
A caching mechanism to exploit object store speed in High Energy
Physics analysis

Vincenzo Eduardo Padulano1,2 • Enric Tejedor Saavedra1 • Pedro Alonso-Jordá2 • Javier López Gómez1 •

Jakob Blomer1

Received: 22 March 2022 / Revised: 8 August 2022 / Accepted: 19 September 2022
� The Author(s) 2022

Abstract
Data analysis workflows in High Energy Physics (HEP) read data written in the ROOT columnar format. Such data has

traditionally been stored in files that are often read via the network from remote storage facilities, which represents a

performance penalty especially for data processing workflows that are I/O bound. To address that issue, this paper presents

a new caching mechanism, implemented in the I/O subsystem of ROOT, which is independent of the storage backend used

to write the dataset. Notably, it can be used to leverage the speed of high-bandwidth, low-latency object stores. The

performance of this caching approach is evaluated by running a real physics analysis on an Intel DAOS cluster, both on a

single node and distributed on multiple nodes.

Keywords ROOT � High Energy Physics � Caching � Object store � DAOS

1 Introduction

The next years of the scientific programme at CERN will

provide, among others, great challenges in storing and

processing an ever larger amount of data coming from the

Large Hadron Collider (LHC). The current roadmap

highlights that by the next hardware update, named HL-

LHC [5], both hardware and software improvements will

need to happen to address future computing and storage

needs [1, 21].

For a long time the particular use cases provided by

High Energy Physics (HEP) data could only be approached

by in-house solutions. This need has involved all aspects of

the data lifecycle, from collection in the LHC, to storing

the information of physics events, to running full scale

analyses that very often comprehend both actual collider

data and simulated events that are compared against each

other. On the one hand, the high throughput with which

data is generated during LHC runs (with peaks of a hun-

dred PB for the last active period in 2018) has been

addressed by multiple layers of skimming the raw data.

The very first reduction is done at the edge of the collider

components through hardware triggers that only save a

fraction of the actual event information. This is then sent to

storage in a so-called ‘‘raw’’ format, that is not directly

representative of the actual physical interactions of the

particles. All next steps involve further reduction of the

data into different formats that differ in the on-disk rep-

resentation of the particle information (from more complex

to simpler). Finally, the skimmed datasets are used by

researchers worldwide on a frequent basis (daily to

weekly). The pipeline described, starting right after the first

raw formats are modified to better represent physics events,

is managed through a single software tool, ROOT [13].

This is a framework that has become the de facto standard

& Vincenzo Eduardo Padulano

vincenzo.eduardo.padulano@cern.ch

Enric Tejedor Saavedra

enric.tejedor.saavedra@cern.ch

Pedro Alonso-Jordá

palonso@upv.es

Javier López Gómez

javier.lopez.gomez@cern.ch

Jakob Blomer

jakob.blomer@cern.ch

1 EP-SFT, CERN, Meyrin, 1211 Geneva, Switzerland

2 Department of Computation Systems and Computation,

Universitat Politècnica de València, cno. Vera s/n,

46022 Valencia, Spain

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03757-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1209-3641
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03757-2&domain=pdf
https://doi.org/10.1007/s10586-022-03757-2

in the field for storing, processing and visualising data in

HEP. Many examples of its usage can be found within

physics research groups for their analysis tasks [8, 49] as

well as the basis for more complex software tools [2, 56].

When managing data, deciding its layout is crucial in

understanding how the processing tools should work later.

A physics dataset is comprised of events (which can be

seen as rows of a table). Each event can have a complex

structure, divided in multiple physical observables (which

can be considered columns). The observables can hold

simple objects (like integers or floating point numbers), but

most often they are represented through nested structures

(collections of collections of elements). Thus, the dataset

schema has no direct SQL representation. While the

number of rows is usually fixed (there are N events in a

certain physical interaction), each column can store one

value, an array of values or jagged arrays with no fixed

relation between their sizes. ROOT defines a data layout

(on disk and in memory) which is the format used when

writing and reading all HEP datasets. It is binary, columnar

and capable of storing any kind of user-defined object in a

file. Since the software framework is mainly implemented

in C??, a ROOT file can store arbitrary C?? objects,

with an automatic compression mechanism that splits

complex classes into simpler components. Also, using a

columnar layout further reduces the amount of read trans-

actions needed, since different columns can be read inde-

pendently from each other. The underlying storage of such

an efficient data format has traditionally been file-based

only.

Although the information from the collider flows into

multiple skimming steps as described above, the datasets

used in HEP analyses can still represent a processing

challenge. A full Run 2 dataset (with information taken

between 2015 and 2018) can still hold multiple TB of

information. ROOT has historically offered analysis

interfaces that physicists worldwide have used for direct

processing or to build more complex libraries. While pro-

viding an efficient way to process large datasets (also with

sparse access thanks to their columnar layout), these

interfaces were built with single-threaded sequential

applications in mind. More recently, modern and more

mature high-level interfaces have been introduced that rely

upon the established structures while providing more per-

formance through easy parallelisation on physicists’

machines. In particular, parallelisation is achieved through

implicit multi-threading where each thread operates con-

currently on a different portion of the input dataset. This

exploits an important feature of HEP data: physics events

are statistically independent. This means that processing

the first hundred events or processing the last hundred

events can happen completely in parallel. In this sense,

HEP data analysis is an embarrassingly parallel problem.

In order to exploit this feature, parallel computing has

always been extensively explored in this field, in particular

in the form of grid computing. In this context the World-

wide Computing LHC Grid (WLCG) has served the com-

puting needs of physicists all over the world for the last few

decades [9]. The main technologies used to steer the dis-

tributed applications have been batch job queueing systems

like HTCondor [47]. Due to the aforementioned file-based

datasets and the fact that they are most often stored in

remote facilities, distributed computing in HEP is inher-

ently I/O bound. Batch jobs can often suffer from network

instabilities and latency brought by geographical distance

between computing nodes and storage facilities. To this

end, different approaches at caching input data have been

studied and employed in the past. Notably, the XRootD

framework [20], which defines the standard protocol for

remote data access used in HEP, also includes a file-based

caching implementation. This is referred to as XCache by

the physics community, and is used in various HEP com-

puting facilities [22, 45].

