26,2 m) G1. Cubierta de grava accesibles únicamente para conservación	1 kN/m2
A1. Ascensor de 3m2 (21 kN/3m2)	7kN/m2	Tensión media = 215,5 kN/m2	
Instalaciones (I)			
	0.0131/ 5		

0,8 kN/m2

I1. Instalación placas solares

4.2.2. Viento. (Art. 3.3.2. DB SE-AE Acciones en la edificación)

La acción del viento puede expresarse como: qe= qb·ce·cp donde, qb es la presión dinámica del viento: Valencia se encuentra en la zona A (figura D.1) y le corresponde una presión dinámica de 0,42 kN/m2.

Ce es el coeficiente de exposición y varía según la altura del punto a tener en cuenta, dependiendo del grado de aspereza de su entorno. Se determina de acuerdo con lo establecido en el artículo. 3.3.3; dichos valores se obtienen en la tabla 3.4 del Anejo.

	Grado de aspereza del entorno		Altura	del p	ounto	cons	idera	do (m)
	Grado de aspereza del entorno	3	6	9	12	15	18	24	30
ī	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	2,2	2,5	2,7	2,9	3,0	3,1	3,3	3,5
II	Terreno rural Ilano sin obstáculos ni arbolado de importancia	2,1	2,5	2,7	2,9	3,0	3,1	3,3	3,5
Ш	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	1,6	2,0	2,3	2,5	2,6	2,7	2,9	3,1
IV	Zona urbana en general, industrial o forestal	1,3	1,4	1,7	1,9	2,1	2,2	2,4	2,6
v	Centro de negocio de grandes ciudades, con profusión de edificios en altura	1,2	1,2	1,2	1,4	1,5	1,6	1,9	2,0

En nuestro caso, la zona que nos concierne es la IV, Zona urbana en general, industrial o forestal. Al calcular cuatro zonas de viento, una por cada bloque con la misma altura tendremos tres coeficientes de exposición:

- -Altura de 30, Ce = 2,6
- -Altura de 24, Ce = 2,4
- -Altura de 15, Ce = 2,1

Cp es el coeficiente eólico o de presión, dependiente de la forma y orientación de la superficie respecto al viento, y de la situación del punto respecto a los bordes de esa superficie.

ACCIONES GENERADAS POR EL VIENTO

Densidad del aire	δ	1,25	kg/m³
Velocidad del viento	v_b	26,0	m/s
Velocidad del viento en ELS	V _{b ELS}	26,0	m/s
Presión dinámica del viento	$q_b = 0.5 \cdot \delta \cdot v_b^2$	0,423	kN/m²
Presión dinámica del viento en ELS	q _{b ELS}	0,423	kN/m ²
Duración del periodo de servicio		50	años
Coeficiente corrector aplicable en ELS		1,00	

Presión estática del viento	$q_e = q_b \cdot c_e \cdot c_p$	Presión a barlovento
[kN/m²]	a = a . a . a	Succión a
	$q_e = q_b \cdot c_e \cdot c_s$	sotavento

Coeficiente de	Exposición		$c_e = F \cdot (F + 7 \cdot k)$
Grado de asp	oereza del	IV	Según tabla D.2
entor	no	IV	Seguii tabia D.2
k	0,220		
L	0,300		$F = k \cdot ln(max(z,Z) / L)$
Z	5,000		

Viento 1 (altura de 26,2 m)

		Altura del edificio	26,2 m
		Dirección A	Dirección B
Geometría del	Profundidad	16,2 m	31,8 m
edificio	Esbeltez	1,6	0,8

0,8 Esbelteces del edificio Dirección A Dirección B

Coeficientes de	Presión c _p	0,80	0,80
presión y succión	Succión c _s	0,61	0,50

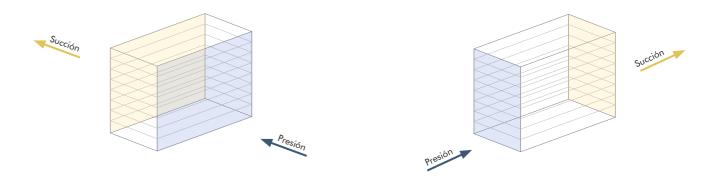
			Presión estática del viento [kN/m2]			
Altura del punto	F	Ce	Presión barlovento A	Succión sotavento A	Presión barlovento B	Succión sotavento B
26,2	0,9833	2,4813	0,839	0,639	0,839	0,524
0,0	0,6190	1,3363	0,452	0,344	0,452	0,282
0,8	0,6190	1,3363	0,452	0,344	0,452	0,282
1,7	0,6190	1,3363	0,452	0,344	0,452	0,282
2,5	0,6190	1,3363	0,452	0,344	0,452	0,282
3,4	0,6190	1,3363	0,452	0,344	0,452	0,282
4,2	0,6190	1,3363	0,452	0,344	0,452	0,282
5,1	0,6221	1,3449	0,455	0,346	0,455	0,284
5,9	0,6560	1,4405	0,487	0,371	0,487	0,304
6,8	0,6853	1,5251	0,515	0,393	0,515	0,322
7,6	0,7113	1,6012	0,541	0,413	0,541	0,338
8,5	0,7344	1,6704	0,565	0,430	0,565	0,353
9,3	0,7554	1,7339	0,586	0,447	0,586	0,366
10,1	0,7745	1,7927	0,606	0,462	0,606	0,379
11,0	0,7922	1,8474	0,624	0,476	0,624	0,390
11,8	0,8085	1,8986	0,642	0,489	0,642	0,401
12,7	0,8236	1,9468	0,658	0,502	0,658	0,411
13,5	0,8378	1,9922	0,673	0,513	0,673	0,421
14,4	0,8512	2,0353	0,688	0,524	0,688	0,430
15,2	0,8637	2,0762	0,702	0,535	0,702	0,439
16,1	0,8756	2,1152	0,715	0,545	0,715	0,447
16,9	0,8869	2,1525	0,728	0,555	0,728	0,455
17,7	0,8977	2,1882	0,740	0,564	0,740	0,462
18,6	0,9079	2,2224	0,751	0,573	0,751	0,469
19,4	0,9177	2,2553	0,762	0,581	0,762	0,476
20,3	0,9270	2,2870	0,773	0,589	0,773	0,483
21,1	0,9360	2,3176	0,783	0,597	0,783	0,490
22,0	0,9446	2,3471	0,793	0,605	0,793	0,496
22,8	0,9529	2,3756	0,803	0,612	0,803	0,502
23,7	0,9609	2,4033	0,812	0,619	0,812	0,508
24,5	0,9687	2,4301	0,821	0,626	0,821	0,513
25,4	0,9761	2,4561	0,830	0,633	0,830	0,519
26,2	0,9833	2,4813	0,839	0,639	0,839	0,524

[©] Agustin Perez-Garcia
Universitat Politècnica de València
aperezg@mes.upv.es

Esta aplicación sólo puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

- cp es el coeficiente de presión en la dirección A: 0,80
- cs es el coeficiente de succión en la dirección A: 0,61
- cp es el coeficiente de presión en la dirección B: 0,80
- cs es el coeficiente de succión en la dirección B: 0,50

Hipotesis viento A


qe (barlovento) = $0.42 \text{ kN/m2} \cdot 2.6 \cdot 0.80 = 0.8736 \text{ kN/m2}$ qe (sotavento) = $0.42 \text{ kN/m2} \cdot 2.6 \cdot 0.61 = 0.6661 \text{ kN/m2}$

Hipotesis viento B

qe (barlovento) = $0.42 \text{ kN/m2} \cdot 2.6 \cdot 0.80 = 0.8736 \text{ kN/m2}$ qe (sotavento) = $0.42 \text{ kN/m2} \cdot 2.6 \cdot 0.50 = 0.546 \text{ kN/m2}$

Hipotesis viento A

Hipotesis viento B

Viento 2 (altura de 19,8 m)

		Altura del edificio	19,8 m
		Dirección A	Dirección B
Geometría del	Profundidad	12,2 m	70,2 m
edificio	Esbeltez	1,6	0,3

Esbelteces del edificio

Dirección A

Dirección B

Coeficientes de	Presión c _p	0,80	0,70
presión y succión	Succión c _s	0,61	0,40

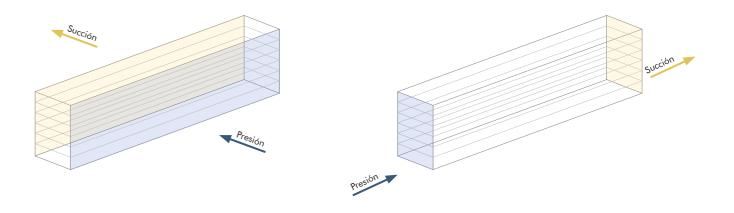
			Presión estática del viento [kN/m2]				
Altura del punto	F	C _e	Presión barlovento A	Succión sotavento A	Presión barlovento B	Succión sotavento B	
19,8	0,9217	2,2690	0,767	0,585	0,671	0,383	
0,0	0,6190	1,3363	0,452	0,344	0,395	0,226	
0,6	0,6190	1,3363	0,452	0,344	0,395	0,226	
1,3	0,6190	1,3363	0,452	0,344	0,395	0,226	
1,9	0,6190	1,3363	0,452	0,344	0,395	0,226	
2,6	0,6190	1,3363	0,452	0,344	0,395	0,226	
3,2	0,6190	1,3363	0,452	0,344	0,395	0,226	
3,8	0,6190	1,3363	0,452	0,344	0,395	0,226	
4,5	0,6190	1,3363	0,452	0,344	0,395	0,226	
5,1	0,6237	1,3496	0,456	0,348	0,399	0,228	
5,7	0,6496	1,4225	0,481	0,367	0,421	0,240	
6,4	0,6728	1,4888	0,503	0,384	0,440	0,252	
7,0	0,6938	1,5498	0,524	0,399	0,458	0,262	
7,7	0,7129	1,6062	0,543	0,414	0,475	0,271	
8,3	0,7305	1,6587	0,561	0,427	0,491	0,280	
8,9	0,7468	1,7079	0,577	0,440	0,505	0,289	
9,6	0,7620	1,7542	0,593	0,452	0,519	0,296	
10,2	0,7762	1,7979	0,608	0,463	0,532	0,304	
10,9	0,7896	1,8393	0,622	0,474	0,544	0,311	
11,5	0,8021	1,8787	0,635	0,484	0,556	0,317	
12,1	0,8140	1,9162	0,648	0,494	0,567	0,324	
12,8	0,8253	1,9521	0,660	0,503	0,577	0,330	
13,4	0,8360	1,9865	0,671	0,512	0,587	0,336	
14,1	0,8463	2,0194	0,683	0,520	0,597	0,341	
14,7	0,8561	2,0512	0,693	0,529	0,607	0,347	
15,3	0,8654	2,0817	0,704	0,536	0,616	0,352	
16,0	0,8744	2,1111	0,714	0,544	0,624	0,357	
16,6	0,8830	2,1396	0,723	0,551	0,633	0,362	
17,2	0,8913	2,1671	0,732	0,558	0,641	0,366	
17,9	0,8993	2,1938	0,741	0,565	0,649	0,371	
18,5	0,9071	2,2196	0,750	0,572	0,656	0,375	
19,2	0,9145	2,2447	0,759	0,578	0,664	0,379	
19,8	0,9217	2,2690	0,767	0,585	0,671	0,383	

[©] Agustin Perez-Garcia Universitat Politècnica de València aperezg@mes.upv.es

Esta aplicación sólo puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

- cp es el coeficiente de presión en la dirección A: 0,80
- cs es el coeficiente de succión en la dirección A: 0,61
- cp es el coeficiente de presión en la dirección B: 0,70
- cs es el coeficiente de succión en la dirección B: 0,40

Hipotesis viento A


qe (barlovento) = $0.42 \text{ kN/m2} \cdot 2.4 \cdot 0.80 = 0.8064 \text{ kN/m2}$ qe (sotavento) = $0.42 \text{ kN/m2} \cdot 2.4 \cdot 0.61 = 0.6148 \text{ kN/m2}$

Hipotesis viento B

qe (barlovento) = $0.42 \text{ kN/m2} \cdot 2.4 \cdot 0.70 = 0.7056 \text{ kN/m2}$ qe (sotavento) = $0.42 \text{ kN/m2} \cdot 2.4 \cdot 0.40 = 0.4032 \text{ kN/m2}$

Hipotesis viento A

Hipotesis viento B

Viento 3 (altura de 13,4 m)

		Altura del edificio	13,4 m
		Dirección A	Dirección B
Geometría del	Profundidad	16,2 m	102 m
edificio	Esbeltez	0,8	0,1

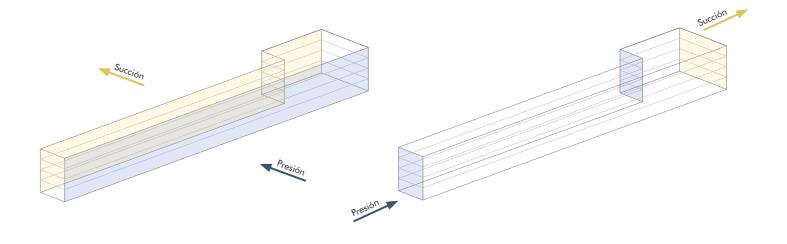
			Presión estática del viento [kN/m2]			l/m2]
Altura del punto	F	Ce	Presión barlovento A	Succión sotavento A	Presión barlovento B	Succión sotavento B
13,4	0,8358	1,9858	0,671	0,419	0,587	0,252
0,0	0,6190	1,3363	0,452	0,282	0,395	0,169
0,4	0,6190	1,3363	0,452	0,282	0,395	0,169
0,9	0,6190	1,3363	0,452	0,282	0,395	0,169
1,3	0,6190	1,3363	0,452	0,282	0,395	0,169
1,7	0,6190	1,3363	0,452	0,282	0,395	0,169
2,2	0,6190	1,3363	0,452	0,282	0,395	0,169
2,6	0,6190	1,3363	0,452	0,282	0,395	0,169
3,0	0,6190	1,3363	0,452	0,282	0,395	0,169
3,5	0,6190	1,3363	0,452	0,282	0,395	0,169
3,9	0,6190	1,3363	0,452	0,282	0,395	0,169
4,3	0,6190	1,3363	0,452	0,282	0,395	0,169
4,8	0,6190	1,3363	0,452	0,282	0,395	0,169
5,2	0,6270	1,3588	0,459	0,287	0,402	0,172
5,6	0,6446	1,4083	0,476	0,298	0,417	0,179
6,1	0,6609	1,4547	0,492	0,307	0,430	0,184
6,5	0,6761	1,4984	0,506	0,317	0,443	0,190
6,9	0,6903	1,5396	0,520	0,325	0,455	0,195
7,3	0,7037	1,5788	0,534	0,334	0,467	0,200
7,8	0,7162	1,6160	0,546	0,341	0,478	0,205
8,2	0,7281	1,6515	0,558	0,349	0,488	0,209
8,6	0,7394	1,6854	0,570	0,356	0,498	0,214
9,1	0,7501	1,7179	0,581	0,363	0,508	0,218
9,5	0,7604	1,7492	0,591	0,370	0,517	0,222
9,9	0,7702	1,7792	0,601	0,376	0,526	0,226
10,4	0,7795	1,8081	0,611	0,382	0,535	0,229
10,8	0,7885	1,8360	0,621	0,388	0,543	0,233
11,2	0,7971	1,8630	0,630	0,394	0,551	0,236
11,7	0,8054	1,8891	0,639	0,399	0,559	0,239
12,1	0,8134	1,9144	0,647	0,404	0,566	0,243
12,5	0,8212	1,9389	0,655	0,410	0,573	0,246
13,0	0,8286	1,9627	0,663	0,415	0,580	0,249
13,4	0,8358	1,9858	0,671	0,419	0,587	0,252

[©] Agustin Perez-Garcia Universitat Politècnica de València aperezg@mes.upv.es

Esta aplicación sólo puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

- cp es el coeficiente de presión en la dirección A: 0,80
- cs es el coeficiente de succión en la dirección A: 0,61
- cp es el coeficiente de presión en la dirección B: 0,50
- cs es el coeficiente de succión en la dirección B: 0,30

Hipotesis viento A


qe (barlovento) = 0,42 kN/m2
$$\cdot$$
 2,1 \cdot 0,80 = 0,7056 kN/m2 qe (sotavento) = 0,42 kN/m2 \cdot 2,1 \cdot 0,50 = 0,441 kN/m2

Hipotesis viento B

qe (barlovento) =
$$0.42 \text{ kN/m2} \cdot 2.1 \cdot 0.70 = 0.6174 \text{ kN/m2}$$

qe (sotavento) = $0.42 \text{ kN/m2} \cdot 2.1 \cdot 0.30 = 0.2646 \text{ kN/m2}$

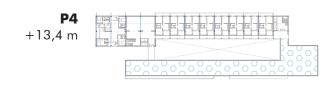
Hipotesis viento A

Hipotesis viento B

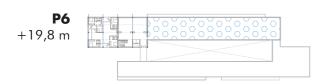
4.2.3. Acciones térmicas.

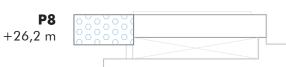
A causa de las variaciones de temperatura los edificios pueden sufrir deformaciones y cambios en su geometría, estos factores dependen de las condiciones climáticas del lugar en el que se encuentra, así como de los acabados y materiales que compongan el edificio.

En edificios de de hormigón, como es mi caso, cuando se disponen juntas de dilatación de forma que no existan elementos continuos de más de 40 m de longitud se pueden no considerar las acciones termicas. Por ello, al existir estas juntas no tenemos en cuenta las acciones térmicas.


*Las juntas se observan en el planos de la páginas 11 y 12.

4.2.4. Carga de nieve


Tabla 3.8 Sobrecarga de nieve en capitales de provincia y ciudades autónomas


Capital	Altitud m	s _k kN/m ²	Capital	Altitud m	s _k kN/m ²	Capital	Altitud m	s _k kN/m ²
Albacete Alicante / Alacant Almería Ávila Badajoz Barcelona Bilbao / Bilbo Burgos Cáceres Cádiz Castellón Ciudad Real Córdoba Coruña / A Coruña Cuenca Gerona / Girona Granada	690 0 0 1.130 180 0 860 440 0 640 100 0 1.010 70 690	0,6 0,2 0,2 1,0 0,2 0,4 0,3 0,6 0,4 0,2 0,2 0,2 0,6 0,2 0,3 1,0 0,4 0,5	Guadalajara Huelva Huesca Jaén León León Lérida / Lleida Logroño Lugo Madrid Málaga Murcia Orense / Ourense Oviedo Palencia Palma de Mallorca Palmas, Las Pamplona/Iruña	680 0 470 570 820 150 380 470 660 0 40 130 230 740 0 450	0,6 0,2 0,7 0,4 1,2 0,5 0,6 0,7 0,6 0,2 0,2 0,2 0,4 0,5 0,4 0,2 0,2	Pontevedra Salamanca SanSebas- tián/Donostia Santander Segovia Sevilla Soria Tarragona Tenerife Teruel Toledo Valencia/València Valiadolid Vitoria / Gasteiz Zamora Zaragoza Ceuta v Melilla	0 780 0 0 1.000 10 1.090 0 950 550 0 690 520 650 210	0,3 0,5 0,3 0,7 0,2 0,9 0,4 0,2 0,9 0,5 0,2 0,4 0,7 0,4 0,5 0,2

SOBRECARGAS DE NIEVE

La sobrecarga de nieve = 0.20 kN/m^2

4.3. Acciones accidentales 4.3.1. Sismo

De acuerdo con la NCESE-02, no es obligatoria la aplicación de esta Norma: "en las construcciones de importancia normal con pórticos bien arriostrados entre sí en todas las direcciones cuando la aceleración sísmica básica (ab) sea inferior a 0,08g. Se aplicará en los edificios de más de 7 plantas si la aceleración sísmica de cálculo (ac) es igual o mayor que 0.08g".

Según el mapa de Peligrosidad Sísmica de España 2015 (IGN), la aceleración sísmica de Valencia ab= 0,11g. Además, en un de los extremo más alto de la edificación contiene 7 alturas. Por lo que según la norma, la estructura requiere de evaluación a sismo.

4.3.2. Incendio

Todos los locales y recintos tienen la capacidad de evacuar directamente por la fachada y el camión lleno de aqua no tiene que detenerse sobre el forjado del edificio, sino que accederá por las vías colindantes. Por tanto, no corresponde a este trabajo evaluar esta acción.

4.3.3. Impacto

Puesto que existe aparcamiento en el conjunto del edificio es de aplicación el apartado 4.3.2 Impacto de vehículos del DB SE-AE, que dice lo siguiente:

"1 La acción de impacto de vehículos desde el exterior del edificio, se considerará donde y cuando lo establezca la ordenanza municipal. El impacto desde el interior debe considerarse en todas las zonas cuyo uso suponga la circulación de vehículos.

2 Los valores de cálculo de las fuerzas estáticas equivalentes debidas al impacto de vehículos de hasta 30 kN de peso total, son de 50 kN en la dirección paralela la vía y de 25 kN en la dirección perpendicular, no actuando simultáneamente.

3 La fuerza equivalente de impacto se considerará actuando en un plano horizontal y se aplicará sobre una superficie rectangular de 0,25 m de altura y una anchura de 1,5 m, o la anchura del elemento si es menor, y a una altura de 0,6 m por encima del nivel de rodadura, en el caso de elementos verticales, o la altura del elemento, si es menor que 1,8 m en los horizontales."

4.4. Resumen de hipótesis de carga.

- G Acciones permanentes
- G1 Elementos horizontales
- G2 Elementos verticales
- G3 Escaleras
- Q Acciones variables
- Q1 Sobrecarga de uso. Categoría A1
- Q2 Sobrecarga de uso. Categoría C1
- Q3 Sobrecarga de uso. Categoría D1
- Q4 Sobrecarga de uso. Categoría E1
- Q5 Sobrecarga de uso. Categoría G1
- Q6 Sobrecarga de uso. Categoría G2
- Q7 Nieve
- Q8 Viento, dirección Norte
- Q9 Viento, dirección Sur
- Q10 Viento, dirección Este
- Q11 Viento, dirección Oeste

A Acciones accidentales

A1 Sismo

COMBINACIÓN DE ACCIONES, ESTADOS LÍMITE

5. Combinación de acciones; estados límite.

Los estados límite se definen como: "aquellas situaciones para las que, de ser superadas, puede considerarse que el edificio no cumple alguna de los requisitos estructurales para las que ha sido concebido". Las combinaciones de hipótesis se dividen en los Estados límite últimos (ELU) y los Estados límite de servicio (ELS), estas junto con los coeficientes de seguridad, son acorde a la instrucción de hormigón estructural EHE-08 y al documento del CTE DB-se.

5.1. Coeficientes de seguridad.

Los coeficientes de seguridad para las comprobaciones se han obtenido de la Tabla 4.1. CTE DB-SE:

Tabla 4.1 Coeficientes parciales de seguridad (y) para las acciones

Tipo de verificación (1)	Tipo de acción	Situación persiste	nte o transitoria
		desfavorable 1,35 1,35 1,20 1,50 desestabilizadora	favorable
	Permanente Peso propio, peso del terreno	1,35	0,80
Resistencia	Empuje del terreno	1,35	0,70
	Presión del agua	1,20	0,90
	Variable	1,50	0
		desestabilizadora	estabilizadora
Estabilidad	Permanente Peso propio, peso del terreno Empuje del terreno	·	0,90 0,80
	Presión del agua	1,05	0,95
	Variable	1,50	0

⁽¹⁾ Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C

5.2. Coeficientes de simultaneidad.

Los coeficientes de simultaneidad para las comprobaciones se han obtenido de la Tabla 4.2. CTE DB-SE: Tabla 4.2 Coeficientes de simultaneidad (ψ)

	Ψο	Ψ1	Ψ 2
Sobrecarga superficial de uso (Categorías según DB-SE-AE)			
Zonas residenciales (Categoría A)	0,7	0,5	0,3
 Zonas administrativas(Categoría B) 	0,7	0,5	0,3
 Zonas destinadas al público (Categoría C) 	0,7	0,7	0,6
 Zonas comerciales (Categoría D) 	0,7	0,7	0,6
 Zonas de tráfico y de aparcamiento de vehículos ligeros con un peso total inferior a 30 kN (Categoría E) 	0,7	0,7	0,6
 Cubiertas transitables (Categoría F) 		(1)	
 Cubiertas accesibles únicamente para mantenimiento (Categoría G) 	0	0	0
Nieve			
 para altitudes > 1000 m 	0,7	0,5	0,2
 para altitudes ≤ 1000 m 	0,5	0,2	0
Viento	0,6	0,5	0
Temperatura	0,6	0,5	0
Acciones variables del terreno	0,7	0,7	0,7

⁽¹⁾ En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.

De acuerdo con el resumen anterior, la relación entre hipótesis y acciones es la siguiente:

```
Hipótesis 1 [HIP01] = Cargas permanentes (G1, G2, G3)
Hipótesis 2 [HIP 02] = Cargas variables, sobrecarga de uso (Q1 - Q6)
Hipótesis 3 [HIP 03] = Cargas variables, sobrecarga de nieve (Q7)
Hipótesis 4 a 7 [HIP 04-07] = Cargas variables, sobrecarga de viento (Q8-Q11)
Hipótesis 8 [HIP 08] = Acciones accidentales, Sismo (A1)
```

5.3. Comprobaciones de estados límite últimos (ELU).

Los estados límite últimos son los que, de ser superados, constituyen un riesgo para las personas, asociados al colapso u otras formas de fallo estructural (resistencia y estabilidad).

Situaciones persistentes o transitorias

$$\Sigma \gamma G_{ij} \cdot G_{ik,j} + \gamma Q_{ik,j} \cdot Q_{ik,j} + \Sigma \gamma Q_{ik,j} \cdot \psi Q_{ik,j} \cdot Q_{ik,j}$$

ELU 01: resistencia	1,35 HIP01 + 1,5 HIP02
ELU 02: sobrecarga de uso	$1,35 \text{ HIPO1} + 1,5 \text{ HIPO2} + 1,5 \times 0,5 \times \text{HIPO3} + 1,5 \times 0,6 \times \text{HIPO4} \\ 1,35 \text{ HIPO1} + 1,5 \text{ HIPO2} + 1,5 \times 0,5 \times \text{HIPO3} + 1,5 \times 0,6 \times \text{HIPO5} \\ 1,35 \text{ HIPO1} + 1,5 \text{ HIPO2} + 1,5 \times 0,5 \times \text{HIPO3} + 1,5 \times 0,6 \times \text{HIPO6} \\ 1,35 \text{ HIPO1} + 1,5 \text{ HIPO2} + 1,5 \times 0,5 \times \text{HIPO3} + 1,5 \times 0,6 \times \text{HIPO7} \\ \end{aligned}$
ELU 03: sobrecarga de nieve	1,35 HIP01 + 1,5 HIP03 + 1,5 x 0,7 x HIP02 + 1,5 x 0,6 x HIP04 1,35 HIP01 + 1,5 HIP03 + 1,5 x 0,7 x HIP02 + 1,5 x 0,6 x HIP05 1,35 HIP01 + 1,5 HIP03 + 1,5 x 0,7 x HIP02 + 1,5 x 0,6 x HIP06 1,35 HIP01 + 1,5 HIP03 + 1,5 x 0,7 x HIP02 + 1,5 x 0,6 x HIP07
ELU 04: sobrecarga de viento	1,35 HIP01 + 1,5 HIP04 + 1,5 x 0,7 x HIP02 + 1,5 x 0,5 x HIP03 1,35 HIP01 + 1,5 HIP05 + 1,5 x 0,7 x HIP02 + 1,5 x 0,5 x HIP03 1,35 HIP01 + 1,5 HIP06 + 1,5 x 0,7 x HIP02 + 1,5 x 0,5 x HIP03 1,35 HIP01 + 1,5 HIP07 + 1,5 x 0,7 x HIP02 + 1,5 x 0,5 x HIP03

Situaciones extraordinarias

De acuerdo con los requerimientos anteriormente acordados, no es necesario hacer una evaluación de incendio o impacto. En cualquier caso, a continuación se muestra la ecuación de cómo se llevaría a cabo la combinación de acciones: las acciones variables se combinarían en los distintos casos con el coeficiente psi1 y psi2 de acuerdo con el orden en que se combinan en lugar de mantener el coeficiente psi0 en cualquier posición como ocurría con las situaciones persistentes.

$$\Sigma \gamma G_i \cdot G_i \cdot G_i \cdot P + Ad + \gamma Q_i \cdot \psi 1, 1 \cdot Q_i \cdot Q_i \cdot \psi 2, i \cdot Q_i \cdot \psi 2,$$

Acción sísmica

Cuando la acción accidental sea la acción sísmica, "todas las acciones variables concomitantes se tendrán en cuenta con su valor casi permanente, según la expresión":

$$\Sigma$$
 Gk,j + P + Ad + Σ ψ 2,i · Q k,i

ELU 05: resistencia frente al sismo HIP 01+ HIP 08 + ψ 2·HIP02

5.4. Comprobaciones de estados límite de servicio (ELS).

Los estados límite de servicio son los que se superan cuando no se cumplen los criterios que aseguran el correcto funcionamiento durante su utilización normal. De ser superados, afectan al confort y al bienestar de los usuarios o de terceras personas, al correcto funcionamiento del edificio y a la apariencia de la construcción, así como al funcionamiento de equipos e instalaciones.

Acciones de corta duración que pueden resultar irreversibles (Hipótesis de máxima ocupación)

```
\Sigma G k_i + P + Q k_i + \Sigma \psi 0_i \cdot Q k_i
```

ELS 01: gravitatoria de uso $HIP01 + HIP02 + 0.5 \times HIP3$ ELS 02: gravitatoria de nieve $HIP01 + HIP03 + 0.7 \times HIP2$ ELS 03: sobrecarga de uso $HIP01 + HIP02 + 0.5 \times HIP03 + 0.6 \times HIP04$ $HIP01 + HIP02 + 0.5 \times HIP03 + 0.6 \times HIP05$ $HIP01 + HIP02 + 0.5 \times HIP03 + 0.6 \times HIP06$ $HIP01 + HIP02 + 0.5 \times HIP03 + 0.6 \times HIP07$ ELS 04: sobrecarga de nieve $HIP01 + HIP03 + 0.7 \times HIP02 + 0.6 \times HIP04$ $HIP01 + HIP03 + 0.7 \times HIP02 + 0.6 \times HIP05$ $HIP01 + HIP03 + 0.7 \times HIP02 + 0.6 \times HIP06$ $HIP01 + HIP03 + 0.7 \times HIP02 + 0.6 \times HIP07$ $HIP01 + HIP04 + 0.7 \times HIP02 + 0.5 \times HIP03$ ELS 05: sobrecarga de viento $HIP01 + HIP05 + 0.7 \times HIP02 + 0.5 \times HIP03$ $HIP01 + HIP06 + 0.7 \times HIP02 + 0.5 \times HIP03$ $HIP01 + HIP07 + 0.7 \times HIP02 + 0.5 \times HIP03$

Acciones de corta duración que pueden resultar reversibles (Acción del viento)

 $\Sigma Gk_{,i} + P + \psi 1_{,1} \cdot Qk_{,i} + \Sigma \psi 2_{,i} \cdot Qk_{,i}$

ELS 06: sobrecarga de uso HIP01 + HIP02 x 0,5 (psi2 de nieve y viento toma valor 0)

ELS 07: sobrecarga de nieve HIP01 + HIP03 x 0,2 + HIP02 x 0,3 (psi2 de viento toma valor 0)

ELS 08: sobrecarga de viento HIP01 + HIP04 x 0,5 + HIP02 x 0,3(psi2 de nieve toma valor 0)

 $HIP01 + HIP05 \times 0.5 + HIP02 \times 0.3$ (psi2 de nieve toma valor 0) $HIP01 + HIP06 \times 0.5 + HIP02 \times 0.3$ (psi2 de nieve toma valor 0)

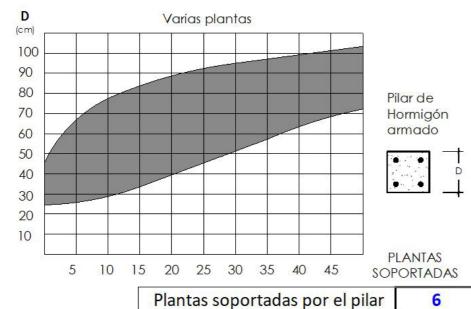
HIP01 + HIP07 x 0,5 + HIP02 x 0,3(psi2 de nieve toma valor 0)

Situación cuasipermanente (Uso regular del edificio)

 Σ Gk,j + P+ Σ ψ2,i · Qk,i

ELS 09: $HIP01 + HIP02 \times 0.3$

6.1. Definición material.


Elemento	Material	fd (N/mm2)	E (N/mm2)
Cimentaciones	HA-25	25/γc	27.264
Losas Bubble Deck	HA-25	25/γc	27.264
Losa maciza	HA-25	25/γc	27.264
Armado	B-500	500/γs	200.000
Soportes hormigón	HA-25	25/γc	27.264
Soportes metalicos	S-275	275/γΜ	210.000

Nota: E del hormigón a 28 días

6.2. Cálculo de secciones.

6.2.1. Soportes de hormigón armado.

Los soportes de hormigón armado se predimensiónan según la tabla facilitada, para ello se utiliza tanto la que utiliza el número de plantas, como la de la lóngitud del pilar. En la tabla del número de plantas se dimensiona tanto para el número mínimo como el máximo de plantas.

or el pilar	6	plantas
	Cargas	D
	Cargas	cm
	Pesadas	70
	Medias	45
	Ligeras	25

Plantas soportadas por el pilar 10 plantas

© Agustin Perez-Garcia y Arianna Guardiola Víllora Universitat Politècnica de València aperezg@mes.upv.es aguardio@mes.upv.es

Esta aplicación sólo puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

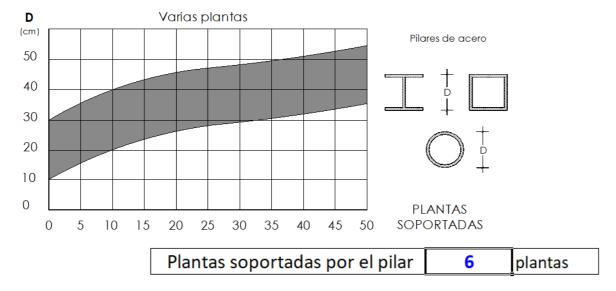
Cargas	D		
Cargas	cm		
Pesadas	80		
Medias	50		
Ligeras	30		

 Agustin Perez-Garcia y Arianna Guardiola Villora Universitat Politècnica de València

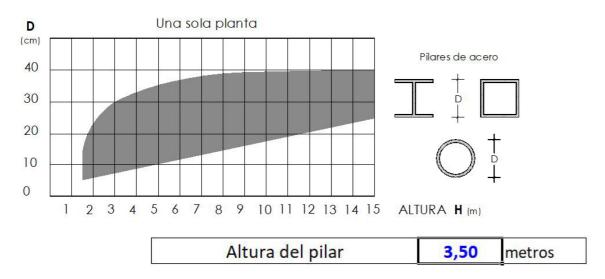
aperezg@mes.upv.es aguardio@mes.upv.es

Esta aplicación sólio puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

Longitud del p	oilar L	380 cm		
Traslacionalidad del pórtico				
Intraslacional	α_{i}	0,60		
Traslacional	α.	1,00		


Volver

	Predimensionado basado en la Esbeltez Mecánica					ensiona	Dimensión	
	ESDEITE Z Mecáni ca del	β = 2·3 ³ / λ		cánica objetivo	do basado en la Esbeltez Geométrica objetivo		mínima según la Norma EHE	
	λ 10	0,3464	$b_{min} = \alpha_i \cdot \beta \cdot L$	$b_{min} = \alpha_t \cdot \beta \cdot L$		38	25	
.0 %	10 15		79 53	132			25 25	
No es necesario omprobar		0,2309	39	88 cc	J 10	38	25 25	
P ce N	20 25	0,1732	32	66 53		38	25 25	
No es necesario comprobar		0,1386		l .		38		
\blacksquare	30 35	0,1155	26 23	44 38		38 19	25 25	
SE 무	40	0,0990 0,0866	20	33		19	25 25	
景田	45	0,0000	18	29		19	25 25	
88	50	0,0770	16	26		19	25 25	
9. 9	55	0,0630	14	24		19	25 25	
e ma	60	0,0537	13	22		19	25 25	
o ii	65	0,0577	12	20	20	19	25 25	
apr	70	0,0333	11	19	L / 20	19	25 25	
₽ 0	75	0,0462	11	18	_	19	25 25	
éc éc	80	0,0433	10	16		19	25 25	
e e	85	0,0408	9	15		19	25 25	
2 0	90	0,0385	9	15		19	25	
E iei	95	0,0365	8	14		19	25	
La comprobación de pandeo puede realizarse siguiendo el método aproximado de la EHE	100	0,0346	8	13		19	25	
-	105	0,0330	8	13		10	25	
ğ	110	0,0315	7	12		10	25	
Ē,	115	0,0301	7	11		10	25	
9	120	0,0289	7	11		10	25	
- Pu	125	0,0277	6	11		10	25	
iĝ	130	0,0266	6	10		10	25	
8 8	135	0,0257	6	10		10	25	
Ęg⊒	140	0,0247	6	9		10	25	
夏山	145	0,0239	5	9	_	10	25	
9 e	150	0,0231	5	9	L / 40	10	25	
9 6	155	0,0223	5	8	~	10	25	
La comprobación de pandeo debe realizarse siguiendo el método General de la EHE	160	0,0217	5 5 5 5	8	-	10	25	
Ge G	165	0,0210	5	8		10	25	
å.	170	0,0204	5	8		10	25	
ίς	175	0,0198		8 7		10	25	
pac	180	0,0192	4			10	25	
<u> </u>	185	0,0187	4	7		10	25	
Ĕ	190	0,0182	4	7		10	25	
9 9	195	0,0178	4	7		10	25	
ٽ	200	0,0173	4	7		10	25	
	Esbelteces mecánicas superiores a 200 no son admisibles							


^{*} Como predimensionado inicial para los pilares voy a escoger la solución más desfavorable de 30 x 30 cm.

6.2.2. Soportes metálicos.

El soporte metálico se predimensiona con la mayor altura, la más desfavorable, que es la altura de la planta baja; así como el número de plantas que soporta el mismo.

Cargas	D
	cm
Pesadas	37
Medias	27
Ligeras	17

© Agustin Perez-Garcia y Arianna Guardiola Víllora Universitat Politècnica de València

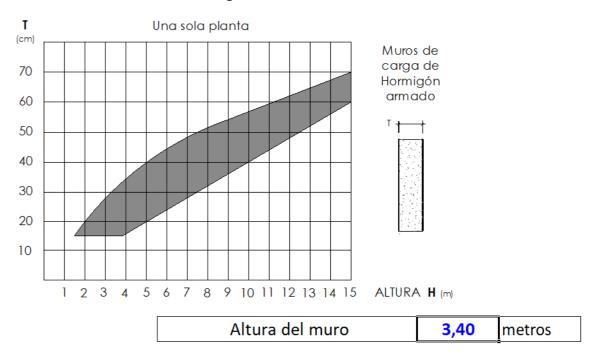
aperezg@mes.upv.es aguardio@mes.upv.es

Esta aplicación sólo puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

* Como predimensionado inicial para los pilares voy a escoger la solución más desfavorable de17cm.

