DISGH:

DEPARTAMENTO DE INFORMATICA
DE SISTEMAS Y COMPUTADORES

UNIVERSITAT POLITECNICA DE VALENCIA

Dept. of Computer Engineering

Obtaining OpenweatherMap data through Thingsboard
property in Raspberry Pi

Master's Thesis

Master's Degree in Computer and Networking Engineering

AUTHOR: Mo , Xiaojie
Tutor: Manzoni, Pietro

ACADEMIC YEAR: 2022/2023



Dl9GH

DEPARTAMENTO DE INFORMATICA
DE SISTEMAS Y COMPUTADORES

UNIVERSITAT POLITECNICA DE VALENCIA

Dpto. de Informatica de Sistemas y Computadores

Obtencion de datos OpenweatherMap a través de
Thingsboard basandose en Raspberry

Obtaining OpenweatherMap data through
Thingsboard property in Raspberry

Trabajo Fin de Master

Master Universitario en Ingenieria de Computadores y Redes

AUTORA: Mo, Xiaojie
TUTOR: Manzoni, Pietro

CURSO ACADEMICO: 2021-2022

December 2022



TRIBUNAL:

Presidente:

Vocal:

Secretario(a):

FECHA DE DEFENSA:

CALIFICACION:

Presidente Vocal

Fdo.: Fdo.:

Secretario(a)

Fdo.:



ABSTRACT

The measurement and forecasting of weather is being revolutionised by the
Internet of Things (loT). The Internet of Things (IoT) has made it possible for us to more
precisely monitor temperature, humidity, wind speed, and other crucial meteorological
characteristics. These sensors' data can be used to create complex algorithms that can
deliver real-time weather forecasts and warn users of potentially dangerous situations.
With the help of modern technology, we can safeguard our communities more
effectively and decide on our safety with more knowledge. We still need to do more
research on the cost and data reliability challenges.Weather systems' loT sensors may
collect inaccurate or partial data, which could lead to unreliable readings or forecasts.
loT equipment's complexity and need for specialists might make it expensive to install

and maintain.

This thesis explores these two elements. We focus on the integration of loT
technology with a weather station based on the low-cost Raspberry Pi single-board
computer. The research will centre on the use of the ThingsBoard platform to connect
to the OpenWeatherMap API and the Raspberry Pi as the data collection system. In
addition, the creation of a web-based front-end to show the data will be investigated.
The implementation of this project will provide a comprehensive and cost-effective
solution to monitor weather conditions, allowing for better decision-making in many
areas of life, such as agriculture, energy management, and public safety. We discuss
the advantages of using ThingsBoard, as well as the challenges of integrating such a
complex system, and provide details of our proposed system architecture and
development process. The results of this project will provide a solid foundation for

building more advanced weather monitoring systems.




RESUMEN

Internet of Things (loT) esta revolucionando la medicién y el prondstico del tiempo.
Internet of Things(loT) nos ha permitido monitorear con mayor precision la temperatura,
la humedad, la velocidad del viento y otras caracteristicas meteoroldgicas cruciales.
Los datos de estos sensores se pueden utilizar para crear algoritmos complejos que
pueden ofrecer pronodsticos meteorolégicos en tiempo real y advertir a los usuarios
sobre situaciones potencialmente peligrosas. Con la ayuda de la tecnologia moderna,
podemos salvaguardar nuestras comunidades de manera mas efectiva y decidir sobre
nuestra seguridad con mas conocimiento. Todavia necesitamos investigar mas sobre
los desafios de costos y confiabilidad de los datos. Los sensores IoT de los sistemas
meteoroldgicos pueden recopilar datos inexactos o parciales, lo que podria conducir a
lecturas o prondsticos poco confiables. La complejidad de los equipos de IoT y la
necesidad de especialistas pueden hacer que su instalacion y mantenimiento sean

costosos.

Esta tesis explora estos dos elementos. Nos enfocamos en la integracion de la
tecnologia loT con una estacion meteorologica basada en la computadora de placa
unica Raspberry Pi de bajo costo. La investigaciéon se centrara en el uso de la
plataforma ThingsBoard para conectarse a la APl OpenWeatherMap y Raspberry Pi
como sistema de recopilacion de datos. Ademas, se investigara la creacion de un front-
end basado en la web para mostrar los datos. La implementacion de este proyecto
proporcionara una solucidon integral y rentable para monitorear las condiciones
climaticas, lo que permitira una mejor toma de decisiones en muchas areas de la vida,
como la agricultura, la gestién de la energia y la seguridad publica. Discutimos las
ventajas de usar ThingsBoard, asi como los desafios de integrar un sistema tan
complejo, y brindamos detalles de la arquitectura del sistema y el proceso de
desarrollo propuestos. Los resultados de este proyecto proporcionaran una base

soélida para construir sistemas de monitoreo meteorolégico mas avanzados.




ACKNOWLEDGMENT

This work serves as a pivotal moment in both my professional and personal lives. | can
say with pride that they have made me very happy. | had a variety of companions with
me on this voyage, and | dedicate these words to them.

My life is going through a lot of change in 2020. | moved out of my hometown and
my parents to live alone. This is a new life and a major challenge. I've developed over

the last three years from a young teenager to a strong, independent adult.

I'm appreciative of myself for persevering and not giving up while working hard to

achieve my goal. With optimism and positivity, face all the joy and sorrow in life.

I'm appreciative of my father's support. It's amazing how much spiritual energy you
have. For me, you serve like a sturdy tree. You made everything better, and | will always

adore you.

I'm grateful to my mother for helping me follow my aspirations because with you
by my side, anything is possible. You shoulder a lot. I'll walk alongside you as you make
your way forward.

| appreciate to Cheng, my beloved friend, for your constant concern for me,
encouragement, and support. You compare me to the sun, but to me, you are the sun.
Miss you.

| am appreciative of everyone who has ever supported me in my life. My life is full
of hope as a result of you. | appreciate your generosity and zeal. I'm wishing you the
greatest amount of luck possible.

I would like to express my sincere gratitude to my director Pietro for his guidance
and support throughout my thesis studies. Your expertise and perspective were crucial
to completing this task. | appreciate all of your support and encouragement during this

process.

You inspire me and many others with your dedication to science and study. |
appreciate the chance to collaborate with you on this project, and | am extremely proud
with the results.




Life's pictorial scroll has been unrolled, and | will fill it with the most exquisite hues.

Mo, Xiaojie

Valencia, 2022




GENERAL INDEX

A B ST RA CT ettt e e e oottt e e e e e e e e e e e e e e e et aaae s I
RESUMEN . ...ttt ettt oottt e e e e e e e bbbttt e e e e e e e bbb b e e e e e e e e e e annnnneees Il
ACKNOWLEDGMENT ...ttt e e s ea e I
IMAGE INDEX ... .o iiiiiiiieiiie ettt e e e e ettt et e e e e e s e bbb e e e e e e e e e e e nnnennes Vil
LIST OF ACRONYMS ...ttt ettt e e e e e e e e e e e e nanneees IX
1. INTRODUCTION ....iiiiiiiiiieiiiiiiitte ittt e e e e e e e e e e e e e s nnnnees 1
1.1 MOTIVATION b 3
1.2 OBIECT s 4
1.3 STRUCTURE ....coii s 4
2. STATE OF THE ART ..ottt e e e e e e 6
2.1 PROPOSAL. o 8
3. PROBLEM ANALY SIS .. ettt e e e e 9
3.1 Identification and analysis of possible SOIUTIONS.........ccccciiiiierinseese 10
311 DEMO BOAIT ... 10
312 10T PlatfOrMS oot 15

4., PROPOSED SOLUTION ....ottiiiiiiiiiiiitie ittt e e eee e 22
4.1 PLAN OF THE WORK ...ttt 22
4.2 SYSTEM ARCHITECTURE ....coooiiiiiiisiieeies s 23
4.3 TECHNOLOGY USED....ooiiiiiiiiriiiiiiisiiseesississsssss s 25
431 Description Of RASPDEITY Pid ... 25
432 Description of ThiNgSBOArd ...........coiveiiveeeceeeeeee e 28
433 Description of OpenweatherMap ... 31

5. IMPLEMENTATION .ottt ettt e e e e et e e et e e eaanns 35
5.1 Installing ThingsBoard on Raspherty Pid ... 37




5.2 Receiving OpenweatherMap data via Thingsboard ..., 41

5.3 RESULT et 52
6. CONCLUSIONES. ..ot 55
6.1  FUTURE WORK ...t 56
BIBLIOGRAPHY ..ottt e e e e e e e e e e enrnr e a e e e e e e ennnes 57

\



IMAGE INDEX

Figure 1-1:
Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:

Figure 5-9:

loT devices on a Global level
Weather station

Demo board

Arduino board

ODROID C4 board

Raspberry Pi 4 board

loT Architecture

Fiware system Architecture of Smart sensor monitoring weather
SiteWhere system Architecture
ThingsBoard system Architecture
Project architecture

Procedure for the receipt of data
Raspberry Pi 4 Specification
ThingsBoard data transfer structure
OpenweatherMap Official website
Interactive weathers maps

Project connection architecture
Raspberry Pi 4 hardware introduction
Raspberry Pi desktop

Add an asset

Assign the Asset to the customer
Register on the OpenweatherMap website
Create customer attributes

Asset attributes

Asset attributes details

\ii



Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:
Figure 5-19:
Figure 5-20:

Figure 5-21:

Rule chain

Create a new Rule Chain

Generator node

Customer attributes enrichment node
Originator attributes enrichment node
External REST API call node

Script transformation node

Save time-series node

Dashboard result

Response time using Wireshark

CPU and memory performance of the system

Data from OpenweatherMap

Vi




LIST OF ACRONYMS

5G 5th Generation wireless systems

API Application Programming Interface
APPID Application Identification

ARM Advanced RISC Machines

COAP The Constrained Application Protocol
CPU Central Processing Unit

CRUD Create/Read/Update/Delete

ECDSA Elliptic Curve Digital Signature Algorithm

GPIO General Purpose Input Output

GUI Graphical User Interface

HDMI High Definition Multimedia Interface
HTTP Hyper Text Transfer Protocol

loT Internet of Things

JSON JavaScript Object Notation

LAN Local Area Network

LWM2M Lightweight Machine to Machine
MCU Micro Control Unit
MQTT Message Queuing Telemetry Transport