All these efforts to bring efficiency into HEP data pro-

cessing workflows notwithstanding, future challenges can

and should also be addressed by looking at possible alter-

native approaches. For example, a more recent approach to

data storage has been presented by object store technolo-

gies. These technologies are widely used in cloud-based

applications or in HPC facilities, which are built to support

highly scalable workflows [17, 31, 32, 46]. Literature

shows that object stores are able to overcome some limi-

tations of traditional POSIX file-based systems and provide

efficient data access in distributed environments. An

example of this can be found in a work by Liu et al. [28],

where a benchmark of parallel I/O comparing different

object stores with the Lustre filesystem [12] demonstrated

that the latter suffers from POSIX constraints and filesys-

tem locking overhead when scaling to more processes on

one node.

This work describes a novel approach at improving

performance of real physics analyses by reading the input

data from an object store, rather than from files. Since HEP

analyses are usually I/O bound, the goal is to study how a

high-bandwidth low-latency object store can help speed up

such analyses. For this purpose, the ROOT I/O system is

extended with an automatic caching mechanism so that,

during the execution of an analysis, the input data that is

read from remote files is cached in an object store, with the

goal of reusing that cache in subsequent (faster) executions

on the same dataset. An example of a HEP analysis

application published by the LHCb experiment [50] is used

as benchmark, both in a single-node and multi node

scenario.

The rest of the paper is structured as follows. Section 2

highlights the current status of this type of research in the

Cluster Computing

123

HEP field, as well as mentioning similar approaches in

industry. Section 3 discusses the software tools employed

for the purposes of this study. Section 4 gives more details

about the proposed solution to tackle the challenges

described above. Section 5 highlights the tests created and

run in order to test the validity of the proposal; the test

results are presented and discussed. Section 6 summarises

the achievements of the paper.

2 Related work

Object storage technology is typically used in HPC and

distributed computing scenarios. Over the years, various

implementations of this system have spawned within

industry. Notable examples are provided by vendors such

as Amazon with the S3 service [3], Microsoft with the

Azure Blob Storage [14] and Intel with the Distributed

Asynchronous Object Store (DAOS) [27]. All of them

usually suppose a system of nodes which, while being

distributed, is highly coherent and localised. For example,

computing and storage nodes usually belong to the same

network which is also often cut off from the internet. This

approach may lack the flexibility required in other dis-

tributed computing fields such as the Internet of Things

(IoT). One of the biggest issues with data caching in this

context are content redundancy and cache overflow, which

also apply to the HEP context. For example, different

physics research groups may be interested in the same

datasets and a reasonable caching strategy must make sure

that the large physics datasets are not copied over multiple

nodes if they are already available. These topics are not yet

explored in the HEP field, but literature already shows that

a good bandwidth utilization can be achieved given a large

enough cache size on network nodes [19], which is the

usual situation in HEP storage facilities.

There is literature comparing different technologies

according to established benchmark suites [25, 28]. In

some cases, current knowledge allows to extract the best

performance of a given object storage tool, through fine-

tuning of user space parameters [42]. This work does not

attempt to modify or tune the storage backend; rather, it

focuses on addressing analysis needs from the perspective

of the data format and the layer that implements I/O of the

data format to various backends. There are other examples

of I/O libraries that have attempted an integration of their

data format with fast object stores, such as the HDF5

connector for Intel DAOS [44].

Regarding the execution of distributed workflows that

exploit object stores, some efforts can be found for industry

products [40, 41, 51]. In the cited approaches, the object

store is used as as scalable storage layer to host big datasets

and the computing nodes read data directly from the object

store. Furthermore, it is shown that once the object store

semantics are leveraged properly, read-intensive analysis

workflows can get 3-6 times faster.

Regarding caching large input datasets, very rarely do

other investigations highlight the possible benefits that it

could have in distributed computing scenarios. In a work

that compared different object store engines in geospatial

data analysis workflows [43], a part of the benchmark

presented the improvements in performance of the different

engines with caching. But only the filesystem cache was

used in that case, hence data and queries could be kept in

the memory of the nodes and no separate caching mecha-

nism was implemented.

In the HEP context, object stores still do not see wide-

spread usage, even in large scale collaborations. Research

studies from the early years of the LHC have tried inte-

grating object stores in the grid through the Storage

Resource Manager (SRM) interface [7]. This interface

allowed accessing and managing storage resources on the

grid. In a first effort, a plugin was developed to connect

Amazon S3 resources to the grid storage layer [4]. Later

on, a tier 2 grid facility of the ATLAS LHC experi-

ment [48] was extended to use the Lustre filesystem, with

benchmarks showing 8 GB/s of peak read speed [55]; this

work is able to reach a much higher throughput, as will be

shown in Sect. 5. More recently, the focus has migrated

towards the evaluation of such storage solutions on con-

crete examples of HEP software like ROOT [6], where a

physics dataset was used to evaluate data access patterns

over an S3 API, leading to aggregated throughput of a few

Gigabytes per second. An interesting example of investi-

gation into data analysis needs can be found in a work by

Charbonneau et al. [16], where 8 TB of physics events are

stored in a Lustre cluster; this work reveals that although

resource scaling helps achieve higher throughput, remote

data access while processing can become a burden for

analysts. It is clear from this few examples that the

potential of object stores, especially newer approaches that

rely on low-latency high-bandwidth systems like DAOS,

has not been extensively explored in this field. In fact, even

very recent mentions of such systems are still a topic of

discussion in internal workshops at CERN [15, 29].

The focus of this work is how a caching layer imple-

mented on top of a fast object storage connector could

bring HEP data analysis use cases a tangible speedup when

reading ROOT data. Per the review of the field literature

available, no such evaluation has been previously addres-

sed. The main missing point of other approaches is the

focus on the specific data format, and how it can be

ingested in an object store for efficient querying of any

needed subset of dataset properties. A previous article

compared the behaviour of already existing caching

mechanisms in HEP software with respect to two

Cluster Computing

123

configurations: caching in the computing nodes or in a

dedicated cache server [34]. That publication showed

limitations of existing software when interfacing to the

traditional file-based ROOT I/O. A more recent effort

developed an integration between the DAOS C API and the

next generation ROOT storage layer, demonstrating its

flexibility in terms of different storage backends it can

support [30]. This work relies on the findings of these two

investigations and includes the following novel

contributions:

• A caching mechanism is implemented in C?? and

plugged in the ROOT I/O layer. It is independent of the

storage backend, so that a ROOT dataset can be opened

from a remote file-based server and the cache can be

stored on a fast object store.

• The performance of a physics analysis that reads a

dataset already cached in an object store is measured

not only in single-node, but also in multi-node runs.

• To support the latter use case, the RDataFrame analysis

library of ROOT was extended in this work to be able to

read data from a DAOS object store. The previous

implementation only supported reading the traditional

file-based data format.