Caller	D
Cargas	cm
Pesadas	32
Medias	20
Ligeras	8

6.2.3. Losas BubbleDeck.


Aunque por distancia entre pilares se podría coger una losa de 28 cm de espesor, se escoge una superior (34 cm), ya que en el texto precedente a la tabla indica que se basan en unas cargas permanentes de 1,5 kN/m2 y yo tengo 2,4 kN/m2.

Maximum spans indicated are based on 20mm concrete cover to bottom rebar (1 hour fire resistance); live load 3+1 kN/m2, dead load 1.5 kN/m2 and lightweight external envelope maximum 6 kN/m line load. Completed slab mass and Site Concrete Quantity based on 3 metre x 9 metre pre-cast elements with 51 kg/m² total reinforcement.

Version	Slab Thickness	Bubbles	Span (Multiple bays)	Cantilever Maximum Length	Span (Single bays)	Completed Slab Mass	Site Concrete Quantity
	mm	mm	metres	metres	metres	kN/m ²	m^3/m^2
BD230	230	Ø 180	5 - 8.3	≤ 2.8	5 - 6.5	4.34	0.109
BD280	280	Ø 225	7 - 10.1	≤ 3.3	6 - 7.8	5.17	0.142
BD340	340	Ø 270	9 - 12.5	≤ 4.0	7 – 9.5	6.25	0.186
BD390	390	Ø 315	11 - 14.4	≤ 4.7	9 - 10.9	6.93	0.213
BD450	450	Ø 360	13 - 16.4	≤ 5.4	10 - 12.5	7.94	0.245
BD510 *	510	Ø 410	15 - 18.8	≤ 6.1	11 - 13.9	9.06	0.291
BD600 *	600	Ø 500	16 - 21.0	≤ 7.2	12 - 15.0	10.22	0.338

^{*} New 2006 BubbleDeck slab configurations: Agrément certification pending, outside scope of KOMO technical

6.2.4. Muros de hormigón armado.

Cargas	T
Cargas	cm
Pesadas	30
Medias	20
Ligeras	15

© Agustin Perez-Garcia y Arianna Guardiola Víllora Universitat Politècnica de València aperezg@mes.upv.es aguardio@mes.upv.es

Esta aplicación sólo puede utilizarse para actividades relacionadas con el aprendizaje, la docencia o la investigación. No se autoriza el uso para cualquier actividad que, total o parcialmente, tenga carácter profesional.

^{*} Como predimensionado inicial para los pilares voy a escoger la solución más desfavorable de 25 cm.

6.3. Tipos de uniones y relajaciones.

Por lo que se refiere a las uniones de la estructura, todas aquellas que se refieran a secciones de hormigón armado, las uniones serán rígidas

6.4. Descripción del tipo de sustentación.

El tipo de cimentación previsto, dado la calidad del terreno en el que se implanta, es de cimentación profunda por encepados y pilotes in situ. Estos se atarán mediante una solera a nivel de los encepados para evitar desplazamientos aterales (según DB SE-C, artiulo 4.1.1 Zapatas Aisladas).

Además, según la NCSE 02 en el artículo 4.3.2 Elemento de atado dice: "Cada uno de los elementos de cimentación que transmita al terreno cargas verticales significativas deberá enlazarse con elementos contiguos en dos direcciones mediante dispositivos de atado situado a nivel de las zapatas, de los encepados de pilotes o equivalentes, capaces de resistir esfuerzo axial, tanto de tracción como de compresión, igual a la carga sísmica horizontal transmitida en cada apoyo."

LIMITACIONES ADOPTADAS Y JUSTIFICACIÓN DEL CTE

El trabajo ha tenido en cuenta las exigencias del Código Técnico de la Edificación (CTE), cumpliendo los distintos Documentos Básicos. Han sido de aplicación el DBSE, y el DBSE-AE además de contemplar la NSCE-02, referenciada anteriormente, y la EHE-08 para el hormigón estructural.

DBSE 1: Resistencia y estabilidad

Se verificará que la resistencia y la estabilidad serán las adecuadas para no producir riesgos innecesarios, de esta forma durante las fases de construcción y de uso del edificio se mantenga dicha resistencia y estabilidad frente a las a las acciones influyentes previstas. Además, en eventos extraordinarios no se debe producir resultados desproporcionados respecto a la causa original y se disponga el mantenimiento adecuado.

DBSE 2: Aptitud al servicio

Con respecto a la aptitud al servicio, las soluciones adoptadas conforme al uso previsto del edificio, garantizarán la correcta funcionalidad del edifcio, de forma que las deformaciones del mismo no interrumpan su correcto funcionamiento, se limite a un nivel aceptable la probabilidad de un comportamiento dinámico inadmisible y no se produzcan degradaciones o anomalías inadmisibles.

Flechas (Apartado 4.3.3.1 del DB SE)

- Integridad de elementos constructivos

Cuando es considerada la integridad de los elementos constructivos, se admite que la estructura horizontal es suficientemente rígida si, ante cualquier combinación de acciones características considerando solo las deformaciones que se produzcan después de la puesta en obra del elemento, la flecha relativa es menor que:

- 1/500 en pisos con tabiques frágiles (como los de gran formato, rasillones, o placas) o pavimentos rígidos
- 1/400 en pisos con tabiques ordinarios o pavimentos rígidos con juntas;
- 1/300 en el resto de los casos.

Los forjados del proyecto son de tabiques ordinarios y pavimento rígido con juntas, por lo que la flecha relativa deberá se menor a 1/400.

- Confort usuarios

Para la consideración del confort del usuario se admite que la estructura horizontal es suficientemente rígida ante cualquier combinación de acciones caracteristicas, considerando únicamente las acciones decorta duración, la flecha relativa es menor que 1/350.

- Apariencia de la obra

Para una adecuada apariencia de la obra, se admite que a estructura horizontal es suficientemente rígida ante cualquier combinación de acciones caracteristicas, considerando únicamente las acciones decorta duración, la flecha relativa es menor que 1/300.

Deformaciones horizontales (Apartado 4.3.3.2 del DB SE)

- Desplomes

"Cuando se considere la integridad de los elementos constructivos, susceptibles de ser dañados por desplazamientos horizontales, tales como tabiques o fachadas rígidas, se admite que la estructura global tiene suficiente rigidez lateral, si ante cualquier combinación de acciones característica":

- Desplome total: 1/500 de la altura total del edificio.
- Desplome local: 1/250 de la altura de la planta, en cualquiera de ellas.

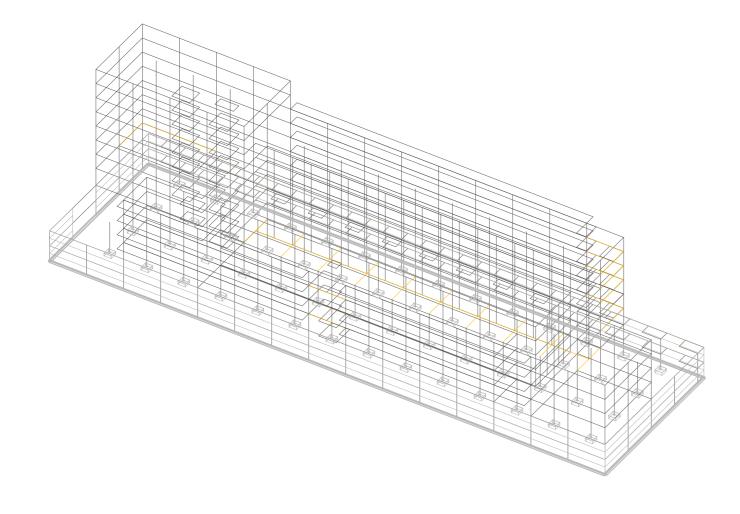
- Apariencia de la obra

Se admite que la rigidez lateral de la estructura global es suficiente para la apariencia de la obra cuando, ante una combinación de acciones casi permanentes, el desplome relativo es menor que 1/250.

En el próximo apartado se obtendrá una selección de puntos de control del edificio, de los cuales, se calculará los valore máximos que pueden alcanzar sus desplomes y flechas en los puntos más desfavorables.

CÁLCULO CON ARCHITRAVE

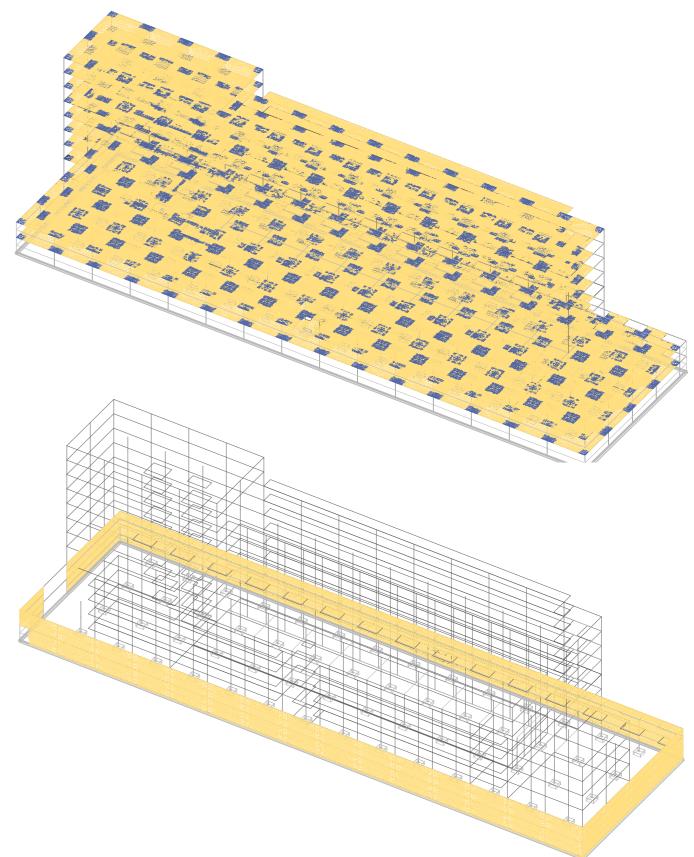
8.1 Cálculo

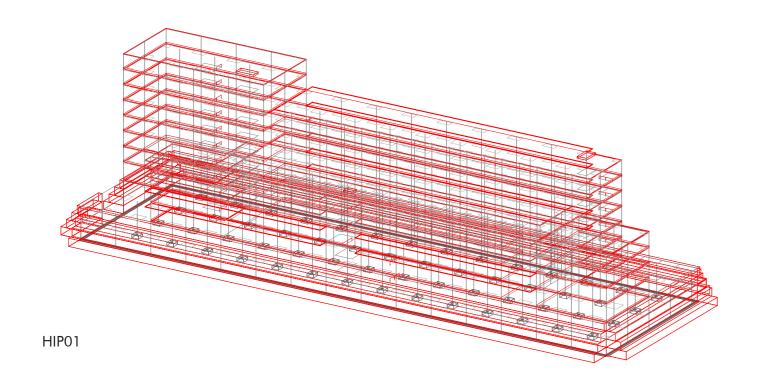

Tras los calculos pertinentes se ha comenzado con el modelizado de la estructura a través del plug-in Architrave. fas¹, el cuál se ejecuta dentro del programa AutoCAD.

La estructura consta de un bloque que crecen sus partes con diferentes alturas, distinguiendose así tres piezas. La parte delantera de 4 alturas, la trasera alargada de 6 y la cabeza posterior de 8.

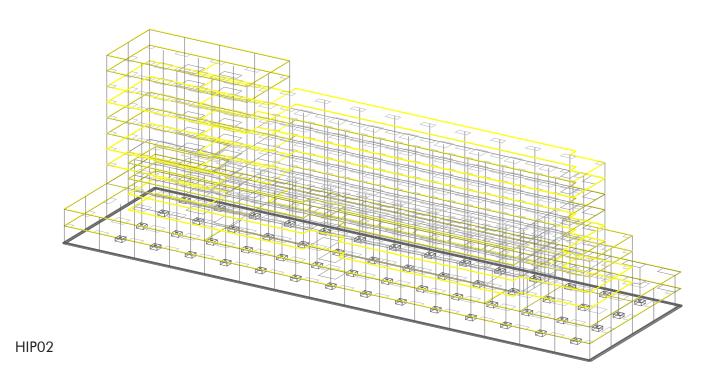
El conjunto se ha modelizado como elementos finitos de dos dimensiones, tanto las distintas plantas como los muros de sótano. En los huecos de la losa debidos a las instalaciones, las escaleras y los ascensores se han colocado vidas de canto para acabar de atar la estructura.

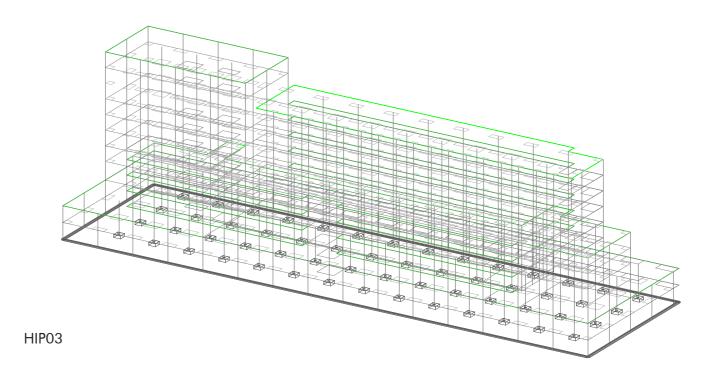
8.1.1. Modelo estructural


A continuación se ve el modelo con los contornos de los EF2D de las losas y los muros de sótano, los soportes, tanto los pilares de hormigón como los metálicos, las zapatas y las vigas (marcadas en amarillo).

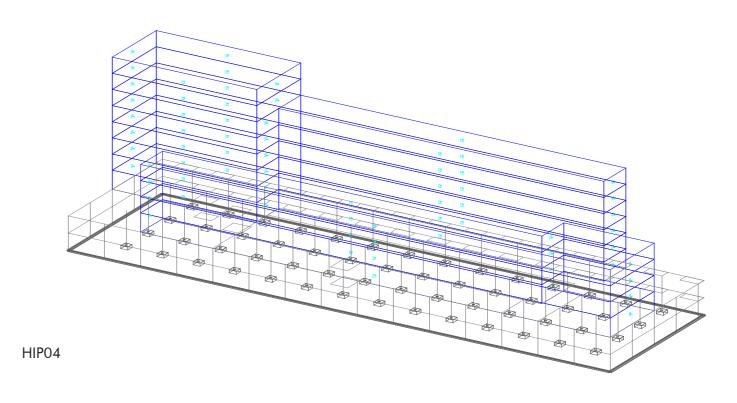

¹PEREZ-GARCIA, Agustín, ALONSO DURÁ, Adolfo, GÓMEZ-MARTÍNEZ, Fernando, ALONSO AVALOS, José Miguel and LO-ZANO LLORET, Pau. Architrave 2019 [Online]. 2019 València (Spain) Universitat Politècnica de València. 2019. Available from: www.architrave.es

8.1.2. Geometría de los elementos resistentes.

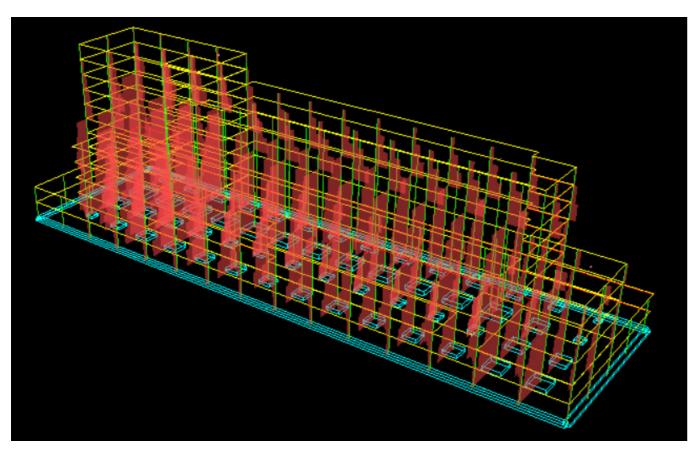

En este caso se muestra en la imagen superior el modelo con la malla de EF2D de la losa aligerada con sistema BubbleDeck y en la imagen inferior los EF2D del muro de sótano.



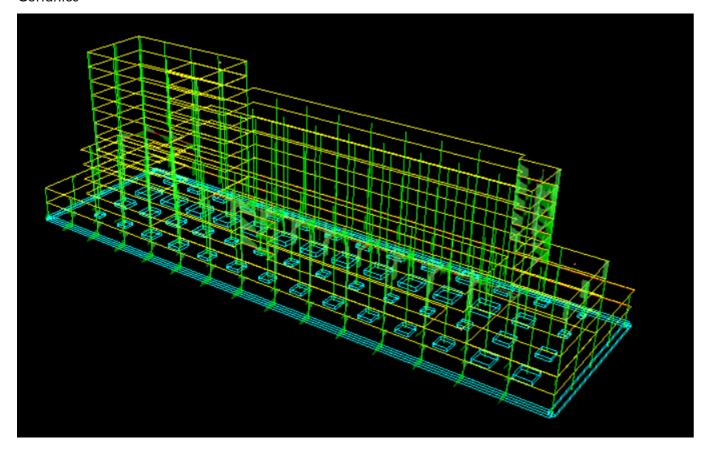
8.1.3. Acciones aplicadas debidas a cargas permanentes.



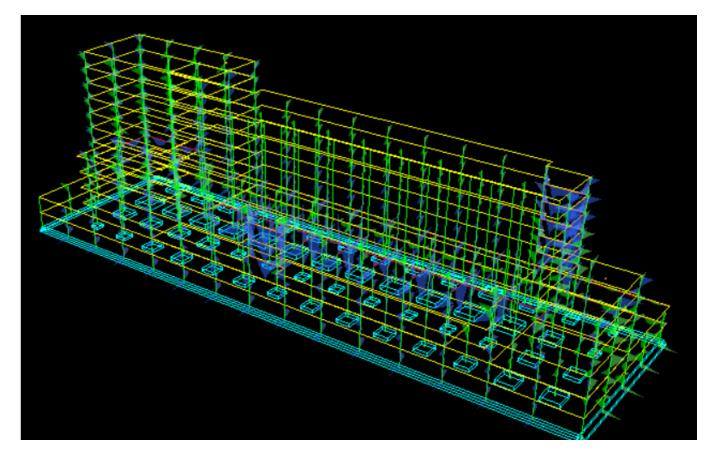
8.1.4. Acciones aplicadas debidas a cargas variables.

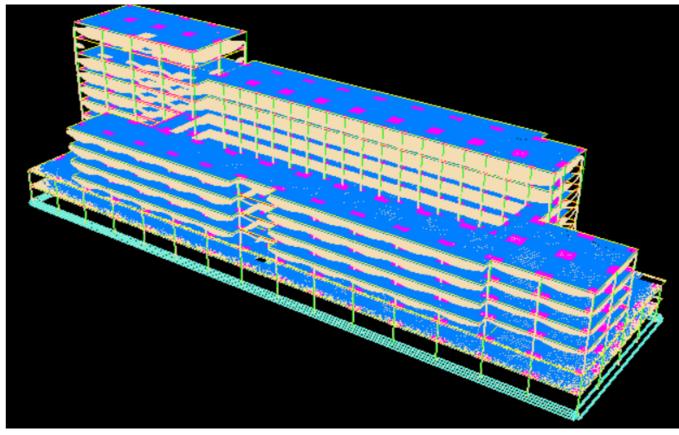


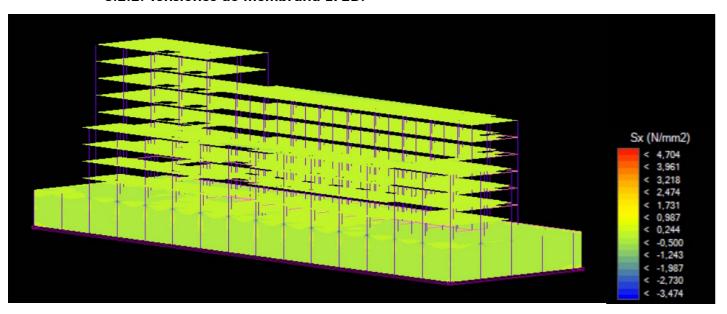
8.1.5. Acciones debidas al viento. (Aplicadas sobre áreas de reparto verticales)

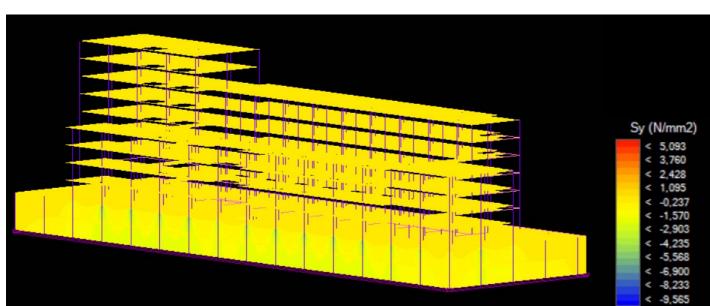


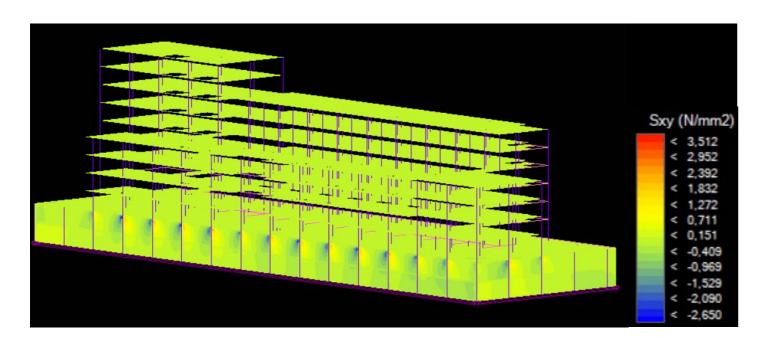
8.2. Solicitaciones. 8.2.1. Barras.

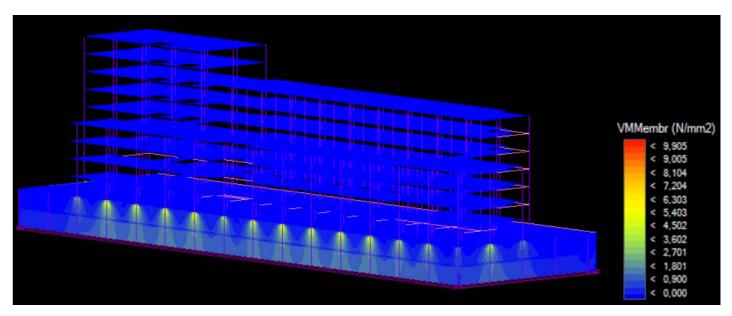

Axiles


Cortantes

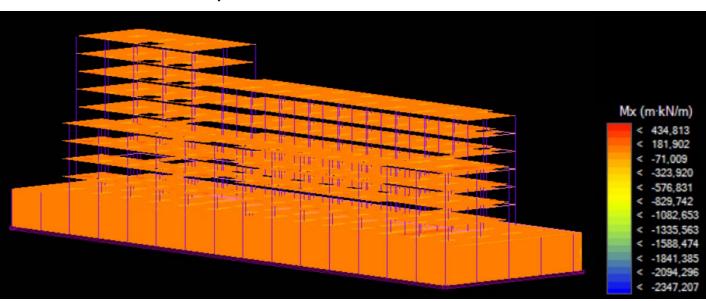

Momento flector

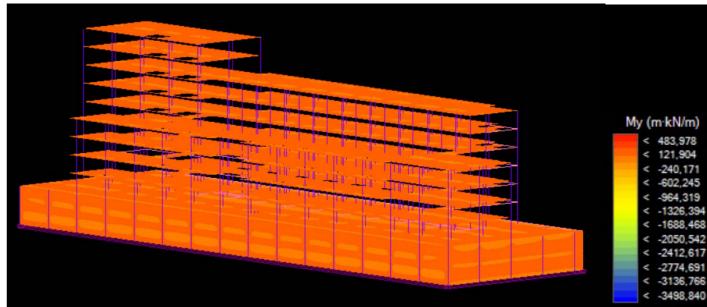


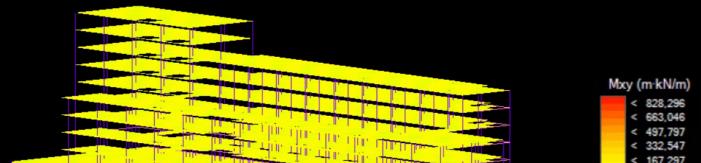

Deformada

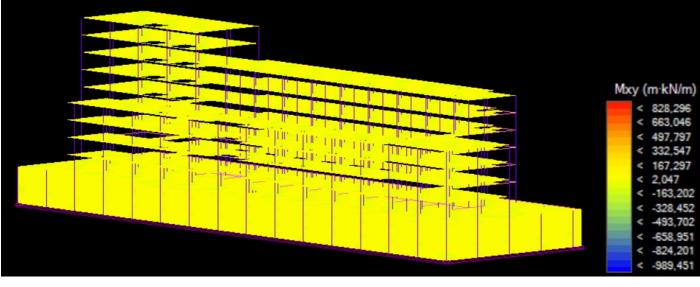


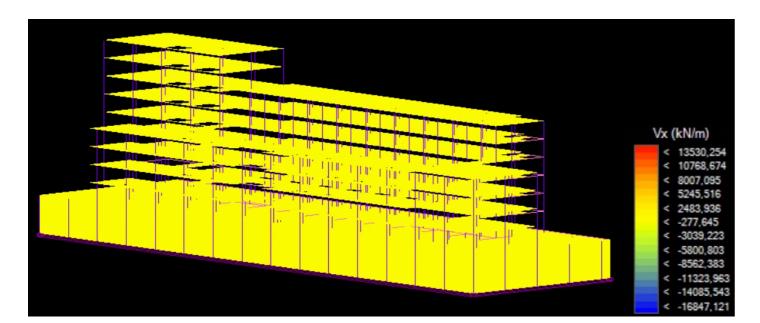
8.2.2. Tensiones de membrana EF2D.

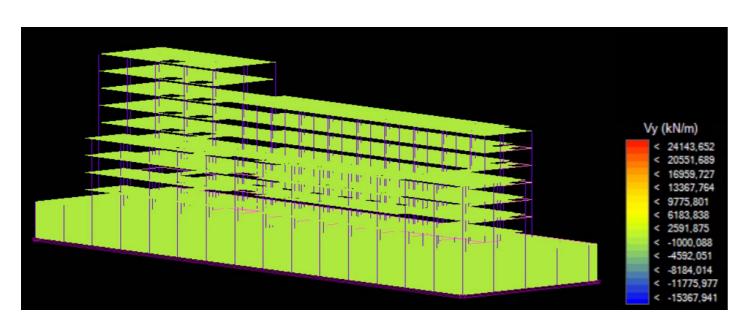




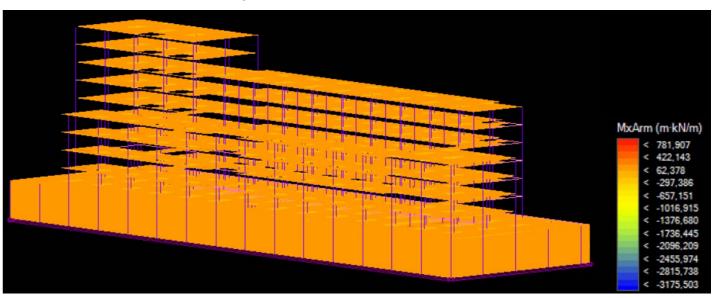


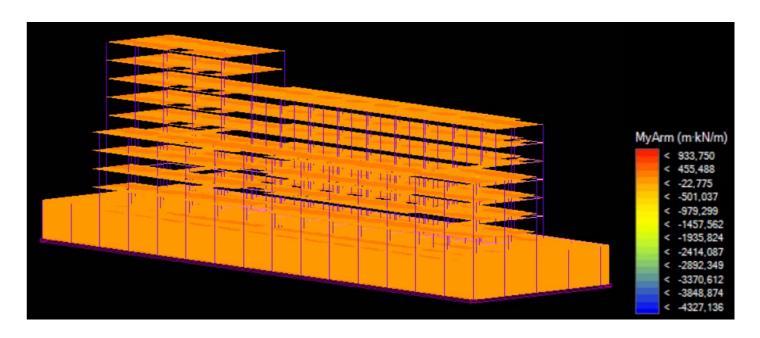

8.2.3. Flexión de placa EF2D.

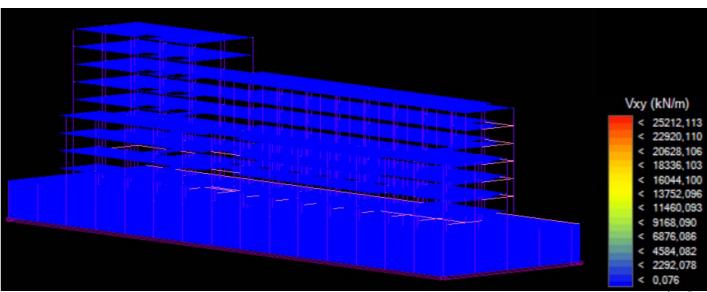


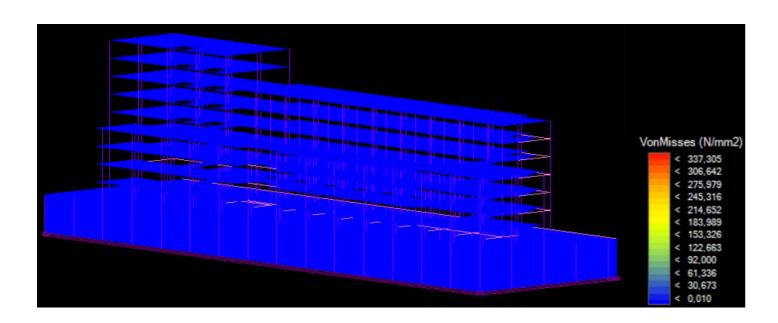


Proyecto Ejecución Estructural 45

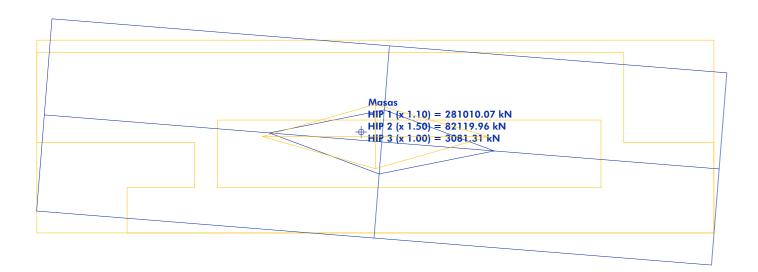








8.2.4. Solicitaciones para dimensionar EF2D.


8.3. Estabilidad global.

Esta comprovación consiste en valuar el equilibrio estático de la estructura tratándola globalmente como sólido rígido. Con ello se comprueba la excentricidad del centro de masas, así como el potencial riesgos de vuelco provocado por la acción del viento.

8.3.1. Excentricidad de la carga

Se calcula el centro de masas de todo el edificio teniendo en cuenta que la resultante de las cargas gravitatorias se encuentre dentro del núcleo central de inercia. El centro de masas se calculado con el comando ?CDM de Architrave.

El núcleo central de inercia de un rectángulo de dimensiones b·h es un rombo cuyo centro geométrico coincide con el centro geométrico del mismo rectángulo de diagonales mayor y menor de b/3 y h/3, respectivamente. Para geometrías diferentes del rectángulo se debe obtener el rectángulo equivalente.

Peso total transmitido al terreno

por cada una de las hipótesis:

Hipótesis 1, peso propio 281.010,07 kN

Hipótesis 2, sobrecarga de uso 82.119,96 kN

Hipótesis 3, sobrecarga de nieve 3.081,31 kN

TOTAL: 366211,34 kN

Presión por m2: 193,17 kN/m2

*Valor introducido en la geoweb (ver pág.11)

8.3.2. Equilibrio frente al vuelco

La segunda comprobación previa referente al equilibrio de la estructura es la estabilidad frente al vuelco, esta situación es el resultado del empuje y succión del viento. Para realizar dicha comprobación, se retoma la tabla expuesta en el analisis de las hipótesis de viento para evaluar los coeficientes correspondientes a los valores de presión y succión del viento en cada dirección:

			Presión	[kNlm2]		
Altura del punto	F	C.	Presión barlovento A	Succión sotavento A	Presión barlovento B	Succión sotavento E
26,2	0,9833	2,4813	0,839	0,639	0,839	0,524
0.0	0,6190	1,3363	0,452	0,344	0,452	0,282
0,8	0,6190	1,3363	0,452	0,344	0.452	0,282
1,7	0,6190	1,3363	0,452	0,344	0,452	0,282
2,5	0,6190	1,3363	0,452	0,344	0,452	0,282
3,4	0,6190	1,3363	0,452	0,344	0,452	0,282
4,2	0,6190	1,3363	0,452	0,344	0,452	0,282
5,1	0,6221	1,3449	0,455	0,346	0,455	0,284
5,9	0,6560	1,4405	0,487	0,371	0,487	0,304
6,8	0,6853	1,5251	0,515	0,393	0,515	0,322
7,6	0,7113	1,6012	0,541	0,413	0,541	0,338
8,5	0,7344	1,6704	0,565	0,430	0,565	0,353
9,3	0,7554	1,7339	0,586	0,447	0,586	0,366
10,1	0,7745	1,7927	0,606	0,462	0,606	0,379
11,0	0,7922	1,8474	0,624	0,476	0,624	0,390
11,8	0,8085	1,8986	0,642	0,489	0,642	0,401
12,7	0,8236	1,9468	0,658	0,502	0,658	0,411
13,5	0,8378	1,9922	0,673	0,513	0,673	0,421
14,4	0,8512	2,0353	0,688	0,524	0,688	0,430
15,2	0,8637	2,0762	0,702	0,535	0,702	0,439
16,1	0,8756	2,1152	0,715	0,545	0,715	0,447
16,9	0,8869	2,1525	0,728	0,555	0,728	0,455
17,7	0,8977	2,1882	0,740	0,564	0,740	0,462
18,6	0,9079	2,2224	0,751	0,573	0,751	0,469
19,4	0,9177	2,2553	0,762	0,581	0,762	0,476
20,3	0,9270	2,2870	0,773	0,589	0,773	0,483
21,1	0,9360	2,3176	0,783	0,597	0,783	0,490
22,0	0,9446	2,3471	0,793	0,605	0,793	0,496
22,8	0,9529	2,3756	0,803	0,612	0,803	0,502
23,7	0,9609	2,4033	0,812	0,619	0,812	0,508
24,5	0,9687	2,4301	0,821	0,626	0,821	0,513
25,4	0,9761	2,4561	0,830	0,633	0,830	0,519
26,2	0,9833	2,4813	0,839	0,639	0,839	0,524

Para reacilizar este cálculo he cogido la tabla de la parte del edificio más alta al tener los valores más desfavorables, ya que funciona como un conjunto. De acuerdo con los coeficientes expuestos en la tabla, el caso más desfavorable corresponde a la hipótesis de viento de de la dirección A, tanto la presión (que sería el viento de suroeste) como la succión (que sería el viento de noreste).

Se considerará estable si el edificio cumple que:

10 Ed,dst < Ed,std donde

 $Ed,dst = 10* \times 1.5$ Qviento x d(dist.charnerla vertical)

 $Ed,std = 0.9 \times Qpermanente \times e(dist. charnela horizontal)$

*el valor de 10 corresponde a una recomendación que garantiza una estabilidad muy por encima de la necesaria.

Qpermanente: 281.010,07 kN

Excentricidad (e): 56,45 m

Qviento x d:

PRESIÓN + desfavorable

```
1.7 \text{ m} \times 0.452 \text{ kN/m2} \times 3.8 \times 15.6 \text{ m2} = 45.55 \text{ kN·m}
5,1 \text{ m} \times 0,455 \text{ kN/m2} \times 3,2 \times 15,6 \text{ m2} = 115,84 \text{ kN·m}
7,6 m x 0,541 kN/m2 x 3,2 x 15,6 m2 = 205.25 kN·m
11,0 m x 0,624 kN/m2 x 3,2 x 15,6 m2 = 342,65 kN·m
14,4 \text{ m} \times 0,688 \text{ kN/m2} \times 3,2 \times 15,6 \text{ m2} = 494.57 \text{ kN·m}
17,7 \text{ m x } 0,740 \text{ kN/m2 x } 3,2 \text{ x } 15,6 \text{ m2} = 653,85 \text{ kN·m}
21,1 \text{ m} \times 0,783 \text{ kN/m2} \times 3,2 \times 15,6 \text{ m2} = 824,74 \text{ kN·m}
24.5 \text{ m} \times 0.821 \text{ kN/m2} \times 3.2 \times 15.6 \text{ m2} = 1004.11 \text{ kN·m}
```

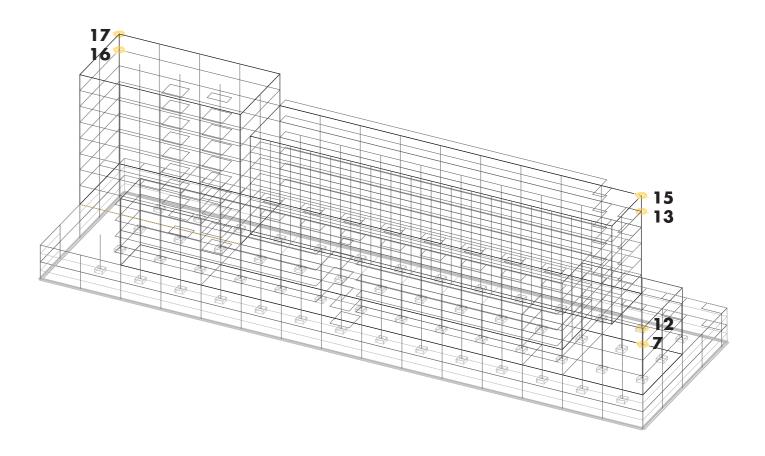
TOTAL = 3686,56 kN⋅m

PRESIÓN + desfavorable

```
1.7 \text{ m} \times 0.344 \text{ kN/m2} \times 3.8 \times 15.6 \text{ m2} = 34.66 \text{ kN·m}
5,1 \text{ m} \times 0.346 \text{ kN/m2} \times 3.2 \times 15.6 \text{ m2} = 88.08 \text{ kN·m}
7.6 \text{ m} \times 0.413 \text{ kN/m2} \times 3.2 \times 15.6 \text{ m2} = 156.68 \text{ kN·m}
11,0 \text{ m x } 0,417 \text{ kN/m2 x } 3,2 \text{ x } 15,6 \text{ m2} = 228,98 \text{ kN·m}
14.4 \text{ m} \times 0.524 \text{ kN/m2} \times 3.2 \times 15.6 \text{ m2} = 376.67 \text{ kN·m}
17.7 \text{ m} \times 0.564 \text{ kN/m2} \times 3.2 \times 15.6 \text{ m2} = 498.34 \text{ kN·m}
21,1 \text{ m x } 0,597 \text{ kN/m2 x } 3,2 \text{ x } 15,6 \text{ m2} = 628,82 \text{ kN·m}
24.5 \text{ m} \times 0.623 \text{ kN/m2} \times 3.2 \times 15.6 \text{ m2} = 761.95 \text{ kN·m}
```

 $TOTAL = 2774,18 \text{ kN} \cdot \text{m}$

TOTAL TOTAL = $6460,74 \text{ kN} \cdot \text{m}$


HIP01 = 281.010,07 kN

Por tanto:

 $0.9 \times 281.010,07 \text{ kN} \times 56,45 \text{ m} = 14276716,61 \text{ kN·m} >> 10 \times 1.5 \times 6460,74 \text{ kN·m} = 96911,10 \text{ kN·m}$

8.4. Deformaciones.

8.4.1. Localización puntos de control.

Según el punto 4.3.3.2 del CTE SE-2, los desplazamientos horizontales máximos se deben limitar a los siguientes valores para asegurar la integridad de los elementos constructivos, tales como tabiques y fachadas.