OAUTH Open Authorization

oS Operating System

PC Personal Computer

RAM Random Access Memory

REST Representational State Transfer
RSA RSA algorithm

SQL Structured Query Language




ul
URL
usSB
uv
VNC

XML

User Interface

Uniform Resource Locator
Universal Serial Bus
Ultraviolet

Virtual Network Console

Extensible Markup Language




1. INTRODUCTION

Thanks to advances in computing and networking technology, traditional
computing systems have been able to be integrated into everyday objects and
interconnected, forming a global network infrastructure known as the Internet of
Things.[1] 10T is a network of physical items that are connected to the internet and have
the ability to gather data, communicate with one another, and take action based on that
data. Its name literally translates to "connected network of everything." These things
can be anything, from wearable devices to vehicles to machines used in manufacturing,
for example. In point of fact, it has undergone significant development over the course
of the past 20 years, ever since the concept of auto-identification was first proposed in
the United States of America in 1999, and is now widely utilised in a variety of contexts.
The Internet of Things is an extension and expansion of the core of the Internet that
enables the exchange and communication of information between objects through
wireless networks with minimal intervention from humans. Additionally, the Internet of
Things is a network that is built from physical objects. The Internet of Things lowers the
cost of human labour while also increasing the speed at which data can be transmitted

and processed.




Non-loT and loT active devices from
2010 to 2025

3oB

208
10!

..llll.l.I.I.I|IIIII|I|I|I‘I‘I'

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

. Non-loT Devices . loT Devices

Figure 1-1: loT devices on a Global level

The Internet of Things has the potential to completely transform how we live, work,
and play in the world. It has the potential to make our lives easier and more efficient,
as well as assist us in better comprehending and navigating the environment that we
live in. 10T is a disruptive force that is redefining how humans and physical items
communicate with one another and with each other in the digital world. It is anticipated
that there will be 75 billion connected devices in use around the globe by the year 2025.
loT is still in its infancy, and there are a great number of obstacles that must be
overcome before it can realise its full potential. Security, privacy, scalability, and

interoperability are some of the problems that must be overcome.

This project is based on IoT, and its main goal is to build a weather station using
the Raspberry Pi computer, the Thingsboard loT platform, and the OpenweatherMap
service. The weather station will employ sensors to collect data from weather stations
across the world using the OpenweatherMap API. The sensors will detect temperature,
humidity, and atmospheric pressure, among other weather variables. A dashboard

made with the Thingsboard platform will show the data.




1.1 MOTIVATION

Building a weather station that may be utilised to gather information about the local
weather conditions is the reason we are working on this project. We may utilise this
information to better understand the regional weather patterns and to guide our choices
regarding how to safeguard our homes and places of business from the effects of
severe weather. Our weather station is built around a Raspberry Pi since it is an
affordable, adaptable platform that is perfect for this kind of project. ThingsBoard offers
us a robust set of capabilities for data gathering, analysis, and visualisation, thus we
are adopting it as our platform for data visualisation and analysis. We are utilising
OpenWeatherMap to give us up-to-date information on the local weather. And in order
to share our data with the world, we are using the IoT protocol to connect our weather

station to the internet.

This project will make use of the Thingsboard platform to receive data from
OpenweatherMap. The data will be stored in a database on the Raspberry Pi 4. A
Python script will be used to retrieve the data from OpenweatherMap and store it in the
database. Aweb interface will be created using the Flask framework. This web interface
will allow the user to view the data stored in the database. The user will be able to

select a location for which they want to view the weather data.




1.2 OBJECT

In this project, we'll turn the Raspberry Pi into a weather station that uses the
ThingsBoard open-source loT platform to communicate data to the cloud. On a
dashboard, the data will be gathered from the OpenWeatherMap service and shown in
real-time. This project is a great way to get started with the Internet of Things and learn

about weather data, cloud computing, and how to build dashboards using loT.

1.3 STRUCTURE

The remaining essay has the following organisational structure:
® Chapter 1: Introduction: Aims, objectives and Motivation for this document;

® Chapter 2: State-of-the-art: Gives some background information on modern

technology and discusses both the benefits and the drawbacks of using it;

® Chapter 3: Problem analysis: The investigation of feasible solutions, the
decision-making process, and the justifications behind the many design options

that were ultimately selected for the particular implementation;

® Chapter 4: Proposed Solution: Discuss the proposed solution and provide an
explanation of the structure of the system as well as the technologies that were

utilised;

® Chapter 5: Implementation: Demonstrate the comprehensive development

process and project findings;




® Chapter 6: Conclusions: Examines the results and outlines potential avenues

for further research.




2. STATE OF THE ART

Anang Suryana et al[2]. experimented with using weather station data to imitate a
room weather station. Employing their study apparatus, which included a DHT22
sensor for monitoring temperature/humidity, a BMP180 sensor for measuring
wind/wind speed, and a BH1750 sensor for measuring light intensity. Their research
apparatus includes a DHT22 temperature/humidity sensor, a BMP180 wind/wind speed
sensor, and a BH1750 light intensity sensor. They used a weather regulator, which
included a heater and cooler, water jets, fans, and light bulbs for temperature, humidity,
wind speed, and light intensity, to set the room to the same weather conditions in order
to compare the weather data there with the weather data they obtained from

OpenweatherMap. The regulator was managed by an Arduino Uno microcontroller.

Yasser Asrul Ahmad et al.[3] conducted experiments to compare the performance
of a networked temperature system to an industrial system. The experiment found that
the loT temperature detection system using the DHT22 sensor had higher sensitivity
and accuracy, allowing accurate measurements of up to 0.10 degrees Celsius. The
project built an IoT temperature monitoring system using the DHT22 temperature
sensor with a Raspberry Pi and compared it to an industrial-grade thermocouple with

a Keithley 6517-TP industrial-grade temperature probe.

Dushyant Kumar Singh et al.[4] carried out research on low-cost loT-based
systems for weather monitoring at the local level. Additionally, for data receiving,
calibration, and data posting to the cloud, Node MCU served as the primary control
device. The wind speed sensor and wind direction sensor are utilized in the data

acquisition phase as analog sensors to simulate the output signal, and the DHT11




sensor is used to detect temperature and humidity. The project sends data from a
month's worth of recording to the Thingspeak server. The experiment suggests that this
system has outstanding performance in terms of low cost and monitoring dependability,
and can operate continuously for more than 10 hours without experiencing any

mistakes.

Anshika Gupta et al. [5]carried out research to create a smart tiny weather station
for more compact regions. The project, which was built on the ESP32 platform, employs
sensors to gather information about temperature, humidity, UV index, and rainfall,
which is then wirelessly sent to the firebase cloud database. An Android application
designed exclusively for data visualization has been created by the project, and the
data is refreshed every 5 seconds. The weather station can run for 11 hours without

external power support thanks to the system's two 2200mAh solar panels.

Thomas Lee Scott et al.[6] describe using the ThingsBoard loT platform to create
loT monitoring systems that upload sensor data to the cloud using the CoAP protocol
to investigate how CoAP fits into the Internet ecosystem. The project connects sensors
to Raspberry Pi devices as loT nodes, gathers sensor data, and then periodically sends
JSON data to the ThingsBoard cloud endpoint over CoAP. Real-time IoT dashboards

are then created to display the sensor data and make it available to users.

Christine Dewi et al.[7] explore using the python programming language to
broadcast real-time weather data gathered from OpenweatherMap to Twitter To help
users who desire social weather forecasts. The OAuth and Tweepy libraries are used

in this study to connect Python programming to Twitter.




2.1 PROPOSAL

Receiving data through a REST API that is external to a large weather website allows
you to observe and collect weather data from more cities for future analysis, whereas a self-
built analogue weather station can often only monitor weather changes in one area. Large
weather data websites have more professional equipment with lower error rates to provide
more accurate data. The specialised websites are able to offer a more comprehensive
selection of services, which may include weather predictions, sun radiation, historical
weather, and other similar topics. At the same time, low-powered, compact devices have a
number of benefits, including the fact that they are less expensive, require less power, and
may be used for monitoring on a broad scale. The entirety of the system is simple to operate
and is completely automated, which enables monitoring to occur nonstop without the need
for human intervention. Additionally, the creation of real-time weather dashboards via the

ThingsBoard renders the data more suitable for use in a commercial setting.

Wind Direction (@) «

» (=) Wind Speed N

YUK TIX Cloud

Rainfall () «

> (%) Solar Radiation

Data Capture
Archive
Disease Prediction
Pest Prediction

Sensors ,/R‘x‘ «
Humidity, Pressure, (7 """ o3
Temprature /"

T

GSM \& ) ¢ email Notification (&) |
Toeviessge @) | ::::L
cal
reports ()

Figure 2-1: Weather station

8



3. PROBLEM ANALYSIS

The purpose of this thesis is to provide an answer to the question of how one can make
use of a Raspberry Pi 4 to establish a connection to Thingsboard in order to acquire data
from OpenweatherMap. The objective of the thesis is to create a system that is able to be
used to receive data from OpenweatherMap, and then to use this data to control a device
that is connected to the Raspberry Pi 4, and to visualise the data in ThingsBoard as a
dashboard for viewing purposes. This will be accomplished by developing a system that can
be used to receive data from OpenweatherMap. The following procedures need to be carried

out in order to accomplish this goal:

1. What are the procedures involved in configuring a connection between the

Raspberry Pi 4 and the Thingsboard?

2. How exactly does the Thingsboard interface operate, and what kind of information

can be obtained from OpenweatherMap?

3. What kinds of trends and patterns are discernible in the information that was

obtained from OpenweatherMap?