3 Background

A few key software tools have been employed for the

purposes of this investigation. Since the caching mecha-

nism is developed directly at the ROOT I/O level, it relies

on low-level primitives to open, read and write into a

ROOT file. Furthermore, DAOS is the storage backend

used in the benchmarks of Sect. 5. Finally, the main

objective is to give analysis tools a boost in read perfor-

mance of input data, so this work relies on the high-level

modern interface for data analysis offered in ROOT. This

section describes in more detail these three components,

highlighting their specific relevance to this study.

3.1 Intel DAOS

The object store chosen for the purposes of this work is

Intel DAOS [27], a fault-tolerant distributed object store

targeting high bandwidth, low latency, and high I/O oper-

ations per second (IOPS). DAOS addresses traditional

POSIX I/O limitations on two fronts in order to optimise

data access. On the one hand, it bypasses kernel I/O

scheduling strategies, e.g. coalescing and buffering, that

are mostly relevant for high-latency few-IOPS spinning

disks. On the other hand, it avoids using the virtual

filesystem layer, since the strong consistency model

enforced by POSIX is known to be a limiting factor in the

scalability of parallel filesystems.

On a DAOS system, there are two different categories of

nodes: servers and clients. All data in DAOS is stored on

the server nodes. There can be many servers running a

Linux daemon that exports local NVMe/SCM storage. This

daemon listens on a management interface and several

fabric endpoints for bulk data transfers. RDMA is used

where available, e.g. over InfiniBand [35] or Omni-

Path [10] fabrics, to copy data from servers to clients. The

client nodes are the ones responsible for running compu-

tations defined by the users in their applications. A DAOS

client node does not store any data on itself, rather it

requests the dataset from the servers when it’s needed.

The storage is partitioned into pools and containers that

can be referenced by means of a Universally Unique

IDentifier (UUID) [23]. Objects can be partially read or

written into a container. Each of these objects is a key-

value store that is accessed using a 128-bit Object IDen-

tifier (OID). Object data may additionally have redundancy

or replication.

3.2 ROOT I/O

It has been mentioned that ROOT is the standard software

used by physicists around the world for all their needs

revolving around storing, processing, visualising data. In

fact, one of the key components in ROOT is the I/O sub-

system, which is were the data format described in Sect. 1

is defined. Traditionally, the I/O layer in ROOT was

implemented in the TTree class [39], and more recently in

RNTuple [38].

A TTree is a generic container of data, capable of

holding any type of C?? object. This goes from funda-

mental types to arbitrarily nested collections of user-de-

fined classes. TTree organises data into columns, called

branches. A branch can contain complete objects of a

given class or be split up into sub-branches containing

individual members of the original object. Each branch

stores its data in one or more associated buffers on disk.

Different branches can be read independently, making

TTree a truly columnar data format implementation. The

implementation of TTree assumes that the underlying

storage backend is file-based and it does not support I/O to

object stores in any way.

The ROOT I/O subsystem is able to read and write

datasets both to a local disk on the computer and to remote

machines with protocols such as HTTP or XRootD [20].

The latter is the most common protocol for remote data

access used in the HEP field. This makes ROOT datasets

easily transferable from one physicist’s machine to

another’s for easy sharing among colleagues or from large

Cluster Computing

123

storage facilities to the various computing nodes that may

be used to run production analyses.

TTree has been successfully used in the past to effi-

ciently store more than one exabyte of HEP data and has

become the de-facto standard format in the area. Its on-disk

columnar layout allows for efficient reading of a set of

selected columns, a common case in HEP analyses. How-

ever, future experiments at the HL-LHC are expected to

generate one order of magnitude larger datasets which

makes researching the benefits of using high-bandwidth

low-latency distributed object stores especially relevant. As

previously mentioned, TTree only supports I/O transac-

tions to file-based systems so it does not provide the flex-

ibility needed for future challenges.

RNTuple [11] is the new, experimental ROOT columnar

I/O subsystem that addresses TTree’s shortcomings and

delivers a high read throughput on modern hardware. In

RNTuple data is stored column-wise on disk, similarly to

TTree and Apache Parquet [54]. An overview of the data

layout design is depicted in Fig. 1.

Specifically, data is organized into pages and clusters:

pages contain values for a given column, whereas clusters

contain all the pages for a range of rows. The RNTuple

meta-data are stored in a header and a footer directly within

the RNTuple object. The header contains the schema of the

RNTuple; the footer contains the locations of the pages.

The pages, header and footer do not necessarily need to be

written consecutively in a single file. As long as the target

container of the RNTuple specifies the location of header

and footer, data can be stored in separate containers (e.g.

different files or different objects in an object store).

The RNTuple class design comprises four decoupled

layers. The event iteration layer provides the user-facing

interfaces to read and write events and can be used from

higher-level components in ROOT such as RDataFrame,

which is described in Sect. 3.3. The logical layer defines

the mappings to split arbitrarily complex C?? objects into

different columns of fundamental types. The primitives

layer manages deserialised pages in memory and the rep-

resentation of fundamental types on disk.

RNTuple’s layered design decouples data representation

from raw storage of pages and clusters, therefore making it

possible to implement backends for different storage sys-

tems, such as POSIX files or object stores. Recently, a

DAOS backend for RNTuple was developed and demon-

strated promising performance results [30]. At the time of

writing, this backend uses a unique DAOS OID to store

data for each page.

3.3 ROOT RDataFrame

RDataFrame is the high-level interface to data analysis

offered by ROOT [36]. It features a programming model

where the user calls lazy operations on the dataset through

the API and the tool effectively builds a computation graph

that is only triggered when the results are actually

requested in the application. This interface supports pro-

cessing of traditional TTree datasets but also other data

formats, among which RNTuple.

Parallelisation is a key ingredient in an RDataFrame

workflow. The native C?? implementation allows to use

all the cores in a single machine through implicit multi-

threading. Furthermore, RDataFrame computations can be

distributed to multiple nodes through its Python bind-

ings [33]. The design of the distributed RDataFrame

extension accommodates multiple backends (schedulers);

the application code does not vary when moving from one

backend to another.

4 Design of the caching system

The context exposed in Sect. 1 highlights an important

aspect of HEP data analysis that should be addressed,

namely data access at runtime. HEP analysis is often I/O

bound, either because the datasets reside in remote loca-

tions or because there is little computation involved. In

Fig. 1 Data layout of RNTuple [11]

Cluster Computing

123

such scenarios, it is greatly beneficial to enable caching of

the input datasets, storing them as close as possible to the

computing nodes. This calls for a new solution that exploits

the future storage layer provided by RNTuple.