Desplome absoluto

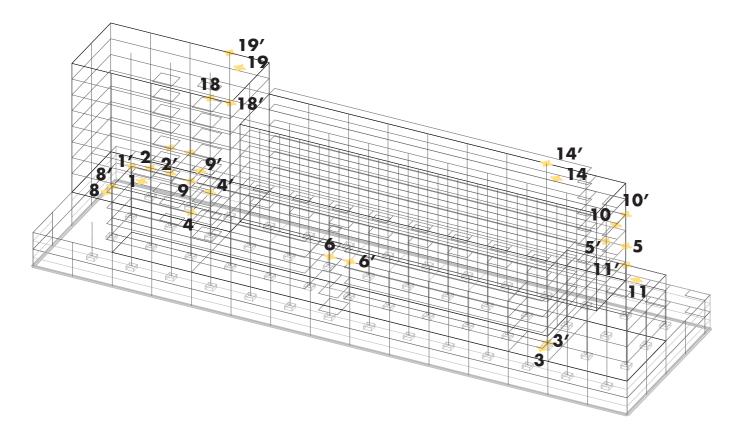
d(AC) < 1/500

d(AC) < 26,2/500 = 0,0524m = 5,24 cm

Desplomes relativos

d(AB) < 1/250

d(AB) < 3.2/250 = 0.0128m = 1.28 cm


```
Punto de control
Número:
Tipo:
              Desplazamiento lateral en planta
Altura de planta: 17,00 m
Límite desplazamiento lateral de planta (h/250): 6,80 cm
-----
Cumple
Desplazamiento lateral máximo de planta
  Dx: [(ELS 01) -0,05 cm (1%) , (HIP 04) 0,10 cm (1%) ]
  Dy: [(ELS 01) -0,20 cm (3%) , (HIP 04) 0,61 cm (9%) ]
-----
Capa: PUNTOS CONTROL
Nivel: 5
Punto de control
Número:
Tipo:
              Desplazamiento lateral en planta
Altura de planta: 3,20 m
Altura total:
             20,20 m
Límite desplazamiento lateral de planta (h/250): 1,28 cm
Límite desplazamiento lateral total (H/500): 4,04 cm
.....
Cumple
Desplazamiento lateral máximo de planta
  Dx: [(ELS 01) -0,03 cm (2%) , (HIP 04) 0,01 cm (1%)
  Dy: [(ELS 01) -0,05 cm (4%) , (HIP 04) 0,07 cm (5%) ]
Desplazamiento lateral máximo total
  Dx: [(ELS 01) -0,07 cm (2%) , (HIP 04) 0,11 cm (3%)
  Dy: [(ELS 01) -0,26 cm (6%) , (HIP 04) 0,68 cm (17%) ]
......
Capa: PUNTOS CONTROL
Nivel: 6
Punto de control
Número:
              Desplazamiento lateral en planta
Tipo:
Altura de planta: 23,40 m
Límite desplazamiento lateral de planta (h/250): 9,36 cm
.....
Cumple
Desplazamiento lateral máximo de planta
  Dx: [(ELS 01) -0,04 cm (0%) , (HIP 04) 0,62 cm (7%)
  Dy: [(ELS 01) -0,48 cm (5%) , (HIP 04) 0,98 cm (10%) ]
Capa: PUNTOS CONTROL
Nivel: 7
```

```
Punto de control
Número:
Tipo:
               Desplazamiento lateral en planta
Altura de planta: 3,20 m
Altura total: 26,60 m
Límite desplazamiento lateral de planta (h/250): 1,28 cm
Limite desplazamiento lateral total (H/500): 5,32 cm
-----
Cumple
Desplazamiento lateral máximo de planta
  Dx: [(HIP 03) -0,00 cm (0%) , (ELS 05) 0,09 cm (7%) ]
  Dy: [(ELS 03) -0,30 cm (23%) ,
                                          0,00 cm (0%)
Desplazamiento lateral máximo total
  Dx: [(ELS 01) -0,03 cm (1%) , (HIP 04) 0,70 cm (13%) ]
  Dy: [(ELS 01) -0,77 cm (14%) , (HIP 04) 0,97 cm (18%) ]
Capa: PUNTOS CONTROL
Nivel: 8
Punto de control
Número:
               Desplazamiento lateral en planta
Tipo:
Altura de planta: 29,80 m
Límite desplazamiento lateral de planta (h/250): 11,92 cm
-----
Cumple
Desplazamiento lateral máximo de planta
  Dx: [ -0,00 cm (0%) , (ELS 05) 0,83 cm (7%)
  Dy: [(ELS 01) -0,22 cm (2%) , (HIP 04) 3,02 cm (25%) ]
.........
Capa: PUNTOS CONTROL
Nivel: 9
Punto de control
Número:
Tipo:
               Desplazamiento lateral en planta
Altura de planta: 3,20 m
               33,00 m
Altura total:
Límite desplazamiento lateral de planta (h/250): 1,28 cm
Límite desplazamiento lateral total (H/500): 6,60 cm
......
Cumple
Desplazamiento lateral máximo de planta
  Dx: [ -0,00 cm (0%) , (ELS 05) 0,06 cm (4%)
               -0,00 cm (0%) , (ELS 05) 0,05 cm (4%) ]
  Dy: [
Desplazamiento lateral máximo total
  Dx: [ -0,00 cm (0%) , (ELS 05) 0,88 cm (13%)
  Dy: [(ELS 01) -0,22 cm (3%) , (HIP 04) 3,06 cm (46%) ]
```

Capa: PUNTOS CONTROL

Nivel: 10

8.4.2. Control de movimientos.

Puntos de control de deformación vertical:

Losa = 2d/400 = 2.5,52/400 = 0,0276 m = 2,76 cmVigas = 1/400 = 7.8/400 = 0.0195 m = 1.95 cmVoladizo = 1/400 = 2.2,2/400 = 0,011 m = 1,1 cm

Punto de control

Nivel: 3

Número:	1					
Tipo:	Genéric	0				
Límites relati	vos					
Dx: [-	∞ cm,	∞ cm]				
Dy: [-	.∞ cm,	∞ cm]				
Dz: [-1,9		∞ cm]				
Cumple						
Desplazamiento						
Dx: [(ELS 0					0,00 cm (0%)]
Dy: [(ELS 0	1) -0,00	cm (0%)	,	(HIP 04)	0,01 cm (0%)]
Dz: [(ELS 0	1) -0,19	cm (10%)	,	(HIP 04)	0,04 cm (0%)]
Capa: PUNTOS	CONTROL					

```
Punto de control
Número:
Tipo:
                 Genérico
Límites relativos
  Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                        ∞ cm]
  Dz: [ -1,95 cm,
                        ∞ cm]
Cumple
Desplazamientos máximos relativos
  Dx: [(ELS 05) -0,00 cm (0%) , (HIP 03)
                                               0,00 cm (0%)
  Dy: [(HIP 03) -0,00 cm (0%) , (ELS 05)
                                               0,05 cm (0%)
  Dz: [(HIP 01) -0,34 cm (17%) , (HIP 02)
                                             0,01 cm (0%)
Punto de control
Número:
Tipo:
                 Genérico
Límites relativos
  Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                        ∞ cm]
  Dz: [ -1,10 cm,
                        ∞ cm]
Cumple
Desplazamientos máximos relativos
  Dx: [(ELS 05) -0,01 cm (0%) ,
                                               0,00 cm (0%)
  Dy: [(HIP 03) -0,00 cm (0%) , (ELS 05) 0,00 cm (0%)
  Dz: [(HIP 02) -0,04 cm (3%) , (ELS 08) 0,05 cm (0%)
Capa: PUNTOS CONTROL
Nivel: 3
Punto de control
Número:
                 Genérico
Tipo:
Límites relativos
  Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                        ∞ cm]
   Dz: [ -1,95 cm,
                        ∞ cm]
Cumple
Desplazamientos máximos relativos
   Dx: [(HIP 01) -0,00 cm (0%) , (HIP 04)
                                               0,05 cm (0%)
  Dy: [ -0,00 cm (0%) , (ELS 05)
Dz: [(ELS 01) -0,21 cm (11%) , (HIP 04)
                                               0,00 cm (0%)
                                             0,01 cm (0%)
```

Capa: PUNTOS CONTROL

Nivel: 4

```
Punto de control
Número:
              5
Tipo:
              Genérico
Límites relativos
 Dx: [ -∞ cm,
Dy: [ -∞ cm,
                    oo cm
                    ∞ cm]
  Dz: [ -1,95 cm,
                   ∞ cm]
...........
Cumple
Desplazamientos máximos relativos
  Dx: [(ELS 05) -0,00 cm (0%) ,
                                       0,00 cm (0%)
  Dy: [(ELS 02) -0,00 cm (0%) , (HIP 04) 0,02 cm (0%)
  Dz: [(ELS 03) -0,65 cm (33%) ,
                                       0,00 cm (0%)
-----
Capa: PUNTOS CONTROL
Nivel: 4
Punto de control
Número:
Tipo:
              Genérico
Límites relativos
  Dx: [ -∞ cm,
                    ∞ cm]
  Dv: [ -∞ cm,
                 ∞ cm]
  Dz: [ -1,95 cm,
                 ∞ cm]
Cumple
Desplazamientos máximos relativos
  Dx: [(ELS 05) -0,00 cm (0%) ,
                                       0,00 cm (0%)
  Dy: [(HIP 01) -0,00 cm (0%) , (HIP 04) 0,02 cm (0%)
  Dz: [(ELS 03) -0,64 cm (33%) , 0,00 cm (0%) ]
......
Capa: PUNTOS CONTROL
Nivel: 4
Punto de control
Número:
               8
Tipo:
               Genérico
Límites relativos
  Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                     ∞ cm
  Dz: [ -1,10 cm,
                   ∞ cm]
Cumple
Desplazamientos máximos relativos
  Dx: [(HIP 04) -0,03 cm (0%) , (HIP 01) 0,00 cm (0%)
  Dy: [(ELS 01) -0,00 cm (0%) , (HIP 04) 0,00 cm (0%)
  Dz: [(ELS 01) -0,13 cm (12%) , (HIP 04) 0,03 cm (0%)
..........
Capa: PUNTOS CONTROL
Nivel: 6
```

```
Punto de control
Número:
               9
               Genérico
Tipo:
Límites relativos
  Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                     ∞ cm]
  Dz: [ -1,95 cm,
                      ∞ cm]
_____
Cumple
Desplazamientos máximos relativos
  Dx: [(HIP 01) -0,00 cm (0%) , (HIP 04)
                                           0,06 cm (0%)
               -0,00 cm (0%) , (ELS 05) 0,00 cm (0%) ]
  Dy: [
  Dz: [(ELS 01) -0,38 cm (19%) , (HIP 04) 0,02 cm (0%) ]
_____
Capa: PUNTOS CONTROL
Nivel: 6
Punto de control
               10
Número:
Tipo:
               Genérico
Límites relativos
 Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                      ∞ cm
  Dz: [ -1,95 cm,
                      ∞ cm]
Cumple
Desplazamientos máximos relativos
  Dx: [(HIP 04) -0,06 cm (0%) , (HIP 01) 0,00 cm (0%)
  Dy: [(HIP 04) -0.00 cm (0%) , (ELS 01) 0.00 cm (0%)
Dz: [(ELS 01) -0.55 cm (28%) , (HIP 04) 0.01 cm (0%)
.........
Capa: PUNTOS CONTROL
Nivel: 6
Punto de control
Número:
               11
               Genérico
Tipo:
Límites relativos
  Dx: [ -∞ cm,
  Dy: [ -∞ cm,
                      ∞ cm]
  Dz: [ -2,76 cm,
                      ∞ cm]
Cumple
Desplazamientos máximos relativos
  Dx: [(ELS 05) -0,05 cm (0%) , (HIP 03) 0,00 cm (0%)
  Dy: [(ELS 05) -0,05 cm (0%) , (HIP 03)
                                           0,00 cm (0%)
  Dz: [(ELS 01) -0,67 cm (24%) , (HIP 04)
                                           0,01 cm (0%) 1
Capa: PUNTOS CONTROL
```

Nivel: 6

Punto de control

Número:

Genérico Tipo: Límites relativos Dx: [-∞ cm, ∞ cm] Dy: [-∞ cm, ∞ cm] ∞ cm] Dz: [-2,76 cm,

14

Cumple

Desplazamientos máximos relativos Dx: [-0,00 cm (0%) , (ELS 05) 0,35 cm (0%)] Dy: [(ELS 01) -0,46 cm (0%) , (HIP 04) 0,40 cm (0%)]
Dz: [(ELS 01) -1,09 cm (39%) , (HIP 04) 0,00 cm (0%)]

Capa: PUNTOS CONTROL

Nivel: 8

Punto de control

Número: 18 Tipo: Genérico Límites relativos Dx: [-∞ cm, Dy: [-∞ cm, ∞ cm] Dz: [-1,95 cm, ∞ cm]

Cumple

Desplazamientos máximos relativos Dx: [(HIP 04) -0,00 cm (0%) , (ELS 01) 0,00 cm (0%) Dy: [-0,00 cm (0%) , (ELS 05) 0,11 cm (0%)]
Dz: [(ELS 01) -0,48 cm (25%) , (HIP 04) 0,01 cm (0%)]

Capa: PUNTOS CONTROL

Dz: [-2,76 cm,

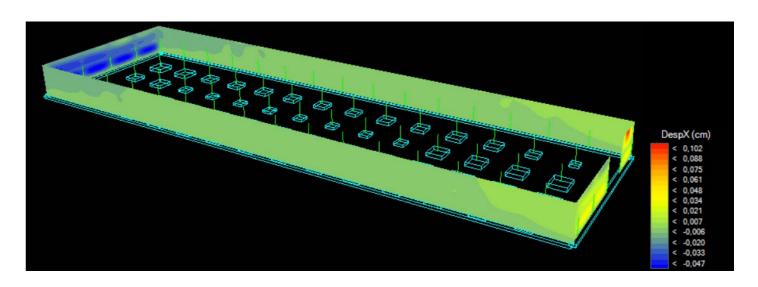
Nivel: 10

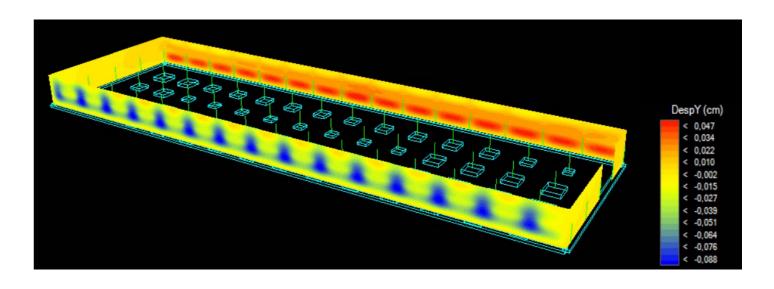
Punto de control

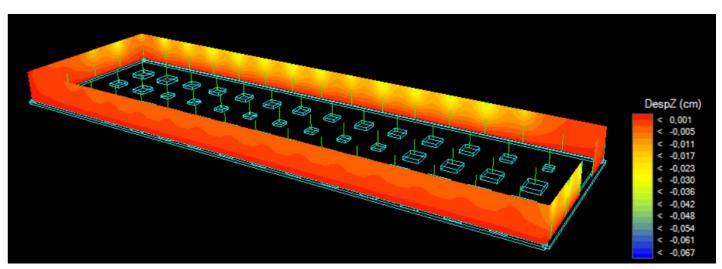
Número: 19 Tipo: Genérico Límites relativos Dx: [-∞ cm, ∞ cm] Dy: [-∞ cm, ∞ cm]

Cumple

Desplazamientos máximos relativos

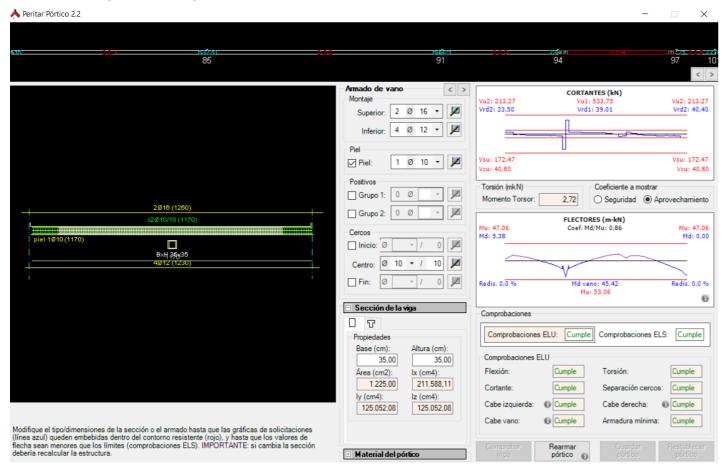

0,00 cm (0%)] 0,00 cm (0%)] Dx: [(ELS 05) -0,12 cm (0%) , Dy: [(ELS 05) -0,11 cm (0%) , 0,00 cm (0%)]
Dz: [(ELS 01) -0,73 cm (26%) , (HIP 04) 0,02 cm (0%)]

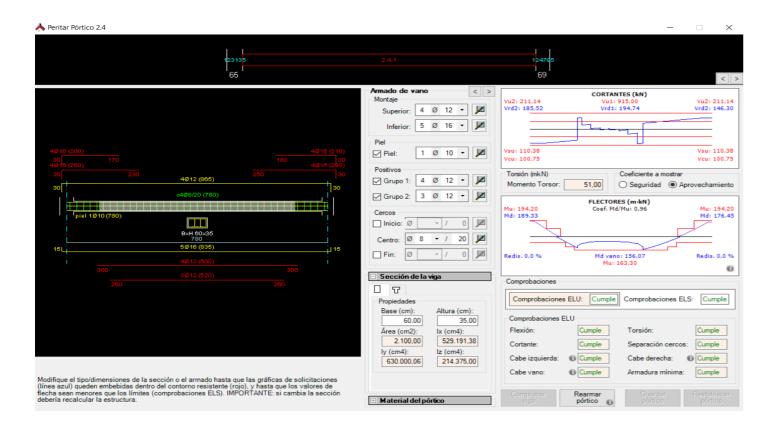

∞ cm]

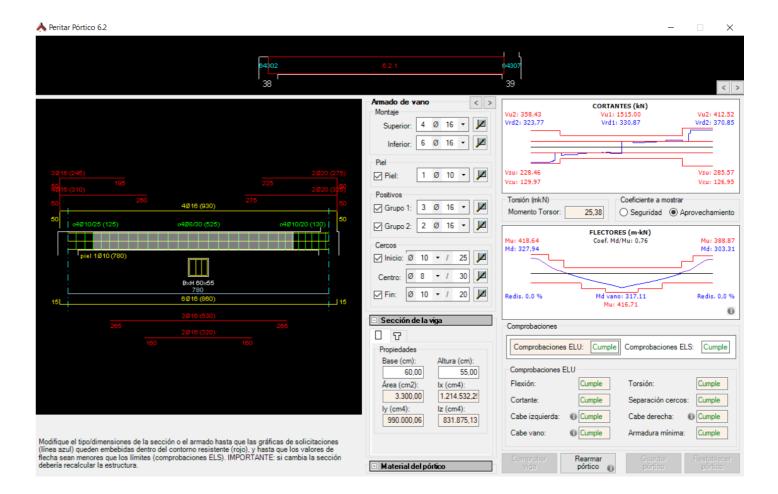

Capa: PUNTOS CONTROL

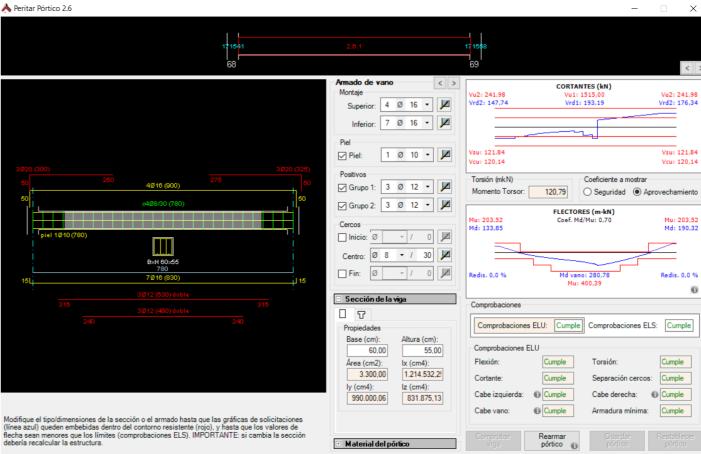
Nivel: 10

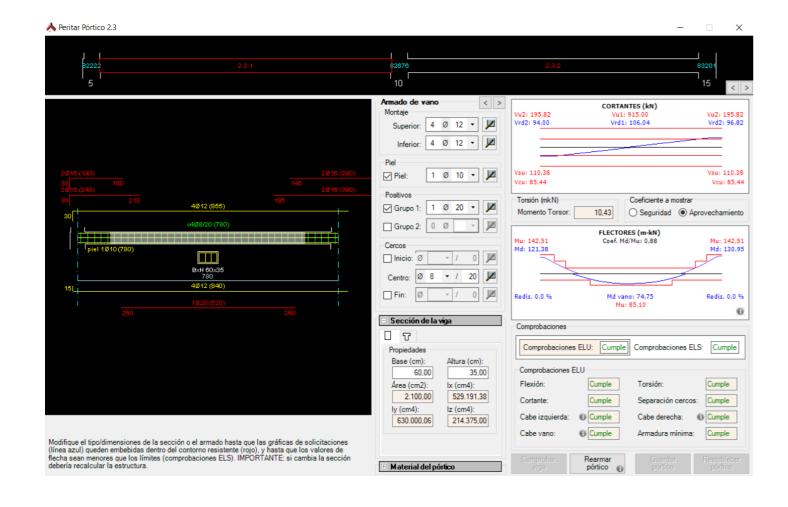
8.4.3. Desplazamientos muro de sótano, EF2D.

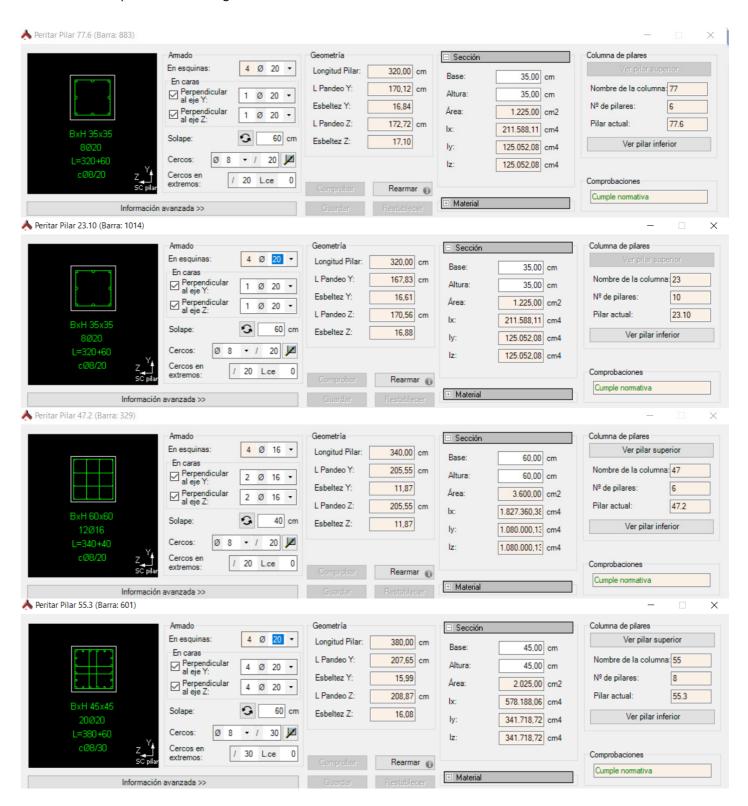


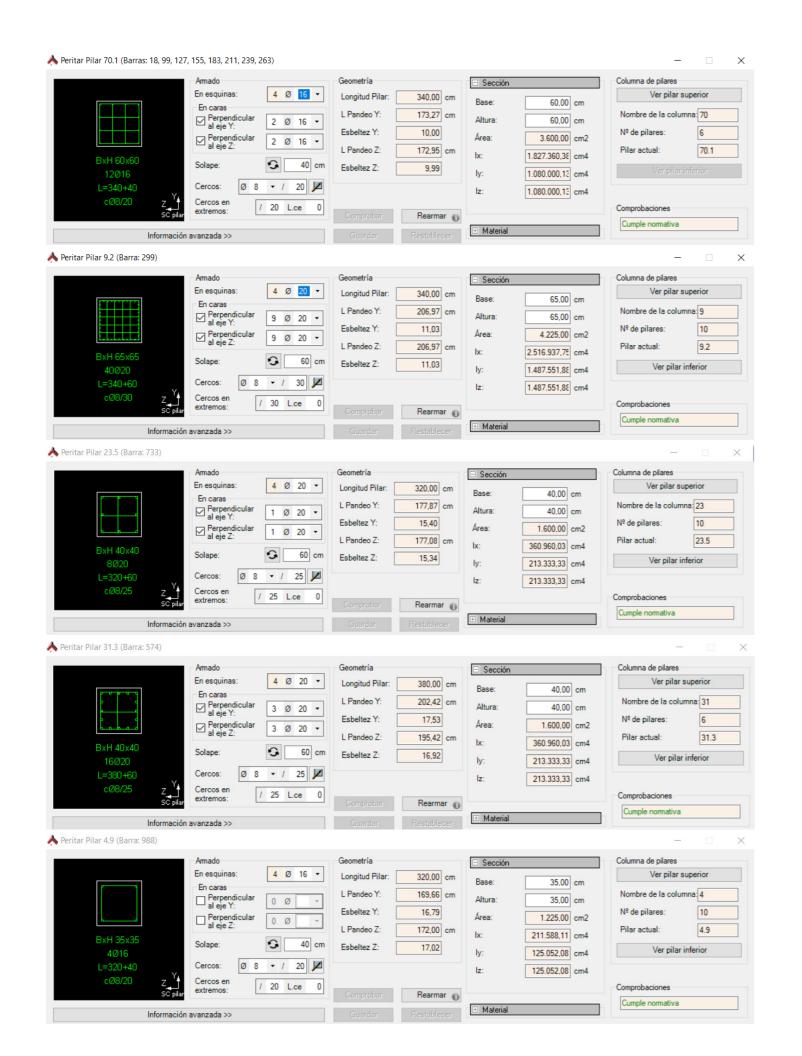


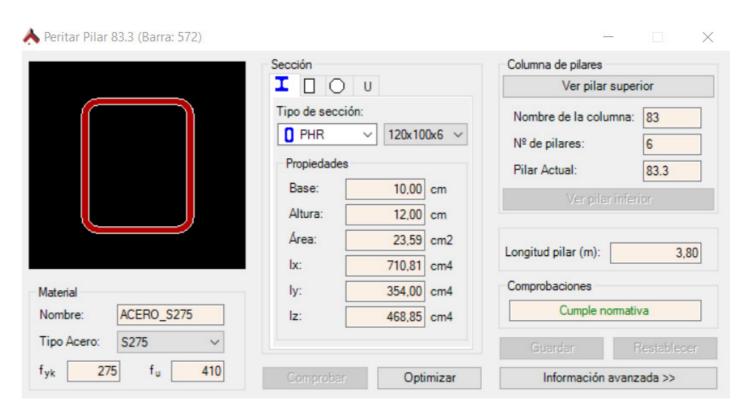


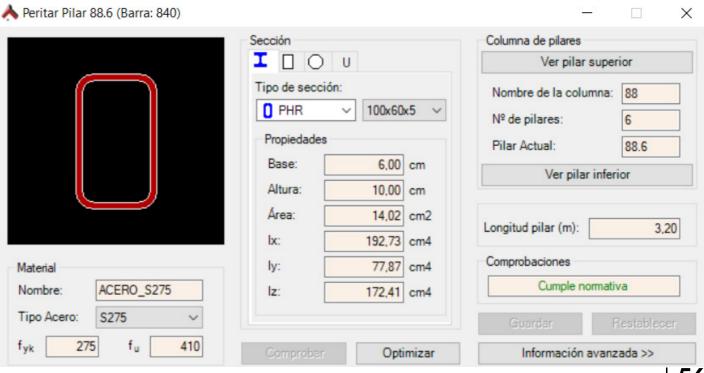

8.5. Muestreo aleatorio.

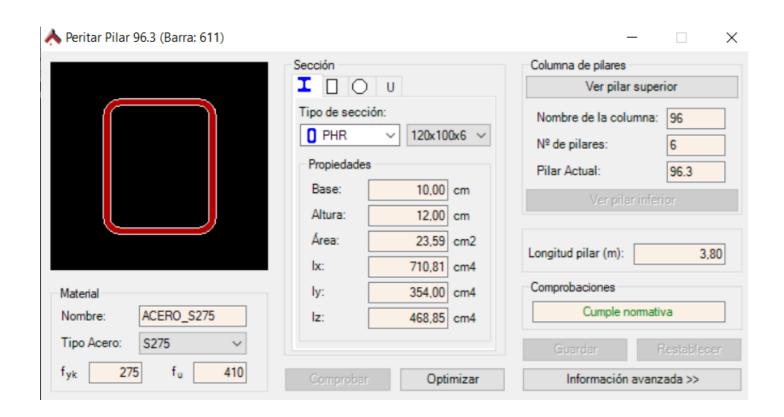

- Muestra de vigas de hormigón armado:

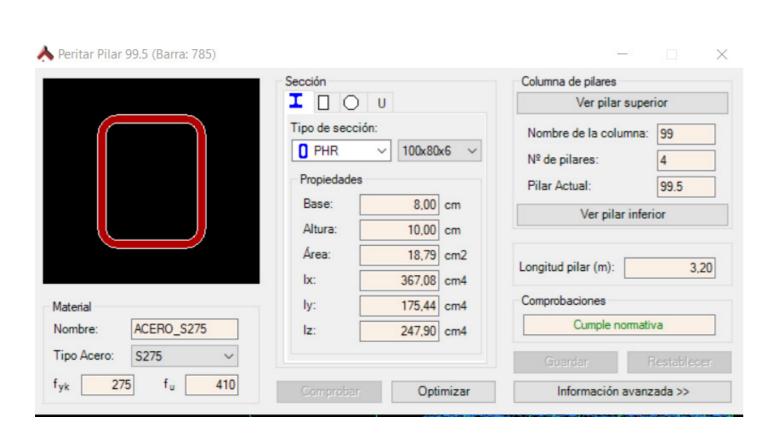


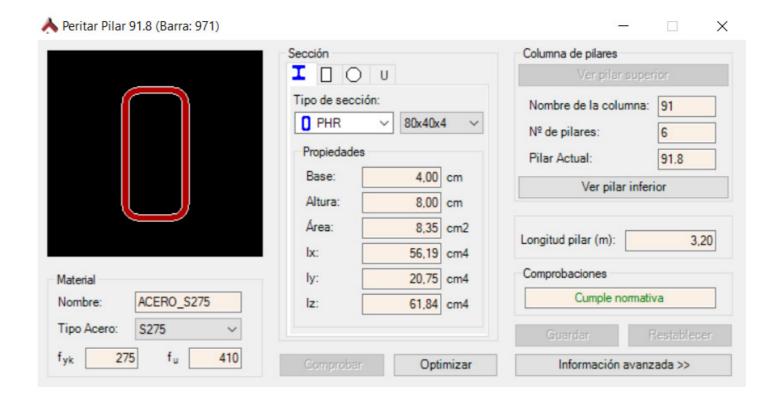


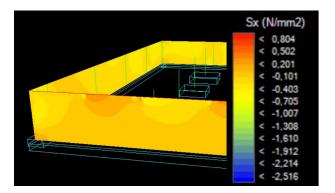


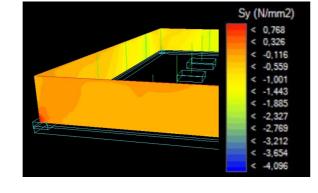

- Muestra de soportes de hormigón armado:

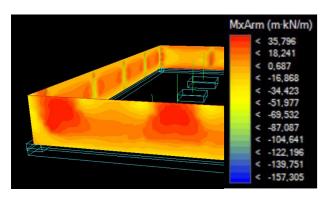


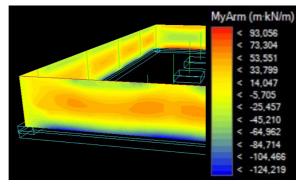



- Muestra de soportes tubulares de acero:

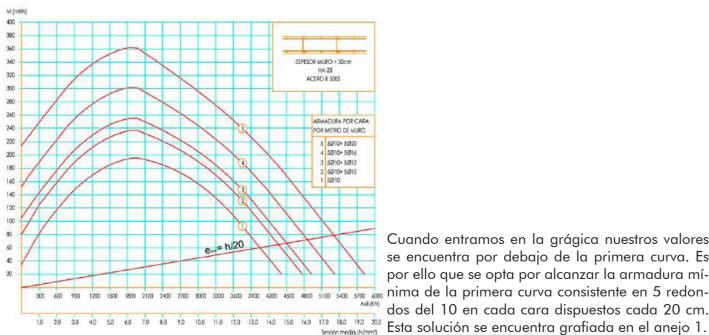







8.6. Armado de muros.

Se va a proceder al cálculo del armado de los muros de sótano, para ello tomamos los gráficos obtenidos de los momentos flectores en la derección X y en la Y, así como las tensiones de membrana máxima sobre los EF2D de los muros de sótano.



se puede concluir que siendo el valor máximo del axil entorno a 768 kN y contando con un momento de 124,219 kN·m, podemos introducir estos valores en los ábacos para obtener el armado correspondiente.

8.6.1. Ábacos.

A continuación se muestra la tabla de Architrave existente en el Anexo E. Por las condiciones de diseño de los muros, se comprueba su armado en la tabla correspondiente a muros de sótano de 30 cm de espesor, de hormigón HA-25 y con armaduras de acero B-500s:

Cuando entramos en la grágica nuestros valores se encuentra por debajo de la primera curva. Es por ello que se opta por alcanzar la armadura mí-5700 an nima de la primera curva consistente en 5 redondos del 10 en cada cara dispuestos cada 20 cm.

8.7. Comprobación de la cimentación

A continuación se va a comprobar que los valores máximos y medios de las tensiones transmitidas por la cimentación al terreno para las combinaciones apropiadas quedan dentro de márgenes admisibles.

En este proyecto se requiere una cimentación profunda según la Geoweb, se ha procedido a realizar el cálculo en Architrave de los "encepados" como zapatas y con una resistencia del terreno de 450, de esta forma dimensionará zapatas muy rígidas que equivaldrán a los encepados. El axil que llega a cada zapata (encepado) lo deberá transmitir el pilote trabajando por fuste. En el siguiente apartado se realizará el cálculo de dichos pilotes.

A continuación se muestran algunos de los "encepados" más solicitadas para demostrar que los valores máximos y medios de las tensiones transmitidas por éstas al terreno se encuentran dentro de márgenes admisibles:

Encepado 9, centrada

Axil: 7749,08 kN Área: 440 x 440 cm

Presión transmitida: 400,26 kN/m2 < 450 kN/m2

Encepado 24, centrada

Axil: 7334,94 kN Área: 425 x 425 cm

Presión transmitida: 406,90 kN/m2 < 450 kN/m2

Encepado 29, centrada

Axil: 6294,13 kN Área: 395 x 395 cm

Presión transmitida: 403,41 kN/m2 < 450 kN/m2

Encepado 34, centrada

Axil: 6179,18 kN Área: 390 x 390 cm

Presión transmitida: 406,25 kN/m2 < 450 kN/m2

Encepado 59, centrada

Axil: 6265,60 kN Área: 395 x 395 cm

Presión transmitida: 404,50 kN/m2 < 450 kN/m2

Encepado 64, centrada

Axil: 6624,83 kN Área: 405 x 405 cm

Presión transmitida: 403,89 kN/m2 < 450 kN/m2

CÁLCULO DE LA CIMENTACIÓN PROFUNDA. PILOTES

Tras el estudio del terreno de la Geroweb se ha optado por una cimentación profunda, esta es considerada de tal modo si su extremo inferior, en el terreno, está a una profundidad superior a 8 veces su diámetro o ancho (D/B > 8).

Según la NCSE 02 en el artículo 4.3.2 Elemento de atado dice:

"Cada uno de los elementos de cimentación que transmita al terreno cargas verticales significativas deberá enlazarse con elementos contiguos en dos direcciones mediante dispositivos de atado situado a nivel de las zapatas, de los encepados de pilotes o equivalentes, capaces de resistir esfuerzo axial, tanto de tracción como de compresión, igual a la carga sísmica horizontal transmitida en cada apoyo."

Es por ello que los encepados de los pilotes se unirán entre sí mediante una solera para evitar el desplazamiento lateral, tal y como dice el DB SE C en el articulo 4.1.1 Zapatas Aisladas en el apartado 5.

CRITERIOS DE DISEÑO Y ACCIONES DE CÁLCULO

A continuación se mostrarán los criterios de diseño y las acciones a considerar para este cálculo.

El criterio de diseño habitual es situar el número de pilotes necesario debajo de cada soporte para que, al transmitir las cargas, se consiga un adecuado margen de seguridad frente a la rotura y que los asientos totales y diferenciales sean admisibles.

Además de estudiar el comportamiento de un pilote aislado, debe estudiarse el del grupo de pilotes, ya que es recomendable que cada soporte se apoye al menos, sobre dos de ellos. Se comprobará la resistencia del grupo así como su asiento. El estudio de los pilotes se llevará a cabo mediante la table de calculo de Excel facilitada.

- Deducción de la magnitud de las resistencias unitarias por punta y por rozamiento del fuste.