3.1 Identification and analysis of possible solutions

3.1.1 Demo Board

Demo boards are boards used for the development of embedded systems. They contain
a number of hardware components, such as memory, central processors, input/output
devices, data buses, and external resource interfaces. These components enable the user
to interact with the product or service in a variety of different ways, such as through the use
of a keyboard, mouse, or touch screen. The majority of the electronic gadgets that people
use in their day-to-day lives are first created on a development board, where they are tested
for functioning, validated for practicality, and then engineered to be portable through the use
of integrated circuitry for consumer usage. In the context of this project, the demo board
serves the role of the intelligent device in the perception layer of the Internet of Things

architecture. In this section, | will discuss a few demo boards that are now in use.

o
o
9
"
U

-
c
o
]
s
U
v
-
)
-
Q2
3
3
3

Figure 3-1: Demo board

e
10



® Arduino

Arduino?! is a platform for creating electronic projects that is built on open-source
software and user-friendly hardware. Because it is simple to use and does not need for the
installation of any extra drivers, it has found widespread application in the field of electronics

design. Its target audience is anybody who wants to create interactive projects.

The Arduino Uno, which is built on the ATmega328P and includes all of the necessary
components for a microcontroller, is by far the most popular and widespread option. Arduino
is able to detect its surroundings by receiving data from a number of different sensors.
Additionally, Arduino is able to influence its surroundings by controlling a number of different

lights, motors, and other actuators.

The Arduino programming language, which is based on Wiring, and the Arduino
development environment are both used to write code for the microcontroller that is located
on the board (based on Processing). Projects built using Arduino can function alone, or they
can interface with software that is being run on a computer (e.g. Flash, Processing,

MaxMSP).

When it comes to transmitting circuits or programmes, customers have access to a great
deal of ease thanks to the unified architecture as well as conventional digital and analogue
signal ports. The extensive peripheral connections make it possible to connect to a wide
variety of modules and sensors, which is useful for a variety of applications like
environmental monitoring stations, intelligent vehicles, and more. Its advantages include a
low price and a plethora of general-purpose input/output (GPIO) pins, but it is not very good
at meeting the more rigorous requirements placed on the CPU, such as those pertaining to

image processing and complicated computation.

' https://www.arduino.cc/

11



Figure 3-2: Arduino board

® ODROID C4

An open-source hardware business based in South Korea called Hardkernel Co., Ltd.
developed a new generation of computing devices called ODROID. These new devices have
the benefit of having technology that is both more powerful and more energy-efficient while

also having a smaller footprint.

In addition to being able to run operating systems that are based on the ARM
architecture, such as Android, Debian, and Ubuntu, the board is also capable of running
Linux and other variants of the Android operating system. The CPU is an Amlogic S805,
which is a quad-core version of the Cortex-A5 architecture and features Mali-450 MP2
graphics. The maximum frequency that the processor is capable of operating at is 1.5 GHz,
while the maximum frequency that the graphics can operate at is 600 MHz. The circuit board
has 1 gigabyte of random access memory (RAM), 8 gigabytes of eMMC storage, and a slot
for a MicroSD card for extra storage. The motherboard features a Gigabit Ethernet port,

which allows for faster data transfer speeds and more consistent performance. Additionally,

12



the cooling on the motherboard is built-in, so it can function without having to be throttled
due to overheating.? Applications for image encoding that need a greater resolution,
including digital photo frames, the integration of environmental sensors into entertainment
systems, and gaming suite combinations, are all areas in which the ODROID C4 works

exceptionally well.

Figure 3-3: ODROID C4 board

® Raspberry Pi 4

The Raspberry Pi® is a Linux-based microcontroller computer that is about the size of
a credit card and costs just $35. It features a powerful quad-core Cortex-A72 processor, up
to 4GB of RAM, dual-display support at resolutions up to 4K, USB 3.0 connectivity, and
improved thermal management, and the main operating system is Raspbian, a Debian-
based Linux distribution with over 350,000 software packages in its repository. This forms

an ecosystem that supports various programming languages, including Python, Java, C....

% https://www.hardkernel.com
° https://www.raspberrypi.org/

13



It offers ground-breaking increases in processor speed, multimedia performance, memory,
and connectivity compared to the prior-generation Raspberry Pi 3 Model B+, while
maintaining backwards compatibility and similar power consumption. It is now a complete
desktop computer. It is the most powerful Pi board to date. It has three USB ports, dual-band
2.4GHz and 5GHz wireless LAN, Bluetooth 5.0/BLE, faster Ethernet, and PoE capability
through a separate PoE HAT, and it can power two independent 4K displays at the same
time. Additionally, the connectivity and speed of Bluetooth and the dual-band wireless LAN
have been improved. It provides an Ethernet connector, a USB port for a keyboard and
mouse, an SD card expansion port, and an HDMI port for high-definition video output, which

may be used with an external monitor or television.

With the capability of the Raspberry Pi, it is possible to realise a range of projects, such
as weather monitoring systems, smart home devices, and industrial 10T systems. These
projects may be realised by connecting an abundance of GPIOs to a variety of peripherals.
Another significant benefit of using Raspberry Pi is its low power consumption, which
enables it to run nonstop for seven days and seven nights, continuously monitoring data.
The Raspberry Pi has a good eco-system, greater processing performance, and a low price,
which have helped it attract a lot of supporters. Additionally, the Raspberry Pi's one-of-a-kind
architecture performance contributes to the development and implementation of the Internet
of Things. For the end user, the desktop performance of the Raspberry Pi 4 Model B is the

same as that of an entry-level x86 PC.

China M 1904 £

E
8
g
=

»
[ TRyGO926HENL |,

N GLoBALEK' | |

[CT00)% rec 10 24aca-rp1ds )
148 4

—— _LIC: 20953-RP!

Figure 3-4: Raspberry Pi 4 board

14



We chose the Raspberry Pi as the demo board for this project because of its low cost,
low power consumption, strong performance in programming and processing hardware and
software applications, and the abundance of reference materials available to help in the

development of the project.

3.1.2 loT Platforms

The Internet of Things is made up of these three primary parts:

Actuators and sensors make up the components of the sensory layer. Temperature
sensors, humidity sensors, motion sensors, and so on are all examples of the types of
sensors that fall into this category. These are the devices that collect data about the

physical world and turn it into digital information that can be processed by computers.

AControl Fow 4 - STAGE 10T ARCHITECTURE

£

I i APPLICATION LAYER h

Smart Applications and Srr]artl
Applications
Management
., A
i ™
DATA PROCESSING LAYER

Process

Processing Unit
Data Analytics / Dicision unit

Information

NETWORK LAYER

Internet Gateways/ Network Gateways Data
MNetwork Technologies Transmission
L (Data Acquisition System) )
y Y
SENSING LAYER
Data
Physical objects Gathering
Sensors and actuators
\, y

Figure 3-5: loT Architecture

15



The internet and a network of physical items that are connected to one another
make up what is known as the network layer. It establishes a connection between the
physical things and the internet so that the information collected at the sensing layer
may be sent along the network. Wi-Fi, Bluetooth, cellular data, ZigBee, and other
similar technologies are examples of common types of network connections. The use

of 5G technology in the future will also be of assistance to the development of loT.

The application layer is the objective of the development of the Internet of Things.
Its job is to process, store, and analyse the data that is collected from the sensing layer.
It then combines this data with the requirements of industry to produce intelligent

applications.

lIoT platforms are an essential part of the larger IoT ecosystem, a network that
connects devices and allows for social engagement and data exchange. It typically
consists of a server that manages connection protocols and a software programme that
users can use to interact with the devices. This configuration supports and connects
all system components to perform tasks like managing software/hardware connection
protocols and controlling the devices. The platform could also include a communication
network to link the devices together and a database to store data from the devices.

also used for data collection, analysis, and visualisation.

The ability to connect and remotely operate devices is the major advantage of
adopting a IoT platform. This may be helpful for a number of purposes, including
managing security systems, reducing energy consumption, and monitoring equipment
performance. Some of the more sophisticated IoT platforms may be configured to start
alerts, monitor or control equipment from a distance, etc. A loT platform may also offer
insights regarding people and device behaviour that can be utilised to enhance the
effectiveness of procedures and operations. Some popular 10T platforms include the

ones listed below.

16



® FIWARE

FIWARE* is a collection of open-source software tools that facilitate the creation
of intelligent cloud applications by programmers in a straightforward manner. The
FIWARE platform is made up of a collection of generic enablers that can be put to use
in the process of developing applications for a broad variety of industries, including but
not limited to smart cities, smart energy, eHealth, agriculture, and transportation,

amongst others.

FIWARE offers developers a collection of tools that are intuitive to work with so
that they may create cloud-based apps. The FIWARE platform is made up of a
collection of generic enablers, which are pieces of software that may be repurposed in
the process of developing applications for a variety of different industries. The
RESTAPI may execute CRUD activities in contextual information. The fundamental
system is Orion —context agent, which manages, conducts updates, and accesses
contextual information. The Internet of Things, robots, and third-party systems can all
be connected using these components; contextual data can be managed, published,
and monetized; information can be processed, analysed, and visualised; and so on.
The Context Broker enabler can be used to build applications that need to manage and
query large amounts of data in real time, such as a smart city application that needs to

track the location of city buses in real time.

The simplicity with which it enables developers to build apps that run in the cloud
is the primary advantage offered by FIWARE. It offers a collection of reusable software
components that may be incorporated into the production of applications for a variety
of industries. This enables developers to rapidly design new apps without having to
start from the ground up, which saves them both time and effort. The platform does not

provide message encryption which negatively affects its security.[8]

“ https.//www.fiware.org/developers/catalogue/

17



Because FIWARE is an open source project, it is possible for anybody to make
contributions to the continued growth and improvement of the platform. The FIWARE
community is made up of developers from all over the world who are collaborating to

advance the platform in some way.

Data collection IT-Platform Data analysis/evaluation

Weather station =~ == 4 - e s e e e e e e e e e e e e e e e e m - -

J Visualisation of the dat
e isualisation of the data
| T eke @ FIWARE via a dashboard
|
o m
Wunderground ‘Wunderground P
Climate quarter o Context — SEuCwS 0'":3"?:‘“‘*" Gsivz m
Producer foKer
il.'