Thus, this work focuses on evaluating the benefits of

using a novel storage architecture, such as the one offered

by DAOS, when reading input data of a HEP analysis. For

that purpose, a caching machinery has been developed for

data reading via RNTuple, so that any application that

reads RNTuple data could benefit from it. This includes

notably RDataFrame applications that read data from

RNTuple. The caching mechanism is independent of the

storage backend, a crucial feature to maintain transparency

for the user and contribute towards a sustainable develop-

ment in a future where RNTuple will be able to read and

write to even more storage systems than today.

Figure 2 gives a high-level view of the interaction

between ROOT and DAOS after the proposed develop-

ments. A physics analysis with ROOT makes use of two

main components: an analysis layer and an I/O layer. The

main analysis interface in ROOT is RDataFrame, which

offers a declarative user-facing API and a lazy execution

engine as described in Sect. 3.3. The user provides a

dataset specification to RDataFrame, for example a list of

files to process. In turn, RDataFrame will transparently

invoke the low-level I/O layer which is in charge of

opening the files from disk, uncompressing their data and

sending them back to the processing layer. The image

shows in particular the I/O layers defined within RNTuple

as described in Sect. 3.2. All the blue boxes in the fig-

ure represent already established ROOT components, while

the orange boxes demonstrate the parts that were specifi-

cally modified or developed in this work. In particular, the

distributed RDataFrame layer was not able to process data

coming from the RNTuple I/O. After this work, the algo-

rithm that creates a distributed RDataFrame task on the

client node also checks the origin of the dataset. This

allows creating the correct RNTuple object when the task

arrives on the computing node (bottom left part of the

image). When a distributed task starts executing, it will

create an RNTuple instance to read data from the selected

storage. In case the RNtuple cache is activated, this can

transparently start writing data from the original storage

system to the target one. For the purposes of this work, the

target storage system for the RNTuple cache is DAOS. If

the DAOS server already contains the desired dataset, the

developed cache will serve it directly to the rest of the

RNTuple I/O pipeline which will in turn direct it towards

the RDataFrame that requested it inside the distributed

task.

Fig. 2 Overview of the proposed system. The upper box includes the

main ROOT components involved in an analysis. On the left of the

dashed line (Analysis layer) is the user-facing API and the processing

engine offered by RDataFrame. On the right is the I/O layer that

brings compressed physics data from disk to uncompressed informa-

tion in memory that is sent to RDataFrame for processing. Contrary to

the traditional ROOT I/O layer implemented with TTree, this work

focuses on the next-generation system implemented with RNTuple.

The two orange boxes represent the parts introduced in this work: the

introduction of RNTuple as a supported input data format for the

distributed RDataFrame layer in the Analysis layer and a caching

mechanism for RNTuple in the I/O layer

Cluster Computing

123

4.1 Integration within RNTuple

RNTuple I/O operations are scheduled in a pipeline. The

current implementation of the pipeline is in two steps: first,

data is read from storage into compressed pages in mem-

ory, then bunches of pages are decompressed together and

sent to the rest of the application for processing. The

caching mechanism takes place in between the two steps of

the pipeline. This can be described as follows:

1. When programming an application, the user can enable

the cache by simply providing a storage path (to a local

directory or to an object store address for example) as

an extra option when opening an RNTuple.

2. In order to write the cache, a new RNTuple is created

with the same metadata as the original RNTuple, this

time pointing to the storage path provided by the user

in step 1. Figure 3a shows the input dataset to the left,

in red. The metadata, i.e. the list of three column

names, are mirrored in the RNTuple cache that is

shown on the right side of the image.

3. At a later stage, when the first step of the RNTuple

pipeline is over, the compressed pages read into

memory are grouped together in a cluster object. The

cluster object contains a list of column names that the

cluster is spanning. From any column name, a group of

(compressed) pages belonging to that column can be

retrieved. Consequently, the caching algorithm pro-

ceeds by traversing all column names and for each

column it writes the corresponding pages into the

newly created RNTuple object, thus populating the

cache location (see Fig. 3a). It is important to note here

that the RNTuple system is implemented such that the

column metadata is stored separately from the actual

compressed pages (or groups thereof), so that infor-

mation needed in the I/O pipeline is always available.

4. When the reading part is over, the RNTuple cache

object finalises the writing operations and closes the

open handle to the storage path (e.g. writes metadata

about the number of pages and cluster layout to an

attribute key in the DAOS case).

5. Any subsequent access to the same dataset by the user,

will fetch the cached RNTuple rather than the original

one. The caching mechanism is completely bypassed in

order to avoid extra operations and the user is

transparently presented with an RNTuple that

Fig. 3 Schema of the newly

developed caching system in the

RNTuple I/O pipeline. Blue

horizontal arrows represent the

current two steps of the

pipeline: reading compressed

pages and decompressing them.

a represents the case where the

application is reading from

some file-based source and a

new RNTuple object is created

to write data to a cache. In (b),
data is read from the cache

during the analysis (Color

figure online)

Cluster Computing

123

resembles exactly their input dataset, but is read from a

fast storage system like DAOS (Fig. 3b).

4.2 Optimisations for HEP use cases

Another important notion to discuss revolves around how

the cache will interact with the ROOT I/O layer. As dis-

cussed in Sects. 1 and 2, the data lifecycle in HEP is such

that big collaborations at the LHC gather data from colli-

sions in the accelerator when it is functioning, writing it

into storage facilities. Once written, this information is set

in stone. On top of that, many simulations can be done over

the years if new or more precise models arise to be checked

against the real data. Running an experiment simulation

campaign represents possibly the only other situation

where storage facilities are hit with a large amount of write

operations. In any case, HEP data is characterised by a

‘‘write-once, read-many’’ condition. Consequently, any

caching system aimed at analysts’ needs in this field will

optimize read operations as much as possible. Writing is

also important to smoothen the user experience when the

cache is still cold, but providing a faster reading perfor-

mance directly translates into an increased productivity in

physics analysis research. The machinery developed in this

work tries to address both objectives: when writing, the

cache does not need to wait for the decompression step of

the RNTuple pipeline; when reading, it directly forwards

all requests to low-level efficient RNTuple interfaces.

4.3 Interaction of the caching system with DAOS

The I/O workflow from the point of view of the caching

node (which in this work corresponds to a DAOS server)

looks like this: the user starts an analysis, requesting to

process some dataset; the dataset is opened and both sent

from disk to memory for processing and at the same time

written as-is into the target caching node; after this, any

other time an analysis is run and requests the same dataset,

it is automatically read from the cache. Overall, the number

of read operations is much higher than the number of write

operations in this context.