Valores basados en el ensavo SPT

Tipo de pilote	3
Hormigonado in situ	I
f _N 0,2	

Resistencia unitaria por punta			
Profundidad	N _{SPT}	q _p	
m	golpes	kN/m ²	
24,00	35	7000	

Resistencia unitaria por fuste				
Profundidad	N _{SPT}	τ_{f}		
m	golpes	kN/m ²		
0,75	1	2,0		
2,00	1	2,0		
4,00	2	4,0		
6,50	3	6,0		
10,50	6	12,0		
14,00	8	16,0		
15,25	13	26,0		
17,00	15	30,0		
19,00	12	24,0		
21,00	18	36,0		
23,00	30	60,0		

Valores basados en ensayos penetrométricos estáticos
--

Tipo de pilote 3	Tipo de suelo 1
Hormigonado in situ	Granular
f _q 0,4	

Resistencia uni	Resistencia unitaria por punta							
q c	q_p							
kN/m ²	kN/m ²							
18000	7200							

	Resistencia unitaria por fuste											
Profundidad	T _{f penetración}	q _c	τ_{f}									
m	kN/m ²	kN/m ²	kN/m ²									
0,75	0,5	30	0,5									
2,00		200	0,4									
4,00	4,0	100	4,0									
6,50		2000	4,0									
10,50	12,0	3000	12,0									
14,00	18,0	7000	18,0									
15,25	26,0	7000	26,0									
17,00	32,0	7000	32,0									
19,00		8000	16,0									
21,00		12000	24,0									
23,00	70,0	12000	70,0									

- Carga de hundimiento

La carga de hundimiento (resistencia característica al hundimiento, Rck) es la suma de la resistencia por punta y por fuste:

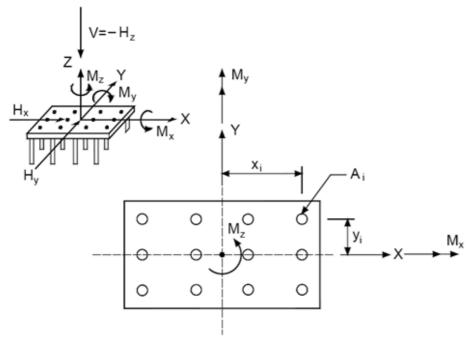
$$Rck = Rpk + Rfk$$

Rpk resistencia soportada por la punta Rfk resistencia soportada por el fuste

	Resistencia por rozamiento de fuste	R _{fk}	758,7	kN
	Resistencia por apoyo de la punta	R _{pk}	1413,7	kN
Carga de hundimiento	Valor característico de la carga de hundimiento de un pilote	R _{ck}	2172,4	kN
Carga de Hundimiento	Coeficiente de seguridad	γ _R	3,0	
	Valor de cálculo de la carga de hundimiento de un pilote	R_{cd}	724,1	kN
	Valor de cálculo de la carga de hundimiento de un pilote agrupado	R _{cd grupo}	615,5	kN

- Capacidad estructural

	Pilotes	Tipo de pilote	1	Er	ntubado
	perforados	Control de integridad	0	Sin contro	ol de integridad
	apoyados en	Tensión del pilote	σ	5,0	N/mm ²
Tope estructural (pilotes perforados	suelo firme	Tope estructural de un pilote	Q _{tope}	981,7	kN
o hincados)		Tipo de pilote	2	Hormi	gón armado
•	Pilotes	Tensión de pretensado	fp	2,0	N/mm ²
	hincados	Tensión del pilote	σ	7,5	N/mm²
		Tope estructural de un pilote	Q_{tope}	1472,6	kN


	No es necesario comprobar la posible rotura horizontal del to	erreno debido	a las cargas h	orizontales
	Tipo de suelo	2	Co	ohesivo
	Esbeltez de la longitud enterrada	L/D	48	
	Peso efectivo (sumergido en su caso) del terreno	γ'	12	kN/m³
	Angulo de rozamiento interno	ф	20°	
Rotura horizontal del terreno	Coeficiente de empuje pasivo del suelo	K _p	2,04	
Rotara nonzontar del terreno	Elevación relativa del encepado respecto de la longitud del pilote	e/L	0,00	
	Resistencia al corte sin drenaje	Cu	10	kN/m ²
	Elevación relativa del encepado respecto del diámetro del pilote	e/D	0,00	
	Coeficiente de resistencia horizontal de la Figura F.7		32	
	Carga de rotura horizontal del suelo de un pilote	н	80,0	kN
	Carga de rotura horizontal del suelo de un pilote agrupado	H _{grupo}	68,0	kN

- Dimensiones de los pilotes

Diámetro del pilote	D	0,50 m
Perímetro del fuste		1,57 m
Área de la sección transversal		0,1963 m ²
Inercia de la sección transversal		0,003068 m ⁴
Elevación sobre el terreno	e	0,00 m
Longitud total del pilote	L	24,00 m
Resistencia característica hormigón	f _{ck}	25 N/mm ²
Módulo de elasticidad del hormigón	E	27.264 N/mm ²
Resistencia característica acero	f_{yk}	400 N/mm ²

- Acciones de la estructura sobre la cimentación

A las acciones de la estructura hay que añadir el peso propio del encepado y de las tierras o aquello que pueda gravitar sobre él. Se debe realizar un reparto de cargas entre los pilotes del grupo para cada combinación de acciones.

Resultante de las acciones

Momentos = Mx , My , Mz

Reparto entre pilotes

$$N_{i} = \frac{A_{i}}{\Sigma A_{i}} \cdot V \pm \frac{A_{i} y_{i}}{\Sigma A_{i} y_{i}^{2}} \cdot M_{x} \pm \frac{A_{i} x_{i}}{\Sigma A_{i} x_{i}^{2}} \cdot M_{y}$$

$$H_{xi} = \frac{A_i}{\Sigma A_i} \cdot H_x \pm \frac{{A_i}^2 y_i}{\Sigma {A_i}^2 ({x_i}^2 + {y_i}^2)} \cdot M_z$$

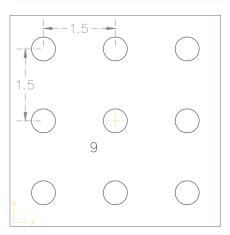
$$H_{yi} = \frac{A_i}{\Sigma A_i} \cdot H_y \pm \frac{{A_i}^2 x_i}{\Sigma {A_i}^2 ({x_i}^2 + {y_i}^2)} \cdot M_z$$

Figura 5.3. Distribución de esfuerzos en la hipótesis de encepado rígido y pilotes articulados en cabeza

- Distribución de los esfuerzos del pilar entre los pilotes realizado por el encepado y comprobación de los pilotes.

Se procede a la distribución de los pilotes en los encepados y el cálculo mediante las solicitaciones de los extremos del soporte (combinación de CIM más desfavorable).

ENCEPADO 9


Dimensión: 4,40 x 4,40 x 1,05 m

Separación entre pilotes S1: 1,5 m Separación entre pilotes S2: 1,5 m

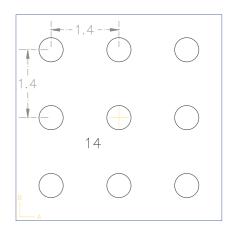
Coeficiente de eficiencia por interación entre pilotes: 0,9

Solicitaciones:

V = 510,779 kNHx = 8,690 kNHy = 151,190 kN $Mx = 56,867 \text{ kN} \cdot \text{m}$ $My = 0.283 \text{ kN} \cdot \text{m}$

	H_{yi}	H_{xi}		N _i	$A_i^2 \cdot (x_i^2 + y_i^2)$	A _i ² ·y _i	A _i ²⋅x _i	A _i ·y _i ²	$A_i \cdot x_i^2$	$A_i \cdot y_i$	$A_i \cdot x_i$	A_{i}	y i	Xi	Pilote
Cumple	16,8	1,0	Cumple	85,3	0,17349	0,05783	0,05783	0,44179	0,44179	0,29452	0,29452	0,1963	1,50	1,50	1
Cumple	16,8	1,0	Cumple	63,1	0,08674	0,05783	0,00000	0,44179	0,00000	0,29452	0,00000	0,1963	1,50	0,00	2
Cumple	16,8	1,0	Cumple	40,8	0,17349	0,05783	-0,05783	0,44179	0,44179	0,29452	-0,29452	0,1963	1,50	-1,50	3
Cumple	16,8	1,0	Cumple	79,0	0,08674	0,00000	0,05783	0,00000	0,44179	0,00000	0,29452	0,1963	0,00	1,50	4
Cumple	16,8	1,0	Cumple	56,8	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,1963	0,00	0,00	5
Cumple	16,8	1,0	Cumple	34,5	0,08674	0,00000	-0,05783	0,00000	0,44179	0,00000	-0,29452	0,1963	0,00	-1,50	6
Cumple	16,8	0,9	Cumple	72,7	0,17349	-0,05783	0,05783	0,44179	0,44179	-0,29452	0,29452	0,1963	-1,50	1,50	7
Cumple	16,8	0,9	Cumple	50,4	0,08674	-0,05783	0,00000	0,44179	0,00000	-0,29452	0,00000	0,1963	-1,50	0,00	8
Cumple	16,8	0,9	Cumple	28,2	0,17349	-0,05783	-0,05783	0,44179	0,44179	-0,29452	-0,29452	0,1963	-1,50	-1,50	9
	151,19	8,69		510,779	1,04093			2,65072	2,65072			1,7671			

ENCEPADO 14


Dimensión: 4,25 x 4,25 x 1,00 m

Separación entre pilotes S1: 1,4 m Separación entre pilotes S2: 1,4 m

Coeficiente de eficiencia por interación entre pilotes: 0,9

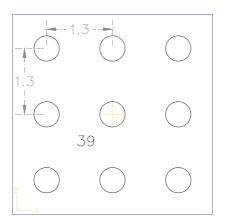
Solicitaciones:

V = 496,189 kNHx = 17.348 kNHy = 152,440 kN $Mx = 62,868 \text{ kN} \cdot \text{m}$ $My = 0.454 \text{ kN} \cdot \text{m}$

Pilote	\mathbf{x}_{i}	Yi	A_{i}	$A_i \cdot x_i$	$A_i \cdot y_i$	$A_i \cdot x_i^2$	A _i ·y _i ²	$A_i^2 \cdot x_i$	A _i ² ·y _i	$A_i^2 \cdot (x_i^2 + y_i^2)$	N_i		H _{xi}	H_{yi}	
1	1,40	1,40	0,1963	0,27489	0,27489	0,38485	0,38485	0,05397	0,05397	0,15113	62,7	Cumple	1,9	16,9	Cumple
2	0,00	1,40	0,1963	0,00000	0,27489	0,00000	0,38485	0,00000	0,05397	0,07556	62,6	Cumple	1,9	16,9	Cumple
3	-1,40	1,40	0,1963	-0,27489	0,27489	0,38485	0,38485	-0,05397	0,05397	0,15113	62,6	Cumple	1,9	16,9	Cumple
4	1,40	0,00	0,1963	0,27489	0,00000	0,38485	0,00000	0,05397	0,00000	0,07556	55,2	Cumple	1,9	16,9	Cumple
5	0,00	0,00	0,1963	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	55,1	Cumple	1,9	16,9	Cumple
6	-1,40	0,00	0,1963	-0,27489	0,00000	0,38485	0,00000	-0,05397	0,00000	0,07556	55,1	Cumple	1,9	16,9	Cumple
7	1,40	-1,40	0,1963	0,27489	-0,27489	0,38485	0,38485	0,05397	-0,05397	0,15113	47,7	Cumple	1,9	16,9	Cumple
8	0,00	-1,40	0,1963	0,00000	-0,27489	0,00000	0,38485	0,00000	-0,05397	0,07556	47,6	Cumple	1,9	16,9	Cumple
9	-1,40	-1,40	0,1963	-0,27489	-0,27489	0,38485	0,38485	-0,05397	-0,05397	0,15113	47,6	Cumple	1,9	16,9	Cumple
			1.7671			2.30907	2.30907			0.90677	496.189		17.348	152.44	

ENCEPADO 39

Dimensión: 3,95 x 3,95 x 0,95 m


Separación entre pilotes S1: 1,3 m Separación entre pilotes S2: 1,3 m

Coeficiente de eficiencia por interación entre pilotes: 0,9

Solicitaciones:

V = 7310,675 kN

Pilote	\mathbf{x}_{i}	y i	A_{i}	$A_i \cdot x_i$	$A_i \cdot y_i$	$A_i \cdot x_i^2$	$A_i \cdot y_i^2$	$A_i^2 \cdot x_i$	$A_i^2 \cdot y_i$	$A_i^2 \cdot (x_i^2 + y_i^2)$	N_i		H_{xi}	H_{yi}	
1	1,30	1,30	0,1963	0,25525	0,25525	0,33183	0,33183	0,05012	0,05012	0,13031	819,0	No cumple	0,6	2,4	Cumple
2	0,00	1,30	0,1963	0,00000	0,25525	0,00000	0,33183	0,00000	0,05012	0,06515	817,8	No cumple	0,6	2,4	Cumple
3	-1,30	1,30	0,1963	-0,25525	0,25525	0,33183	0,33183	-0,05012	0,05012	0,13031	816,5	No cumple	0,6	2,4	Cumple
4	1,30	0,00	0,1963	0,25525	0,00000	0,33183	0,00000	0,05012	0,00000	0,06515	813,5	No cumple	0,6	2,4	Cumple
5	0,00	0,00	0,1963	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	812,3	No cumple	0,6	2,4	Cumple
6	-1,30	0,00	0,1963	-0,25525	0,00000	0,33183	0,00000	-0,05012	0,00000	0,06515	811,0	No cumple	0,6	2,4	Cumple
7	1,30	-1,30	0,1963	0,25525	-0,25525	0,33183	0,33183	0,05012	-0,05012	0,13031	808,1	No cumple	0,6	2,4	Cumple
8	0,00	-1,30	0,1963	0,00000	-0,25525	0,00000	0,33183	0,00000	-0,05012	0,06515	806,8	No cumple	0,6	2,4	Cumple
9	-1,30	-1,30	0,1963	-0,25525	-0,25525	0,33183	0,33183	-0,05012	-0,05012	0,13031	805,6	No cumple	0,6	2,4	Cumple
			1.7671			1,99098	1,99098			0.78186	7310,675		5,162	21.189	

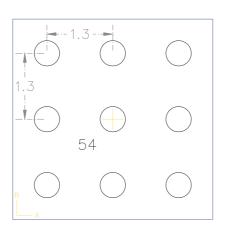
ENCEPADO 54

Dimensión: 3,95 x 3,95 x 0,95

Separación entre pilotes S1: 1,3 m Separación entre pilotes S2: 1,3 m

Coeficiente de eficiencia por interación entre pilotes: 0,9

Solicitaciones:


V = 1684,877 kN

Hx = 0.752 kN

Hy = 20,836 kN

 $Mx = 48,237 \text{ kN} \cdot \text{m}$

 $My = 0.980 \text{ kN} \cdot \text{m}$

Pilote	x _i	y i	A _i	$A_i \cdot x_i$	A _i ·y _i	A _i ·x _i ²	A _i ·y _i ²	A _i ² ·x _i	A _i ² ·y _i	$A_i^2 \cdot (x_i^2 + y_i^2)$	N _i		H _{xi}	H _{yi}	
1	1,30	1,30	0,1963	0,25525	0,25525	0,33183	0,33183	0,05012	0,05012	0,13031	193,5	Cumple	0,1	2,3	Cumple
2	0,00	1,30	0,1963	0,00000	0,25525	0,00000	0,33183	0,00000	0,05012	0,06515	193,4	Cumple	0,1	2,3	Cumple
3	-1,30	1,30	0,1963	-0,25525	0,25525	0,33183	0,33183	-0,05012	0,05012	0,13031	193,3	Cumple	0,1	2,3	Cumple
4	1,30	0,00	0,1963	0,25525	0,00000	0,33183	0,00000	0,05012	0,00000	0,06515	187,3	Cumple	0,1	2,3	Cumple
5	0,00	0,00	0,1963	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	187,2	Cumple	0,1	2,3	Cumple
6	-1,30	0,00	0,1963	-0,25525	0,00000	0,33183	0,00000	-0,05012	0,00000	0,06515	187,1	Cumple	0,1	2,3	Cumple
7	1,30	-1,30	0,1963	0,25525	-0,25525	0,33183	0,33183	0,05012	-0,05012	0,13031	181,1	Cumple	0,1	2,3	Cumple
8	0,00	-1,30	0,1963	0,00000	-0,25525	0,00000	0,33183	0,00000	-0,05012	0,06515	181,0	Cumple	0,1	2,3	Cumple
9	-1,30	-1,30	0,1963	-0,25525	-0,25525	0,33183	0,33183	-0,05012	-0,05012	0,13031	180,9	Cumple	0,1	2,3	Cumple
			1 7671		_	1 99098	1 99098			0.78186	1684 877	_	0.752	20.836	

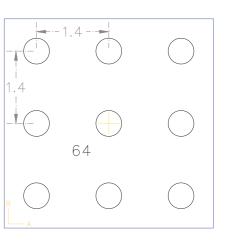
ENCEPADO 64

Dimensión: 4,05 x 4,05 x 0,95 m

Separación entre pilotes \$1: 1,4 m Separación entre pilotes S2: 1,4 m

Coeficiente de eficiencia por interación entre pilotes: 0,9

Solicitaciones:


V = 3760,296 kN

Hx = 2,358 kN

Hy = 4,557 kN

 $Mx = 18,468 \text{ kN} \cdot \text{m}$

 $My = 4,042 \text{ kN} \cdot \text{m}$

Pilote	Xi	y i	A_{i}	$A_i \cdot x_i$	$A_i \cdot y_i$	A _i ·x _i ²	A _i ·y _i ²	A _i ² ·x _i	A _i ²⋅y _i	$A_i^2 \cdot (x_i^2 + y_i^2)$	Ni		H _{xi}	H _{yi}	
1	1,40	1,40	0,1963	0,27489	0,27489	0,38485	0,38485	0,05397	0,05397	0,15113	420,5	Cumple	0,3	0,5	Cumple
2	0,00	1,40	0,1963	0,00000	0,27489	0,00000	0,38485	0,00000	0,05397	0,07556	420,0	Cumple	0,3	0,5	Cumple
3	-1,40	1,40	0,1963	-0,27489	0,27489	0,38485	0,38485	-0,05397	0,05397	0,15113	419,5	Cumple	0,3	0,5	Cumple
4	1,40	0,00	0,1963	0,27489	0,00000	0,38485	0,00000	0,05397	0,00000	0,07556	418,3	Cumple	0,3	0,5	Cumple
5	0,00	0,00	0,1963	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	417,8	Cumple	0,3	0,5	Cumple
6	-1,40	0,00	0,1963	-0,27489	0,00000	0,38485	0,00000	-0,05397	0,00000	0,07556	417,3	Cumple	0,3	0,5	Cumple
7	1,40	-1,40	0,1963	0,27489	-0,27489	0,38485	0,38485	0,05397	-0,05397	0,15113	416,1	Cumple	0,3	0,5	Cumple
8	0,00	-1,40	0,1963	0,00000	-0,27489	0,00000	0,38485	0,00000	-0,05397	0,07556	415,6	Cumple	0,3	0,5	Cumple
9	-1,40	-1,40	0,1963	-0,27489	-0,27489	0,38485	0,38485	-0,05397	-0,05397	0,15113	415,1	Cumple	0,3	0,5	Cumple
			1 7671			2 20007	2 20007			0.00677	2760 206		2 250	1557	

ENCEPADO ZC31 (MURO DE SÓTANO)

- Dimensiones de los pilotes

Diámetro del pilote	D	0,30 m
Perímetro del fuste		0,94 m
Área de la sección transversal		0,0707 m ²
Inercia de la sección transversal		0,000398 m ⁴
Elevación sobre el terreno	е	0,00 m
Longitud total del pilote	L	24,00 m
Resistencia característica hormigón	f_{ck}	25 N/mm ²
Módulo de elasticidad del hormigón	E	27.264 N/mm ²
Resistencia característica acero	f_{yk}	400 N/mm ²

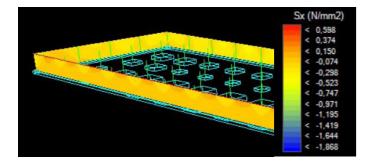
Dimensión: 1 x 1,45 x 0,50 m (se coge una longitud de 1m)

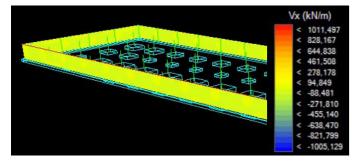
Separación entre pilotes \$1:0,8 m Separación entre pilotes S2: 0,8 m

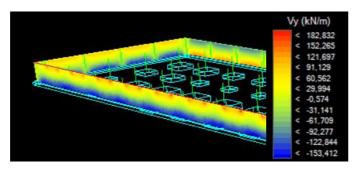
Coeficiente de eficiencia por interación entre pilotes: 0,9

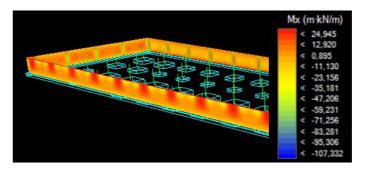
Solicitaciones:

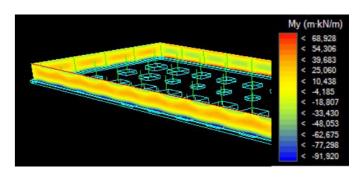

V = 542,3 kN


Hx = 271,81 kN


Hy = 182,83 kN


 $Mx = 24,945 \text{ kN} \cdot \text{m}$


 $My = 91,92 \text{ kN} \cdot \text{m}$



	H_{yi}	H _{xi}		N_i	$A_i^2 \cdot (x_i^2 + y_i^2)$	A _i ² ·y _i	A _i ²⋅x _i	A _i ·y _i ²	A _i ·x _i ²	A _i ∙y _i	$A_i \cdot x_i$	A_{i}	y i	Xi	Pilote
Cumple	91,4	135,9	Cumple	359,8	0,32377	0,16189	0,32377	0,10179	0,40715	0,25447	0,50894	0,6362	0,40	0,80	1
Cumple	91,4	135,9	Cumple	297,4	0,32377	-0,16189	0,32377	0,10179	0,40715	-0,25447	0,50894	0,6362	-0,40	0,80	2
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
Cumple	0,0	0,0	Cumple	0,0	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000			
	182,83	271,81		657,2	0,64754			0,20358	0,81430			1,2723			

ACCIONES SÍSMICAS

10.1. Información sísmica.

10.1.1. Aceleración sísmica básica.

A continuación serealiza el cálculo del sismo sobre la estructura ya dimensionada anteriormente, puesto que de acuerdo a la NCESE-02 por la aceleración sísmica básica de Valencia, un valor característico de la aceleración horizontal de la superficie del terreno, ab = 0,11 g (Tabla adjunta en el anejo 2) procede realizar dicha evaluación.

10.1.2. Aceleración sísmica de cálculo.

La aceleración sísmica de cálculo, ac, se define como el producto:

$$ac = S \cdot \rho \cdot ab$$

Donde:

ab Aceleración sísmica básica

 ρ Coeficiente adimensional de riesgo. Importancia normal, $\rho = 1,0$.

S Coeficiente de amplificación del terreno. Nuestro caso S = 1,27 (Architrave)

Según los detalles del nuestro espectro de respuesta obtenido de Architrave la ac = 0,14 g.

10.1.3. Espectro de respuesta.

La norma establece que un espectro de respuesta normalizado en la suoerficie libre del terreno, para aceleraciones horizontales, está definido por los siguientes valores:

$$\begin{array}{ll} \text{Si } T < T_{_{\!\! A}} & \alpha(T) = 1 + 1,5 \cdot T/TA \\ \text{Si } T_{_{\!\! A}} \leq T \leq T_{_{\!\! B}} & \alpha(T) = 2,5 \\ \text{Si } T > T_{_{\!\! B}} & \alpha(T) = K \cdot C/T \end{array}$$

Siendo:

 $\alpha(T)$ Espectro normalizado de respuesta elástica

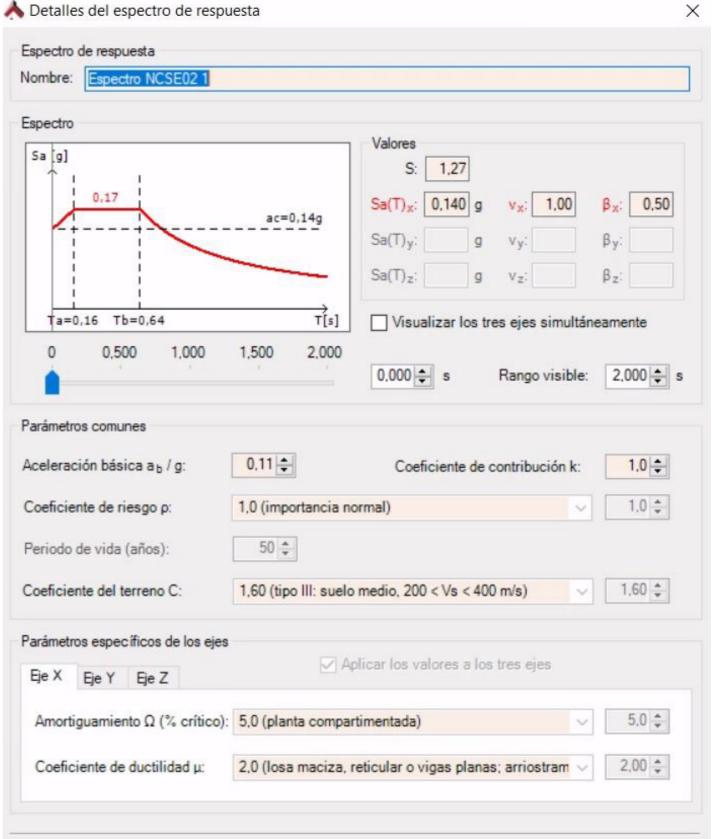
Período propio del oscilados en segundos

K Coeficiente de contribución, lista del Anejo 1. Valencia, K = 1 (Lista en el Anejo 2 de esta memoria.

C Coeficiente del terreno. Nuestro caso:

Terreno tipo III: Suelo granular de compacidad media, o suelo cohesivo de consistencia firme a muy firme. Velocidad de propagación de las ondas elásticas transversales o de cizalla, $400 \text{ m/s} \ge \text{Vs} > 200 \text{ m/s}$.

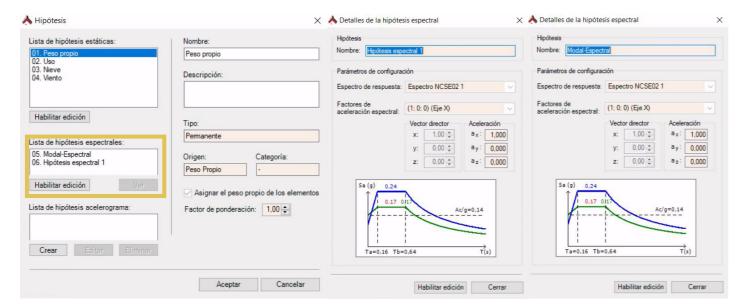
A cada tipo de terreno se le asigna el valor del coeficiente C, el cual se indica en la tabla 2.1.:


TABLA 2.1.
Coeficientes del terreno

Tipo de terreno	Coeficiente C		
I	1,0		
II	1,3		
III	1,6		
IV	2,0		

T_A,T_B Períodos característicos del espectro de respuesta, de valores:

 $TA = K \cdot C/10 = 0,16$ (Gráfica Architrave) $TB = K \cdot C/2,5 = 0,64$ (Gráfica Architrave)

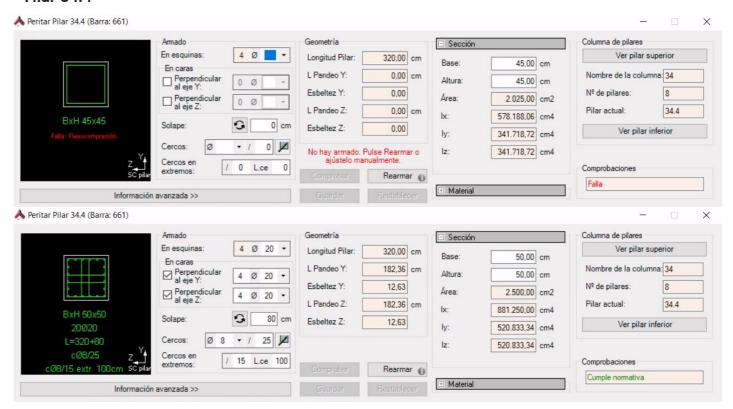

A continuación se muestra el cuadro de Architrave del espectro de respuesta con la gráfica y los valores expuestos anterioremente.

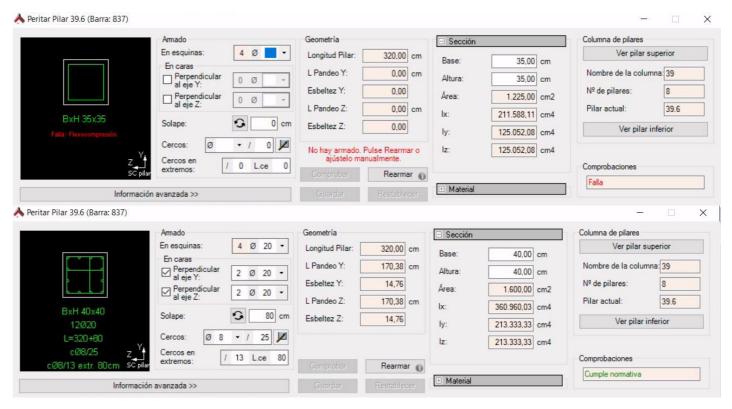
10.2. Creación de una nueva hipótesis

Para realizar el cálculo, tanto el espectral como el modal, es necesario crear una nueva hipótesis en el programa. En la "lista de hipótesis espectrales" se añade una nueva (el programa te propone las definida anteiormente, el espectro de respuesta).

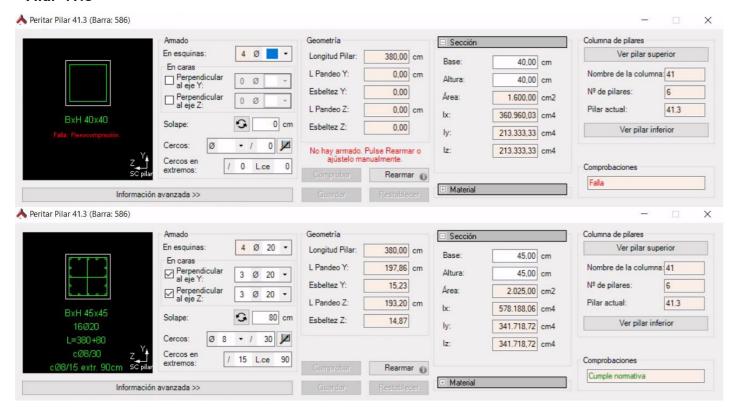
A continuación se muestra la pantalla del programa donde aparece la nueva hipótesis creada, además de los dos cuadros con los detalles de las hipótesis.

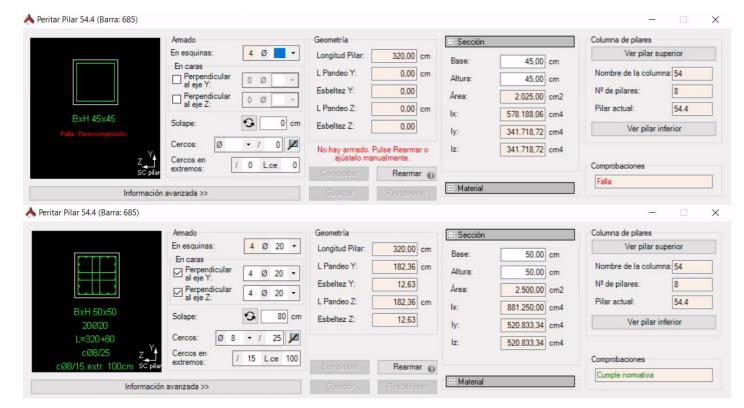
Tras haber creado el espectro y la hipótesis se procede al cálculo de la estructura, incluyendo el cálculo espectral y el modal.

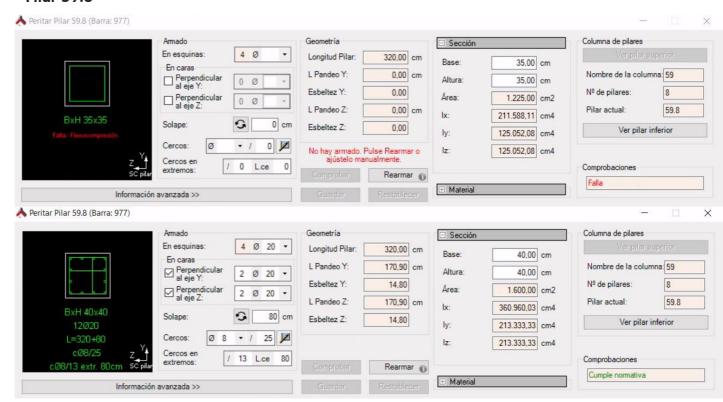

Una vez realizado el cálculo y el nuevo dimensionamiento de las barras, la estructura calculada anteriormente falla; es por ello, que se vuelven a dimensionar los soportes y vigas para que estos vuelvan a cumplir. Cuando se realiza el cálculo del sismo hay 114 elementos de hormigón, entre pilares y vigas, que fallan.

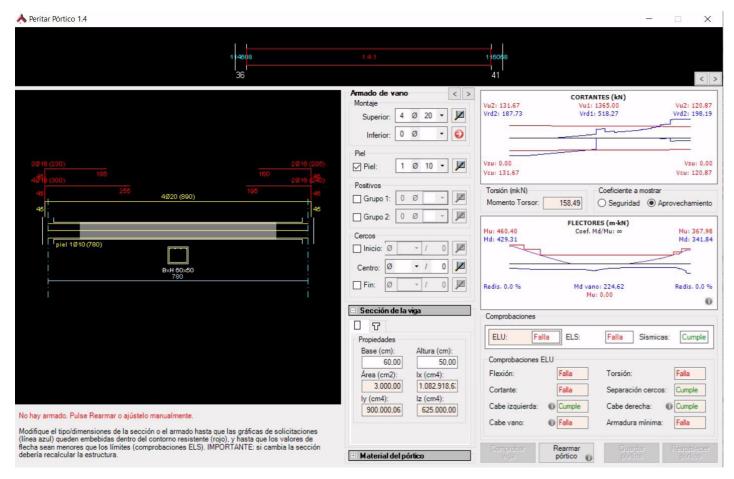

10.3. Muestreo aleatorio

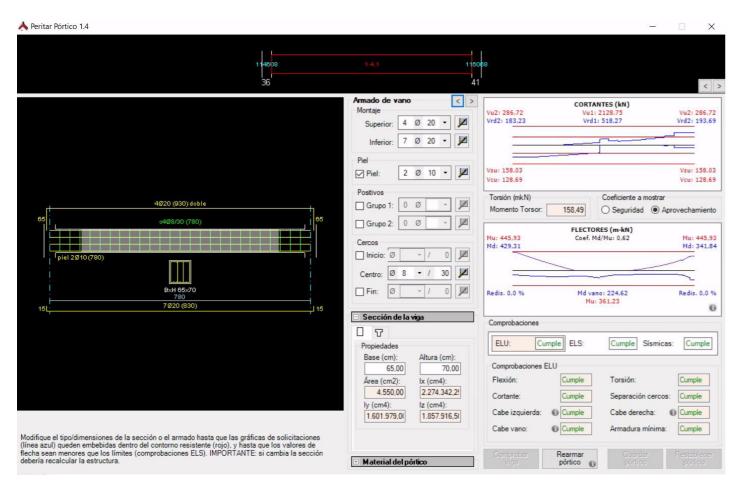
Finalmente se muestran diez elementos de hormigón armado, vigas y pilares. Se va a mostrar la nueva dimensión adoptada tras el cálculo del sismo, así como la anterior dimensión que ahora no cumple.


- Pilar 34.4

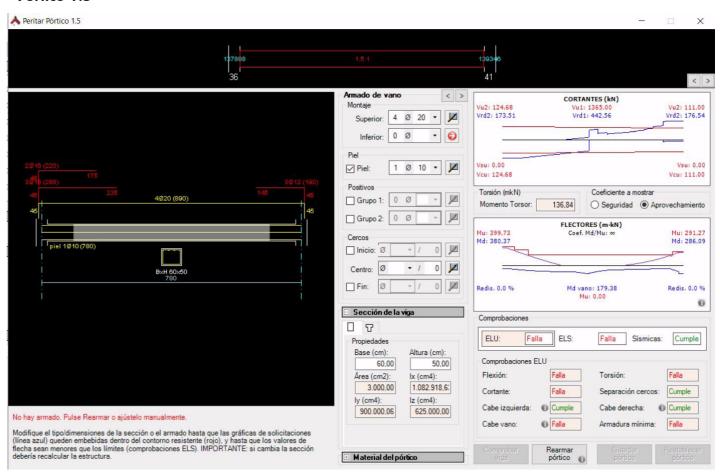

- Pilar 39.6

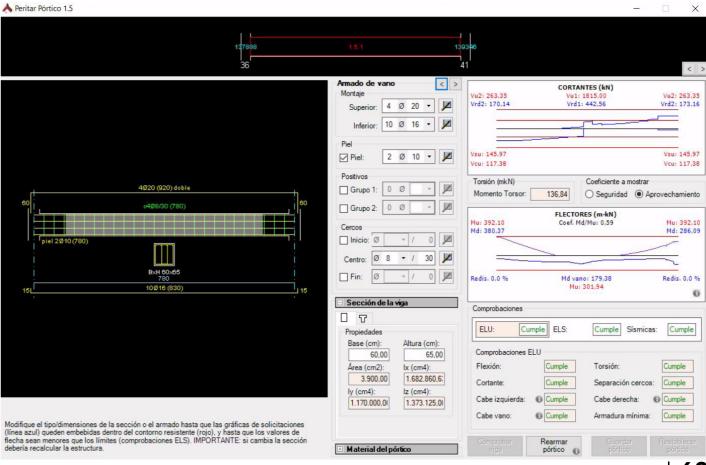

- Pilar 41.3

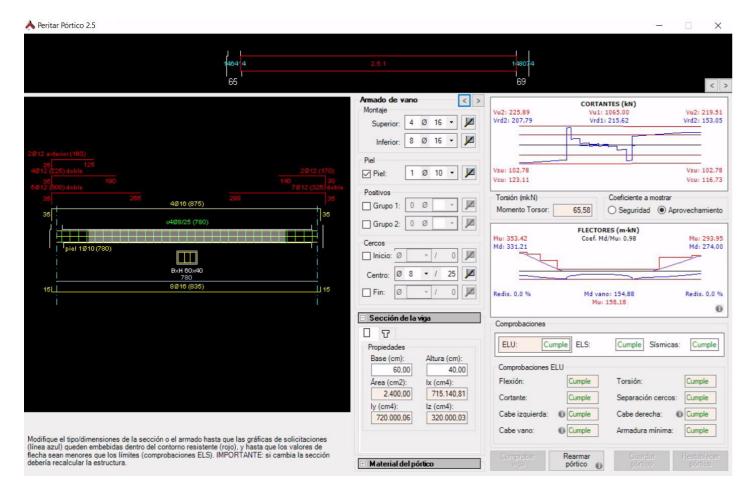

- Pilar 54.4

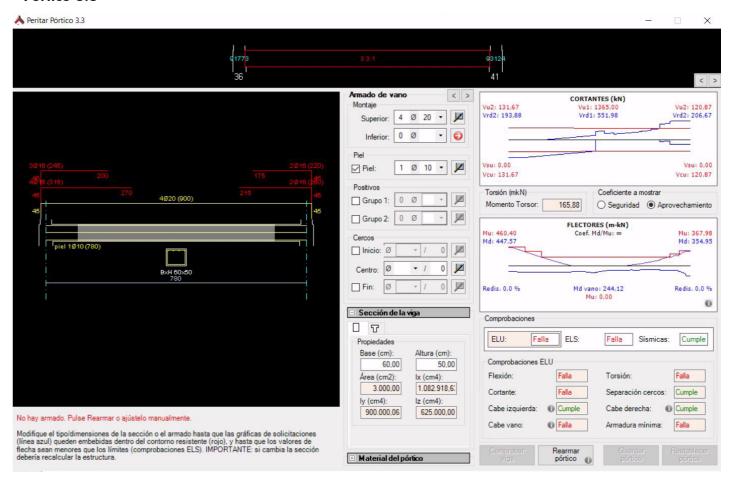


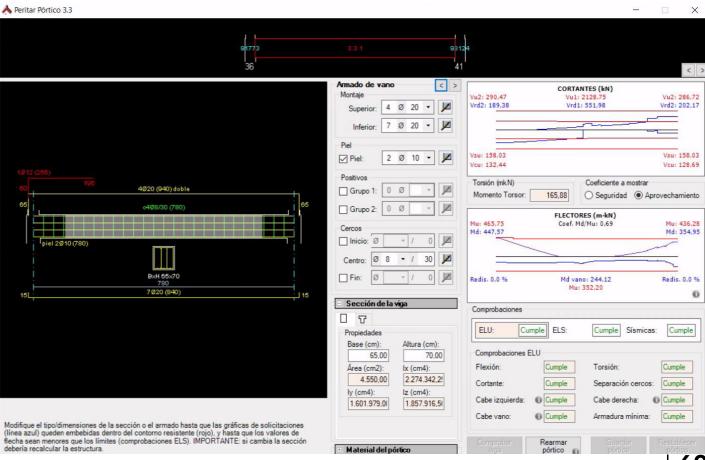
- Pilar 59.8

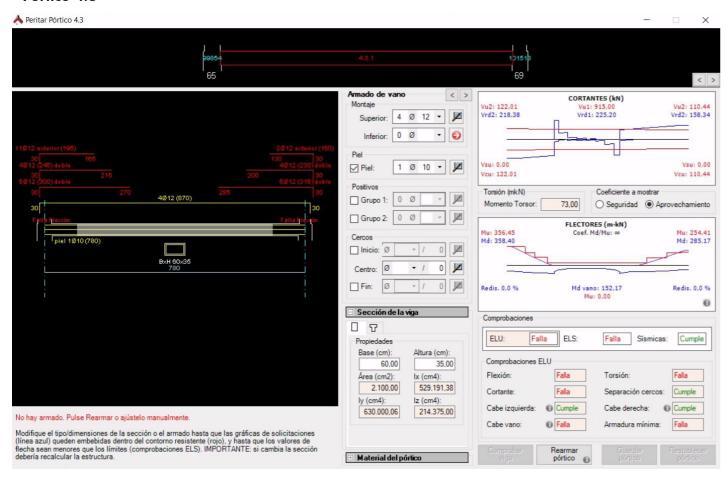


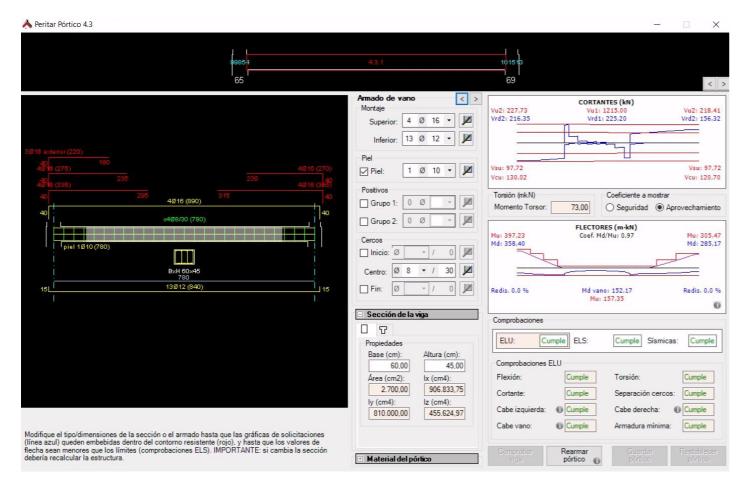

- Pórtico 1.4


- Pórtico 1.5




- Pórtico 2.5




- Pórtico 3.3

- Pórtico 4.3

11.