Further sensors
ordatafrom =00 M e e e e e e e ————————
e.g. Smart Meters

Figure 3-6: Fiware system Architecture of Smart sensor monitoring weather

® SiteWhere

SiteWhere® is an open-source Internet of Things application support platform that
is built to industrial standards. It enables the large-scale collecting, storage, processing,
and integration of device data. It offers features for device management, data

management, and analytics for applications related to the Internet of Things.

A method known as "microservices" is used for the architecture of SiteWhere. The
platform is made up of a collection of services that may be deployed independently of
one another and communicate with one another via a clearly defined API. Because of
the architecture, both new services and replacements for current ones can be
implemented without disrupting the functionality of the platform as a whole. In order to

handle the load and scale of large-scale Internet of Things projects, SiteWhere makes

® https://sitewhere.io/es/

18



use of a number of different technologies, including Apache Kafka and Docker.
Microservices can be scaled independently at the level of each component thanks to
the distributed design, which enables the system to be tailored to the manner in which

the client actually employs it.

SiteWhere is functional because it is able to connect many types of devices to the
platform via a range of protocols, including HTTP, MQTT, and CoAP. Once a device
has been linked, it will be able to send data to SiteWhere, and that data will be recorded
in a database that tracks time series. The capabilities of the platform for doing analytics
can then be used to query and examine this data. The Communication Engine and the
Tenant Engine, both of which are contained as fundamental elements, are what are
responsible for connecting devices and other applications. It provides device
specification, device groups, asset allocation, and a comprehensive management

GUL.[9]

§ siteWhere

| SiteWhere Admin Application Big Data Storage

SiteWhere Tenant Engine

Device Management ! Apache HBase

sSidv 1S3y

Communication Engine | MongoDB

1
| Third Party Applications |
1

Data Storage SPIs

| SiteWhere Java Client

Inbound Outbound

Pipeline Pipeline

| | | | Asset Modules

| Identity Management

| Asset Management

uonessagu)
Asset SPIs

Event Sources (S

Destinations

| Location Management |

~
MQTT, AMQP, MQTT, AMQP,
Stomp, etc. Stomp, etc.

Data from Devices Commands to Devices

Figure 3-7: SiteWhere system Architecture

19




® ThingsBoard

Thingsboard® is an open-source Internet of Things platform that enables users to
visualise data, monitor it, and manage connected devices. It is possible to deploy it
either on your own premises or in the cloud, and it is designed to function with a wide
variety of different devices and protocols. The modular design of Thingsboard, which
is comprised of a variety of different services, is used in its construction. These services
may be colocated on the same node or deployed separately on distinct nodes.
Alternatively, they may be colocated on distinct nodes. ThingsBoard supports different
standard loT communication protocols (MQTT, CoAP, and HTTP) for device
connectivity and supports both local and cloud deployments.[10] Scalability, high fault
tolerance, and consistent performance are three of the many advantages offered by
ThingsBoard, industry-standard encryption technologies that are industry-standard,
such as RSA and ECDSA, as well as high security to ensure that users do not lose
data while it is being transmitted. Analytics, individualised widgets, adaptable
dashboards with real-time data visualisation, the ability to set off alarms on demand,

and a great deal more are all included.

¥ ThingsBoard Weh Ul & End User
5 ThingsBoard

Transports
& Third-Party Apps

]

N ¥ HTTP

HTTP(S:
—
evices —QTT— ingsBoard Core £ Database
£ Devi * MQTT PN ¥¥ ThingsBoard C — = Datab
_,'.p
(WN 2 CoAP
#¥ Rule Engine «» = External Systems

Figure 3-8: ThingsBoard system Architecture

® https://thingsboard.io/

20



ThingsBoard was selected as the platform for the Internet of Things for this
experiment because it is an open-source server-side platform that has a mature design
and a rich and complete set of examples on its website. Some of these examples
include smart energy, smart agriculture, fleet tracking, environmental monitoring, and
other similar applications. Additionally, it has a higher level of activity on GitHub, and
the documentation and guidelines that are offered on the website are quite easy to
understand and use. ThingsBoard allows installation on a variety of operating systems,
including Windows, Linux, Raspberry Pi, and Docker, as well as supporting HTTP API,
MQTT API, LWM2M API, 10T gateway, and other device communication methods, and
it provides an interface for REST APIl. managing devices and assets, obtaining
telemetry data, and performing very well in terms of data processing, data visualisation,

and security are all part of this solution.

21



4. PROPOSED SOLUTION

For the purpose of gathering information from OpenweatherMap, this project will
make use of the Thingsboard platform. The Raspberry Pi 4 will serve as the storage
device for the information in the form of a database. The information will be retrieved
from OpenweatherMap with the use of a Python script, and then it will be saved in the

database.

The Flask framework will be utilised in the development of a web interface. The
user will have the ability to view the data that is saved in the database through the
usage of this web interface and will have the ability to choose a place at which they

wish to view the corresponding weather data.

4.1 PLAN OF THE WORK

The primary objective of the design of this project is to automatically detect
weather data for a specific location, receive the data once every 15 seconds and save
it in a database, perform all data processing through the ThingsBoard server, and
display the dashboard in the form of an alignment chart to make it simple for the user
to observe and evaluate the data. The Raspberry Pi 4 is the primary computing unit.
Both the ThingsBoard server and the open-source database management system
PostgreSQL have been installed on the Raspberry Pi 4 computer. The Raspberry Pi4
and the monitor can both be connected to the HDMI connector in order to display the
operating system graphical user interface. You may browse the ThingsBoard website

by logging in directly through the Raspberry Pi4, or you can use VNC Connect to

22



control the Raspberry Pi remotely from another location.

4.2 SYSTEM ARCHITECTURE

The project architecture that was designed for this project is depicted in figure.
The loT node for this real-time weather system is a microcontroller called a Raspberry
Pi. This Pi is equipped with Wi-Fi so that users can easily obtain instant weather data
from the device. The Raspberry Pi setup includes the installation of the ThingsBoard
server as well as PostgreSQL for data storage. The ThingsBoard uses a REST API to
establish a connection to OpenweatherMap in order to retrieve the weather information
for the cities whose names are stored on the server. The data is sent to ThingsBoard
in the form of a JSON string, where it is then processed by the rules engine to extract
the data that the user requires. The data is then stored and updated in the ThingsBoard
server dashboard, where the user can monitor and record both real-time data and

historical data.

Weather Station

Wi-R Server
OpenweatherMap * | Web Server ThingsBoard
+ JSON “
r'y
¥
Figure 4-1: Project architecture

23



ThingsBoard makes advantage of the REST API to make calls to the Rule Chain
in order to read the weather data provided by OpenweatherMap. The procedure for the
receipt of data is depicted here in Figure 4.2: Make a Generator node to produce the
request, obtain the API key, and configure the server attributes, which are analogous
to latitude and longitude. The subsequent step is to put the data into telemetry and
display it on the ThingsBoard dashboard. This will be accomplished by first putting the
REST API call into execution, then obtaining the weather data, processing the data,

filtering the data we require, and finally putting the data into telemetry.

}

Fetch server attributes
Trigger REST APl calls | =—* Get API key E—

latitude, longitude...

|

Save timeseries < | Data processing | #=— Get weather data

}

Figure 4-2: Procedure for the receipt of data

24



4.3 TECHNOLOGY USED

This project is an experiment that is based on the Internet of Things. It involves
developing a real-time weather observation system that is based on the Raspberry Pi4
microcontroller, acquiring data about the weather by accessing the OpenweatherMap
REST API interface, and visualising the data on the ThingsBoard platform. The Internet
of Things, the intelligent open-source hardware Raspberry Pi4, the Internet of Things
platform ThingsBoard, and the OpenweatherMap website are some of the technologies

that are utilised.

4.3.1 Description of Raspberry Pi 4

The past few years have witnessed a rapid development of open-source platforms
and software, as well as the rapid emergence of various open-source hardware
products, such as the Arduino microcontroller, Raspberry Pi, ESP8266, ODROID, and
so on. This trend is expected to continue in the foreseeable future. Low prices, open
infrastructure, and open-source software tools make it possible to quickly meet the

requirements of the loT and put it into practise.

This endeavour makes use of low-cost open-source hardware in the form of a
Raspberry Pi4, the most recent computer board released by the Raspberry Pi
Foundation. It features the most powerful board that has been made available to date
and can function as a full desktop computer. The board has a fast quad-core ARM
Cortex-A72 processor, Gigabit Ethernet, dual-band 802.11ac Wi-Fi, Bluetooth 5.0, two
USB 3.0 ports, two USB 2.0 ports, and a 40-pin GPIO header. It is approximately the

size of a credit card. Raspberry Pi OS is a variant of Linux that is based on the Debian

25



operating system, and it is the official operating system for the Raspberry Pi4 computer.

The Raspberry Pi 4 comes equipped with a quad-core ARM Cortex-A72 processor
that operates at a frequency of 1.5 GHz. When compared to the previous generation
Raspberry Pi 3, which included a quad-core Cortex-A53 processor operating at 1.2GHz,
this is a huge improvement. Because of its faster clock speed and more powerful
processor, the Raspberry Pi 4 can now be used as a desktop computer to perform
tasks such as web browsing, office application use, and even light video and image
editing. It also has the most flexible open-source hardware on the market right now.

This is because both its hardware and software have been improved.

The addition of dual-band 802.11ac Wi-Fi is one of the most significant
enhancements that have been made to the Raspberry Pi 4 platform. Its network
capability supports Ethernet ports and Wi-Fi for gigabit throughput while still being
lightweight and durable at 46 g. This implies that the board can now connect to the
5GHz band in addition to the 2.4GHz band. A graphics processing unit (GPU) with a
speed of 500 MHz and two micro HDMI ports are included in the device. Because of
this, it can operate on televisions that have a resolution of up to 4K. The Raspberry Pi
has established itself as a frontrunner in the competition to make widespread use of
the loT thanks to the special architectural qualities that it possesses. The system is
compatible with a diverse selection of programming languages and provides access to
more than 350,000 open-source library collections. Python, C, and Java are just a few
examples of these languages. When it comes to the creation of apps for the internet of

things, this makes possible a high level of convenience.