The DAOS specification also establishes the use of

caches to boost data access for its users. This is imple-

mented at various levels, for example it is always enabled

by default in case the dfuse layer is used [18]. At the

hardware level, it exploits burst buffers on the server

nodes [27]. All of these characteristics are completely

transparent and orthogonal to the caching system for

RNTuple developed in this work. This is, from the point of

view of DAOS, just like any other user application that

reads or writes data stored in the DAOS servers. Thus, any

improvement to the DAOS library or any site-specific

tuning enabled on the server nodes will automatically be

leveraged by the RNTuple cache.

HEP data analysis is most often I/O bound, due to

having to read very large datasets usually stored remotely.

A certain physics analysis may require to read only a subset

of the available columns in the dataset. This is made pos-

sible thanks to the columnar layout of the ROOT data

format. For the purposes of this study, Sect. 5 shows an

example of real HEP analysis where only some columns

are read, thus also demonstrating the possibility of caching

an RNTuple resulting from accessing a fraction of the input

dataset.

This paper focuses only on the point of view of a single

user. In a multi-user scenario, this caching system

embedded in RNTuple should be synchronised with a

storage-facility-wide service. Taking for example two dif-

ferent users that want to access the same dataset, whoever

does access it first will cache it in the object store thanks to

the system developed in this work. But in order for the

other user application to know about the presence of the

dataset in the cache, some dataset register should be

queried and report whether the same data is already pre-

sent. This kind of challenge will be topic of further studies.

5 Experiments

This section will present various test configurations that

were employed to evaluate the capabilities of the proposed

caching mechanism. At first, the cache is exercised on a

small dataset, without running a physics analysis but just

comparing the reading speed of the RNTuple cache on

DAOS with the reading speed from a local SSD. After-

wards, a real HEP analysis is performed with the RData-

Frame tool, either on one node or distributed to multiple

nodes. For this second type of test, two different clusters

have been used. The first cluster features a DAOS system

where the RNTuple cache can store data on the DAOS

servers and send it to the RDataFrame engine for pro-

cessing. The second cluster has a Lustre shared filesystem

and in this case the same distributed RDataFrame analysis

processes data with the traditional ROOT I/O system using

TTree.

5.1 Testbed specification

5.1.1 DAOS cluster

In the DAOS cluster there are seven client nodes and two

servers. According to the DAOS specification, the dataset

that is processed in the experiments described in the next

sections is always stored on the server nodes. Specifically,

the server nodes are the caching nodes. Client nodes on the

Cluster Computing

123

other hand only read the data from the server nodes and run

the computations defined in the physics analysis. Each

client node features the following hardware specifications:

• Motherboard: Newisys DoubleDiamond TCA-00638.

• CPU: 2x Intel Xeon E5-2640v3, for a total of 2 NUMA

sockets, 8 physical cores per socket, 2 threads per core.

• RAM: eight Micron 36ASF2G72PZ-2G1A2 DIMMs,

16 GiB each, for 128 GB of total memory.

• Inifiniband interfaces: one Mellanox MCX354A-FCBT

two port NIC, only one port was cabled, 56 Gb/s FDR

speed; one HPE P23842-001 two-port NIC, only one

port was cabled, 100 Gb/s EDR speed. Each interface is

connected separately to one NUMA socket.

Each server node features the following hardware

specifications:

• Motherboard: Supermicro X11DPU-Z?.

• CPU: 2x Intel Xeon Gold 6240, for a total of 2 NUMA

sockets, 18 physical cores per socket, 2 threads per

core.

• RAM: twelve Hynix HMA82GR7CJR8N-WM volatile

DIMMs, 16 GB each, 6 per socket. 192 GB total

memory.

• DAOS storage: twelve Intel HMA82GR7CJR8N-WM

persistent memory DIMMs, 128 GB each, 6 per socket.

Also, eight Samsung MZWLJ3T8HBLS-00007 3.84 TB

NVMe SSD, four per socket.

• Infiniband interfaces: two Mellanox MCX654105A-

HCAT one-port NICs 200 Gb/s (HDR). Each interface

is connected to one NUMA socket. The node has PCIe

Gen3 buses, so the actual bandwidth is 100 Gb/s per

NUMA socket.

In practice, the maximum bandwidth that can be obtained

when reading data on one of the client nodes is given by

the sum of the two nominal bandwidths of its Infiniband

interfaces. That is, a client node can read up to 156 Gb/s, or

19.5 GB/s.

The maximum bandwidth overall of the whole DAOS

cluster is given by the sum of the nominal bandwidths of

the server nodes. Thus the maximum reading throughput

for the whole cluster is 400 Gb/s or 50 GB/s.

The DAOS version installed on this cluster is 1.2.

5.1.2 Lustre cluster

The second cluster used for this work is a large computing

cluster with hundreds of nodes and a shared Lustre

filesystem. Access to the cluster was granted via a user

account registered with the Slurm resource manager [24]

of the cluster. Cluster resources were shared among many

other users. Also in this case there are server nodes where

data is stored (on Lustre) and computing nodes that read

the data from the server nodes and run the computations.

Each client node features the following specifications:

• Motherboard: Supermicro H11DST-B.

• CPU: 2x AMD EPYC 7551, for a total of 2 NUMA

sockets, 32 physical cores per socket, 2 threads per

core.

• Inifiniband interface: one Mellanox ConnectX-4 VPI

adapter card, FDR IB 40GbE, 56 Gb/s.

The network topology is built like a fat-tree, with a 2 to 1

blocking factor on the computing nodes. More information

about this cluster can be found in its user manual [53].

5.2 Methodology

The following groups of tests have been set up for the

caching system developed in this work:

1. A single-threaded C?? application that uses the

RNTuple interface to read sequentially all the entries

of a dataset stored in a ROOT file. No other compu-

tation is done in the application. The dataset size is

1.57 GB. The purpose of this test is comparing the

runtimes of three different configurations: (i) reading

the dataset stored in a file on the local SSD of a node;

(ii) reading the dataset stored in a file on the local SSD

of a node and at the same time caching data to DAOS;

(iii) reading the dataset stored in the DAOS cache.

2. An open data analysis of the LHCb experiment at

CERN [26], named from here on ‘‘LHCb benchmark’’.