PRESUPUESTO Y MEDICIONES

11.1. Presupuesto y mediciones.

Presupuesto parcial nº 1 Acondicionamiento del terreno

Ud Descripción Medición Precio Importe

1.1.- Movimiento de tierras en edificación

Desbroce y limpieza del terreno de topografía plana, con medios mecánicos. Comprende los trabajos necesarios para retirar de las zonas previstas para la edificación o urbanización: pequeñas plantas, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad no menor que el espesor de la capa de tierra vegetal, considerando como mínima 25 cm; y carga a camión.

Criterio de valoración económica: El precio no incluye la tala de árboles ni el transporte de los materiales retirados.

Incluye: Replanteo en el terreno. Remoción mecánica de los materiales de desbroce. Retirada y disposición mecánica de los materiales objeto de desbroce. Carga a camión.

Criterio de medición de proyecto: Superficie medida en proyección horizontal, según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá, en proyección horizontal, la superficie realmente ejecutada según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.

> 3.880,80 Total m²: 3.920,000 0.99

1.1.2 Excavación de sótanos de más de 2 m de profundidad, que en todo su perímetro quedan por debajo de la rasante natural, en suelo de arcilla semidura, con medios mecánicos, y carga a

Criterio de valoración económica: El precio incluye la formación de la rampa provisional para acceso de la maquinaria al fondo de la excavación y su posterior retirada, pero no incluye el transporte de los materiales excavados.

Incluye: Replanteo general y fijación de los puntos y niveles de referencia. Colocación de las camillas en las esquinas y extremos de las alineaciones. Excavación en sucesivas franjas horizontales y extracción de tierras. Refinado de fondos y laterales a mano, con extracción de las tierras. Carga a camión de los materiales excavados.

Criterio de medición de proyecto: Volumen medido sobre las secciones teóricas de la excavación, según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados, ni el relleno necesario para reconstruir la sección teórica por defectos imputables al Contratista. Se medirá la excavación una vez realizada y antes de que sobre ella se efectúe ningún tipo de relleno. Si el Contratista cerrase la excavación antes de conformada la medición, se entenderá que se aviene a lo que unilateralmente determine el director de la ejecución de la obra.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
Sótano 1	1	117,000	33,000	3,400	13.127,400	
Sótano 2	1	117,000	33,000	3,400	13.127,400	
					26.254,800	26.254,800
		To	otal m³:	26.254,800	6,43	168.818,36

1.1.3 Excavación de zanjas para instalaciones hasta una profundidad de 2 m, en suelo de arcilla semidura, con medios mecánicos, y carga a camión.

Criterio de valoración económica: El precio no incluye el transporte de los materiales excavados.

Incluye: Replanteo general y fijación de los puntos y niveles de referencia. Colocación de las camillas en las esquinas y extremos de las alineaciones. Excavación en sucesivas franjas horizontales y extracción de tierras. Refinado de fondos con extracción de las tierras. Carga a camión de los materiales excavados.

Criterio de medición de proyecto: Volumen medido sobre las secciones teóricas de la excavación, según documentación gráfica de Proyecto, sin duplicar esquinas ni encuentros. Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin duplicar esquinas ni encuentros y sin incluir los incrementos por excesos de excavación no autorizados, ni el relleno necesario para reconstruir la sección teórica por defectos imputables al Contratista. Se medirá la excavación una vez realizada y antes de que sobre ella se efectúe ningún tipo de relleno. Si el Contratista cerrase la excavación antes de conformada la medición, se entenderá que se aviene a lo que unilateralmente determine el director de la ejecución de la obra.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
Saneamiento en el edificio	1	40,700		1,040	42,328	
Saneamiento en la urbanización	1	34,740		0,960	33,350	
Arqueta sifónica, 70x70x80 cm	1	1,200	1,200	1,050	1,512	
Arqueta de paso en la urbanización, 50x50x50 cm	10	1,000	1,000	0,750	7,500	
					84,690	84,690
		To	otal m³:	84,690	21,22	1.797,12

Proyecto Ejecución Estructural 72

Duna	4
Presuduesto parcial n°	1 Acondicionamiento del terreno

.1.4 N	d		sto v princ						
	m C M Ir d C C e.	Relleno envolvente y principal de zanjas para instalaciones, con arena de 0 a 5 mm de diámetro y compactación en tongadas sucesivas de 20 cm de espesor máximo con bandeja vibrante de guiado manual, hasta alcanzar una densidad seca no inferior al 95% de la máxima obtenida en el ensayo Proctor Modificado, realizado según UNE 103501. Incluso cinta o distintivo indicador de la instalación. Criterio de valoración económica: El precio no incluye la realización del ensayo Proctor Modificado. Incluye: Extendido del material de relleno en tongadas de espesor uniforme. Humectación o desecación de cada tongada. Colocación de cinta o distintivo indicador de la instalación. Compactación. Criterio de medición de proyecto: Volumen medido sobre las secciones teóricas de la excavación, según documentación gráfica de Proyecto. Criterio de medición de obra: Se medirá, en perfil compactado, el volumen realmente ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.							
			Uds.	Largo	Ancho	Alto	Parcial	Subtotal	
Saneamiento e Saneamiento e			1 1	6,400 5,900	6,360 5,890	1,030 0,950	41,925 33,013		
urbanizació	JII						74,938	74,938	
				7	Total m³:	74,938	21,26	1.593,18	
				Total subca	apítulo 1.1 Mov	imiento de tierras en	edificación:	176.089,46	

1.2.- Nivelación

1.2.1 Encachado en caja para base de solera de 20 cm de espesor, mediante relleno y extendido en tongadas de espesor no superior a 20 cm de gravas procedentes de cantera caliza de 40/80 mm; y posterior compactación mediante equipo manual con bandeja vibrante, sobre la explanada homogénea y nivelada.

Criterio de valoración económica: El precio no incluye la ejecución de la explanada.

Incluye: Transporte y descarga del material de relleno a pie de tajo. Extendido del material de relleno en tongadas de espesor uniforme. Humectación o desecación de cada tongada. Compactación y nivelación.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de Provecto.

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto.

> Total m²: 3.920,000 8,44 33.084,80

1.2.2 Solera de hormigón en masa de 10 cm de espesor, realizada con hormigón HM-20/B/20/X0 fabricado en central y vertido desde camión, extendido y vibrado manual mediante regla vibrante, sin tratamiento de su superficie; con juntas de retracción de 5 mm de espesor, mediante corte con disco de diamante. Incluso panel de poliestireno expandido de 3 cm de espesor, para la ejecución de juntas de dilatación.

Criterio de valoración económica: El precio no incluye la base de la solera.

Incluye: Preparación de la superficie de apoyo del hormigón. Replanteo de las juntas de construcción y de dilatación. Tendido de niveles mediante toques, maestras de hormigón o reglas. Riego de la superficie base. Formación de juntas de construcción y de juntas perimetrales de dilatación. Vertido, extendido y vibrado del hormigón. Curado del hormigón. Replanteo de las juntas de retracción. Corte del hormigón. Limpieza final de las juntas de retracción.

Criterio de medición de proyecto: Superficie medida según documentación gráfica de

Criterio de medición de obra: Se medirá la superficie realmente ejecutada según especificaciones de Proyecto, sin deducir la superficie ocupada por los pilares situados dentro de su perímetro.

> Total m²: 51.900,80 3.920.000 13,24

> > Total subcapítulo 1.2.- Nivelación:

84.985,60

1.3.- Gestión de residuos

1.3.1 Servicio de entrega de contenedor de 2.5 m3 colocado a pie de obra para la recogida de residuos de construcción y demolición mezclados, los cuales deberán ser separados en fracciones por un gestor de residuos autorizado antes de su vertido,a una distancia menor de 10 km, según R.D. 105/2008.

> Total u: 2,000 18,54 37,08

Presupuesto parcial nº 1 Acondicionamiento del terreno

N°	Ud	Descripción	Medición	Precio	Importe	
1.3.2	U	Alquiler diario de contenedor de 2.5 m3 para la reco demolición mezclados, los cuales deberán ser separ residuos autorizado antes de su vertido.	•	•		
		Total u:	2,000	1,55	3,10	
	Total subcapítulo 1.3 Gestión de residuos:					
		Total presupuesto parcial nº 1 Ao	condicionamiento	del terreno :	261.115,24	

Proyecto Ejecución Estructural | 73

Presupuesto parcial nº 2 Cimentaciones

Ν°	Ud Descripción	Medición	Precio	Importe
----	----------------	----------	--------	---------

2.1.- Profundas

2.1.1 M Pilote de cimentación de hormigón armado de 35 cm de diámetro, para grupo de pilotes CPI-2 según NTE-CPI. Ejecutado por desplazamiento de tierras mediante sistema mecánico de hinca de camisa recuperable, provista en su extremo inferior de una puntaza prefabricada o azuche y posterior hormigonado continuo en seco del pilote. Realizado con hormigón HA-25/F/12/XC2 fabricado en central, y vertido desde camión a través de tubo Tremie, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 5,65 kg/m. Incluso alambre de atar y separadores.

Criterio de valoración económica: El precio incluye el transporte, la instalación, el montaje y el desmontaje del equipo mecánico, la elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y el montaje en el lugar definitivo de su colocación en obra

Incluye: Replanteo y trazado de los ejes de los grupos de pilotes. Hinca del tubo con el azuche en punta. Colocación de la armadura. Puesta en obra del hormigón. Extracción de la entubación simultáneamente con la compactación del hormigón. Limpieza y retirada de cobrantes

Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto, desde la punta hasta la cara inferior del encepado, incrementada en un metro por la formación del bulbo.

Criterio de medición de obra: Se medirá la longitud, tomada en el terreno antes de hormigonar, del pilote realmente ejecutado según especificaciones de Proyecto, desde la punta hasta la cara inferior del encepado, sin incluir el exceso de hormigón consumido sobre el volumen teórico correspondiente al diámetro nominal del pilote.

		Total m ·	9 024 000	63 98	577 355 52
				9.024,000	9.024,000
A*C*D	752	0,500	24,000	9.024,000 _	
	Uds.	Ancho	Alto	Parcial	Subtotal

2.1.2 M Descabezado de pilote de hormigón armado, de 35 cm de diámetro, mediante picado del hormigón de la cabeza del pilote que no reúne las características mecánicas necesarias, con compresor con martillo neumático, y carga de los escombros procedentes del descabezado sobre camión o contenedor.

Incluye: Descabezado. Doblado de armaduras. Limpieza y carga de los escombros procedentes del descabezado sobre camión o contenedor.

Criterio de medición de proyecto: Longitud medida según documentación gráfica de Proyecto

Criterio de medición de obra: Se medirá la longitud realmente ejecutada según especificaciones de Proyecto.

 Uds.	Largo	Ancho	Alto	Parcial	Subtotal
752	0,500		24,000	9.024,000	
				9.024,000	9.024,000
		Total m:	9.024,000	17,24	155.573,76

Total subcapítulo 2.1.- Profundas: 732.929,28

2.2.- Regularización

2.2.1 M² Capa de hormigón de limpieza y nivelado de fondos de cimentación, de 10 cm de espesor, de hormigón HL-150/B/20, fabricado en central y vertido desde camión, en el fondo de la excavación previamente realizada.

Incluye: Replanteo. Colocación de toques y/o formación de maestras. Vertido y compactación del hormigón. Coronación y enrase del hormigón.

Criterio de medición de proyecto: Superficie medida sobre la superficie teórica de la excavación, según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie teórica ejecutada según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.

Total m²: 3.920,000 7,20 28.224,00

Total subcapítulo 2.2.- Regularización: 28.224,00

2.3.- Encepados

Presupuesto parcial nº 2 Cimentaciones

Ν°	Ud Descripción	Medición	Precio	Importe
----	----------------	----------	--------	---------

2.3.1 M³ Encepado de hormigón armado, agrupando cabezas de pilotes descabezados, realizado con hormigón HA-25/F/20/XC2 fabricado en central, y vertido desde camión, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 86,688 kg/m³, correspondiente al conjunto de armaduras propias, de espera de los elementos de atado y centrado de cargas a que haya lugar, y de espera del pilar al que sirve de base para transmitir las cargas al pilotaje. Incluso alambre de atar y separadores.

Criterio de valoración económica: El precio incluye la elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y el montaje en el lugar definitivo de su colocación en obra, pero no incluye el encofrado.

Incluye: Replanteo del conjunto del encepado. Colocación de separadores y fijación de las armaduras. Vertido y compactación del hormigón. Coronación y enrase de cimientos. Curado del hormigón. Limpieza final de la base del pilar.

Criterio de medición de proyecto: Volumen medido sobre las secciones teóricas de la excavación, según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, sin incluir los incrementos por excesos de excavación no autorizados.

	Uds.	Largo	Ancho	Alto	Parcial Sub	total
Encepados sobre pilotes 'in situ'	74	1,370		0,650	65,897	
Encepado corrido (Muros de sótano)	1	161,700		0,650	105,105	
					171,002 171	,002

Total m³: 171,002 247,83 42.379,43

2.3.2 M² Montaje de sistema de encofrado recuperable metálico, para encepado de grupo de pilotes, formado por paneles metálicos, amortizables en 200 usos, y posterior desmontaje del sistema de encofrado. Incluso elementos de sustentación, fijación y acodalamientos necesarios para su estabilidad y líquido desencofrante, para evitar la adherencia del hormigón al encofrado.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo. Aplicación del líquido desencofrante. Montaje del sistema de encofrado. Colocación de elementos de sustentación, fijación y acodalamiento. Aplomado y nivelación del encofrado. Desmontaje del sistema de encofrado. Limpieza y almacenamiento del encofrado.

Criterio de medición de proyecto: Superficie de encofrado en contacto con el hormigón, medida según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá la superficie de encofrado en contacto con el hormigón realmente ejecutada según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
Encepados sobre pilotes 'in situ'	1	3,650			3,650	
Encepado corrido (Muros de sótano)	1	39,670			39,670	
					43,320	43,320
		To	tal m²:	43,320	18,60	805,75

Total subcapítulo 2.3.- Encepados: 43.185,18

2.4.- Contenciones

4.1 M³ Muro de sótano de hormigón armado, realizado con hormigón HA-25/F/20/XC2 fabricado en central, y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 88,877 kg/m³. Incluso alambre de atar y separadores.

Criterio de valoración económica: El precio incluye la elaboración y el montaje de la ferralla en el lugar definitivo de su colocación en obra, pero no incluye el encofrado.

Incluye: Colocación de la armadura con separadores homologados. Resolución de juntas de construcción. Limpieza de la base de apoyo del muro en la cimentación. Vertido y compactación del hormigón. Curado del hormigón. Reparación de defectos superficiales, si procede.

Criterio de medición de proyecto: Volumen medido sobre la sección teórica de cálculo, según documentación gráfica de Proyecto, deduciendo los huecos de superficie mayor de 2 $\rm m^2$.

Criterio de medición de obra: Se medirá el volumen teórico ejecutado según especificaciones de Proyecto, deduciendo los huecos de superficie mayor de 2 m².

 Uds.	Largo	Ancho	Alto	Parcial	Subtotal
1	230,970	0,300	5,450	377,636	
				377,636	377,636
	To	otal m³:	377,636	242,31	91.504,98

Proyecto Ejecución Estructural 74

Presupuesto parcial nº 2 Cimentaciones

Ud Descripción

2.4.2	M²	Montaje y desmontaje en una cara del muro, de sistema de encofrado a dos caras con acabado tipo industrial para revestir, realizado con paneles metálicos modulares, amortizables en 100 usos, para formación de muro de hormigón armado, de entre 3 y 6 m de altura y superficie plana, para contención de tierras. Incluso; pasamuros para paso de los tensores; elementos de sustentación, fijación y apuntalamiento necesarios para su estabilidad; y líquido desencofrante, para evitar la adherencia del hormigón al encofrado. Incluye: Limpieza y preparación del plano de apoyo. Replanteo del encofrado sobre la cimentación. Replanteo de las juntas de construcción y de dilatación. Colocación de pasamuros para paso de los tensores. Montaje del sistema de encofrado. Colocación de elementos de sustentación, fijación y apuntalamiento. Aplomado y nivelación del encofrado. Desmontaje del sistema de encofrado. Limpieza y almacenamiento del encofrado. Criterio de medición de proyecto: Superficie de encofrado en contacto con el hormigón, medida según documentación gráfica de Proyecto, sin deducir huecos menores de 1 m². Criterio de medición de obra: Se medirá la superficie de encofrado en contacto con el hormigón realmente ejecutada según especificaciones de Proyecto, sin deducir huecos menores de 1 m².
-------	----	--

Total m²:

Medición

1.257,510

Total presupuesto parcial nº 2 Cimentaciones :

Total subcapítulo 2.4.- Contenciones:

Precio

19,98

Importe

25.125,05

116.630,03

920.968,49

Presupuesto parcial nº 3 Estructuras

Ν°	Ud Descripción	Medición	Precio	Importe
----	----------------	----------	--------	---------

3.1.- Acero

3.1.1 Kg Acero UNE-EN 10219-1 S275J0H, en pilares formados por piezas simples de perfiles huecos conformados en frío de las series redondo, cuadrado o rectangular, acabado con imprimación antioxidante, colocado con uniones soldadas en obra, a una altura de hasta 3 m.

Criterio de valoración económica: El precio incluye las soldaduras, los cortes, los despuntes, las piezas especiales, las placas de arranque y de transición de pilar inferior a superior, los casquillos y los elementos auxiliares de montaje.

Incluye: Limpieza y preparación del plano de apoyo. Replanteo y marcado de los ejes. Colocación y fijación provisional del pilar. Aplomado y nivelación. Ejecución de las uniones soldadas.

Criterio de medición de proyecto: Peso nominal medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se determinará, a partir del peso obtenido en báscula oficial de las unidades llegadas a obra, el peso de las unidades realmente ejecutadas según especificaciones de Proyecto.

Total kg: 5.012,000 2,17 10.876,04

Total subcapítulo 3.1.- Acero: 10.876,04

3.2.- Hormigón armado

3.2.1 M² Losa de escalera de hormigón armado de 20 cm de espesor, con peldañeado de hormigón, realizada con hormigón HA-25/F/20/XC2 fabricado en central, y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 30 kg/m²; montaje y desmontaje de sistema de encofrado, con acabado tipo industrial para revestir en su cara inferior y laterales, en planta de hasta 3 m de altura libre, formado por: superficie encofrante de tablones de madera de pino, amortizables en 10 usos, estructura soporte horizontal de tablones de madera de pino, amortizables en 10 usos y estructura soporte vertical de puntales metálicos, amortizables en 150 usos. Incluso alambre de atar, separadores y líquido desencofrante, para evitar la adherencia del hormigón al encofrado.

Criterio de valoración económica: El precio incluye la elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y el montaje en el lugar definitivo de su colocación en obra.

Incluye: Replanteo y marcado de niveles de plantas y rellanos. Montaje del sistema de encofrado. Colocación de las armaduras con separadores homologados. Vertido y compactación del hormigón. Curado del hormigón. Desmontaje del sistema de encofrado. Criterio de medición de proyecto: Superficie medida por su intradós en verdadera magnitud, según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá, por el intradós, la superficie realmente ejecutada según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
Escalera 1	1	3,440	3,000		10,320	_
Escalera 2	1	3,440	3,000		10,320	
Escalera 3	1	3,440	3,000		10,320	
					30,960	30,960
		To	otal m²:	30,960	137,17	4.246,78

3.2.2 M³ Pilar de sección rectangular o cuadrada de hormigón armado, de 30x30 cm de sección media, realizado con hormigón HA-25/F/20/XC2 fabricado en central, y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 3,965 kg/m³; montaje y desmontaje de sistema de encofrado, con acabado tipo industrial para revestir, en planta de hasta 3 m de altura libre, formado por: superficie encofrante de chapas metálicas, amortizables en 50 usos y estructura soporte vertical de puntales metálicos, amortizables en 150 usos. Incluso berenjenos, alambre de atar, separadores y líquido desencofrante para evitar la adherencia del hormigón al encofrado.

Criterio de valoración económica: El precio incluye la elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y el montaje en el lugar definitivo de su colocación en obra.

Incluye: Replanteo. Colocación de las armaduras con separadores homologados. Montaje del sistema de encofrado. Vertido y compactación del hormigón. Desmontaje del sistema de encofrado. Curado del hormigón.

Criterio de medición de proyecto: Volumen medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá el volumen realmente ejecutado según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial Subtotal
Sótano 1	80	0,500	0,500	2,800	56,000
Sótano 2	80	0,500	0,500	2,800	56,000
					(Continúa)

Proyecto Ejecución Estructural 75

Presupuesto parcial nº 3 Estructuras

N°	Ud	Descripción			Medición	Precio	Importe
3.2.2	М³	Pilar rectangular o cuadrado	o de hormigo	ón armado.		(Cont	inuación)
Planta	baja	64	0,500	0,500	3,200	51,200	
Planta	1	64	0,450	0,450	2,800	36,288	
Planta	2	64	0,450	0,450	2,800	36,288	
Planta	3	64	0,400	0,400	2,800	28,672	
Planta	4	33	0,350	0,350	2,800	11,319	
Planta	5	33	0,350	0,350	2,800	11,319	
Planta	6	15	0,350	0,350	2,800	5,145	
Planta	7	15	0,350	0,350	2,800	5,145	
						297,376	297,376
				Total m ³ :	297,376	379,66	112.901,77

3.2.3 M³ Viga descolgada, recta, de hormigón armado, de 40x30 cm, realizada con hormigón HA-25/F/20/XC2 fabricado en central, y vertido con cubilote, y acero UNE-EN 10080 B 500 S, con una cuantía aproximada de 247,721 kg/m³; montaje y desmontaje del sistema de encofrado, con acabado tipo industrial para revestir, en planta de hasta 3 m de altura libre, formado por: superficie encofrante de tableros de madera tratada, reforzados con varillas y perfiles, amortizables en 25 usos; estructura soporte horizontal de sopandas metálicas y accesorios de montaje, amortizables en 150 usos y estructura soporte vertical de puntales metálicos, amortizables en 150 usos. Incluso alambre de atar, separadores y líquido desencofrante, para evitar la adherencia del hormigón al encofrado.

Criterio de valoración económica: El precio incluye la elaboración de la ferralla (corte, doblado y conformado de elementos) en taller industrial y el montaje en el lugar definitivo de su colocación en obra.

Incluye: Replanteo. Montaje del sistema de encofrado. Colocación de las armaduras con separadores homologados. Vertido y compactación del hormigón. Curado del hormigón. Desmontaje del sistema de encofrado.

Criterio de medición de proyecto: Volumen medido según documentación gráfica de Proyecto.

Criterio de medición de obra: Se medirá el volumen realmente ejecutado según especificaciones de Proyecto.

	Uds.	Largo	Ancho	Alto	Parcial	Subtotal
Vigas hormigón armado 0,35x0,35	18	3,880	0,350	0,350	8,555	
Vigas hormigón armado 0,6x0,55	13	7,800	0,600	0,550	33,462	
Vigas hormigón armado 0,6x0,35	8	7,800	0,600	0,350	13,104	
Vigas hormigón armado 0,6x0,50	4	7,800	0,600	0,500	9,360	
Vigas hormigón armado 0,6x0,65	1	7,800	0,600	0,650	3,042	
					67,523	67,523
		To	otal m³:	67,523	667,00	45.037,84

3.2.4 M² Losa horizontal aligerada con burbujas de plástico reciclado, realizada con hormigón HA 25/B/20/lla de 35cm de espesor con una cuantía media de 13 kg/m2 de acero B 500 S, encofrado, vibrado, curado y desencofrado, según EHE-08.

	Uds.	Área			Parcial	Subtotal
Losa sótano [A*B]	2	3.800,000			7.600,000	
Losa PB, P1, P2, P3 [A*B]	4	2.467,000			9.868,000	
Losa P5, P6 [A*B]	2	1.390,000			2.780,000	
Losa P7, P8 [A*B]	2	522,000			1.044,000	
					21.292,000	21.292,000
			Total m ² :	21.292,000	90,73	1.931.823,16
			Total sui	bcapítulo 3.2 Horm	nigón armado:	2.094.009,55
			Total presupu	esto parcial nº 3 E	 Estructuras :	2.104.885,59

Presupuesto de ejecución material

1 Acondicionamiento del terreno		261.115,24
1.1 Movimiento de tierras en edificación		176.089,46
1.2 Nivelación		84.985,60
1.3 Gestión de residuos		40,18
2 Cimentaciones		920.968,49
2.1 Profundas		732.929,28
2.2 Regularización		28.224,00
2.3 Encepados		43.185,18
2.4 Contenciones		116.630,03
3 Estructuras		2.104.885,59
3.1 Acero		10.876,04
3.2 Hormigón armado		2.094.009,55
	 Total:	3.286.969,32

Asciende el presupuesto de ejecución material a la expresada cantidad de TRES MILLONES DOSCIENTOS OCHENTA Y SEIS MIL NOVECIENTOS SESENTA Y NUEVE EUROS CON TREINTA Y DOS CÉNTIMOS.

Valencia, Junio 2022 Arquitecta

Estefanía Ferrer Mena


Proyecto Ejecución Estructural **76**

11.2. Análisis y comparación del presupuesto.

COMERCIOS en EDIFICIO EXCLUSIVO

MERCADOS Y SUPERMERCADOS

Para comprobar que el presupuesto presentado en el punto anterior se encuentra dentro de unos valores asumibles se va a comparar con un valor de referencia. Para ello, a continuación se muestran los valores del coste unitario de ejecución para edificios residenciales, de comerdio y de ocio y hostelería que ofrece el IVE. Al ser un edificio con varios usos se va a hacer la proporcionalidad de la superficie correspondiente a cada uno de ellos. Realizado este cálculo, el coste del presupuesto de ejecución de la estructura debería encontrarse entre el 15 y el 25% del valor final obtenido de los precios que nos ofrece el IVE.

OCIO Y HOSTELEF	RÍA		
Fecha de cálculo Junio	2022 🗸	MBE 06/2022 = 734 €/m ²	COSTE UNITARIO DE EJECUCIÓN = 1.101,00 €/m ²
	CON RESIDENCIA		O HOTELES, HOSTALES, MOTELES
			APARTHOTELES, BUNGALOWS
	SIN RESIDENCIA		O RESTAURANTES
			BARES Y CAFETERÍAS
	EXPOSICIONES Y REUNIONES		CASINOS Y CLUBS SOCIALES
			EXPOSICIONES Y CONGRESOS

O EN UNA PLANTA O EN VARIAS PLANTAS

O HIPERMERCADOS Y SUPERMERCADOS

MERCADOS

Uso	Superficie (m2)	MBE (€/m2)	Valor (€)
Residencial	19.758 m2	675,42 €/m2	13.344.948,4€
Comercial	1.020 m2	880,80 €/m2	897.535,2€
Ocio y hostelería	420 m2	1.101,00 € /m2	462.420,0€
		Total =	14.704.903,6 €

El precio de nuestra estructura ascendía a 3.286.969,32 €, esto equivaldría a un 22,35 % del presupuesto total. Por tanto, la estructura entra dentro de un margen presupuestario razonable para su ejecución.

> 22,35% 25% 2.205.735,54 € < **3.286.969,32** € < 3.676.225,9 €

Programas de cálculo:

<u>Architrave:</u>

1. PEREZ-GARCIA, Agustín, ALONSO DURÁ, Adolfo, GÓMEZ-MARTÍNEZ, Fernando, ALONSO AVALOS, José Miguel and LOZANO LLORET, Pau. Architrave 2019 [online]. 2019. Valencia (Spain) Universitat Politècnica de València. 2019. Available from: www.architrave.es

CYPE

Arquímedes. Versión Campus. Uso no profesional-2023.a CYPE 2023 (Castellano). Versión Campus. Uso no profesional - 2023.a Available from: https://www.cype.es/

Web de cálculo:

geoweb:

"IVE. Geoweb". Disponible en Web. http://www.five.es:8080/geoweb/ [Consulta: Abril 2022].

IVE precios:

"Módulo de edificación | IVE". Disponible en Web. https://www.five.es/productos/herramientas-on-line/modulo-de-edificacion/ [Consulta: Junio 2022].

"Base de datos de construcción, IVE septiembre 2021". Disponible en Web. https://bdc.f-ive.es/BDC21/3 [Consulta: Junio 2022].

Normativa de aplicación:

DB SE AE:

"CTE. Documento básico de Seguridad Estructural Acciones en la edificación". Disponible en Web. https://www.codigotecnico.org/pdf/Documentos/SE/DBSE-AE.pdf [Consulta: Marzo 2022].

DB SE:

"CTE. Documento básico de Seguridad Estructural". Disponible en Web. https://www.codigotecnico.org/pdf/Documentos/SE/DBSE.pdf [Consulta: Mayo 2022].

DB SE A:

"CTE. Documento básico de Seguridad Estructural Acero". Disponible en Web. https://www.codigotecnico.org/pdf/Documentos/SE/DBSE-A.pdf [Consulta: Mayo 2022].

EHE:

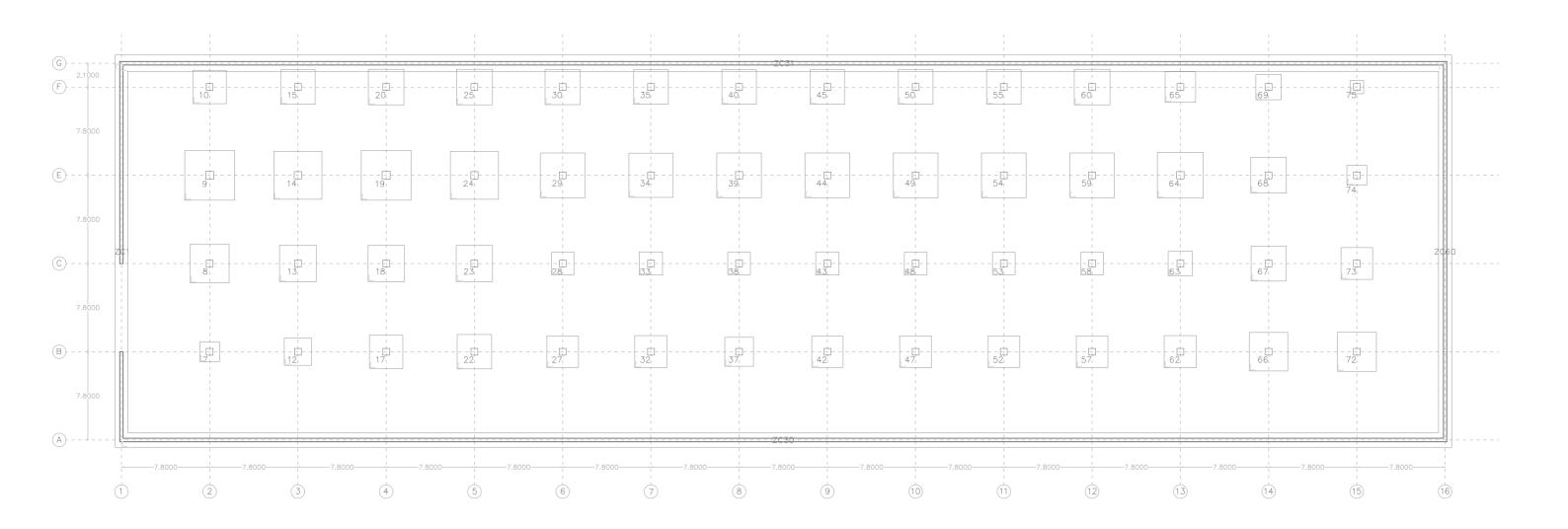
"EHE-08, Instrucción de Hormigón Estructural". Disponible en Web. https://www.mitma.gob.es/recursos mfom/1820100.pdf [Consulta: Mayo 2022].

DB SE C:

"CTE. Documento básico de Seguridad estructural Cimientos". Disponible en Web. https://www.codigotecnico.org/pdf/Documentos/SE/DBSE-C.pdf [Consulta: Mayo 2022].

NCSE-02:

"Norma de Construcción Sismoresistente: Parte general y edificación (NCSE-02)". Disponible en Web. https://www.mitma.gob.es/recursos mfom/0820200.pdf [Consulta: Junio 2022].


Web de los fabricantes:

Bubbledeck:

"BubbleDeck". Disponible en Web. http://bubbledeck.com.ar/ [Consulta: Mayo 2022].