The Raspberry Pi computer is utilised in a wide number of loT applications, some
examples of which include real-time weather detection systems, smart furniture
systems, soil moisture monitoring, and a great deal of other similar applications. In
addition to this, it is capable of interacting with the wider world, and it has been

implemented in a broad variety of digital maker projects. These projects range from

26



music machines and parent detectors to weather stations and tweeting birdhouses with
infrared cameras. In this aspect, the Raspberry Pi has a considerable advantage over
hardware processors since hardware processors are unable to handle an exceptionally
large volume of data. On the other hand, it can process an extraordinarily large volume

of data.

Processor: Broadcom BCM2711, guad-core Cortex-A72 (ARM v8)
64-bit SoC @ 1.5GHz

Memory: 1GB, 2GB, 4GB or 8GB LPDDR4
(depending on model) with on-die ECC

Connectivity: 2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless
LAN, Bluetooth 5.0, BLE
Gigabit Ethernet
2 = USB 3.0 ports
2= USB 2.0 ports.

GPIO: Standard 40-pin GPI0 header
(fully backwards-compatible with previous boards)

Video & sound: 2 x micro HDMI ports (up to 4Kp60 supported)
2-lane MIPI DSl display port
2-lane MIPI CSl camera port
4-pole stereo audio and composite video port

Multimedia: H.265 (4Kp60 decode);
H.264 (1080p60 decode, 1080p30 encode);
OpenGL ES, 3.0 graphics

SD card support: Micro SD card slot for loading operating system
and data storage

Input power: 5V DC via USB-C connector (minimum 3A")
5V DC via GPIO header (minimum 3A")
Power over Ethernet (PoE)-enabled

(requires separate PoE HAT)

Environment: Operating temperature 0-50°C

Figure 4-3: Raspberry Pi 4 Specification

27



4.3.2 Description of ThingsBoard

ThingsBoard is an open-source Internet of Things platform that is built on the Java
programming language and enables rapid development, management, and scalability
of Internet of Things projects. It is a server-side architecture that is used by a variety
of Internet of Things applications. It enables device communication by utilising the
industry-standard protocols for the Internet of Things (MQTT, CoAP, and HTTP). The
capacity to store data permanently and lessen the risk of losing data are two benefits
that come with scalability, high performance, and the capability to handle mistakes.
Because the platform was developed using an extensible microservices architecture,
it is able to expand both laterally and vertically by adding new services and more

instances of current services, respectively.

ThingsBoard is available in both a open-source community and a paid professional

edition. We are use the open-source community version of ThingsBoard for this project.
It is distinguished by the following important qualities:
<~ Device management
< Data collection
< Data visualization
< Rule engine
< Alarm management
< Integration with popular IoT protocols
<~ Multi-tenancy and role-based access control
< Flexible data model

<~ Support for a versatile data format - Compatible with the REST API, MQTT,
CoAP, WebSocket, SQL, and NoSQL protocols

28



< Clustering
< Horizontal scalability
< High availability

The data that ThingsBoard gets is classified as telemetry data and is saved in a
database. The database used to save the data must be a SQL database. PostgreSQL,
which is installed on the Raspberry Pi along with the ThingsBoard loT server platform,
is the database management system that is recommended by Raspberry Pi's official
website as the best option for storing data for future use.[11] We are able to see
historical data on the server platform, as well as plot it as a trend graph, thanks to the
assistance of the database. This makes it easier for us to conduct analysis and make
decisions based on centralised data trends.ThingsBoard is a platform that is suited for
managing Internet of Things devices, collecting data from those devices, and
visualising that data. The rule engine of the platform makes it possible to construct
rules that, when certain circumstances are satisfied, cause alarms to sound or for

specific actions to be carried out.

#%¥ ThingsBoard UI I = External Systems

ThingsBoard
% Transports

(]

SQL Datahase

4 Devices
4 Devices (—- ™ Gateways s
£ Devices ._J Queue | —— [ WA b = NoSQL DataBase

4 Devices ._J I

= External Systems
Legend:

o | - ThingsBoard Components: horizontally scalable and fault tolerant

- Message Queue: Kafka, RabbitMQ, AWS SQS, Azure Service Bus, Google Pub/Sub

(]

- Databases: PostgreSQL and Timescale/Cassandra (NoSQL)

- - Gateways: support of Modbus, OPC-UA, BLE, CAN, MQTT, HTTP, and other protocols

Figure 4-4: ThingsBoard data transfer structure

29



ThingsBoard is designed to run on a wide variety of hardware, and the company's
website offers step-by-step installation guides for a variety of operating systems,
including Ubuntu, Docker on Windows, Docker on Linux/Mac OS, Windows, Raspberry

Pi 4, and more. These guides explain in detail how to set up the software on a computer.

30



4.3.3 Description of OpenweatherMap

OpenweatherMap is a free online weather data service that was established in
2005 by two Russian brothers named Evgeny and Alexander Tkachenko. The service
is targeted for service and mobile application developers. It makes global weather data,
such as current weather data, forecasts, and neighbourhood forecasts for any
geographical location, available for over 200,000 locations around the world through
an API interface from a variety of sources, such as weather stations, airports, and
satellites, and then processes and packages the data into a variety of products, such
as maps, text forecasts, and weather data layers. In addition, it provides historical
weather data for any geographical location, which can be accessed through an API
interface. Providing access to this data for developers so they can use it in their own
apps. Weather data is sourced from the Global Weather Radio Service and over 40,000
weather stations.” OpenweatherMap is continually broadening the range of data it
provides. This service now provides information on UV indices, pollen levels, and levels
of air pollution. In addition to this, it is attempting to incorporate new data sources, such

as satellite data.

Because a REST API serves as the interface for data interaction in
OpenweatherMap, programmers are able to retrieve data from OpenWeatherMap’s
servers by making standard HTTP queries. The REST APl is defined as an architectural
tool designed on top of web services and focused on system resources.[12] The
acronym "REST" refers to a type of software architecture known as Resource
Representation State Transfer. This architecture style is characterised by a collection
of architectural restrictions and principles. Create, read, update, and delete are the four
operations that are supported by REST thanks to its implementation of the HTTP

protocol and the use of uniform resource identifiers.

" https://openweathermap.org

31



There are six advantages of REST.

< Client-Server separation: Enabling the improvement of individual

components while boosting the interface's usability.

<~ Stateless: Each request submitted by the client must contain all the
information required by the server; this allows each request to be evaluated

independently, making it easier to fix errors and conserving server resources.

<~ Cachable: If the information given by the server is designated as cached, the
client can reuse it to send the request, thereby minimising the number of

interactions and latency.

<~ Layered System: Components of the system are solely responsible for

communication, hence reducing system complexity and enhancing scalability.

< Uniform Interface: Enhances the visibility of interactions and can improve

individual components.

< Code-On-Demand: Highly scalable, rovide the client with the opportunity to

use programming languages distinct from those used by the server.

Application Programming Interface is the full name of the API, which is a collection
of subroutine definitions, protocols, and tools that are used in the process of
constructing application software. In a nutshell, it is a collection of clearly defined
methods of communication between the various software components. Authorization
and access control are built into the API itself, ensuring that only those who are
authorised to do so can gain access to particular data, thereby maintaining the data's

confidentiality.

REST application programming interfaces are quite common in today's computer
networks. These APIs typically communicate data over HTTP using JSON or XML. This
makes interacting with REST APIs easier, as they are lightweight and easily readable,

which makes them suitable for use in mobile applications due to their suitability in this

32



context. The fact that it is completely free to use, that there is no limit to the number of
API calls that can be made, and that there is no limit to the amount of data that can be
obtained are three of its primary features. As a result of this, the API is perfect for
developers who want to design applications connected to the weather but do not want
to pay for access to the data. Last but not least, the OpenweatherMap API is
dependable and is supported by a group of meteorologists. These meteorologists make
certain that the data is correct and up to date, and they update the APl on a consistent

basis with new features and data sources.

For the purpose of this project, we will make use of the REST API interface that is
made available by OpenweatherMap in order to collect current weather information and
plot it on a ThingsBoard so that it may be viewed. Minute Forecast 1 Hour, Hourly
Forecast 2 Days, Daily Forecast 7 Days, National Weather Alerts, Historical Weather
5 days, 60 calls/minute, 1,000,000 calls/month; and if you are a student or educator,
you will get a higher level of service: 3,000 API calls per minute and 100,000,000 API
calls per month, Historical Weather API, for 1 year of prior data. Minute Forecast 1
Hour, Hourly Forecast 2 Days, Daily Forecast 7 Days, National Weather Alerts,

Historical Weather 5 days, 60 calls/minute.

Guide APl Dashboard Marketplace Pricing Maps Our Initiaives  Partners

Weather forecasts, nowcasts and =
history in a fast and elegant way P
y
Search city </ Different Weather?  Metric: °C, m/s Imperial: °F, mph
Nov 3, 07:00pr © OpenStreetMap
Valencia, ES
o
. 23 C VALENCIA
Feels like 22°C. Clear sky. Gentle Breeze No precipitation within an hour
| »a5misw @ 1014hPa i 15min 30min A5mi 0iin
Humidity: 46% Dew point: 11°C 07:00pm 07:15pm 07:30pm 07:45pm 08:00pm o
Visibility: 10.0km Bl oealam | i
cete
Hourly forecast 8-day forecast
7pm 8pm 9pm 10pm 11pm Nov04 1am 2am 3am 4 Thu, Nov 03 \ 24/18°C

Figure 4-5: OpenweatherMap Official website

33



|21 +

@

8
8

T
a

Figure 4-6:

34

Interactive weathers maps

Temperature, *C-40

Temperature

Pres
. ressure

Wind speed
Clouds
Global Precipitation

Cities

«<°>»

Nov 03, F&6:50
°

&

=
-20 0 20 40
Leaflet | © Open§ffg@tMap | OpenWeather




5. IMPLEMENTATION

In this undertaking, we will be constructing a simple machine by making use of a
Raspberry Pi. The components of the hardware consist of an HDMI cable, a memory
card, a board, and a casing for the Raspberry Pi4 development board kit. Additionally,

there is a display with an HDMI input, a mouse, and a keyboard.