This analysis is run on both clusters described in

Sect. 5.1. It uses the distributed RDataFrame tool to

steer computations from one to multiple nodes. In the

DAOS cluster, it reads data from the DAOS servers

through the RNTuple cache. In the Lustre cluster, I/O

is done with the traditional TTree implementation. The

application processes the dataset used in the cited

publication, replicated eight-hundred-fold to get a 1259

GB sample. In the tests with TTree and Lustre, the

dataset is replicated simply by providing a list of paths

to multiple copies of the original dataset. In the tests

with RNTuple and DAOS, the replicated dataset is

obtained by running a C?? program that reads all the

entries in the original file (stored on the same SSD of

the node in the previous group of tests) and copies

them to one or more separate RNTuple objects stored

in DAOS, until the desired size is reached. The number

of objects is equal to the number of distributed

RDataFrame tasks, so that each task processes exactly

one RNTuple object. As previously discussed, particle

physics events are statistically independent, so this

approach is valid for benchmarking purposes.

Cluster Computing

123

The benchmarks in Sect. 5.3 request a variable amount of

nodes and cores per node on the cluster through the dis-

tributed RDataFrame tool. In all tests, 2 GB of RAM are

requested per core. For the DAOS tests, data is always

cached on the DAOS server nodes, never on the computing

nodes. The tests on the Lustre cluster present a similar

situation.

The tests done on the cluster with the Lustre filesystem

are run by submitting jobs to the Slurm resource manager.

In each job, the desired number of nodes and cores for that

test is requested. Furthermore, each job requests exclusive

access to all the computing nodes involved in the test, to

avoid unpredictable loads on the machines due to shared

usage with other users of the cluster.

The test suite is available in a public code

repository [52].

5.3 Results

5.3.1 Caching RNTuple to DAOS

The first group of tests described in Sect. 5.2 is executed on

a single node. The dataset is initially stored on SSD in

order to gather more consistent measures and avoid pos-

sible network instabilities. Nonetheless, the same tests

could be repeated with the dataset stored in a remote file,

since RNTuple data can be also read through HTTP.

Table 1 shows average runtime of the application with

three different configurations. On the one hand, caching to

DAOS while reading from SSD brings roughly 50%

overhead with respect to only reading from SSD. On the

other hand, reading from the DAOS cache is more than 6

times faster than reading from SSD.

5.3.2 Distributed RDataFrame analysis benchmarks reading
data from DAOS

A second series of tests evaluate the performance of run-

ning an RDataFrame analysis on top of RNtuple data

cached in DAOS. The LHCb benchmark described in

Sect. 5.2 is executed in a Python application with the dis-

tributed RDataFrame tool. This allows to parallelise the

analysis both on all the cores of a single machine and on

multiple nodes, all with the same application. Furthermore,

while the user code is written in Python, this is just used as

an interface language and each task is actually running

C?? computations through RDataFrame. Within the test,

the dataset is split into multiple RNTuple objects stored in

DAOS. Then, one task is defined to run the analysis on a

single RNTuple in its own Python process. In general, for

any given number of cores used in the following tests, there

are as many Python processes and as many RNTuple

objects stored in DAOS.

At runtime, the application is monitored with a timer

that is used to compute the processing throughput (that

includes time spent reading and time spent in the compu-

tations). 72% of the total dataset is read and processed,

roughly 904 GB. The processing throughput is then com-

puted dividing the processed dataset size by the execution

time. Figures 4 and 5 both show the absolute value of the

processing throughput (with increasing amount of cores

either with a single node or multiple nodes) and the value

relative to one core for the single-node case or one node for

the multi-node case.

The following results are representative of tests where

the application processes are pinned to run on either

NUMA domain of the node. The backend of distributed

RDataFrame is set up such that there are two executor

services running on the node, one that will accept and

process tasks running on the first NUMA domain, the other

running its tasks on the second NUMA domain.

Figure 4 shows the throughput obtained by running the

application on one node, with an increasing amount of

cores up to 16 (8 physical cores per NUMA domain). In

particular, Fig. 4a shows the absolute processing through-

put on a single node with increasing amount of cores. Here

it can be seen that this tool is able to reach a peak pro-

cessing throughput of more than 8 GB/s on one computing

node. Figure 4b instead reports relative speedup on one

node, which in this case is almost perfectly linear. In both

images, up until 8 cores the test is using one of the NUMA

domains on the node. When more than 8 cores are used, 8

of them are pinned to run on the first NUMA domain of the

node, while the remaining are pinned on the second NUMA

domain, to factor out NUMA effects.

The same analysis is then scaled to multiple nodes. In

this scenario, presented in Fig. 5a, the peak processing

throughput achieved is 37 GB/s, while the speedup plot in

Fig. 5b shows a plateau when more than five nodes are

being used.

Table 1 Runtime metrics of tests reading an RNTuple dataset

Read location Repetitions Average (ms) Error (ms)

SSD 50 3694 7

SSD (while caching) 50 5606 5

DAOS 50 600 7

Cluster Computing

123

5.3.3 Distributed RDataFrame analysis benchmarks reading
data from Lustre

The same physics analysis is then run on the cluster that

uses the Lustre shared filesystem for data access. In this

case, the traditional ROOT I/O system using TTree is put

to the test with a file-based storage system. The LHCb

benchmark described in Sect. 5.2 is executed in a Python

application with the distributed RDataFrame tool. The

same dataset with the same size described in Sect. 5.2 is

processed, with the only difference being that it is stored in

the TTree data format instead of RNTuple.

Fig. 4 Processing throughput (i.e. reading the dataset and running

analysis computations on it) of a distributed RDataFrame analysis on

a single node of the DAOS cluster. a Real throughput values

compared with a linear throughput increase obtained by multiplying

the throughput on one core by the number of cores on the x axis.

b Speedup obtained by scaling the analysis to multiple cores on the

node

Fig. 5 Processing throughput (i.e. reading the dataset and running

analysis computations on it) of a distributed RDataFrame analysis on

multiple nodes of the DAOS cluster (using 16 cores per node). a Real

throughput values compared with a linear throughput increase

obtained by multiplying the throughput on one node by the number

of nodes on the x axis. b Speedup obtained by scaling the analysis to

multiple nodes of the cluster

Cluster Computing

123

One other difference in this case is that the TTree I/O,

being more mature than RNTuple, already implements a

way to read only a group of rows from a certain dataset

when requested. Thus, the distributed RDataFrame tool is

already capable of automatically splitting the user-provided

dataset specification (i.e. the list of files to be processed)

into multiple tasks, each containing a range of entries to

process. When a task reaches a computing node, it will

automatically create a local RDataFrame and open a

TTree-based dataset reading only the entries supplied in the

task metadata.