PLANOS CONSTRUCTIVOS

Cimentación Nivel O. Cota: -6,80 m. Material predominante: HA25 Tensión admisible para encepados: 450,00 kN/m² Tipo de suelo para encepados: Cohesivo

HORMIGÓN ARMADO							
Tipo fck α larga γc Acero arm. Acero arm. γs							
HA25	25,00	1,00	1,50	B500	B500	1,15	

ENCEPADOS CORRIDOS BAJO MURO									
Número	Tipo	Carga (kN)	LxBxH (cm)	Armadura Iongitudinal	Armadura transversal	Armadura superior			
ZC1	Muro centrado	11160,36	3330x110x50	5ø12/25cm	134ø16/25cm				
ZC30	Muro centrado	47740,97	11700×130×50	6ø12/25cm	1170ø12/10cm				
ZC31	Muro centrado	14784,54	11700x145x50	6ø12/25cm	585ø16/20cm				
ZC60	Muro centrado	7923,01	3330x115x50	5ø12/25cm	167ø16/20cm				

		EN	NCEPADOS AISLADO	 0S		
Número	Tipo	Carga (kN)	AxBxH (cm)	Armadura en dirección A	Armadura en dirección B	Esperas - solape
7	Centrada	1249,73	175x175x50	9ø16/20cm	9ø16/20cm	12ø16 - 40 cm
8	Centrada	4831,95	345x345x80	35ø20/10cm	35ø20/10cm	16ø20 – 60 cm
9	Centrada	7749,08	440×440×105	30ø25/15cm	30ø25/15cm	36ø20 – 60 cm
10	Centrada	3456,38	295x295x65	15ø25/20cm	15ø25/20cm	12ø16 - 40 cm
12	Centrada	2298,74	240×240×50	10ø25/25cm	10ø25/25cm	12ø16 – 40 cm
13	Centrada	4239,89	325x325x75	17ø25/20cm	17ø25/20cm	12ø16 - 40 cm
14	Centrada	7227,83	425x425x100	29ø25/15cm	29ø25/15cm	40ø20 – 60 cm
15	Centrada	3759,89	305×305×70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
17	Centrada	3483,76	295x295x65	15ø25/20cm	15ø25/20cm	12ø16 - 40 cm
18	Centrada	4072,74	320×320×75	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
19	Centrada	7818,56	440x440x105	30ø25/15cm	30ø25/15cm	40ø20 – 60 cm
20	Centrada	4011,62	315x315x75	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
22	Centrada	3751,18	305×305×70	16ø25/20cm	16ø25/20cm	12ø16 - 40 cm
23	Centrada	4164,03	320×320×75	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
24	Centrada	7334,94	425×425×100	29ø25/15cm	29ø25/15cm	40ø20 – 60 cm
25	Centrada	3979,89	315x315x75	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
27	Centrada	3178,64	280×280×65	19ø20/15cm	19ø20/15cm	12ø16 – 40 cm
28	Centrada	1617,58	200×200×50	14ø16/15cm	14ø16/15cm	12ø16 – 40 cm
29	Centrada	6294,13	395×395×95	40ø20/10cm	40ø20/10cm	36ø20 – 60 cm
30	Centrada	3836,24	310×310×70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
32	Centrada	3214,36	285×285×65	15ø25/20cm	15ø25/20cm	12ø16 – 40 cm
33	Centrada	1663,56	205×205×50	14ø16/15cm	14ø16/15cm	12ø16 – 40 cm
34	Centrada	6179,18	390x390x95	39ø20/10cm	39ø20/10cm	36ø20 – 60 cm
35	Centrada	3801,05	305×305×70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
37	Centrada	2615,77	255×255×55	26ø16/10cm	26ø16/10cm	12ø16 – 40 cm
38	Centrada	1582,15	200×200×50	8ø20/25cm	8ø20/25cm	12ø16 – 40 cm
39	Centrada	6382,01	395×395×95	40ø20/10cm	40ø20/10cm	28ø20 – 60 cm
40	Centrada	3789,29	305×305×70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
42	Centrada	3067,21	275×275×60	14ø25/20cm	14ø25/20cm	12ø16 – 40 cm
43	Centrada	1673,15	205×205×50	14ø16/15cm	14ø16/15cm	12ø16 – 40 cm

Número	Tipo	Carga (kN)	AxBxH (cm)	Armadura en dirección A	Armadura en dirección B	Esperas — solape
44	Centrada	6243,45	395x395x95	40ø20/10cm	40ø20/10cm	36ø20 – 60 cm
45	Centrada	3798,66	305×305×70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
47	Centrada	3138,84	280×280×65	19ø20/15cm	19ø20/15cm	12ø16 – 40 cm
48	Centrada	1622,77	200×200×50	14ø16/15cm	14ø16/15cm	12ø16 – 40 cm
49	Centrada	6296,99	395x395x95	40¢20/10cm	40ø20/10cm	36ø20 - 60 cm
50	Centrada	3793,45	305x305x70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
52	Centrada	3126,11	280x280x65	19ø20/15cm	19ø20/15cm	12ø16 – 40 cm
53	Centrada	1629,14	200×200×50	14ø16/15cm	14ø16/15cm	12ø16 – 40 cm
54	Centrada	6265,60	395x395x95	40ø20/10cm	40ø20/10cm	36ø20 – 60 cm
55	Centrada	3778,65	305x305x70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
57	Centrada	3152,70	280×280×65	19ø20/15cm	19ø20/15cm	12ø16 – 40 cm
58	Centrada	1604,16	200x200x50	14ø16/15cm	14ø16/15cm	12ø16 – 40 cm
59	Centrada	6311,23	395x395x95	40ø20/10cm	40ø20/10cm	36ø20 — 60 cm
60	Centrada	3943,18	315x315x75	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
62	Centrada	3247,34	285x285x65	15ø25/20cm	15ø25/20cm	12ø16 – 40 cm
63	Centrada	1872,14	215x215x50	11ø20/20cm	11ø20/20cm	12ø16 – 40 cm
64	Centrada	6624,83	405x405x95	41ø20/10cm	41ø20/10cm	32ø20 – 60 cm
65	Centrada	2981,66	270×270×60	18ø20/15cm	18ø20/15cm	12ø16 – 40 cm
66	Centrada	4659,06	340x340x80	34ø20/10cm	34ø20/10cm	16ø20 – 60 cm
67	Centrada	3903,06	310x310x70	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
68	Centrada	3968,54	315x315x75	16ø25/20cm	16ø25/20cm	12ø16 – 40 cm
69	Centrada	2024,94	225x225x50	9ø25/25cm	9ø25/25cm	12ø16 – 40 cm
72	Centrada	4776,09	345x345x80	35ø20/10cm	35ø20/10cm	16ø20 – 60 cm
73	Centrada	3142,82	280x280x65	19ø20/15cm	19ø20/15cm	12ø16 – 40 cm
74	Centrada	1229,08	175x175x50	9ø16/20cm	9ø16/20cm	12ø16 – 40 cm
75	Centrada	538,75	120x120x50	5ø12/25cm	5ø12/25cm	12ø16 – 40 cm

Forjado 10. Cota 26,20	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Cota 26,20. Forjado 10
Forjado 9. Cota 23,00			BxH 35x35 8#20 L=320+60 c#8/20	BxH 35x35 8#20 L=320+60 c#8/20	BxH 35x35 8#20 L=320+60 c#8/20			BxH 35x35 8#20 L=320+60 c#8/20	BsdH 35x35 4416 L=320+40 c#8/20	BsH 35x35 8#20 L=320+80 c#8/20			Bidl 35x35 8#20 L=320+60 c#8/20	BxH 35x35 4918 L=320+40 c98/20	BxH 35x35 8#20 L=320+60 c#6/20	Cota 23,00. Forjado 9
Forjado 8. Cota 19,80			BxH 35x35 4920 L=320+60 c#8/20	BxH 35x35 4816 L=320+40 c#8/20	BxH 35x35 4920 L=320+60 c#8/20			BxH 35x35 4916 L=320+40 c#8/20	Bid 35x35 8#20 L=320+80 c#8/20	BMH 35x35 4#16 L=320+40 c#8/20			BxH 35x35 4916 L=320+40 c#8/20	BisH 35x35 4920 L=320+60 c#8/20	BxH 35x35 4#20 L=320+60 c#8/20	Cota 19,80. Forjado 8
Forjado 7. Cota 16,60			BxH 35x35 4920 L=320+80 c#6/20	BxH 35x35 8920 L=320+60 c#8/20	BxH 35x35 8#20 L=320+60 c#6/20			BxH 35x35 4920 L=320+60 c#8/20	BxH 40x40 12920 L=320+80 c#8/25	Bid 35x35 8920 L=320+80 c98/20			BxH 35x35 4e20 L=320+60 c#6/20	BisH 35x35 16#20 L=320+60 c#6/20	BxH 35x35 8x20 L=320+60 cx6/20	Cota 16,60. Forjado 7
Forjado 6. Cota 13,40			BxH 35x35 4920 L=320+80 c#6/20	BxH 35x35 12x20 L=320+60 c#6/20	BxH 35x35 8#20 L=320+60 c#6/20			BidH 35x35 12g20 L=320+80 c#8/20	Bidt 45x45 20#20 L=320+80 c#8/30	Bid 35x35 12s/20 L=320+80 cs8/20			BxH 35x35 8x20 L=320+80 c#6/20	BidH 40x40 20920 L=320+60 cs8/25	BisH 35x35 12g20 L=320+80 c#6/20	Cota 13,40. Forjado 6
			BisH 35x35 8e20 L=320+60 c#8/20	BisH 35x35 16#20 L=320+60 c#8/20	Bid1 35x35 8e/20 L=320+60 ce8/20			Bid1 35x35 16#20 L=320+60 c#8/20	BsH 50x50 24920 L=320+60 c#8/30	Bid 35x35 16420 L=320+80 c#8/20	Bid1 35x35 8x20 L=320+60 c#8/20	BxH 35x35 8x20 L=320+60 cx8/20	BxH 35x35 12x20 L=320+60 cx6/20	BxH 45x45 24920 L=320+60 c#6/30	Bid1 40x40 16#20 L=320+60 o#8/25	
Forjado 5. Cota 10,20			BxH 40x40 8#16 L=320+40 c#8/20	BxH 40x40 20#20 L=320+60 c#8/25	9x4 40x40 8x20 L=320+60 c#8/25			BxH 40x40 16#20 L=320+60 c#8/25	Bid 55x55 28920 L=320+80 c#8/30	BsH 40x40 20920 L=320+80 o#8/25	Bid1 35x35 4#16 L=320+40 c#8/20	BsH 35x35 8#20 L=320+60 c#8/20	BxH 40x40 12920 L=320+60 c#8/25	BisH 50x50 28#20 L=320+80 c#8/30	BxH 40x40 20#20 L=320+60 c#8/25	Cota 10,20. Forjado 5
Forjado 4. Cota 7,00			BxH 40x40 8920 L=320+60 c#8/25	BxH 40x40 20#20 L=320+60 c#8/25	BxH 40x40 8920 L=320+60 c#8/25			BxH 45x45 16#20 L=320+60 c#8/30	Bidl 60x80 32#20 L=320+80 c#8/30	Bshl 40x40 20920 L=320+60 c#8/25	Bid1 35x35 4#20 L=320+60 c#8/20	Bid1 35x35 4420 L=320+60 c#8/20	BxH 40x40 16#20 L=320+60 c#8/25	Bid 55x55 32#20 L=320+80 c#8/30	BxH 45x45 20#20 L=320+60 c#6/30	Cota 7,00. Forjado 4
Forjado 3. Cota 3,80			Bad1 45x45 8#12 L=380+30 c#8/15	Batl 45x45 20#20 L=380+60 c#8/30	BxH 45x45 8#20 L=380+60 c#8/30			Badt 45x45 20#20 L=380+60 c#8/30	Bidl 60x60 36#20 L=380+80 c#8/30	Bahl 45x45 20#20 L=380+80 c#8/30	BsH 40x40 8#12 L=380+30 c#6/15	BxH 40x40 8#12 L=380+30 c#6/15	Bad1 45x45 12x20 L=380+80 c#8/30	BxH 60x60 32x20 L=380+60 c#8/30	Badl 45x45 20#20 L=380+60 c#6/30	Cota 3,80. Forjado 3
Forjado 2. Cota 0,00	BxH 60x60 12916 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#8/20	Bid 60x60 12916 L=340+40 c#8/20	Bid 60x60 12#16 L=340+40 c#8/20	Bid 60x60 12#16 L=340+40 c#8/20	Bidl 60x60 12916 L=340+40 c#8/20	Bidl 60x60 12916 L=340+40 c#8/20	Bidl 60x60 12#20 L=340+60 c#8/30	Baid 65x65 40#20 L=340+80 c#8/30	BsH 60x60 12916 L=340+40 c#8/20	Bid 60x60 12916 L=340+40 c#8/20	BiH 60x60 12#16 L=340+40 c#8/20	Bidl 60x60 12#16 L=340+40 c#8/20	Bidl 60x60 40#20 L=340+60 c#8/30	Bidl 60x60 12916 L=340+40 c#8/20	Cota 0,00. Forjado 2
Forjado 1. Cota -3,40	BxH 60x60 12ø16 L=340+40 c#8/20	BxH 60x60 12ø18 L=340+40 c#8/20	Bid1 60x80 12#16 L=340+40 c#8/20	Bid 60x60 12#16 L=340+40 c#8/20	Bidl 60x60 12#16 L=340+40 c#8/20	BidH 60x80 12#16 L=340+40 c#8/20	Bidl 60x80 12#16 L=340+40 c#8/20	BidH 60x80 18#20 L=340+60 c#8/30	Bid 70x70 38420 L=340+80 c#8/30	BsH 60x60 12#16 L=340+40 c#8/20	Bid 60x60 12916 L=340+40 c98/20	Bid 60x60 12#16 L=340+40 c#8/20	BxH 60x60 12#16 L=340+40 c#8/20	BoH 65x65 40#20 L=340+60 c#8/30	Bidl 60x80 12918 L=340+40 c#8/20	Cota -3,40. Forjado 1
Cimentación O. Cota -6,80	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Cota -6,80. Cimentación 0

	ACERO								
Tipo	ty fu γM0 γM1 γM2 γM2								
S275	275,00	410,00	1,05	1,05	1,25				

	HORMIGÓN ARMADO										
Tipo	fck α larga γc Acero arm. Acero arm. γs vigas										
HA25	25,00	1,00	1,50	B500	B500	1,15					

	RESTO DE MATERIALES
Tipo	Nombre
BUBBLEDECK	GENERICO_UBUBBLE 2

5	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30]
Forjado 10. Cota 26,20			BxH 35x35 8#20 L=320+80 c#8/20	BxH 35x35 4#16 L=320+40 c#9/20	BxH 35x35 8#20 L=320+80 c#8/20			Bid1 35x35 8#20 L=320+60 c#8/20	BsH 35x35 4420 L=320+60 c#8/20	BxH 35x35 8#20 L=320+80 c#9/20						Cota 26,20. Forjado 10
Forjado 9. Cota 23,00			Bid1 35x35 4916 L=320+40 c#8/20	Balt 35x35 8e20 L=320+60 c#8/20	BsH 35x35 4920 L=320+60 c#8/20			BxH 35x35 4#20 L=320+60 c#6/20	Bs/H 35x35 4916 L=320+40 cs6/20	BatH 35x35 4920 L=320+60 c#8/20						Cota 23,00. Forjado 9
Forjado 8. Cota 19,80			BxH 35x35 4920 L=320+60 c98/20	BxH 35x35 16#20 L=320+60 c#8/20	Bid1 35x35 8/20 L=320+60 c#8/20			BbH 35x35 4916 L=320+40 c98/20	Bid1 35x35 8#20 L=320+60 c#8/20	BxH 35x35 4916 L=320+40 c98/20				BxH 35x35 4918 L=320+40 c98/20	BxH 35x35 4#20 L=320+60 c#8/20	Cota 19,80. Forjado 8
Forjado 7. Cota 16,60 Forjado 6. Cota 13,40			BxH 35x35 8920 L=320+60 c#8/20	BaH 40x40 20#20 L=320+80 o#8/25	BxH 35x35 16s20 L=320+60 c#8/20			Bid1 35x35 4820 L=320+60 c#8/20	Bod 40x40 12#20 L=320+60 c#8/25	BxH 35x35 12#20 L=320+60 c#8/20				BxH 35x35 4916 L=320+40 c#8/20	BxH 35x35 4920 L=320+60 c#8/20	Cota 16,60. Forjado 7
Forjado 5. Cota 10,20	8x41 35x35 4920 L=320+60 c#8/20	BxH 35x35 8920 L=320+60 c#8/20	Birl 35x35 12#20 L=320+60 c#8/20	BiH 50x50 20#20 L=320+80 c#8/30	BsH 40x40 16#20 L=320+60 c#8/25	BxH 35x35 4/920 L=320+60 c#8/20	BiH 35x35 8#20 L=320+60 c#8/20	Bidl 35x35 8#20 L=320+60 c#8/20	Bx41 45x45 16s/20 L=320+60 c#8/30	Birlt 35x35 16#20 L=320+60 c#8/20	Bid1 35x35 4#16 L=320440 c#8/20	BaiH 35x35 8#20 L=320+60 c#8/20		Bhd 35x35 16#20 L=320+60 c#6/20	BhH 35x35 12#20 L=320+60 c#8/20	Cota 10,20. Forjado 5
Forjado 4. Cota 7,00	Bid1 35x35 8e20 L=320+60 c#8/20	Bid1 35x35 8#20 L=320+80 c#8/20	Bid 40x40 12#20 L=320+80 c#8/25	BxH 50x50 32x20 L=320+60 c#8/30	Bid 40x40 20#20 L=320+80 c#8/25	8xH 35x35 4s20 L=320+80 cs8/20	Bid1 35ix35 8820 L=320+80 c#8/20	Bidl 40x40 8#20 L=320+80 c#8/25	Bid 50x50 24420 L=320+60 c#8/30	BhH 40x40 20#20 L=320+80 c#8/25	Bid1 35x35 4s20 L=320+80 cs8/20	Bid1 35x35 4s16 L=320+40 cs8/20		BidH 40x40 20#20 L=320+80 c#8/25	BhH 40x40 16#20 L=320+60 c#6/25	Cota 7,00. Forjado 4
Forjado 3. Cota 3,80	BxH 35x35 16#20 L=320+60 c#8/20	BxH 35x35 16#20 L=320+60 c#6/20	Bidl 40x40 16#20 L=320+80 c#8/25	BxH 55x55 32x20 L=320+60 c#8/30	8x41 45x45 20#20 L=320+80 c#8/30	BxH 35x35 12920 L=320+60 c#8/20	Bid1 35x35 16e20 L=320+60 c#8/20	Bidl 40x40 12#20 L=320+80 c#8/25	Bidl 55x55 24d20 L=320+60 c#8/30	BatH 45x45 20#20 L=320+80 c#8/30	Bai+1 35x35 12920 L=320+60 c#8/20	Batt 35x35 8#20 L=320+60 c#8/20		BbH 45x45 24#20 L=320+60 c#8/30	Bid1 40x40 20/920 L=320+80 c/98/25	Cota 3,80. Forjado 3
Forjado 2. Cota 0,00	BxH 40x40 16920 L=380+60 c#8/25	BxH 40x40 12920 L=380+60 c#8/25	Bidt 45x45 12#20 L=380+80 c#8/30	BxH 60x60 36e20 L=380+60 c#8/30	BsH 50x50 24#20 L=380+60 c#8/30	BxH 40x40 12e20 L=380+60 c#8/25	BxH 40x40 16e20 L=380+60 c#8/25	Bid1 45x45 12#20 L=380+80 c#8/30	Bs41 55x55 38e20 L=380+60 c#8/30	Birth 50x50 20#20 L=380+60 c#8/30	BsH 40x40 12920 L=380+80 c#8/25	Bs/H 40x40 8#20 L=380+60 c#8/25		Bidl 50x50 28e20 L=380+60 c#8/30	BbH 45x45 24#20 L=380+80 c#8/30	Cota 0,00. Forjado 2
Forjado 1. Cota —3,40	Bid1 60x60 12#16 L=340+40 c#8/20	BxH 80x80 12#16 L=340+40 c#8/20	BxH 60x60 12#16 L=340+40 c#8/20	BxH 65x65 40x20 L=340+60 cd6/30	Bidl 60x60 12#16 L=340+40 e#8/20	BxH 60x60 12#16 L=340+40 c#8/20	Bid1 60x80 12#16 L=340+40 e#8/20	Bid1 60x80 12918 L=340+40 c98/20	Bid 60x80 40920 L=340+60 c#8/30	BxH 60x60 12s16 L=340+40 c#8/20	BiH 60x60 12916 L=340+40 c#8/20	Bid1 60x60 12916 L=340+40 c#8/20	Bid1 60x60 12#16 L=340+40 e#8/20	BxH 80x80 28x20 L=340+80 c#8/30	BxH 60x60 12#16 L=340+40 c#8/20	Cota
Cimentación O. Cota —6,80	Bid 60x60 12#16 L=340+40 c#8/20	Bid1 60x60 12#16 L=340+40 c#8/20	Bidt 60x60 12#16 L=340+40 c#8/20	BxH 70x70 40920 L=340+60 c#8/30	Bid 60x60 12#16 L=340+40 c#8/20	Bidt 60x60 12#16 L=340+40 c#8/20	Bid1 60x60 12ø16 L=340+40 cø8/20	Bidl 60x60 12ø16 L=340+40 cø8/20	Bid+ 65x65 40#20 L=340+60 c#8/30	Bid1 60x60 12#16 L=340+40 c#8/20	Bid 60x60 12ø16 L=340+40 c#8/20	Bid+ 60x60 12#16 L=340+40 c#8/20	Bid+ 60x60 12#16 L=340+40 c#8/20	BidH 60x60 36#20 L=340+60 c#8/30	Bid+ 60x60 12#16 L=340+40 c#8/20	Cota -6,80. Cimentación 0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	5555 5,555 6,775,705,707

	ACERO								
Tipo	fy fu γM0 γM1 γM2								
S275	275,00	410,00	1,05	1,05	1,25				

	HORMIGÓN ARMADO										
Tipo	fck α larga γ c Acero arm. Acero arm. γ s γ s										
HA25	25,00	1,00	1,50	B500	B500	1,15					

	RESTO DE MATERIALES
Tipo	Nombre
BUBBLEDECK	GENERICO_UBUBBLE 2

Forjado 8. Cota 19,80	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	Cota 19,80. Forjado 8
Forjado 7. Cota 16,60				BxH 35x35 4916 L=320+40 c#8/20	BxH 35x35 4916 L=320+40 c#8/20				BxH 35x35 4916 L=320+40 c#8/20	BxH 35x35 4916 L=320+40 c#8/20				BxH 35x35 4916 L=320+40 c#6/20	BsH 35x35 4916 L=320+40 c#8/20	Cota 16,60. Forjado 7
Forjado 6. Cota 13,40				BxH 35x35 4916 L=320+40 o#8/20	BxH 35x35 4#20 L=320+60 c#8/20				BxH 35x35 4#16 L=320+40 c#8/20	BxH 35x35 4#20 L=320+60 c#8/20				BxH 35x35 4818 L=320+40 c#8/20	BxH 35x35 4918 L=320+40 c#8/20	Cota 13,40. Forjado 6
Forjado 5. Cota 10,20	Bid1 35x35 4916 L=320+40 c#8/20	BxH 35x35 8#20 L=320+60 o#8/20		BirH 35x35 12#20 L=320+60 c#8/20	BxH 35x35 12x20 L=320+60 c#8/20	BxH 35x35 44/20 L=320+60 c#8/20	Bid 35x35 4920 L=320+60 c#8/20		BxH 35x35 16x20 L=320+60 cx8/20	BxH 35x35 12x20 L=320+80 cx8/20	BiH 35x35 8#20 L=320+60 o#8/20	Bid 35x35 4920 L=320+60 c#8/20		BxH 35x35 16#20 L=320+60 c#6/20	Birl 35x35 12r20 L=320+60 cr6/20	Cota 10,20. Forjado 5
Forjado 4. Cota 7,00	Bid1 35x35 4920 L=320+60 c#8/20	Bidt 35x35 4916 L=320+40 c98/20		BsH 40x40 20#20 L=320+60 c#8/25	Bid1 40x40 16#20 L=320+60 c#8/25	Bid1 35x35 4916 L=320+40 c68/20	Bid1 35x35 4916 L=320+40 c98/20		Bid1 40x40 20#20 L=320+80 c#8/25	BidH 40x40 12#20 L=320+80 c#8/25	Bid1 35x35 8920 L=320+60 c#8/20	Bid1 35x35 4916 L=320+40 c68/20		BidH 40x40 20920 L=320+80 c#8/25	Bid 40x40 12#20 L=320+60 c#8/25	Cota 7,00. Forjado 4
Forjado 3. Cota 3,80	Bid1 35x35 12x20 L=320+60 c#8/20	BirH 35x35 8e/20 L=320+60 cr6/20		BxH 45x45 24#20 L=320+60 c#8/30	Bid1 40x40 20#20 L=320+80 c#8/25	Bid1 35x35 44/20 L=320+60 c#8/20	Bid1 35x35 8a/20 L=320+80 c#8/20		BidH 45x45 24420 L=320+60 c#8/30	BidH 40x40 20#20 L=320+80 o#8/25	Bid+1 35x35 16x20 L=320+60 cx8/20	Bid1 35x35 8#20 L=320+60 c#8/20		BidH 45x45 24920 L=320+60 c#6/30	BidH 40x40 20#20 L=320+80 o#8/25	Cota 3,80. Forjado 3
Forjado 2. Cota 0,00	Bid1 40x40 16#20 L=380+60 c#8/25	BxH 40x40 8x20 L=380+60 or8/25		BxH 50x50 24#20 L=380+60 c#8/30	Bid1 45x45 24#20 L=380+80 c#8/30	Bid1 40x40 8a16 L=380+40 c#8/20	Bid1 40x40 8s16 L=380+40 cs8/20		Bid 50:50 28#20 L=380+60 c#8/30	BidH 45x45 20920 L=380+80 c#8/30	Bid1 40x40 12x20 L=380+60 or8/25	Bid+ 40x40 8#16 L=380+40 c#8/20		Bidl 50x50 24#20 L=380+60 c#8/30	Bid1 45x45 20920 L=380+80 c98/30	Cota 0,00. Forjado 2
Forjado 1. Cota —3,40	Bidl 60x80 12916 L=340+40 c#8/20	BxH 60x80 12#16 L=340+40 c#8/20	BxH 60x60 12#16 L=340+40 c#8/20	BxH 60x60 28920 L=340+60 c#8/30	BxH 60x80 12916 L=340+40 c#8/20	Bidf 60x80 12916 L=340+40 c#8/20	Bidl 60x60 12916 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#6/20	Bid 60x80 28920 L=340+60 c#8/30	BxH 60x60 12916 L=340+40 c#8/20	Bidf 60x80 12916 L=340+40 c#8/20	Bid1 60x80 12916 L=340+40 c#8/20	Bid1 60x80 12816 L=340+40 c#8/20	Bidl 60x60 28#20 L=340+60 c#8/30	BxH 60x80 12916 L=340+40 c#8/20	Cota -3,40. Forjado 1
	BxH 60x60 12916 L=340+40 c#6/20	BxH 60x60 12916 L=340+40 c#6/20	BxH 60x60 12ø16 L=340+40 c#6/20	Bahl 60x60 38#20 L=340+60 c#8/30	BxH 60x60 12s16 L=340+40 cs6/20	BxH 60x60 12s16 L=340+40 c#6/20	BxH 60x60 12s16 L=340+40 cs6/20	BidH 60x60 12ø16 L=340+40 c96/20	BaH 65x65 28#20 L=340+60 c#8/30	BaH 60x60 12s16 L=340+40 cs6/20	BxH 60x60 12916 L=340+40 c#6/20	Bid1 60x60 12918 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#8/20	BxH 80x60 38620 L=340+80 c66/30	BisH 60x60 12s16 L=340+40 cs6/20	
Cimentación O. Cota —6,80	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	Cota —6,80. Cimentación 0

	ACERO								
Tipo	fy fu yM0 yM1 yM:								
S275	275,00	410,00	1,05	1,05	1,25				

	HORMIGÓN ARMADO										
Tipo	fck (N/mm2)	α larga duración	ус	Acero arm. pilares	Acero arm. vigas	γs					
HA25	25,00	1,00	1,50	B500	B500	1,15					

	RESTO DE MATERIALES
Tipo	Nombre
BUBBLEDECK	GENERICO_UBUBBLE 2

Forjado 8. Cota 19,80	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	Cota 19,80. Forjado 8
Forjado 7. Cota 16,60				BxH 35x35 4416 L=320+40 c#6/20	BisH 35x35 4416 L=320+40 o#9/20				BidH 35x35 4d15 L=320+40 c#8/20	Bid1 35x35 4916 L=320+40 c#8/20				BxH 35x35 4416 L=320+40 c#8/20	BxH 35x35 4616 L=320+40 c#8/20	Cota 16,60. Forjado 7
Forjado 6. Cota 13,40				BxH 35x35 4920 L=320+60 c#6/20	BxH 35x35 4916 L=320+40 c#6/20				BxH 35x35 4920 L=320+60 c66/20	Bid1 35x35 4916 L=320+40 c98/20				BsH 35x35 4920 L=320+60 c#8/20	BxH 35x35 4916 L=320+40 c#8/20	Cota 13,40. Forjado 6
Forjado 5. Cota 10,20	BisH 35x35 4#16 L=320+40 c#8/20	Bid1 35x35 4920 L=320+60 c#8/20		BxH 35x35 16#20 L=320+60 c#6/20	Bid+ 35x35 12x20 L=320+80 c#6/20	Bid1 35x35 4916 L=320+40 c98/20	BsH 35x35 4420 L=320+60 c#8/20		Bid1 35x35 16#20 L=320+60 c#8/20	BxH 35x35 12420 L=320+60 c98/20	BsH 35x35 4916 L=320+40 c98/20	BisH 35x35 4920 L=320+60 c#8/20		BsH 35x35 18#20 L=320+80 c#8/20	BxH 35x35 12x20 L=320+80 c#8/20	
Forjado 4. Cota 7,00	BisH 35x35 4920 L=320+60 c#8/20	Bid1 35x35 4916 L=320+40 c#8/20		Bidl 40x40 20#20 L=320+80 o#8/25	Bid+ 40x40 12#20 L=320+80 o#8/25	Bid1 35x35 4920 L=320+60 c#8/20	BsH 35x35 4916 L=320+40 cd8/20		Bid 40x40 20#20 L=320+80 c#8/25	Bidl 40x40 12#20 L=320+80 c#8/25	BxH 35x35 4920 L=320+60 c#8/20	Bidt 35x35 4916 L=320+40 c#8/20		BsH 40x40 20#20 L=320+80 c#8/25	BxH 40x40 16#20 L=320+60 c#8/25	Cota 10,20. Forjado 5 Cota 7,00. Forjado 4
Forjado 3. Cota 3,80	BxH 35x35 12x20 L=320+80 cx8/20	Bid1 35x35 8#20 L=320+60 c#8/20		Bidl 45x45 24#20 L=320+60 c#6/30	Bid1 40x40 20#20 L=320+80 c#8/25	Bid1 35x35 12#20 L=320+80 c#8/20	BsH 35x35 8x20 L=320+60 cs8/20		Bid+ 45x45 24420 L=320+60 c#8/30	Bid1 40x40 20#20 L=320+60 c#6/25	BaH 35x35 12s20 L=320+60 cs6/20	Bid 35x35 8#20 L=320+80 c#8/20		BsH 45x45 24620 L=320+60 c#8/30	BxH 40x40 20#20 L=320+60 c#8/25	Cota 3,80. Forjado 3
Forjado 2. Cota 0,00	Bidt 40x40 16#20 L=380+80 c#8/25	Bid1 40x40 8#16 L=380+40 c#8/20		Bidt 50x50 28620 L=380+60 c#8/30	BbH 45x45 20#20 L=360+60 c#8/30	Bid1 40x40 12#20 L=380+80 c#8/25	BsH 40x40 8#16 L=380+40 c#8/20		Bh/H 50x50 28920 L=380+60 c#8/30	Bid1 45x45 20#20 L=380+60 c#8/30	BsH 40x40 12#20 L=380+80 c#8/25	Bidt 40x40 8#20 L=380+80 c#8/25		BnH 50x50 28#20 L=380+60 c#8/30	BxH 45x45 24#20 L=380+60 c#8/30	Cota 0,00. Forjado 2
Forjado 1. Cota —3,40	BxH 60x60 12s16 L=340+40 cs8/20	BxH 60x60 12s16 L=340+40 cs8/20	BxH 60x60 12#16 L=340+40 c#8/20	Bidl 60x60 28620 L=340+60 c#8/30	BxH 60x60 12616 L=340+40 c#8/20	BxH 60x60 12s18 L=340+40 c#8/20	BxH 60x60 12s16 L=340+40 cs8/20	BxH 60x60 12s16 L=340+40 c#8/20	Bid1 60x60 28920 L=340+60 c#8/30	Bidl 60x60 12818 L=340+40 c88/20	BxH 60x60 12816 L=340+40 c#8/20	BxH 60x60 12616 L=340+40 c#8/20	Bh/H 60x60 12s18 L=340+40 c#8/20	BnH 60x60 28#20 L=340+60 c#8/30	BxH 60x60 12#16 L=340+40 c#8/20	Cota -3,40. Forjado 1
Cimentación O. Cota -6.80	BxH 60x60 12#16 L=340+40 c#8/20	BxH 60x60 12s16 L=340+40 c#8/20	BxH 60x80 12916 L=340+40 c#8/20	BxH 60x80 36e20 L=340+60 c#8/30	BxH 60x60 12916 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#8/20	BxH 60x60 12#16 L=340+40 c#8/20	BxH 60x60 12#16 L=340+40 c#8/20	BxH 60x60 36920 L=340+60 c#6/30	Bid1 60x80 12#16 L=340+40 c#8/20	BxH 60x80 12916 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#8/20	BsH 60x60 36s20 L=340+60 cs8/30	BxH 60x60 12#16 L=340+40 c#8/20	Cota -6.80. Cimentación 0
-0,00	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	

	ACERO									
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γM1	уМ2					
S275	275,00	410,00	1,05	1,05	1,25					

		HORM	IGÓN AR	MADO		
Tipo	fck (N/mm2)	α larga duración	ус	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

	RESTO DE MATERIALES
Tipo	Nombre
BUBBLEDECK	GENERICO_UBUBBLE 2

Forjado 8. Cota 19,80	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	Cota 19,80. Forjado 8
Forjado 7. Cota 16,60				BxH 35x35 4#16 L=320+40 c#8/20	BxH 35x35 4#16 L=320+40 c#6/20			BxH 35x35 12x20 L=320+80 c#8/20	BxH 35x35 8#20 L=320+60 c#8/20							Cota 16,60. Forjado 7
Forjado 6. Cota 13,40				BxH 35x35 4920 L=320+60 c#8/20	Bid 35x35 4916 L=320+40 c98/20			BxH 35x35 89/20 L=320+60 c#8/20	BxH 35x35 12x20 L=320+60 c#8/20							
,	BxH 35x35 4#16 L=320+40 c#8/20	Bid 35x35 4#20 L=320+80 c#8/20		Bidf 35x35 16#20 L=320+60 c#8/20	BidH 35x35 4#20 L=320+60 c#6/20	Bid+ 35x35 4#16 L=320+40 c#8/20	BsH 35x35 4#16 L=320+40 c#8/20	BsH 35x35 8#20 L=320+60 c#8/20	BidH 35x35 12#20 L=320+80 c#8/20	Bid1 35x35 8#20 L=320+60 c#8/20	Bid+1 35x35 8#20 L=320+80 c#8/20	BsH 35x35 4#16 L=320+40 c#8/20	BidH 35x35 8#20 L=320+80 c#8/20			Cota 13,40. Forjado 6
Forjado 5. Cota 10,20	BxH 35x35 4#20 L=320+80 c#8/20	Bid 35x35 4416 L=320+40 c#8/20		BxH 40x40 20#20 L=320+60 c#8/25	BxH 40x40 8s16 L=320+40 c#8/20	Bid+ 35x35 8#20 L=320+60 c#8/20	BsH 35x35 4#16 L=320+40 c#8/20	Birl 35x35 12#20 L=320+80 c#8/20	Bid 35x35 12#20 L=320+80 c#8/20	Bid1 35x35 4820 L=320+60 c#8/20	Bid1 38x35 4#20 L=320+80 c#8/20	Birl 35x35 12#20 L=320+80 c#8/20	BidH 35x35 4#16 L=320+40 c#8/20			Cota 10,20. Forjado 5
Forjado 4. Cota 7,00	BxH 35x35 12#20 L=320+60 c#8/20	Bid1 35x35 8#20 L=320+60 c#8/20		BxH 50x50 20#20 L=320+60 c#8/30	BidH 40x40 8#20 L=320+60 c#8/25	Bid+ 40x40 12#20 L=320+60 o#8/25	Bs/H 35x35 8#20 L=320+60 c#8/20	BxH 35x35 16#20 L=320+60 c#8/20	Bid1 35x35 16#20 L=320+60 c#8/20	Bid1 35x35 8#20 L=320+60 c#8/20	Bid1 35x35 8#20 L=320+60 c#8/20	BidH 40x40 16#20 L=320+60 c#8/25	Bidl 35x35 8#20 L=320+60 c#8/20			Cota 7,00. Forjado 4 Cota 3,80. Forjado 3
Forjado 2. Cota 0,00	Bidl 40x40 16#20 L=380+80 c#8/25	Bid1 35x35 8e/20 L=380+60 c#8/20		BxH 50x50 32s20 L=380+60 c#8/30	BxH 45x45 8#20 L=380+60 c#8/30	BxH 45x45 16e20 L=380+60 c#8/30	Bid 40x40 12#20 L=380+60 c#8/25	Bid 40x40 16#20 L=380+60 c#8/25	BidH 40x40 12#20 L=380+80 c#8/25	Bid1 40x40 8#20 L=380+80 c#8/25	Bid1 40x40 8#16 L=380+40 c#8/20	BxH 50x50 16e20 L=380+60 c#8/30	Badt 40x40 8#20 L=380+80 c#8/25			Cota 0,00. Forjado 2
Forjado 1. Cota —3,40	Bidl 60x60 12618 L=340+40 c#8/20	BxH 60x60 12s18 L=340+40 cs8/20	BxH 60x60 12s16 L=340+40 cs8/20	BxH 60x60 32s20 L=340+60 cs8/30	BxH 60x60 12s18 L=340+40 c#8/20	Bid 60x60 12s18 L=340+40 c#8/20	BaH 60x60 12s18 L=340+40 c#8/20	BxH 60x60 12918 L=340+40 c#8/20	BxH 60x60 12s16 L=340+40 c#8/20	Bid 60x80 12918 L=340+40 c#8/20	Bid+ 60x60 12918 L=340+40 c#8/20	BxH 60x60 12920 L=340+60 c98/30	BxH 60x60 12918 L=340+40 c#8/20	BaH 60x60 12s16 L=340+40 c#8/20	BxH 60x60 12918 L=340+40 c#8/20	Cota -3,40. Forjado 1
	BxH 60x80 12916 L=340+40 c#8/20	Bid1 60x60 12916 L=340+40 c#8/20	BidH 60x80 12#16 L=340+40 c#8/20	Bidl 65x65 32x20 L=340+60 c#8/30	Bxd1 60x60 12#16 L=3401-40 c#8/20	Bidl 60x80 16#20 L=340+80 c#8/30	Bid1 60x60 12916 L=340+40 c#8/20	BxH 60x60 12916 L=340+40 c#8/20	Bidt 80x80 12916 L=340+40 c#8/20	Bid 60x80 12#16 L=340+40 c#8/20	Bid1 60x80 12916 L=340+40 c#8/20	BxH 60x60 16#20 L=340+80 c#8/30	BxH 60x80 12#16 L=340+40 c#8/20	Bid1 60x60 12916 L=340+40 c#8/20	Bid1 60x60 12916 L=340+40 c#8/20	
Cimentación O. Cota —6,80	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	Cota —6,80. Cimentación 0

	ACERO									
Tipo	fy (N/mm2)	fu (N/mm2)	γМΟ	γM1	уМ2					
S275	275,00	410,00	1,05	1,05	1,25					

		HORM	IGÓN AR	MADO		
Tipo	fck (N/mm2)	α larga duración	ус	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

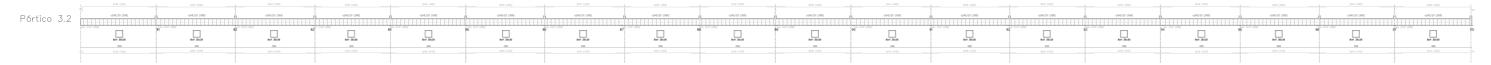
	RESTO DE MATERIALES									
Tipo	Nombre									
BUBBLEDECK	GENERICO_UBUBBLE 2									