Power Supply

Raspberry Pi 4

Running on

Keyboard HDMI |

- Raspbian 05
Bluetooth b

And connected to
Monitor
Use Wi-Fi
Mouse E—
Figure 5-1: Project connection architecture

Installing the Raspberry Pi, then installing the ThingsBoard service on the
Raspberry Pi, and then connecting the Raspberry Pi to the OpenweatherMap REST
API through the ThingsBoard in order to collect data and make observations are the
processes involved. These instructions may be found on the Raspberry website and

the ThingsBoard website.

Thingsboard installation will be the first step. On the official website, you may find
a reference to the Raspberry Pi installation process. It will not be introduced in this

project.

35



Electronic components

SD card
(underneath)

Keyboard
& mouse

Figure 5-2: Raspberry Pi 4 hardware introduction

‘ @ [pi@raspberrypi: ~]

Wasfebasket

Figure 5-3: Raspberry Pi desktop

36



5.1 Installing ThingsBoard on Raspberry Pi 4

The installation of ThingsBoard will take place once we have completed the

configuration of our Raspberry Pi 4 system.
Because the ThingsBoard service is built on Java 11, the Java 11 development kit
OpendDK must be installed:

sudo apt update
sudo apt install openjdk-11-jdk

With the help of the following command, the operating system will be set up to
make use of OpenJDK11 by default.

sudo update-alternatives --config java

To ensure that the installation went smoothly.

java -version

Expected command output.

openjdk version "1.8.0_ xxx"
OpenJdDK Runtime Environment (...)
OpenJDK 64-Bit Server VM (build ...)

It is a good idea to include a command output photo to check the installed java
version.

Before we begin installing the ThingsBoard service, we must first download the
installation package from the website:

wget

https://github.com/thingsboard/thingsboard/releases/download/
v3.3.4/thingsboard-3.3.4.deb

Install the ThingsBoard server:
sudo dpkg -i thingsboard-3.3.4.deb

In order to save the data, we will need to first install PostgreSQL and configure the

e
37




ThingsBoard database:

sudo apt install -y wget

wget --quiet -0 -
https://www.postgresql.org/media/keys/ACCCACF8.asc | sudo apt-
key add -

RELEASE=$ (1sb_release -cs)

echo "deb http://apt.postgresql.org/pub/repos/apt/
${RELEASE}"-pgdg main | sudo tee
/etc/apt/sources.list.d/pgdg.list

sudo apt update
sudo apt -y install postgresql-12
sudo service postgresql start
Create a new account or set a password for the primary user after PostgreSQL

has been installed. Note: the PostgreSQL password is necessary, otherwise we will not

be able to finish configuring the ThingsBoard file:

sudo su - postgres
psql
\password

\q

Once set up "CtrlI+D" to return to the main user console, connect to the database

and create the ThingsBoard Database:

psql -U postgres -d postgres -h 127.0.0.1 -W
CREATE DATABASE ThingsBoard;
\q

In order to connect to the Postgres database, it is necessary to change the

ThingsBoard configuration file:

sudo nano /etc/ThingsBoard/conf/ThingsBoard.conf

38



In the configuration file, add the following line and make sure that "P
PUT_YOUR_POSTGRESQL_PASSWORD_HERE " is replaced with the actual

password for the postgres user:

# DB Configuration
export DATABASE ENTITIES TYPE=sql
export DATABASE TS TYPE=sql

export

SPRING_JPA DATABASE PLATFORM=org.hibernate.dialect.PostgreSQL
Dialect

export SPRING DRIVER CLASS NAME=org.postgresql.Driver

export

SPRING_DATASOURCE URL=jdbc:postgresql://localhost:5432/things
board

export SPRING DATASOURCE USERNAME=postgres

export
SPRING_DATASOURCE PASSWORD=PUT_ YOUR POSTGRESQL PASSWORD HERE
export SPRING DATASOURCE MAXIMUM POOL SIZE=5

# Specify partitioning size for timestamp key-value storage.
Allowed values: DAYS, MONTHS, YEARS, INDEFINITE.

export SQL POSTGRES_TS_KV_PARTITIONING=MONTHS

ThingsBoard uses the queue service for API calls between microservices and can
use the next queue service; however, by default, we select In Memory, and there are

no additional configuration steps that are required to set it up:
Memory update for slow machines (1GB of RAM)

Repeating the previous step, edit the ThingsBoard configuration file and add the

following line to the file:

sudo nano /etc/thingsboard/conf/thingsboard.conf

# Update ThingsBoard memory usage and restrict it to 256MB in
/etc/thingsboard/conf/thingsboard. conf

export JAVA_OPTS="$JAVA;QPTS -Xms256M -Xmx256M"

After installing the ThingsBoard service, you must then execute the following script
and make any necessary updates to the database configuration:

# --loadDemo option will load demo data: users, devices,

assets, rules, widgets.

B ———————————————
39



sudo /usr/share/thingsboard/bin/install/install.sh --loadDemo

It is now possible to begin using the ThingsBoard service:

sudo service thingsboard start

When the service is running, the web user interface can be accessed over the

following connection:

http://localhost:8080/

Check to see that localhost is listed as the host number or whatever it is.

We should be able to log in using the following user because the -loadDemo option

was supplied when the installation script was run:
System Administrator: sysadmin@ThingsBoard.org/ sysadmin
Tenant Administrator: tenant@ThingsBoard.org/ tenant
Customer User: customer@ThingsBoard.org/ customer

It may take up to 240 seconds for the Web Ul to begin functioning, after which the

user can access the account profile page to modify their password.

40



5.2 Receiving OpenweatherMap data via Thingsboard

Following the successful completion of the Raspberry Pi4 installation of the
ThingsBoard server, a call is made to the OpenweatherMap REST API in order to read
weather data. This demonstration monitors real-time weather conditions and displays

them on the ThingsBoard dashboard with Valencia serving as the coordinate point.

® Configuring fundamental attributes

We need to add an Asset entity to the ThingsBoard and give it the name Valencia.

The type should be set to Building.

@Thmgsﬁoard

Home: "
o Valencia

€ Rule chains Assel details

Figure 5-4: Add an asset

41



> Assign the Asset to the customer: Go to Assets->Assign to

customer->Customer A->Assign.

Assign Asset(s) To Customer

Please select the customer to assign the asset(s)

Figure 5-5: Assign the Asset to the customer

> Register on the OpenweatherMap website: Once registration is finished,
obtain the API key and enable it. This is to be put to the customer server-side

settings in order for the customer to receive data:

Guide APl Dashboard Pricing Maps Ourlnitiatives Pariners Blog Marketplace Mo X._. v Supportv

OpenWeather

New Products Services API keys Billing plans Payments Block logs My orders Iy profile Ask a question

‘You can generate as many AP| keys as needed for your subscription. We accumulate the total load from all of them.

Key Name status Actions Create key

Defautt  Active =~ © & AP ey name

Product Collections Subscription About us

‘Current and Forecast APIs How to start OpenWeather is a team of IT experts and data scientists that has

Historical Weather Data Pricing been practising deep weather data science since 2014. For each

Weather Maps Subscribe for free point on the globe, OpenWeather provides historical, current and

Weather Dashboard FAQ forecasted weather data via light-speed APIs. Headquarters in

Widgets Londen, UK. .

Figure 5-6: Register on the OpenweatherMap website

42



» Create customer attributes: Assigned customer->Attributes ->Add

Carry out the REST API call with the following parameters included in the URL:
the API key, the longitude, the latitude, and the measurement units. Add the
API key to the server-side attributes that are associated with the Assigned
customer, and add the remainder of the parameters to the Asset server-side

attributes.

@Thmgsﬂoard 22 Customers

A Home
Custormers

Customer A
¢ Rule chaing .

22 Customers O e

atad tme 4

Atributes

2oz Publc
ety announes scope
Server attributes  garver attributes B + e a
O =zomnesaan  comomera
{8 OTAupdates O  Lastupdatetime Key
B J O 2020141202000 APPID S44cb70412d61e224b4bARIca1 Ebafy Vi
B dge
% Widgets Library
B3 Dashboards
@ AvitLogs
M Avivsage
ox System Setiings
10
Figure 5-7: Create customer attributes

» Asset attributes: Building A->Attributes->Add, use Valencia's coordinate
system and metric measurement units for this project.

@Thingseoard

A Home .
Assettme Valencia
Assets

&) Rule chains

O Croatdins 4

O 2022011200786  Valencia building

T Server atributes  gormersurisios . +cq

[ Device profiles 0O  20220011200605 Main_raspberrypi ThServical

& oThw O et wey 1
O zmeeoi12191405  levde 34816 7
O 220112191428 longiude 03438 7
O 2020111202500 wnits metric 7

43



Field

latitude

longitude

units

Figure 5-8:

Data Type

Double

Double

String

Figure 5-9:

44

Asset attributes

Input Data
latitude of an asset

longitude of an
asset

'metric” for meters
per second wind
speed and Celsius
temperature,
"imperial” for miles
per hour wind
speed and
Fahrenheit
temperature, empty
for meters per
second wind speed
and Kelvin
temperature

Asset attributes details




® Developing a rule chain

Message flow includes a rule chain whose aim is to send APl calls to
OpenweatherMap at regular intervals of 15 seconds and to deliver the Asset the
pertinent temperature and humidity data. The function of each node is broken down in
greater detail in the following section, and the figure demonstrates how the rule chain

is supposed to look and work.