Figure 6 shows the throughput obtained by running the

application on an increasing number of nodes of the clus-

ter, in order to recreate as closely as possible the same

configuration used in the tests described in Sect. 5.3.2. In

particular, from one to seven computing nodes are

requested to the Slurm resource manager, with exclusive

access in order to avoid unpredictable CPU load from other

users of the cluster. On each node, the benchmark requests

exactly 16 physical cores. Each core will be assigned with

one task, that will read a portion of the dataset as described

above from the Lustre filesystem.

In Fig. 6a, the processing throughput obtained on an

average of 10 benchmark runs per node count is compared

with a linear throughput increase obtained by multiplying

the value at the 1-node mark by the number of nodes on the

x axis. The maximum throughput achieved is 13.3 GB/s.

Figure 6b reports the speedup of running the analysis on

multiple nodes relative to one node, comparing it with a

linear speedup. The figure shows a perfect alignment

between the two lines until the 4-node count, with a slight

decrease in real speedup when using more nodes.

5.4 Discussion

Adding a new caching mechanism to a complex library

such as ROOT requires careful design, both for usability

and performance purposes. The proposed design is com-

pletely transparent to the user, who still only has to pro-

gram their analysis through the RDataFrame high-level

API. Drawing inspiration from the flexibility offered by the

RNTuple layers described in Sect. 3, the caching system is

injected in the I/O pipeline and can run completely in

parallel with respect to the other operations issued to the

underlying storage. The developed cache is backend-in-

dependent, thus enabling reading and writing RNTuple

objects from/to any of the supported storage backends. This

approach is the most sustainable in a field such as HEP,

where large datasets can be stored in many different

facilities around the world, each one with their own storage

architecture.

In this work, the cache was exercised at different levels.

At first, a physics dataset was either stored on an SSD or

cached to DAOS with the developed tool. The results in

Table 1 are promising for the caching mechanism. When

caching data that is being read from the local SSD of a

node, it is expected to have some overhead. But the speed

gained when reading from the DAOS cache more than

Fig. 6 Processing throughput (i.e. reading the dataset and running

analysis computations on it) of a distributed RDataFrame analysis on

multiple nodes of the cluster with the Lustre filesystem (using 16

cores per node). a Real throughput values compared with a linear

throughput increase obtained by multiplying the throughput on one

node by the number of nodes on the x axis. b Speedup obtained by

scaling the analysis to multiple nodes of the cluster

Cluster Computing

123

compensates this overhead. It is also worth highlighting

that the main use case for such a tool is when the dataset is

still in a remote location. In fact, the same dataset used in

these tests and the following ones was originally stored at

CERN and downloaded locally on the cluster. The time to

download the dataset was not included in Table 1, but it is

safe to state that long-distance network I/O does not

achieve the same reading speeds as a local SSD.

The following results presented in Sect. 5.3.2 demon-

strate the capabilities of the distributed RDataFrame tool

used in conjunction with the new storage layer offered by

RNTuple and its DAOS backend. In this case the dataset

was replicated to reach a size of more than 1 TB, in order

to give enough workload to the computing nodes. This was

chosen in accordance with the usual dataset size for an

LHC Run 2 analysis, which is in the order of one to a few

tens of Terabytes.

On the DAOS cluster, the analysis reached a peak pro-

cessing speed value of 8 GB/s and 37 GB/s respectively

with one node and seven nodes. Comparing these numbers

with the maximum bandwidths described in Sect. 5.1.1

reveals that the peak processing throughput on one node is

equal to 40% of the maximum reading throughput, while

the peak processing throughput on seven nodes is equal to

74% of the maximum reading throughput of the whole

cluster. It must be noted that the processing throughput

numbers include all the steps of the analysis: opening the

RNTuple objects, reading the data, bringing it to the

RDataFrame processing layer and running the computa-

tions defined in the analysis application. Thus, this first

result is promising considering that the HEP analysis are

I/O bound. The scaling shown is close to ideal on one node

with processes pinned to either NUMA domain, less than

ideal when using multiple nodes. In light of these results, it

appears that the current implementation of the RNTuple

DAOS backend needs to be further improved in order to

saturate the full bandwidth of the cluster.

The results obtained on the DAOS cluster can be com-

pared with the benchmarks shown in Sect. 5.3.3, which

involve running the same analysis on another cluster that

uses the Lustre filesystem. The comparison, while not done

on exactly the same hardware because the DAOS cluster

does not provide a Lustre filesystem, is still representative

of the advantages offered to ROOT by a low-latency high-

bandwidth object store like DAOS. The Lustre cluster also

uses Infiniband interfaces like the DAOS cluster. All the

same, the results presented in Fig. 6 show an overall worse

performance of the analysis. It should be considered that

the slope of the speedup is better in this case, almost

aligned to a linear speedup all the way up to seven nodes.

This is due to TTree being a much more mature I/O system

than RNTuple, especially considering the RNTuple inter-

action with DAOS. In fact, file-based I/O in ROOT dates

back to its very beginning in 1995. In spite of this differ-

ence in maturity between the two I/O systems, RNTuple

with DAOS is able to achieve an almost three times higher

processing throughput than TTree with Lustre at the

moment. This demonstrates the potential gain of exploiting

a high-throughput system such as DAOS as a data source

for HEP analysis in ROOT with RNtuple, compared with a

traditional file-based approach with TTree, even when the

latter is supported by a first-class parallel filesystem that is

currently used by most of the top supercomputers in the

world [37].

6 Conclusions

This paper has demonstrated how object stores can be used

to speed up real HEP analysis use cases, achieving an

unprecedented processing throughput in single-node and

multi-node parallel analysis execution.

A first native caching mechanism for the future I/O

system in ROOT has been developed. The machinery is

independent of the storage backend used, so that it is

possible to run an application that transparently reads a

remote dataset from a POSIX filesystem and writes it to an

object store. This opens the door to previously unavailable

fast storage systems to cache HEP data in an analysis

environment. Furthermore, the generality of this machinery

paired with the efficient design of RNTuple could poten-

tially cater to data storage needs of other fields and use

cases.

The caching system was put to the test in a fast object

store such as Intel DAOS. When running a simple appli-

cation that reads a remote file and caches it to DAOS, the

overhead present while caching the dataset the first time it

is being read is highly compensated by the much faster read

speed obtained with DAOS. When pairing RNTuple with

the RDataFrame analysis interface, very high read and

processing throughput values were achieved on one node.

Distributed RDataFrame allowed making better use of the

available cluster resources, reaching a peak processing

throughput of 37 GB/s on seven nodes (16 cores per node).

A comparison was performed by testing the selected phy-

sics analysis with distributed RDataFrame processing a

TTree dataset stored on a Lustre filesystem, using the tra-

ditional ROOT I/O system. This resulted in a 2.8 times

lower processing throughput, peaking at 13.3 GB/s with

the same number of nodes and cores used in the DAOS

benchmarks.