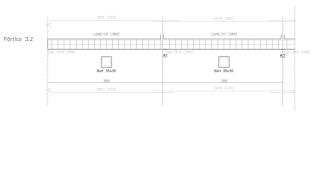
For jodo 7. Cota 16,60 For jodo 8. Cota 13,40 For jodo 9. Cota 16,60 For jodo 1. Cota - 3,40 For jodo 2. Cota 0,30 For jodo 3. Cota 3,80 For jodo 3. Cota 3,80 For jodo 4. Cota - 3,40 For jodo 2. Cota 0,30 For jodo 2. Cota 0,30 For jodo 3. Cota 3,80 For jodo 4. Cota - 3,40 For jodo 5. Cota 0,30 For jodo 5. Cota 0,30 For jodo 6. Cota - 3,40 For jodo 7. Cota - 3,40 For jodo 6. Cota - 3,40 For jodo 7. Cota - 3,40 For jodo 6. Cota - 3,40 For jodo 7. Cota - 3,40 For jodo 8. Cota - 3,40 For jodo 9. Cota - 3,40 For jodo 1. Cota - 3,40 For jodo 1. Cota - 3,40 For jodo 2. Cota - 3,40 For jodo 2. Cota - 3,40 For jodo 3. Cota 3,80 For jodo 6. Cota - 3,40 For jodo 1. Cota - 3,40 For jodo 2. Cota - 3,40 For jodo 3. Cota - 3,40 For	Forjado 8. Cota 19,80	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	Cota 19,80. Forjado 8
For jodo 6. Coto 13,40 For jodo 6. Coto 13,40 For jodo 6. Coto 13,							PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	PHR 80x40x4 (320 cm)	Cuta 16 60 Farinda 7
For Jado 6. Coto 13,40 For Jado 5. Coto 10,20 For Jado 6. Coto 13,40 For Jado 6. Coto 10,20 For Jado 6. Coto 10,	Forjado 7. Cota 16,60						PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	PHR 80x60x4	Cota 16,6U. Forjado /
For joid of 5. Cota 10,20	Foriado 6. Cota 13,40						(320 cm) \$275	(320 cm) \$275	(320 cm) \$275	(320 cm) S275	(320 cm) \$275	(320 cm) S275	Cota 13.40. Foriado 6				
For jado 4. Cata 7,00 For jado 3. Cata 3,80 For jado 2. Cata 0,00 For jado 3. Cata 3,40 For jado 3. Cata 3,40 For jado 4. Cata 7,40 For jado 3. Cata 3,40 For jado 4. Cata 7,40 For jado 4. Cata 7,40 For jado 6. Cata 7,40 For j	,	BxH 35x35	8xH 35x35 8#20 L=320+60	8xH 35x35 8#20 L=320+60			PHR 100v60v5	PHR 100x60x5 (320 cm)	PHR 100x60x5 (320 cm)	PHR 100x60x5 (320 cm)	PHR 100x60x5 (320 cm)	PHR 100x60x5 (320 cm)	PHR 100x60x5	PHR 100x60x5 (320 cm)	PHR 100x60x5 (320 cm)	PHR 100x60x5 (320 cm)	
For jado 4. Cota 7,00 Bar 30,05 L-30,04 L-30,05	Forjado 5. Cota 10,20																Cota 10,20. Forjado 5
Forjado 3. Cota 3,80 Forjado 5. Cota 3,80 Forjado 6. Cota 3,80 Forjado 7. Cota 3,80 Forjado 8. Cota 3,80 Forjado 9. Cota 3,80 Forjado 1. Cota -3,40 Forjado 1. Cota -3,80 Forjado 2. Cota 0,00 Forjado 3. Cota 3,80 Forjado 3. Cota 3,80		8xH 35x35 4ø16 L=320+40	8xH 35x35 4#20 L=320+60	BxH 35x35 4ø16 L=320+40			PHR 100x80x8 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	PHR 100x80x6 (320 cm)	DUD 100-80-8	
For jado 3. Cota 3,80 For jado 2. Cota 0,00 For jado 3. Cota 3,80 For jado 4. Cota 3,80 For jado 3. Cota 3,80 For jado 4. Cota 3,80	Forjado 4. Cota 7,00	_															Cota 7,00. Forjado 4
Forjado 2. Cota 0,000 Forjado 1. Cota -3,40 Cimentación 0. Cota -6,80 Cimentación 0. Cota -6,80		Bull 35v35	8xH 35x35 8#20 L=320+60	4#16 L=320+40			PHR 120x100x5 (320 cm) \$275	PHR 100v80v8	PHR 100x80x6 (320 cm)	PHR 100x80x6	PHR 100x80x8	PHR 100x80x8	PHR 100v80v6	PHR 100v80v8	PHR 100x80x6	PHR 100v80v6	
For jado 2. Cota 0,00 For jado 2. Cota 0,00 For jado 3. Cota -3,40 For jado 5. Cota -3,40 For jado 5. Cota -3,40 For jado 6. Cota -4,80 For jado	Forjado 3. Cota 3,80																Cota 3,80. Forjado 3
For jado 1. Cota -3,40 Bart 80x80 Bart 80x80 L=340+40 L=3	Forindo 2 Cota 0.00	8xH 40x40 8ø12 L=380+30	8xH 40x40 8#20 L=380+60	8xH 40x40 8ø12 L=380+30			PHR 140~100~6	PHR 120x100x6	PHR 120x100x6 (380 cm)	PHR 120x100x6	PHR 120x100x6	PHR 120x100x6	PHR 120v100v6	PHR 120x100x6	PHR 120x100x6	PHR 120v100v6	Cota 0.00 Feriado 2
Forjado 1. Cota -3,40 Balf 80x80 12918 12918 12918 12940 12918 12940 12918 12940-40 c88/20 Balf 80x80 12918 12940 12918 12940-40 c88/20 Cota -3,40. Forjado 1 Cimentación 0. Cota -6,80 Balf 80x80 12918 12940 1294	rorjado 2. Cota 0,00																Cota 0,00. Forjado 2
Berl 50:500 12916	Foriado 1 Cota -340	8xH 60x60 12ø16 L=340+40	BxH 60x60 12ø16 L=340+40	BxH 60x60 12ø16 L=340+40	BxH 60x60 12ø16 L=340+40	8xH 60x60 12ø16 L=340+40											Cota =3.40 Foriado 1
Bidt 60x60 12916 12916 12916 12916 12916 12916 12916 12916 12916 12916 12916 12916 12919 1	1 01 jado 1. 00ta 0,40																00td 0,40. For judo F
	Cimentación O. Cota -6.80	8xH 60x60 12ø16 L=340+40	BxH 60x60 12ø16 L=340+40	12ø16 L=340+40	BxH 60x60 12ø16 L=340+40	BxH 60x60 12ø16 L=340+40											Cota -6.80. Cimentación 0
		76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	

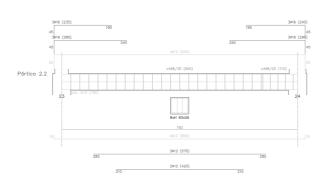
	ACERO									
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γM1	уМ2					
S275	275,00	410,00	1,05	1,05	1,25					

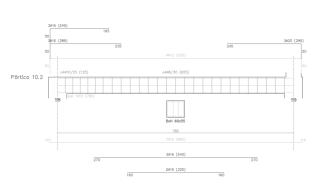
		HORM	IGÓN AR	MADO		
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

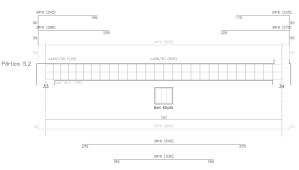
	RESTO DE MATERIALES
Tipo	Nombre
BUBBLEDECK	GENERICO_UBUBBLE 2

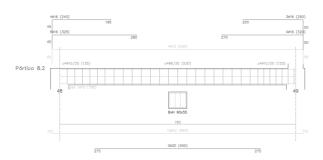

Forjado 8. Cota 19,80	91	92	93	94	95	96	97	98	99	100	101	Cota 19,80. Forjado 8
Forjado 7. Cota 16,60	g PHR 80x80x4 (320 cm) S275	g PHR 80x80x4 (320 cm) S275	G PHR 80x60x4 (320 cm) S275	B PHR 80x60x4 (320 cm) S275	9 PHR 80x80x4 (320 cm) S275	g PHR 80x60x4 (320 cm) S275	9 PHR 80x80x4 (320 cm) \$275				PHR 80x40x4 (320 cm) \$275	Cota 16,60. Forjado 7
Forjado 6. Cota 13,40	g PHR 80x80x4 (320 cm) S275	0 PHR 80x80x4 (320 cm) S275	PHR 80x60x4 (320 cm) S275	9 PHR 80x60x4 (320 cm) \$275	PHR 80x60x4 (320 cm) S275	0 PHR 80x60x4 (320 cm) S275	0 PHR 80x80x4 (320 cm) \$275				9 PHR 80x80x4 (320 cm) \$275	Cota 13,40. Forjado 6
1 01 judo 10. 00tu 10,40												
	0 PHR 100x60x5 (320 cm) S275	0 PHR 100x60x5 (320 cm) S275	0 PHR 100x60x5 (320 cm) S275	0 PHR 100x60x5 (320 cm) S275	0 PHR 100x60x5 (320 cm) \$275	0 PHR 100x60x5 (320 cm) \$275	0 PHR 100x60x5 (320 cm) \$275	0 PHR 100x60x5 (320 cm) \$275	PHR 100x60x5 (320 cm) \$275	PHR 100x60x5 (320 cm) \$275	0 PHR 100x60x5 (320 cm) S275	
Forjado 5. Cota 10,20												Cota 10,20. Forjado 5
Forjado 4. Cota 7,00	PHR 100x80x8 (320 cm) S275	D PHR 100x80x8 (320 cm) S275	PHR 100x80x8 (320 cm) \$275	PHR 100x80x8 (320 cm) \$275	PHR 100x80x8 (320 cm) \$275	PHR 100x80x8 (320 cm) \$275	PHR 100x80x6 (320 cm) \$275	PHR 100x60x6 (320 cm) \$275	PHR 100x80x8 (320 cm) S275	PHR 100x80x6 (320 cm) S275	PHR 100x80x6 (320 cm) \$275	Cota 7,00. Forjado 4
1 01 jado 4. 00ta 7,00												OCC 7,00. FORJAGO 4
Facinda 7 Cala 7.90	PHR 100x80x8 (320 cm) S275	D PHR 100x80x6 (320 cm) S275	Q PHR 100x80x8 (320 cm) S275	Q PHR 100x80x6 (320 cm) \$275	0 PHR 100x80x6 (320 cm) \$275	PHR 100x80x8 (320 cm) S275	PHR 120x100x5 (320 cm) \$275	0 PHR 100x80x8 (320 cm) \$275	PHR 120x80x6 (320 cm) \$275	PHR 120x80x6 (320 cm) \$275	Q PHR 100x80x6 (320 cm) S275	Cota 3,80. Forjado 3
Forjado 3. Cota 3,80	PHR 120x100x6 (380 cm) \$275	PHR 120x100x6 (360 cm) \$275	PHR 120x100x6 (380 cm) \$275	PHR 120x100x6 (380 cm) \$275	PHR 120x100x6 (380 cm) \$275	PHR 120x100x6 (380 cm) \$275	PHR 160x120x6 (380 cm) \$275	PHR 160x120x6 (380 cm) S275	PHR 120x100x6 (380 cm) \$275	PHR 120x100x6 (380 cm) \$275	PHR 120x100x6 (380 cm) \$275	cota 3,ov. Forjado 3
Forjado 2. Cota 0,00												Cota 0,00. Forjado 2
	91	92	93	94	95	96	97	98	99	100	101	

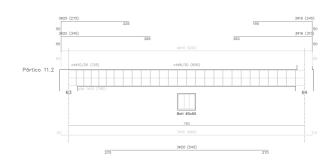

	ACERO							
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γМ1	уМ2			
S275	275,00	410,00	1,05	1,05	1,25			

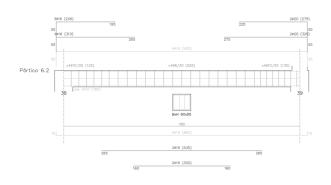

HORMIGÓN ARMADO							
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pîlares	Acero arm. vigas	γs	
HA25	25,00	1,00	1,50	B500	B500	1,15	

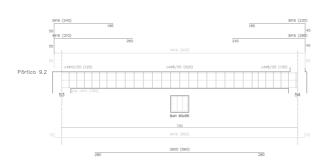

	RESTO DE MATERIALES
Tipo	Nombre
BUBBLEDECK	GENERICO_UBUBBLE 2

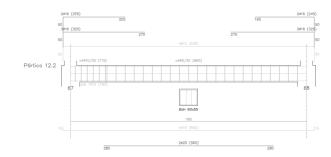

PÓRTICOS Forjado 2. Cota: 0,00 m. Material predominante: HA25



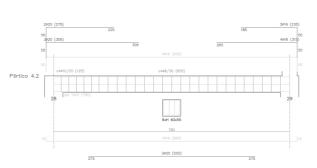


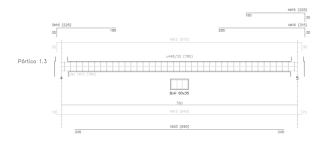


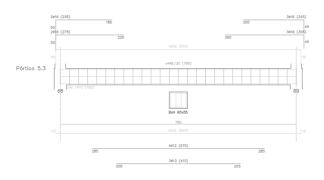




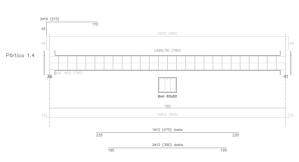


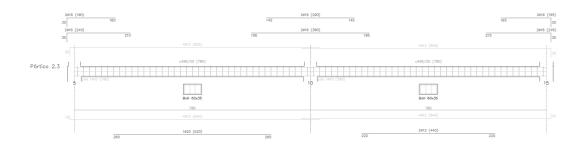


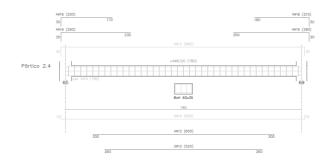


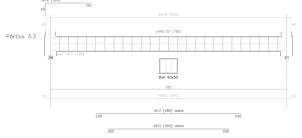


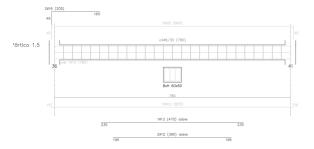
HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15


	RESTO DE MATERIALES
Tipo	Nombre
BubbleDeck	GENERICO_UBUBBLE 2

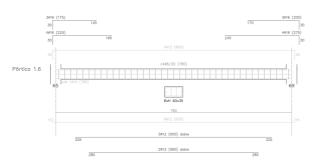

PÓRTICOS Forjado 3. Cota: +3,80 m. Material predominante: HA25

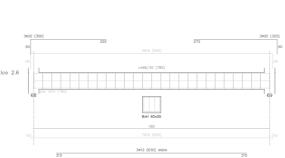


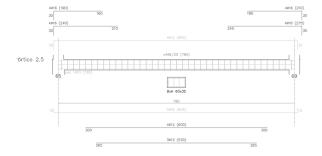


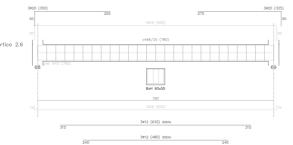


	ACERO						
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	уМ1	уМ2		
S275	275,00	410,00	1,05	1,05	1,25		

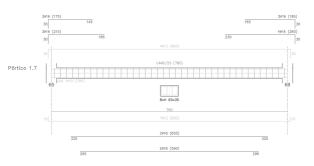

	hormigón armado						
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs	
HA25	25,00	1,00	1,50	B500	B500	1,15	

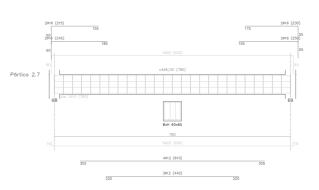

	RESTO DE MATERIALES
Tipo	Nombre
BubbleDeck	GENERICO_UBUBBLE 2

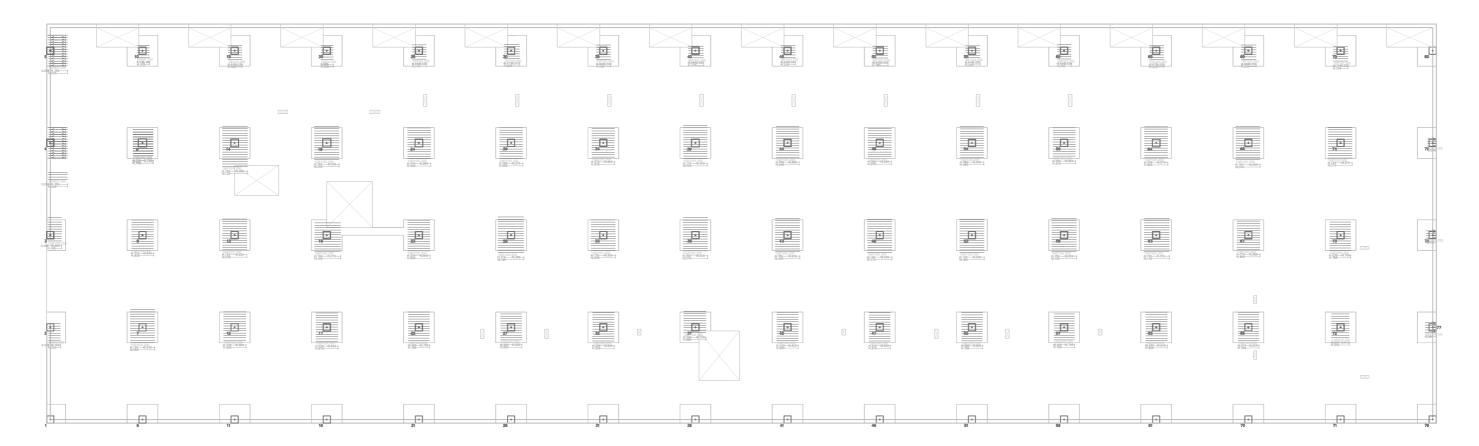


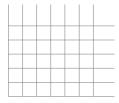


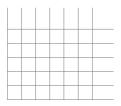






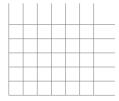


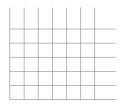

	ACERO						
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γМ1	γM2		
S275	275,00	410,00	1,05	1,05	1,25		


		HORM	igón ar	MADO		
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

	RESTO DE MATERIALES
Tipo	Nombre
BubbleDeck	GENERICO_UBUBBLE 2

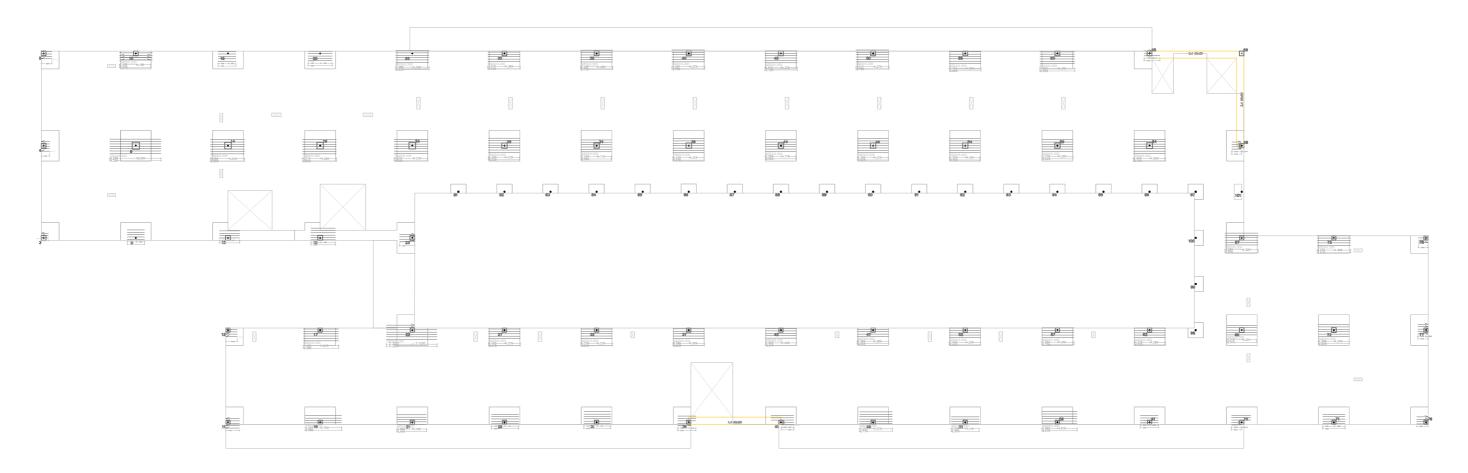
Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico

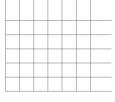

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR A A


	HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pîlares	Acero arm. vigas	γs	
HA25	25,00	1,00	1,50	B500	B500	1,15	

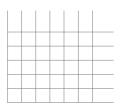
	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

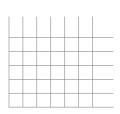
Forjado Nivel 2. Cota: 0,00 m. Material predominante: Material genérico

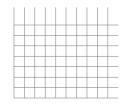



		TE	
		AC	
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK	
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_	
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO	
Canto Forjado/Losa	35 cm		
Cargas permanentes	4.1 kN/m²	ARMADO 0.27	
Sobrecarga de Uso	5 kN/m²	INFERIOR	

HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	yc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

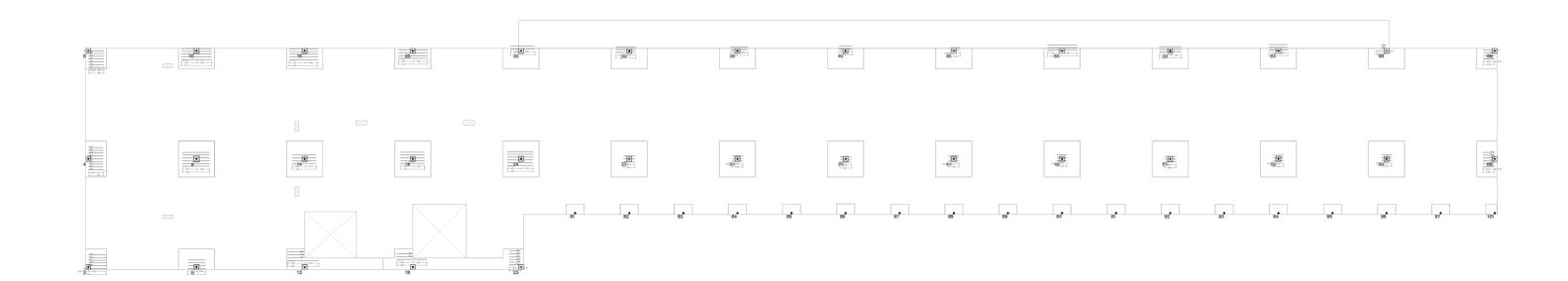

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

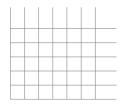

Forjado tipo niveles 3—6. Nivel 4. Cota: +7,00 m. Material predominante: Material genérico

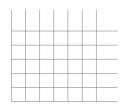


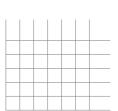
.

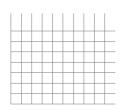
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE


		TE	
		AC	
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK	
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_	
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO	
Canto Forjado/Losa	35 cm		
Cargas permanentes	4.1 kN/m²	ARMADO 0.27	
Sobrecarga de Uso	5 kN/m²	INFERIOR	

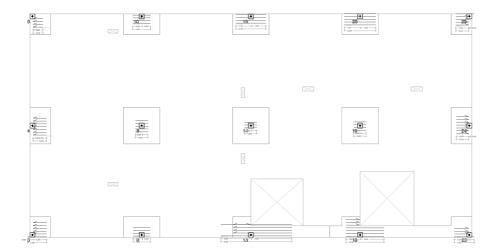

ACERO					
Tipo	fy (N/mm2)	fu (N/mm2)	2MO	уМ1	γM2
S275	275,00	410,00	1,05	1,05	1,25

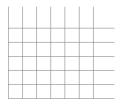

		HORM	IGÓN AR	MADO		
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

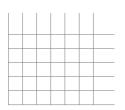

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

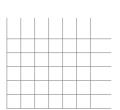

Forjado tipo niveles 7 y 8 Nivel 7. Cota: +16,60 m. Material predominante: Material genérico

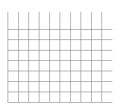
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR


	ACERO					
Tipo	fy fu γM0 γM1 γM2					
S275	275,00	410,00	1,05	1,05	1,25	


	HORMIGÓN ARMADO						
Tipo fck α larga γc Acero arm. Acero arm. pilares vigas					γs		
	HA25	25,00	1,00	1,50	B500	B500	1,15

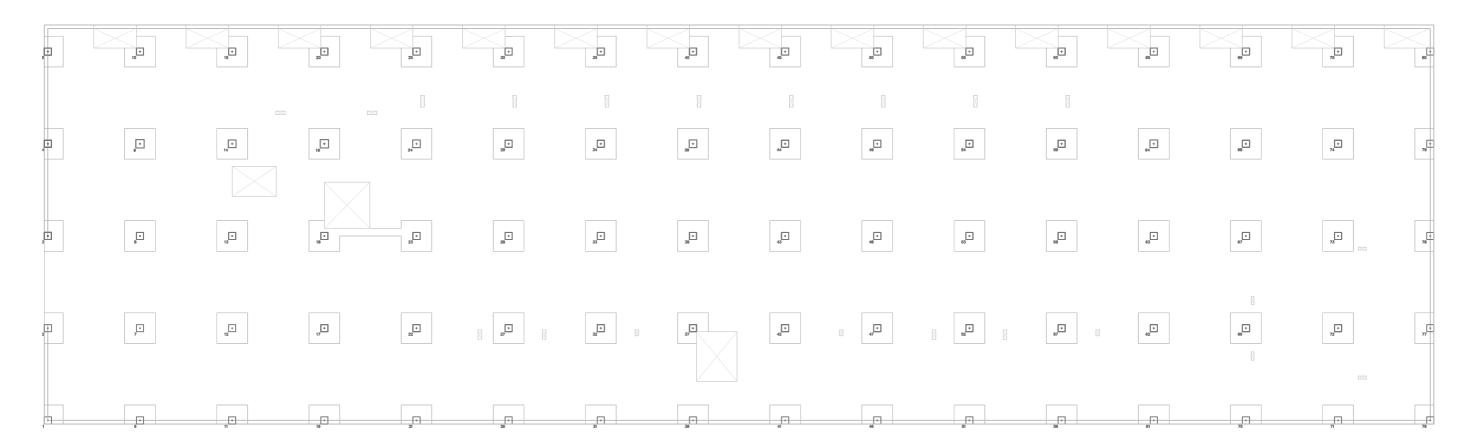

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

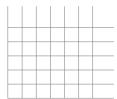

Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico

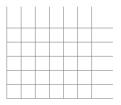
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y	NICAS Y GEOMETRICAS ' SUS COMPONENTES	FORJADO DE LOSA MACIZA
Resistencia caracteristica armaduras pasivas	500 N/mm²	<u> </u>
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO , 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR A A

	ACERO					
Tipo	Tipo (N/mm2) fu γM0 γM1 γM2					
S275	275,00	410,00	1,05	1,05	1,25	

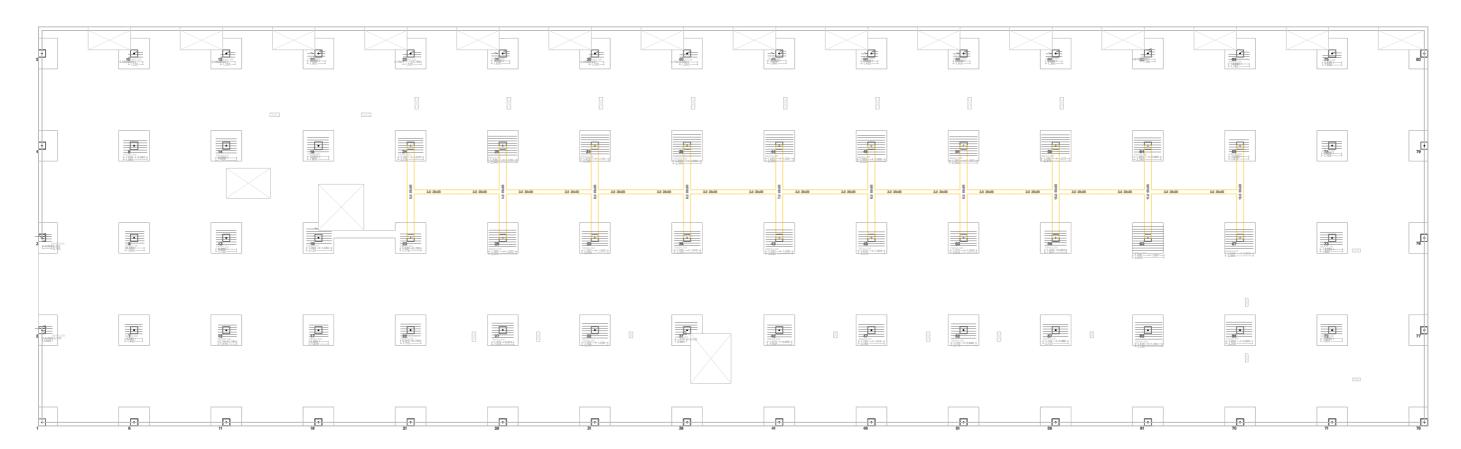

HORMIGÓN ARMADO						
Tipo fck α larga γ c Acero arm. Acero arm. γ c pilares vigas					γs	
HA25	25,00	1,00	1,50	B500	B500	1,15

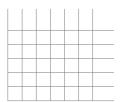

RESTO DE MATERIALES		
Tipo		Nombre
Material genéri	0	GENERICO_UBUBBLE 2

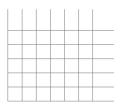

El esfuerzo flector de -229.34 kN·m/m, no necesita armadura de refuerzo a flexión.

Refuerzos Mx, armadura inferior

Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico

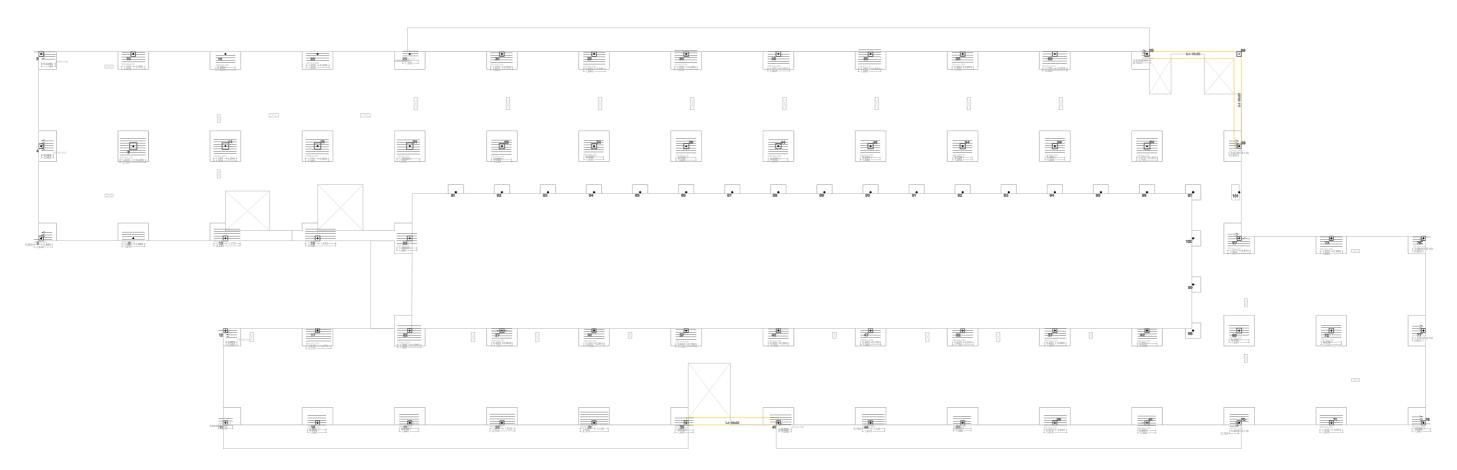


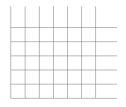

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y	NICAS Y GEOMETRICAS ' SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO , 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

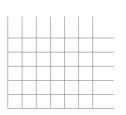

HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

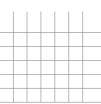
RESTO DE MATERIALES		
Tipo Nombre		
Material genérico	GENERICO_UBUBBLE 2	

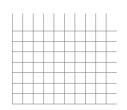
Forjado Nivel 2. Cota: 0,00 m. Material predominante: Material genérico



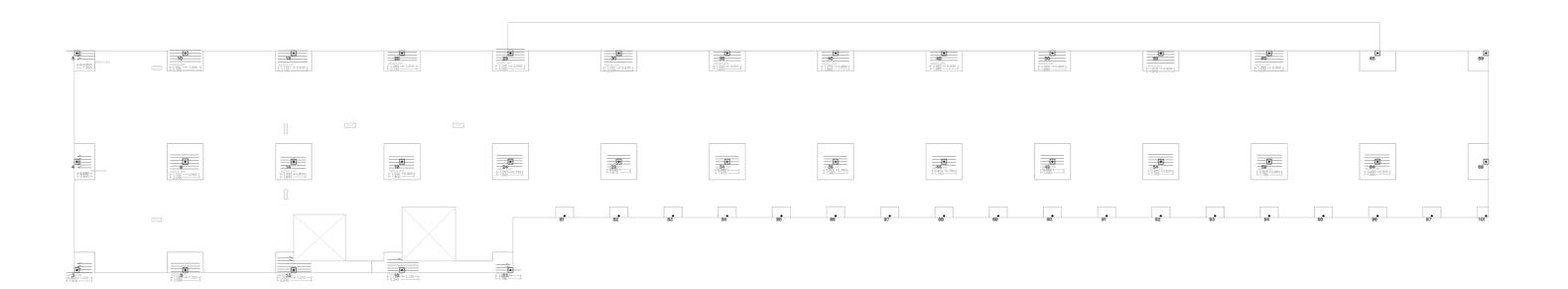

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	NICAS Y GEOMETRICAS ' SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADOBURBUJALOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

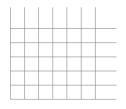

	HORMIGÓN ARMADO							
Tipo fck α larga γc Acero arm. Acero arm. γc pilares vigas								
HA25	25,00	1,00	1,50	B500	B500	1,15		

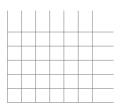

RESTO DE MATERIALES			
	Tipo	Nombre	
	Material genérico	GENERICO_UBUBBLE 2	

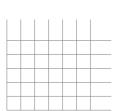

Forjado tipo niveles 3—6. Nivel 4. Cota: +7,00 m. Material predominante: Material genérico

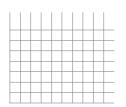
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	REMATE LOSA ARM. LOSA 2 Ø 10 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES. VER EL ARMADO CORRESPONDIENTE


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

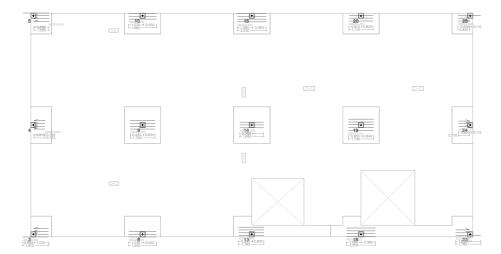

ACERO						
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γM1	γМ2	
S275	275,00	410,00	1,05	1,05	1,25	

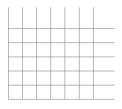

HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	yc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

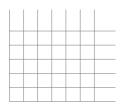

RESTO DE MATERIALES			
Tipo	Nombre		
Material genérico	GENERICO_UBUBBLE 2		

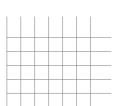

Forjado tipo niveles 7 y 8 Nivel 7. Cota: +16,60 m. Material predominante: Material genérico

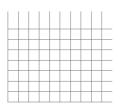
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM, LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

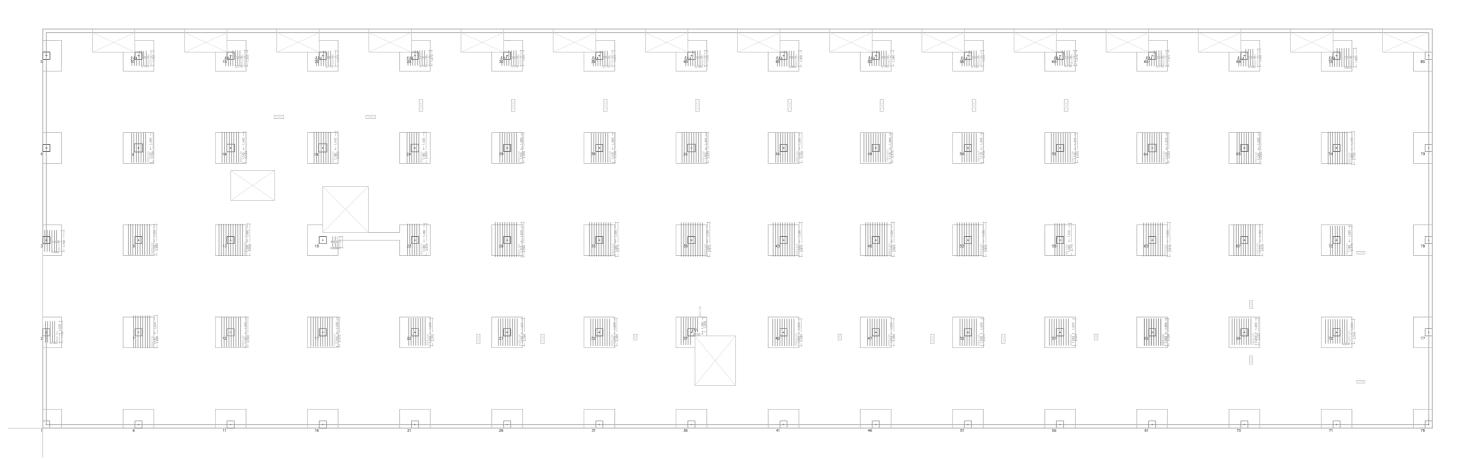

	ACERO						
Tipo	Tipo fy fu γM0 γM1 γM2						
S275	275,00	410,00	1,05	1,05	1,25		

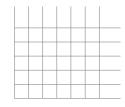

HORMIGÓN ARMADO							
Tipo	fck (N/mm2)	α larga duración	yc	Acero arm. pilares	Acero arm. vigas	γs	
HA25	25,00	1,00	1,50	B500	B500	1,15	

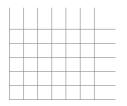

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2


Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	<u> </u>
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE

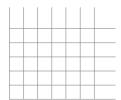

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa 35 cm		
Cargas permanentes	4.1 kN/m²	ARMADO , 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR 7 7 7

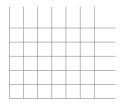

ACERO					
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γМ1	γM2
S275	275,00	410,00	1,05	1,05	1,25


HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	yc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

		RESTO DE MATERIALES
	Tipo	Nombre
М	aterial genérico	GENERICO_UBUBBLE 2

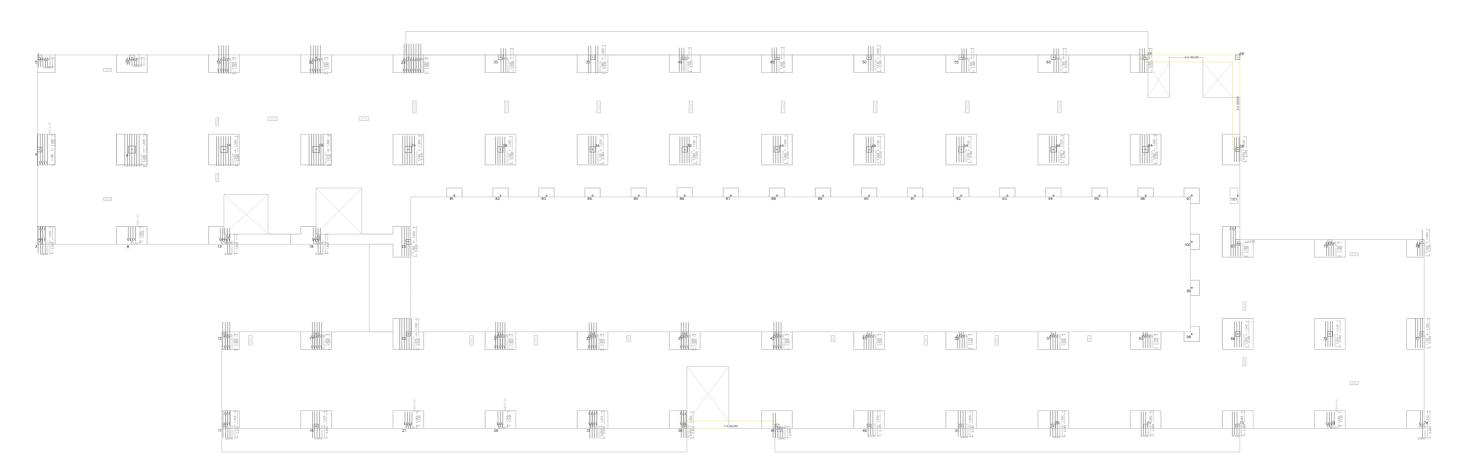
Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

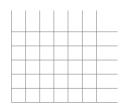

HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

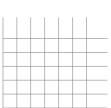
	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

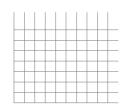
Forjado Nivel 2. Cota: 0,00 m. Material predominante: Material genérico