@Thingsﬂoard <>Rule chains > ¢ Outside Data (Root)

# Home Q

> Rule chains

= Firer ~

Q= check alam status #\

) = chock existence fieds {ﬂ | EJwp b

) = checkreaion {3
Jp—
= Ganerste requass
o customer aunbues
= et customer AP key

erigaater nribuas
=+ LatmudesLongruse
O = ons geofencing fker 4) )

g re=apaal
7 #- Gt isather:

@ AuditLogs
M Apisage

£ System Settings

O = e sier 3

O S customer detalls 43 o ” %

W

Figure 5-10:  Rule chain

45



» Create a new Rule Chain (Outside Data): Rule Chains->Add new Rule Chain

Configure the Name as “Outside Data”.

Add Rule Chain

Figure 5-11:  Create a new Rule Chain

Click the "Edit" button once the new rule chain has been successfully
generated, and then proceed to configure the rule chain. Within this rule chain,
there are a total of six nodes that need to be created. These nodes are referred
to as the Generator node, the Customer attributes enrichment node, the
Originator attributes enrichment node, the External REST API call node, the

Script transformation node, and the Save time-series node.

46



» Generator node: produces an empty message in order to initiate a call to a

REST API, populating the fields with the following information.

@Thmgsﬂbard <>Rule chains > ¢ Outside Data (Root)

Hot
s Generate requests

Action - generator

[ Debug mode

Assel ~ Valencia x

merate(previisg, previtadata, revitsaType) ey @
1 return { msg: {J, metadata: {}, msgType: "POST_TELEMETRY REQUEST" };

Figure 5-12:  Generator node

» Customer attributes enrichment node: It is the responsibility of this node to
include the APPID of the customer characteristics within the metadata of the
message and to establish a connection between it and the Generator node

using a relation type of Success.

@Thmgsﬂoard <> Rule chains > € Outside
Ll Get customer API key

Enrich

[0 Debug mode

Targe suribue

APPID %

& System Settings

Figure 5-13:  Customer attributes enrichment node

47



» Originator attributes enrichment node: Connect this node to the Customer
attributes node using a relation type of Success. This node will add the server
attributes latitude, longitude, and units of the originator that were set in the

Generator node to the metadata.

@Thmgsﬂoard &3 Rule chains > € Outside Data (Root)

Latitude/Longitude

Enrich

o 5 Debug mode
Latitude/Longitude

B Tel Failure
S ey doesn exitthe othoun message wil eport
Cler
ent
Hint use I Yforvah get
Bt Widgets Library mersdata ST Key ] for v geb
shbaards
@ AudtLogs wnits S
metadars, S[aessageKey ] for voh
[
& System Settings
- use Binetadataey] for vlue fom retadate, S[nessageRey] for vake fon gebody

[ Fetch Latest telemetry with Timestamp
e, atest telemenry values wil be added 10 the oubound message meada wih Imestamp, & g-“temp. 1" 574129305057 alue'42

Figure 5-14:  Originator attributes enrichment node

48



» External REST API call node: This node will conduct a REST API call to
OpenweatherMap’s ss latitude, ss longitude, ss units, and ss APPID are set
in the Originator attributes enrichment node with the server attributes from the
metadata; connect it to the Originator attributes enrichment node with a

relation type Success.

%Thmgsﬁoard <?Rule chains > ¢ Outside Data (Root)

A Home Get Weather Data

€3 Rule enains External - rest api call

fome Debug mode
Get Weather Data

Endpoit URL pottam *
hitp:/fapi.openweathermap.org/data/2.5/weather at=S(ss._lati _longil _units)

Hint-use 8 {retasataiiey} for vl fom metadata S[messageKey ] forvalus from message body
R
GET

- O Enable proxy

[0 Use simple client HTTP factary

O without reguest body

o
) Audit Logs
@ Audit Log: o
A ApiUsage E
System Setings o
% 0
v el
ader
S[netagatakey} forvake fom SnessageNay] for ol rom message bodk inhea
Headst vaue
Content-Type application/json x

[ Use redis queue for message persistence
Credentials Anonymous ~

Description

Figure 5-15:  External REST API call node

49



» Script transformation node: Connect this node to the External REST API
call node using a relation type Success. This node will place the data that we
require in the message, such as the current temperature, maximum

temperature, minimum temperature, humidity, and wind speed, etc.

@Thmgsﬂoard <> Rule chains > ¢ Outside Data (Root)

A Home Fetch Data

¢ Rule chains

Debug mode

ransform(msg. metadata, msgType) ( y @ O3

1. var newMsq = {
2 MoutsideTemp": msg.main.temp,
3 “outsideMaxTemp”: msg.main.temp_max,
4 "outsideMinTenp": msg.main.temp_min,
5 "outsideHumidity”: msg.main.humidity,
A Eage managemem 6 "outsidefeels_like":msg.main.feels_like,
7 "outsidepressure” msg.main, pressure,
8
9

28 Widgets Library i
. 10
H s ds 11 return {msg: newMsg, meradata: metadata, msgType: msgType};

@ AuditLogs

M Api Usage

%e System Settings Description

Figure 5-16:  Script transformation node

50



» Save time-series node: Connect this node to the Script transformation node
using a relation type of Success. This node will send the information into

telemetry.

@ ThingsBoard ¢ Rulechains > ¢ Outside Data (Root)

Ho ) .
L3 == Save Timeseries

€ Rule chains

Debug mode

A Edge management -

8% Widgets Library

Figure 5-17:  Save time-series node

» Setting up dashboard: In order to add the data dashboard that we require,
download and then import the JSON file that is provided in the ThingsBoard

dashboard tutorial.

51



5.3 RESULT

The results are presented in the following format:

%, ThingsBoard %5 Dashboards > 2§ Weather Dashboard @)

A Home Weather dashboard Weather Dashboard ~ (5@ Entities () Realtime-lasthour & L3 [1

> Rule chains

+

— lumpassor.

22 Customers.
B Assets

(Z0 Devices

[ Device profiles

{& OTAupdates
Tempergfure

-40

B Entity Views
@ Edgeinstances -50 '
R Edge management v g
B2 Widgets Library

83 Dashboards.

@ AuditLogs

M ApiUsage

£ System Settings

Temperature graph 11 | Humidity graph ;1 | Pressure
© Reatime -last hour © Reattime - fast hour

IR

— Outside tempersture 1807 | = Humidty 386
Fomered by Thingsboard v.3.3.2

Figure 5-18:  Dashboard result

This project uses the network packet capture tool Wireshark to track the time spent
obtaining data in order to more precisely measure system performance. According to
Wireshark, the response time is 7.6 milliseconds. The use of the CPU and memory is
9.9% and 13.9%, respectively. OpenweatherMap provides information on the current
temperature, body temperature, likelihood of rain in the next hour, wind speed, and

other variables.

52



File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
= = @R Q
maE RO AesEFEIEQ
[WTApr ] -] Expression... +
No Time Source Destination Protocol Length Info E
465 2022-11-25 18:28:12.070152261 192.168.43.70 37.139.1.159 TcP 6 60726 - 80 [ACK] Seq=205 Ack=852 Win=64178 Len=0 TSval=3363694035 TSecr=237357381
406 2022-11-25 1 2.072258886 192.168.43.70 37.139.1,159 cp 66 60726 . 90 [FIN. ACK] Seq-205 ACK=852 Nin-=64126 Len=0 TSval-3363694030 TSecr=237357361
407 2022-11-35 11 .130102114 37.139.1.15! 192.168.43.70 TCP 66 88 60726 [ACK] Cl 4 Len=0 TSval=237357451 TSecr=3363694038
408 2022-11-25 1 .493155610 192.168.43.70 37.139.1.159 ce 74 60728 _ 80 [SYN] MSS=1460 SACK_PERM=1 TSval=3363708450 TSecr=0 WS=128
469 2022-11-25 1t .754028578 37.139.1.159 192.168.43.70 ce 74 89 . 66728 [SYN, =1360 SACK PERM=1 TSval=237372065 TSecr=3363
410 2022-11-25 1t 6754103127 192.168.43.70 37.139.1.159 Tcp 66 68728 - 80 [ACK 3708719 TSecr=237372065
411 2022-11-25 1 6. 755117555 192.168.43.70 37.139.1,159 HTTP 360 GET /data/2.5/weather?lat=39,4816&1on=-0.3438&un1ts=metr 1cEAPPID=544ch 7941206 e22adn4b489ca18barh
412 2022-11-35 1 831356377 37.139.1.159 192.168.43.70 TCP 66 88 60728 [ACK] Seg=1 Ack=295 Win=43264 Len=0 TSval=237372143 TSecr=3363708720
413 2022-11-25 1 .834332021 37.139.1.159 197.168.43.70 HTTR 916 HTTP/1.1 206 OK (application/json)
414 2022-11-25 1t 834623051 192.168.43.70 37.139.1.159 TCP 66 66728 . B0 [ACK] Seq=205 Ack=852 Win=64128 Len=0 TSval=3363768800 TSecr=237372145
415 2022-11-25 1t 836219761 192.168.43.70 37.139.1,159 Tcp 66 66728 - 80 [FIN, ACK] Seq=295 Ack=852 Win=64128 Len=0 TSval=3353708802 TSecr=237372145
416 2022-11-25 1 .0082477929 37.139.1.159 192.168.43.70 TCP 66 80 60728 [ACK] Seq=852 Ack=296 Win=43264 Len=0 TSval=237372214 TSecr=3363708802
417 2022-11-25 1 .492765636 192.168.43.70 192.168.43.1 DNS 82 Standard query BxB5cd A api.openweathermap.org
418 2022-11-25 1t .492804855 192.168.43.70 192.168.43.1 DHS 82 Standard query BxB8cd AAM api.openweathermap.org
419 2022-11-25 1t 1,587785051 192.168.43.1 192.168.43.70 DNS 146 Standard query response 6x85cd A api.openweathermap.org A 82.196.7.246 A 37.139.1.159 A 37.139.20
420 2022-11-25 1t 1,588045509 192.168.43.1 192.168.43.70 ois 82 Standard query response Gx88cd AAMA api.openweathermap.org
421 2022-11-35 11 580028554 192.168.43.70 82.196.7.24 TCP =64240 Len=0 MSS=146@ SACK PERM=1 TSval=411264487 TSecr=0 WS=128
422 2022-11-25 1 .134376449 82.196.7.246 192.168.43.70 ce Ack=1 Win=28960 Len=0 MSS=1360 SACK_PERN=1 TSval=1310824887 TSecr=411
423 2022-11-25 1t 134546527 192.168.43.70 82.196.7.246 ce 66 45216 _ B0 [ACK] Seq=1 Ack=1 Win=64256 Len=d TSval=411264953 TSecr=1310824887
424 2022-11-25 1t .136131963 o 5 GET /data/2.5/weather?lat=39.4816& on=-0.34388un1ts=metr icRAPPID=544ch79412067e22a4p4b489ca1Bbarh
& 425 2022-11-25 1% . ap
426 2022-11-35 11 42.212784519 310824965 TSecr=411264954 =
~ [Timestamps D