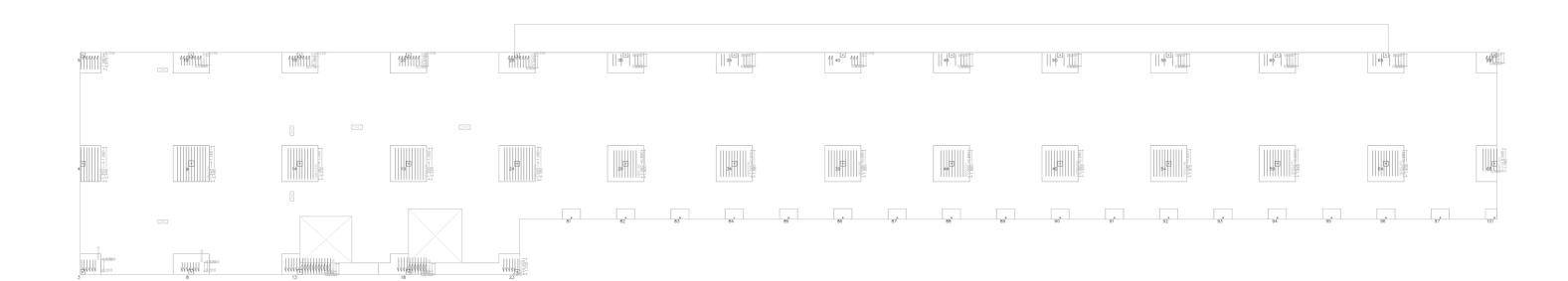
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	NICAS Y GEOMETRICAS ' SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICIADO
Canto Forjado/Losa		
Cargas permanentes	4.1 kN/m²	ARMADO , 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

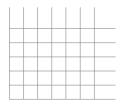

HORMIGÓN ARMADO							
	Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
	HA25	25,00	1,00	1,50	B500	B500	1,15

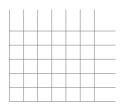

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

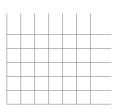

Forjado tipo niveles 3—6. Nivel 4. Cota: +7,00 m. Material predominante: Material genérico

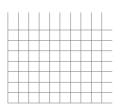
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterã?stica del hormigã?n în situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR 7 1

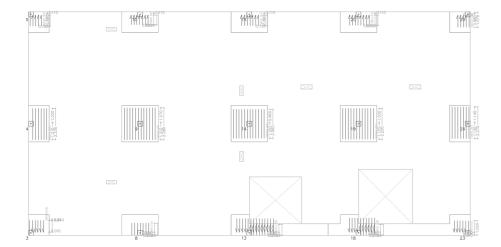

		ACE	ERO		
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	уМ1	γM2
S275	275,00	410,00	1,05	1,05	1,25

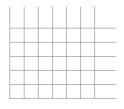

		HORM	igón ar	MADO		
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

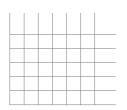

RESTO DE MATERIALES			
Tipo	Nombre		
Material genérico	GENERICO_UBUBBLE 2		

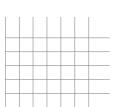

Forjado tipo niveles 7 y 8 Nivel 7. Cota: +16,60 m. Material predominante: Material genérico

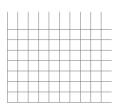
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	REMATE LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR A A


		ACE	ERO		
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γM1	γM2
S275	275,00	410,00	1,05	1,05	1,25


		HORM	igón ar	MADO		
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

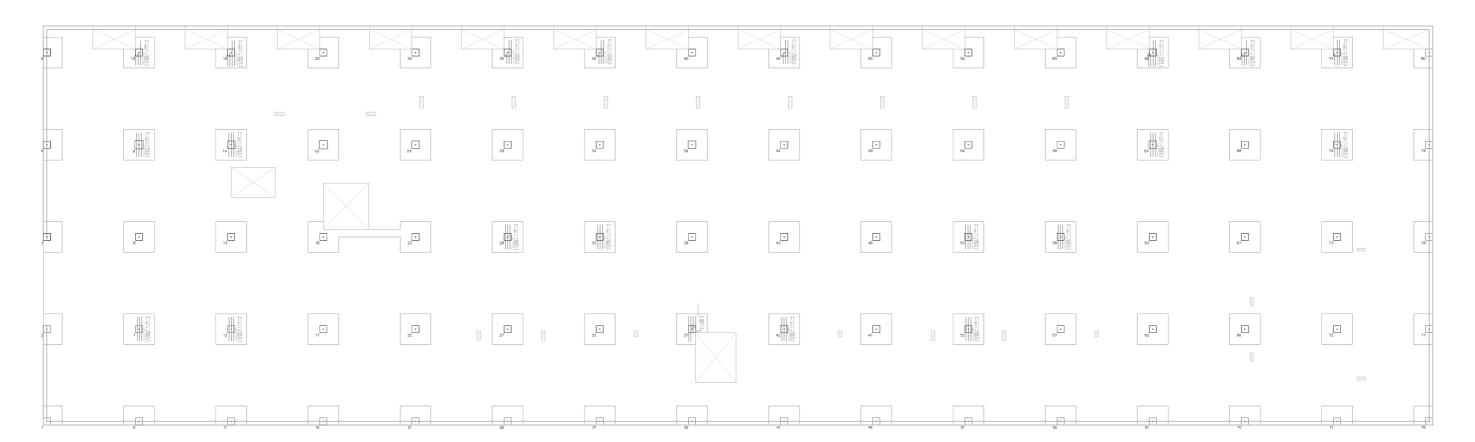

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2


Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico

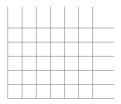
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	100
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

ACERO					
Tipo	fy (N/mm2)	fu (N/mm2)	γM0	уМ1	γM2
S275	275,00	410,00	1,05	1,05	1,25


HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	γc	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

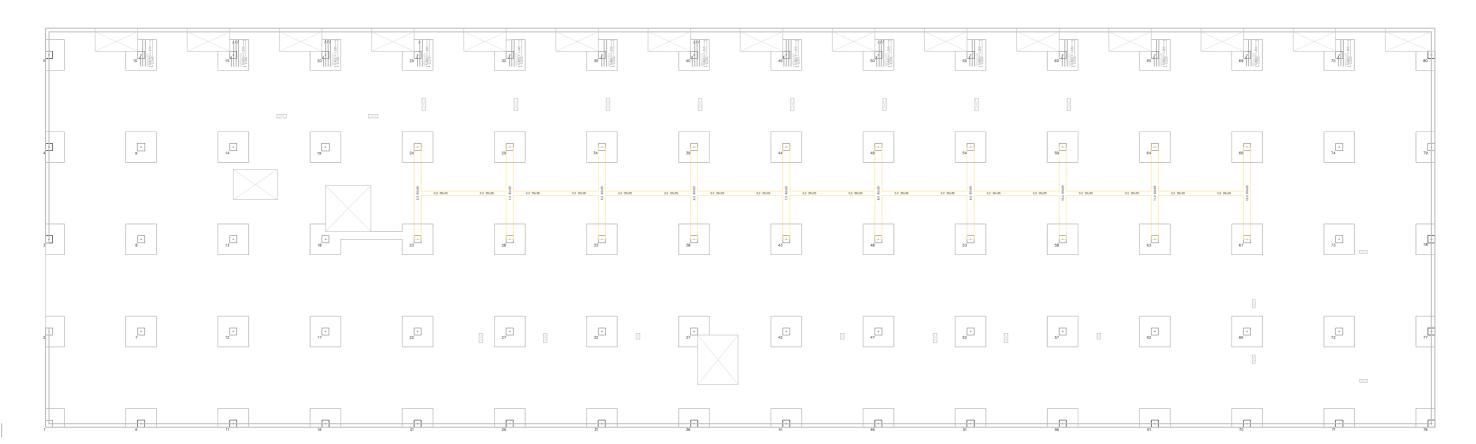
RESTO DE MATERIALES		
Tipo	Nombre	
Material genérico	GENERICO_UBUBBLE 2	

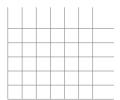

El esfuerzo flector de -288.26 kN·m/m, no necesita armadura de refuerzo a

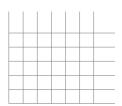
Refuerzos My, armadura inferior

Forjado Nivel 1. Cota: —3,40 m. Material predominante: Material genérico

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICIADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR

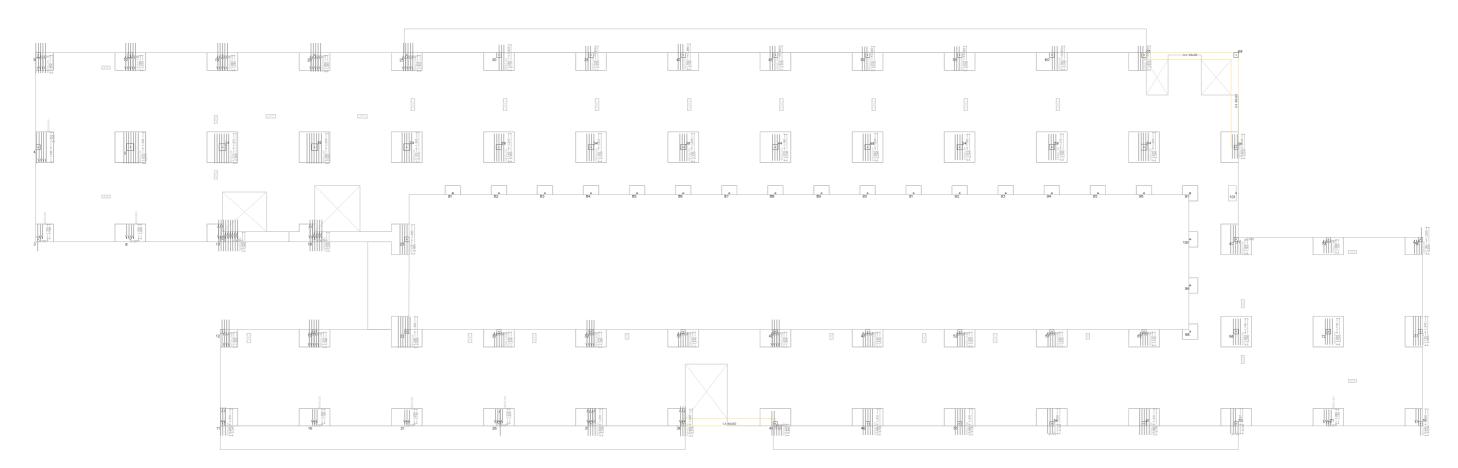

HORMIGÓN ARMADO						
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs
HA25	25,00	1,00	1,50	B500	B500	1,15

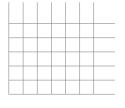

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

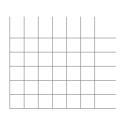

El esfuerzo flector de 170.01 kN·m/m, no necesita armadura de refuerzo a flexión.

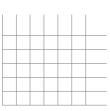
Refuerzos My, armadura inferior

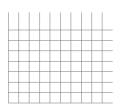
Forjado Nivel 2. Cota: 0,00 m. Material predominante: Material genérico


		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR


HORMIGÓN ARMADO								
Tipo	Acero arm. vigas	γs						
HA25	25,00	1,00	1,50	B500	B500	1,15		

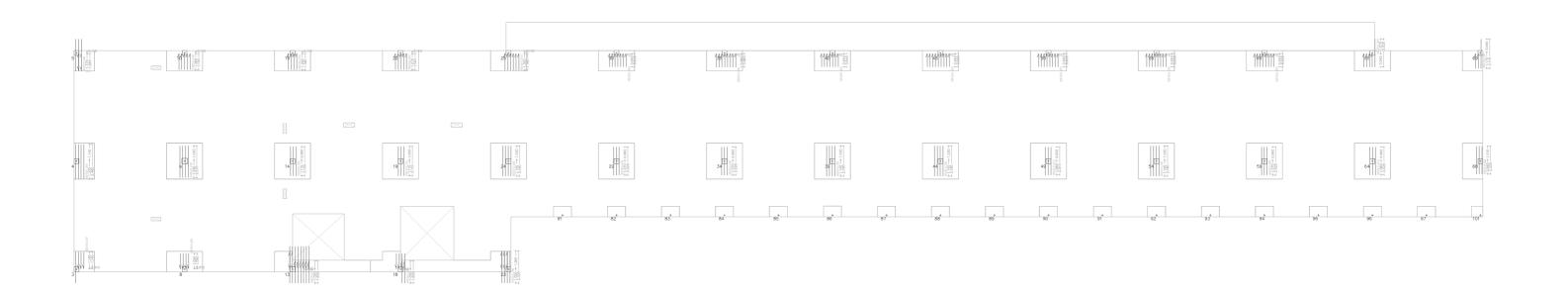

	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2

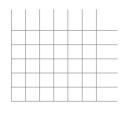

Refuerzos My, armadura inferior


Forjado tipo niveles 3—6. Nivel 4. Cota: +7,00 m. Material predominante: Material genérico

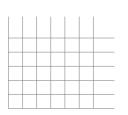
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia caracteristica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	REMATE LOSA ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE

		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR A A

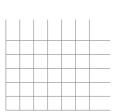

	ACERO							
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	γM1	γМ2			
S275	275,00	410,00	1,05	1,05	1,25			


HORMIGÓN ARMADO							
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs	
HA25	25,00	1,00	1,50	B500	B500	1,15	

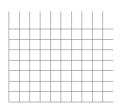
	RESTO DE MATERIALES
Tipo	Nombre
Material genérico	GENERICO_UBUBBLE 2


Refuerzos My, armadura inferior

Forjado tipo niveles 7 y 8 Nivel 7. Cota: +16,60 m. Material predominante: Material genérico



ARMADURA BASE SUPERIOR



ARMADURA BASE INFERIOR Ø16/20x20 cm

Canto de la losa 350 mm Recubrimiento 35 mm Hormigon HA—25 Coef. minoración hormigón 1.50 Coef. olfa 0.85 Acero B500 Coef. minoración acero 1.15

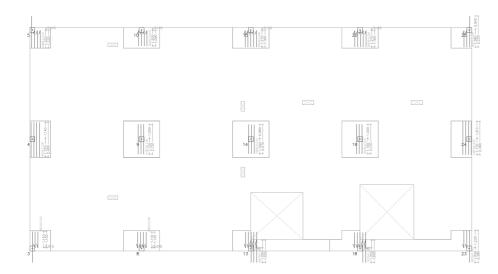
ARMADURA BASE SUPERIOR

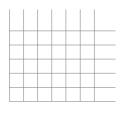
ARMADURA BASE INFERIOR

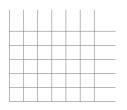
Canto de la losa 150 mm Recubrimiento 35 mm Hormigon HA-25 Coef. minoración hormigón 1.50 Coef. alfa 0.85 Acero 8500

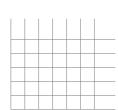
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	<u> </u>
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIENTE

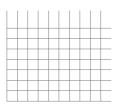
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO , 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR


	ACERO							
Tipo	fy (N/mm2)	fu (N/mm2)	γМО	уМ1	γМ2			
S275	275,00	410,00	1,05	1,05	1,25			


HORMIGÓN ARMADO							
Tipo	fck (N/mm2)	α larga duración	γс	Acero arm. pilares	Acero arm. vigas	γs	
HA25	25,00	1,00	1,50	B500	B500	1,15	


RESTO DE MATERIALES			
Tipo	Nombre		
Material genérico	GENERICO_UBUBBLE 2		


Refuerzos My, armadura inferior


Forjado Nivel 1. Cota: -3,40 m. Material predominante: Material genérico

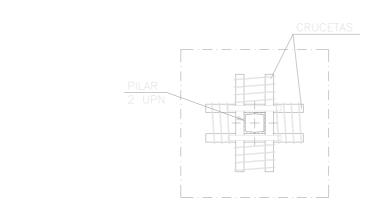
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y		FORJADO DE LOSA MACIZA
Resistencia característica armaduras pasivas	500 N/mm²	2.10
Resistencia caracterÃ?stica del hormigÃ?n in situ	25 N/mm²	LOSA
Canto Forjado/Losa	15 cm	
Cargas permanentes	1.5 kN/m²	ARM. LOSA 2010 CORRIDOS
Sobrecarga de Uso	2 kN/m²	0.3 VIGA NORMALMENTE ENTRE PILARES, VER EL ARMADO CORRESPONDIFITE

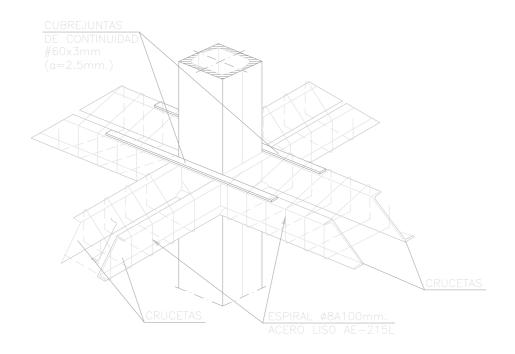
		TE
		AC
CARACTERISTICAS MECA DEL FORJADO/LOSA Y	ANICAS Y GEOMETRICAS Y SUS COMPONENTES	FORJADO LOSA ALIGERADA BUBBLEDECK
Resistencia caracteristica armaduras pasivas	500 N/mm²	ARMADO BURBUJA LOSA_
Resistencia característica del hormigón in situ	25 N/mm²	SUPERIOR PLASTICO ALIGERADA RECICLADO
Canto Forjado/Losa	35 cm	
Cargas permanentes	4.1 kN/m²	ARMADO 0.27
Sobrecarga de Uso	5 kN/m²	INFERIOR 7 7

ACERO							
Tipo	Tipo fy fu γM0 γM1 γM2						
S275	275,00	410,00	1,05	1,05	1,25		

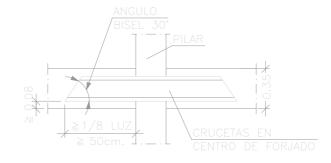
	HORMIGÓN ARMADO							
Tipo fck α larga γc Acero arm. Acero arm. γs							γs	
	HA25	25,00	1,00	1,50	B500	B500	1,15	

RESTO DE MATERIALES			
Tipo	Nombre		
Material genérico	GENERICO_UBUBBLE 2		

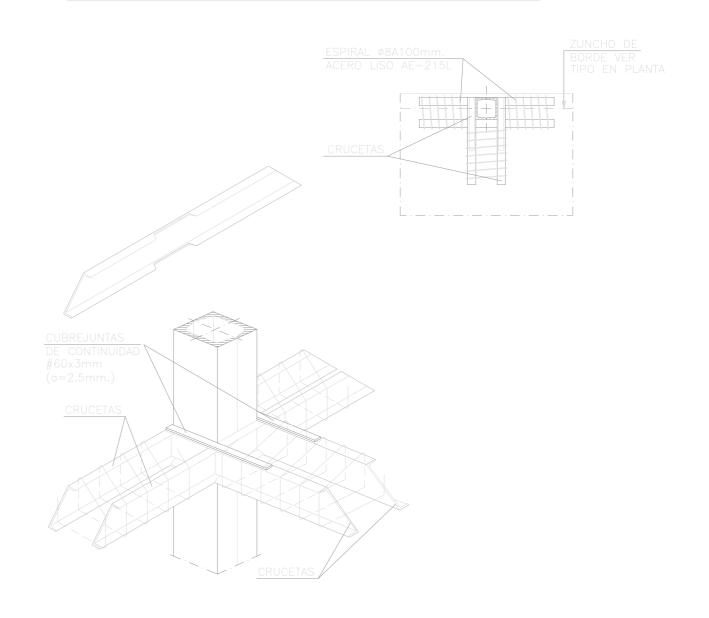

Refuerzos Vxy

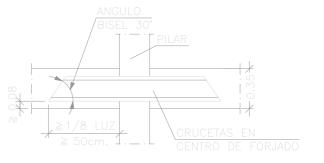

Por último la armadura de refuerzo a punzonamiento no es necesaria, ya que el esfuerzo cortante es pequeño y lo puede soportar la propia losa. A continuación se muestra el mensaje de AutoCAD:

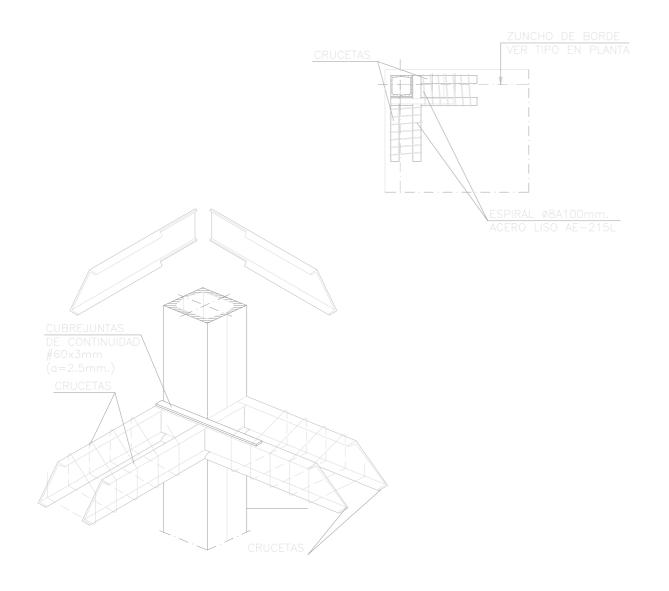
 \times Mensaje de AutoCAD

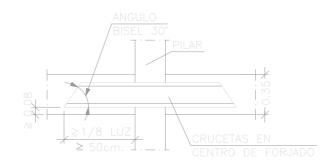

El esfuerzo cortante de 443.00 kN/m, no necesita armadura de refuerzo a punzonamiento.

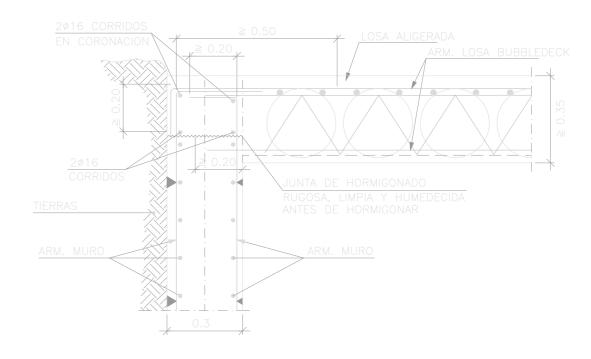
Montaje de Ábaco Central con Pilar Metálico. Losa

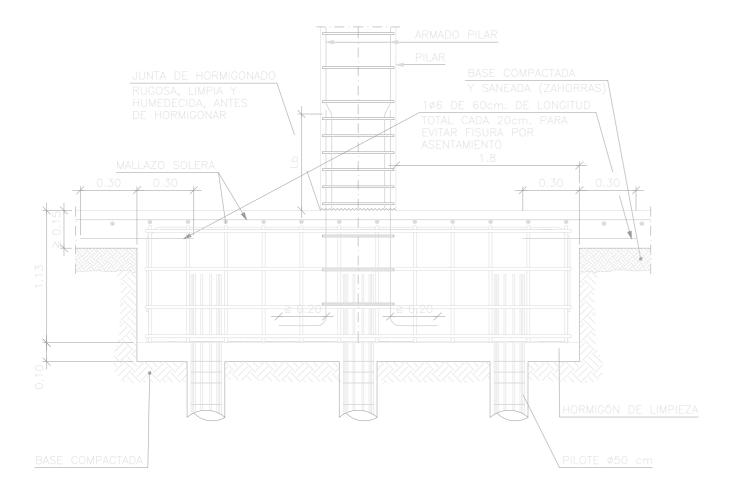


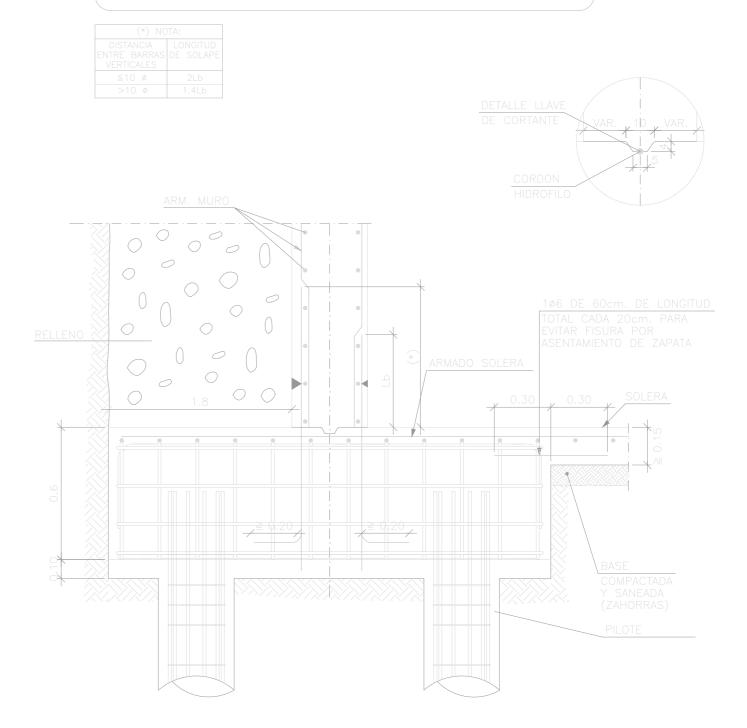

	CRUCETAS
	PERFIL UPN
	UPN-100
	UPN-120
	UPN-140
//35//	//UPN-160//

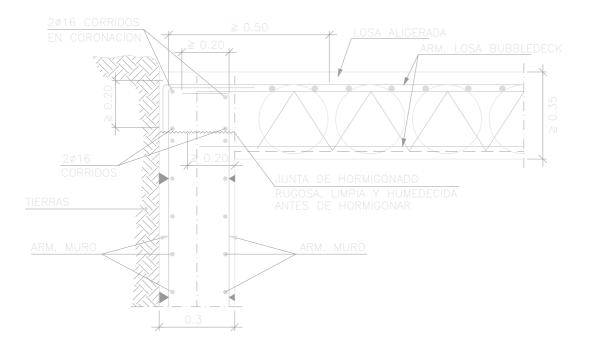

Montaje de Ábaco de Medianera con Pilar Metálico. Losa

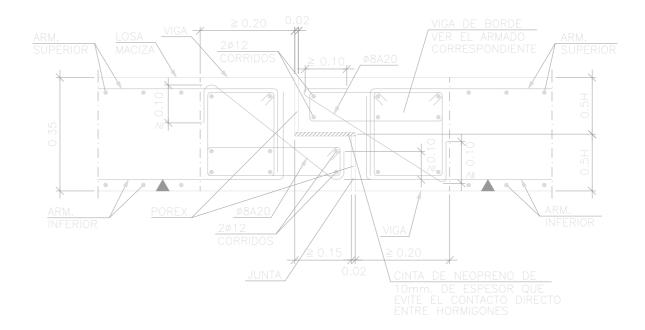

CANTO LOSA	CRUCETAS PERFIL UPN
22	UPN-100
25	
30	
//35//	/UPN-160//


Montaje de Ábaco de Esquina con Pilar Metálico. Losa

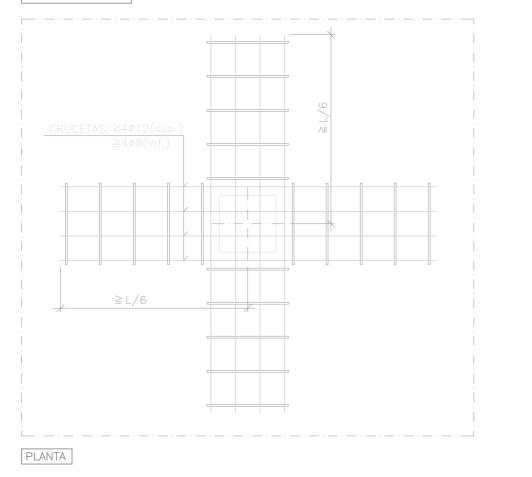

	CRUCETAS PERFIL UPN
22	UPN-100
	UPN-120
	UPN-140
//35//	/UPN-160//


Enlace en Coronación de Muro con Losa

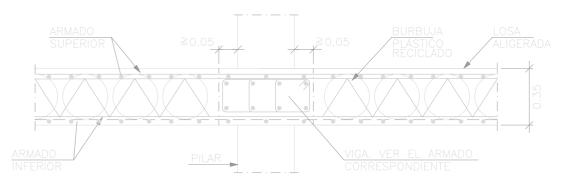

Encepado Aislado Con Solera Incorporada


Arranque de Muro en Encepado Corrido Centrado con Solera

Enlace en Coronación de Muro con Losa


Junta de Dilatacion a Media Madera

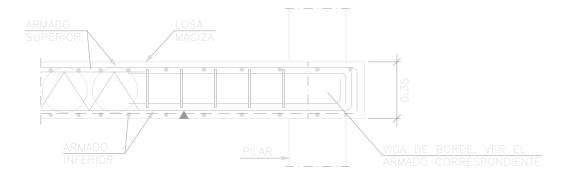
Armadura de Montaje de Ábaco Central con Pilar de Hormigón.

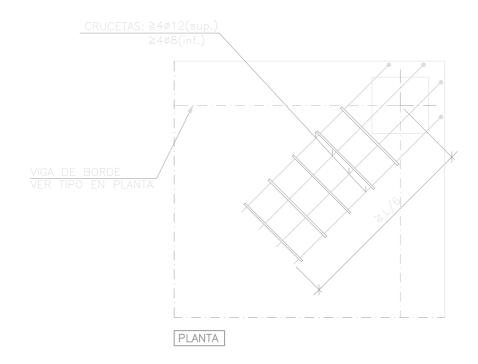

ALZADO. SECCION

CRUCETA

	 	≥4ø12
•		≥4ø8

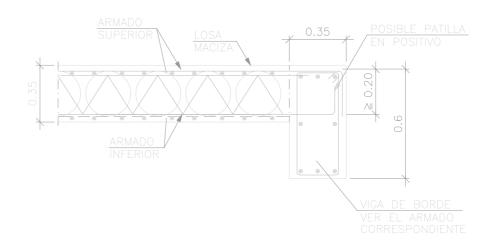
Armadura de Montaje de Ábaco de Medianera con Pilar de Hormigón.

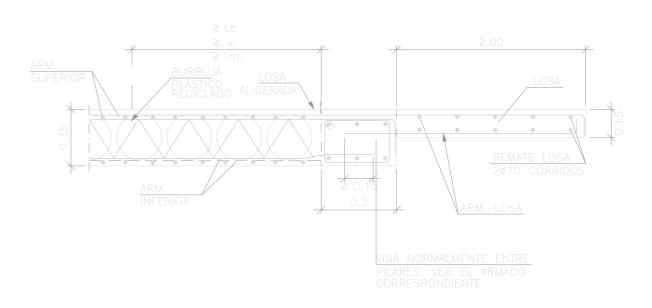

ALZADO. SECCION



6	(0)	

Armadura de Montaje de Ábaco de Esquina con Pilar de Hormigón.


ALZADO. SECCION


CRUCETA

Extremo de Vano Sobre Viga de Canto Descolgada

Transicion a Losa Maciza de Menor Canto en Voladizo Enrasada Superiormente

FICHAS TÉCNICAS Y TABLAS

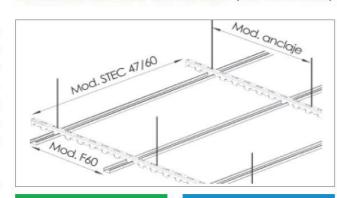
A2.1 BubbleDeck

Version	Slab Thickness	Bubbles	Span (Multiple bays)	Cantilever Maximum Length	Span (Single bays)	Completed Slab Mass	Site Concrete Quantity
	mm	mm	metres	metres	metres	kN/m ²	m^3/m^2
BD230	230	Ø 180	5 - 8.3	≤ 2.8	5 - 6.5	4.34	0.109
BD280	280	Ø 225	7 - 10.1	≤ 3.3	6 - 7.8	5.17	0.142
BD340	340	Ø 270	9 - 12.5	≤ 4.0	7 – 9.5	6.25	0.186
BD390	390	Ø 315	11 - 14.4	≤ 4.7	9 - 10.9	6.93	0.213
BD450	450	Ø 360	13 - 16.4	≤ 5.4	10 - 12.5	7.94	0.245
BD510 *	510	Ø 410	15 - 18.8	≤ 6.1	11 - 13.9	9.06	0.291
BD600 *	600	Ø 500	16 - 21.0	≤ 7.2	12 - 15.0	10.22	0.338

^{*} New 2006 BubbleDeck slab configurations: Agrément certification pending, outside scope of KOMO technical

A2.2 Falso techo KINGSPAN

CARGAS MÁXIMAS SISTEMA DE FALSO TECHO F60


DESCRIPCIÓN Y CLASE DE CARGAS

- El sistema de falso techo F60 ha sido dimensionado para soportar el peso de hasta 3 placas de yeso laminado (PYL) y un aislante de tipo lana mineral o similar. Cualquier otra carga, como por ejemplo las instalaciones, deben fijarse al forjado con sus propias suspensiones, ajenas al sistema F60 de Kingspan.
- A los efectos de este documento, las cargas totales a suspender del sistema F60 se clasifican en:

CLASE 1: Cargas hasta 0,27 kN/m² CLASE 2: Cargas hasta 0,38 kN/m² CLASE 3: Cargas hasta 0,55 kN/m²

A2.3 Tablas. CT DB SE-AE

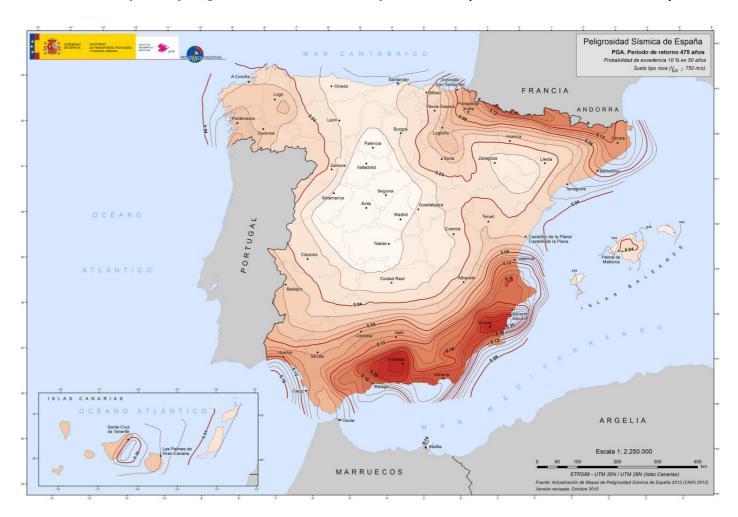
TECHO DE ESTRUCTURA DOBLE (F60 + STEC47/60)

CL	.ASE 1: $< 0,2$	27 kN/m²	CLASE 2: < 0,38 kN/m ²		
Mod. F60	Mod. STEC47/60	Mod. máx. anclaje	Mod. F60	Mod. STEC47/60	Mod. máx. anclaje
0,4	0,80	1,20	0,4	0,80	1,00
	1,00	1,20		1.00	1.00
	1,20	1,00		1.20	0,80
	0,80	1,20		0,80	1,00
	1.00	1.00	0.5	0,00	1,00

En el caso de tabiques ordinarios cuyo peso por metro cuadrado no sea superior a 1,2 kN/m² y cuya distribución en planta sea sensiblemente homogénea, su peso propio podrá asimilarse a una carga equivalente uniformemente distribuida. Como valor de dicha carga equivalente se podrá adoptar el valor del peso por metro cuadrado de alzado multiplicado por la razón entre la superficie de tabiquería y la de la planta considerada. En el caso de tabiquería más pesada, ésta podrá asimilarse al mismo valor de carga equivalente uniforme citado más un incremento local, de valor igual al exceso de peso del tabique respecto a 1,2 kN por m² de alzado.

En general, en viviendas bastará considerar como peso propio de la tabiquería una carga de 1,0 kN por cada m² de superficie construida.

Tabla C.5 Peso propio de elementos constructivos


Elemento		Peso
Forjados	iados	
	Chapa grecada con capa de hormigón; grueso total < 0,12 m	2
	Forjado unidireccional, luces de hasta 5 m; grueso total < 0,28 m	3
	Forjado uni o bidireccional; grueso total < 0,30 m	4
	Forjado bidireccional, grueso total < 0,35 m	5
	Losa maciza de hormigón, grueso total 0,20 m	5
Cerramientos y particiones (para una altura libre del orden de 3,0 m) incluso enlucido		kN/m
	Tablero o tabique simple; grueso total< 0,09 m	3
	Tabicón u hoja simple de albañilería; grueso total < 0,14 m	5
	Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7
Solados (incluyendo material de agarre)		kN / m ²
	Lámina pegada o moqueta; grueso total < 0,03 m	0,5
	Pavimento de madera, cerámico o hidráulico sobre plastón; grueso total < 0,08 m	1,0
	Placas de piedra, o peldañeado; grueso total < 0,15 m	1,5
Cubierta, sol	Cubierta, sobre forjado (peso en proyección horizontal)	
	Faldones de chapa, tablero o paneles ligeros	1,0
	Faldones de placas, teja o pizarra	2,0
	Faldones de teja sobre tableros y tabiques palomeros	3,0
	Cubierta plana, recrecido, con impermeabilización vista protegida	1,5
	Cubierta plana, a la catalana o invertida con acabado de grava	2,5
Rellenos		kN / m ³
	Agua en aljibes o piscinas	10
	Terreno , como en jardineras, incluyendo material de drenaje "	20

⁽¹⁾ El peso total debe tener en cuenta la posible desviación de grueso respecto a lo indicado en planos.

Tabla 3.1. Valores característicos de las sobrecargas de uso

Categoría de uso		Subcategorías de uso		Carga uniforme [kN/m²]	Carga concentrada [kN]
Α	Zonas residenciales	A1	Viviendas y zonas de habitaciones en, hospitales y hoteles	2	2
11.1		A2	Trasteros	3	2
В	Zonas administrativas			2	2
		C1	Zonas con mesas y sillas	3	4
		C2	Zonas con asientos fijos	4	4
C c	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las	СЗ	Zonas sin obstáculos que impidan el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.	5	4
	categorías A, B, y D)	C4	Zonas destinadas a gimnasio u actividades físicas	5	7
		C5	Zonas de aglomeración (salas de conciertos, estadios, etc)	5	4
D	Zonas comerciales	D1	Locales comerciales	5	4
		D2	Supermercados, hipermercados o grandes superficies	5	7
Е	Zonas de tráfico y de aparcamiento para vehículos ligeros (peso total < 30 kN)			2	20 (1)
F	Cubiertas transitables a	les accesibles sólo privadamente (2)			2
G	Cubiertas accesibles únicamente para con- servación (3)	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20°	1(4)(6)	2
			Cubiertas ligeras sobre correas (sin forjado) (5)	0,4(4)	1
		G2	Cubiertas con inclinación superior a 40°	0	2

A2.4 Mapa de peligrosidad sísmica de España 2015 (en valores de aceleración)

A2.5 Listado por municipios del coeficiente de contribución K

Municipio	a_b/g	K
Municipio Sollana Sueca Sumacàrcer Tavernes Blanques Tavernes de la Valldigna Teresa de Cofrentes Terrateig Torrella Torrent Torres Torres Tous Turís Valencia Vallada Vallés Vilamarxant Villalonga	0,07 0,07 0,07 0,06 0,07 0,07 0,07 0,07	(1,0) (1,0) (1,0) (1,0)
Vilamarxant	0,05	(1,0) (1,0) (1,0) (1,0) (1,0) (1,0)