[Time since first frame in this TCP stream: .623513115 seconds]
[Time since previous frame in this TCP stream: 9.876499706 seconds]
TCP payload (850 bytes)
- Hypertext Transfer Protocol
» HTTP/1.1 200 OK\r\n
Server: openresty\rin
Date: Fri, 25 Nov 2022 17:28:42 GHT\r\n
Content-Type: application/json; charset=utf-g\rin
» Content-lLength: 471\r\n
Connection: close\rin
X-Cache-Key: /data/2.5/weather?APPID=544ch79412d6e22a4b4b489cal8harbglat=39.48810n=-0, 34BUNit s=Mmetrichrin
Access-Control-Allow-0rigin: “\rin
Access-Control-Allow-Credentials: true\r\n
Access-Control-Allow-Methods: GET, POSTAr\n

rn
[HTTP response 1/1]
[Time since request: 0.976409/06 seconds)

[Request in frame 1
[Request URI: Etp://api.openweathermap.org:80/data/2.5/weather?1at=39.481641on=-0.34388units=netric4APPID=544ch79412d6Te22adbdbiBOca1Bbafh]

File Data: 471 bytes
~ Javascript Object Notation: application/json
» Object
2b 46 00 50 b a0 d5 7t 84 7 20 Od 37 e3 80 19 +F P 7 -
09 76 61 50 99 0 01 @1 08 0a de 21 9a 05 18 83 H!
67 ba 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f g-HTTP/1 .1 200 O
4b Od Ga 53 65 72 76 65 72 3a 20 67 70 65 Ge 72  K-+Serve r: openr
65 73 74 79 Bd Ba 44 61 74 65 3a 20 46 72 69 2c  esty--Da te: Fri,
29 32 35 20 4e 6f 76 20 32 39 32 32 20 31 37 32 25 Nov 202 17:
32 3 32 34 32 20 47 4d 54 0d 0a 43 6 6e 74 65 28:42 GM T--Conte
BGe 74 2d 54 79 7@ 65 3a 20 61 70 76 6C 69 63 61 nt-Type applica
74 69 67 6e 2 Ga 73 67 6e 3b 20 63 68 61 72 73 tion/jso n; chars =

@ 7 Time since the request was sent (http.time) Packets: 493 - Displayed: 493 (100.0%) Profile: Default

Figure 5-19:  Response time using Wireshark

File Edit Tabs Help
18:13:09 up 1:21,
198 total, 1 running, 197 NIPPplnq, ® stopped, 0 zombie
2.2 us, 3.0 0.0 ni, 94.8 id, 0.0 wa, 0.0 hi, 0.0
3838.7 tcC 826.3 free, 1211.1 used, 1801.3 buff
100.0 total, 100.0 free, 0.0 used. 2076.8 avail

97 roo 20 0 225720 g 60664 10. 2.0 2: 0

5 20 654968 14616
20 86616 22688
20 4320 1976
20 69660 14936
20 10424 2464
rog -2 0] 0]
pi 20 626988 145932
root c] c]
204424 4552
61280 2112

©.59, ©.30, 0.30

che
lem

w

w

thingsb+
pi
nobody

pi

1xterminal
thd
openbox
top
v3d_|

29028
2156
20424
3000

0]
202648

w

w

]

bin
chromium-

w

browse

v3d_render
ostgre

postgre

w
W~~~

O
SEG)
621

w

o
w
w

w
w
w

666
769
1595
4529

root
root
root
root
root

Figure 5-20:

[y

W N

429796
304

W

~
w

876

0]
33768
0]
0]
0]

11604
25816
62820
0
6404
0

0

0

53

w

w

nHWm

HH W

W W

w

0.0
0.0
0.0

101.

:13.

129.
0:00.
0:07.3C
0:00.02
0:00.00
0:00.00

CPU and memory performance of the system

1xsession

lxpanel

chromium-

kworker/u8:@
ystemd

kthr

rcu

rcu

brow




# ThingsBoard | =| +
€ C A Notsecurs | 1921684370 e uw B9 ® & 2 i

Figure 5-21:  Data from OpenweatherMap

It turned out that the Raspberry Pi 4 was able to successfully connect to
Thingsboard and get data from OpenweatherMap. This information was then utilised
to monitor the temperature and humidity of the surrounding area, and it was displayed
onto a dashboard for additional study. Users are able to examine the current weather
conditions for a specific location through the use of this project. The information about
the weather that is provided to users will always be up to date because it comes from

OpenweatherMap.

54



6. CONCLUSIONES

The results of the study have demonstrated that a Raspberry Pi 4 can connect to
Thingsboard and retrieve data from OpenweatherMap. This is an important discovery
since it makes it possible to use this platform to create a wide range of applications

that can use data from the OpenweatherMap API.

It was seen to be a rather simple process to connect the Raspberry Pi 4 to
Thingsboard, and the Thingsboard documentation was found to be clear and helpful.
The data from the OpenweatherMap API was successfully retrieved after the

connection was made, and it was shown on the Thingsboard dashboard.

It was determined that the data from OpenweatherMap was reliable and current,
which is essential for any programs that uses this data. In general, it was successful
and reasonably simple to connect the Raspberry Pi 4 to Thingsboard and retrieve data
from OpenweatherMap. We were able to quickly and easily obtain data from

OpenweatherMap thanks to the success of this project.

55



6.1 FUTURE WORK

In the future, the initiative might be expanded to incorporate information from

additional weather services, such the National Weather Service.

The project might also be expanded to incorporate information from different kinds

of sensors, like air quality sensors.

The concept might be expanded to incorporate information from different kinds of

gadgets, such as smart thermostats.

56



BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

J. Kim, S. C. Choi, I. Y. Ahn, N. M. Sung, and J. Yun, “From WSN towardsWoT:
Open API scheme based on oneM2M platforms,” Sensors (Switzerland), vol. 16,
no. 10, Oct. 2016, doi: 10.3390/s16101645.

A. Suryana, F. P. Lismana, R. M. Rachmat, S. D. Putra, and M. Artiyasa,
“Implementation of Weather Station for the Weather Reality in A Room,” in 6th
International Conference on Computing, Engineering, and Design, ICCED 2020,
Oct. 2020. doi: 10.1109/ICCED51276.2020.9415799.

Y. A. Ahmad, T. Surya Gunawan, H. Mansor, B. A. Hamida, A. Fikri Hishamudin,
and F. Arifin, “On the Evaluation of DHT22 Temperature Sensor for loT Application,”
in Proceedings of the 8th International Conference on Computer and
Communication Engineering, ICCCE 2021, Jun. 2021, pp. 131-134. doi:
10.1109/ICCCE50029.2021.9467147.

Amity University. Dubai Campus, Institute of Electrical and Electronics Engineers.
UAE Section, and Institute of Electrical and Electronics Engineers, Abstract
proceedings of International Conference on Computation, Automation and
Knowledge Management (ICCAKM-2020) : 9th-10th January 2020.

A. Gupta, A. Tripathi, R. Coutinho, R. Rodrigues, and P. Raut, “Smart Sustainable
Mini Weather Station,” in IEEE Region 10 Humanitarian Technology Conference,
R10-HTC, 2021, vol. 2021-September. doi: 10.1109/R10-
HTC53172.2021.9641672.

Institute of Electrical and Electronics Engineers and IEEE Communications
Society, The 2019 International Symposium on Networks, Computers and
Communications (ISNCC 2019) : 18-20 June, 2019, Istanbul, Turkey.

C. Dewi and R.-C. Chen, “Integrating Real-Time Weather Forecasts Data Using
OpenWeatherMap and Twitter,” 2019. [Online]. Available:
http://ejournal.uksw.edu/ijiteb

57



[8]

[9]

[10]

[11]

[12]

E. Okhovat and M. Bauer, “Monitoring the Smart City Sensor Data Using
Thingsboard and Node-Red,” in Proceedings - 2021 IEEE SmartWorld, Ubiquitous
Intelligence and Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Internet of People, and Smart City Innovations,
SmartWorld/ScalCom/UIC/ATC/IoP/SCI 2021, 2021, pp. 425-432. doi:
10.1109/SWC50871.2021.00064.

Institute of Electrical and Electronics Engineers, 2018 IEEE Global Conference on
Internet of Things (GCloT).

M. Casillo, F. Colace, M. de Santo, A. Lorusso, R. Mosca, and D. Santaniello,
“VIOT Lab: A Virtual Remote Laboratory for Internet of Things Based on
ThingsBoard Platform,” in Proceedings - Frontiers in Education Conference, FIE,
2021, vol. 2021-October. doi: 10.1109/FIE49875.2021.9637317.

L. O. Aghenta and M. T. Igbal, “Low-cost, open source loT-based SCADA system
design using thinger.lO and ESP32 thing,” Electronics (Switzerland), vol. 8, no. 8,
Aug. 2019, doi: 10.3390/electronics8080822.

I. O. Suzanti, N. Fitriani, A. Jauhari, and A. Khozaimi, “REST API Implementation
on Android Based Monitoring Application,” in Journal of Physics: Conference
Series, Jul. 2020, vol. 1569, no. 2. doi: 10.1088/1742-6596/1569/2/022088.

58