Acknowledgements This work benefited from the support of the

CERN Strategic R &D Programme on Technologies for Future

Experiments [1] and from grant PID2020-113656RB-C22 funded by

Ministerio de Ciencia e Innovación MCIN/AEI/10.13039/

501100011033. The hardware used to perform the experimental

Cluster Computing

123

evaluation involving DAOS (HPE Delphi cluster described in

Sect. 5.2) was made available thanks to a collaboration agreement

with Hewlett-Packard Enterprise (HPE) and Intel. User access to the

Virgo cluster at the GSI institute was given for the purpose of running

the benchmarks using the Lustre filesystem.

Author contributions The following statement is based on CRediT

taxonomy, giving contributions of each author in the work: VEP:

Conceptualization, Investigation, Writing—original draft, Software,

Methodology. ETS: Conceptualization, Supervision, Writing—review

and editing, Validation. PA-J: Supervision, Writing—review and

editing, Validation. JLG: Conceptualization, Writing—original draft,

Software. JB: Conceptualization, Resources

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. The authors have not disclosed any

funding.

Data availability The original physics analysis used in the bench-

marks shown in Sect. 5 is available at http://opendata.cern.ch/record/

4902 and its related dataset at http://opendata.cern.ch/record/4900.

All the code to augment the original dataset, process the benchmarks

and visualize the results is available in the public repository: https://

github.com/vepadulano/rdf-rntuple-daos-tests. The implementation of

the caching system demonstrated in this work is available at https://

github.com/vepadulano/root/tree/rntuple-cache-release-v2.

Declarations

Conflict of interest The authors declare no conflict of interest in the

development of this work.

Informed consent No informed consent is thus required.

Research involving human rights This work involved no human

subjects.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Aleksa, M., Blomer, J., Cure, B., et al.: Strategic R &D Pro-

gramme on Technologies for Future Experiments. Tech. rep,

CERN, Geneva (2018)

2. Altenmüller, K., Cebrián, S., Dafni, T., et al.: REST-for-Physics,

a ROOT-based framework for event oriented data analysis and

combined Monte Carlo response. Comput. Phys. Commun.

273(108), 281 (2022). https://doi.org/10.1016/j.cpc.2021.108281

3. Amazon Amazon Simple Storage Service Documentation. https://

docs.aws.amazon.com/s3/. Accessed 1 Feb 2022 (2021)

4. Andreozzi, S., Magnoni, L., Zappi, R.: Towards the integration of

StoRM on Amazon Simple Storage Service (S3). J. Phys. 119(6),
062011 (2008). https://doi.org/10.1088/1742-6596/119/6/062011

5. Apollinari, G., Béjar Alonso, I., Brüning, O. et al: High-lumi-

nosity large Hadron Collider (HL-LHC): Technical Design

Report V. 0.1. Tech. rep., CERN, (2017) https://doi.org/10.

23731/CYRM-2017-004

6. Arsuaga-Rı́os, M., Heikkilä, S.S., Duellmann, D., et al.: Using S3

cloud storage with ROOT and CvmFS. J. Phys. 664(2), 022001
(2015). https://doi.org/10.1088/1742-6596/664/2/022001

7. Badino, P., Barring, O., Baud, J.P., et al: The Storage Resource

Manager Interface Specification (v2.2). (2009) https://sdm.lbl.

gov/srm-wg/doc/SRM.v2.2.html

8. Bevilacqua, G., Bi, H.Y., Hartanto, H.B., et al.: �tt �bb at the LHC:

on the size of corrections and b-jet definitions. J. High Energy

Phys. 8, 1–37 (2021). https://doi.org/10.1007/JHEP08(2021)008

9. Bird, I.: Computing for the Large Hadron Collider. Annu. Rev.

Nucl. Particle Sci. 61(1), 99–118 (2011). https://doi.org/10.1146/

annurev-nucl-102010-130059

10. Birrittella, M.S., Debbage, M., Huggahalli, R., et al: Intel omni-

path architecture: enabling scalable, high performance fabrics. In:

2015 IEEE 23rd Annual Symposium on High-Performance

Interconnects, pp 1–9 (2015) https://doi.org/10.1109/HOTI.2015.

22

11. Blomer, J., Canal, P., Naumann, A., et al: Evolution of the ROOT

Tree I/O. In: 24th International Conference on Computing in

High Energy and Nuclear Physics (CHEP 2019), (2020) https://

doi.org/10.1051/epjconf/202024502030

12. Braam, P.: The Lustre Storage Architecture. (2019) https://arxiv.

org/abs/1903.01955

13. Brun, R., Rademakers, F.: ROOT—an object oriented data

analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A

389(1), 81–86 (1997). https://doi.org/10.1016/S0168-

9002(97)00048-X

14. Calder, B., Wang, J., Ogus, A. et al.: Windows Azure Storage: a

highly available cloud storage service with strong consistency. In:

Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles. Association for Computing Machinery, New

York, NY, USA, SOSP ’11, pp. 143–157, (2011) https://doi.org/

10.1145/2043556.2043571

15. Carrier, J.: Disrupting high performance storage with intel DC

persistent memory & DAOS. In: IXPUG 2019 Annual Confer-

ence at CERN. (2019) https://cds.cern.ch/record/2691951

16. Charbonneau, A., Agarwal, A., Anderson, M., et al.: Data

intensive high energy physics analysis in a distributed cloud.

J. Phys. 341(012), 003 (2012). https://doi.org/10.1088/1742-

6596/341/1/012003

17. Dai, D., Chen, Y., Kimpe, D., et al.: Provenance-based prediction

scheme for object storage system in HPC. In: 2014 14th IEEE/

ACM International Symposium on Cluster, Cloud and Grid

Computing, pp. 550–551, (2014) https://doi.org/10.1109/CCGrid.

2014.27

18. DAOS developers (2022) Caching. https://docs.daos.io/v2.0/user/

filesystem/#caching. Accessed 30 July 2022

19. Din, I.U., Hassan, S., Almogren, A., et al.: PUC: packet update

caching for energy efficient IoT-based information-centric net-

working. Future Gener. Comput. Syst. 111, 634–643 (2020).

https://doi.org/10.1016/j.future.2019.11.022

20. Dorigo, A., Elmer, P., Furano, F., et al.: XROOTD—a highly

scalable architecture for data access. WSEAS Trans. Comput. 4,
348–353 (2005)

21. Elsen, E.: A roadmap for HEP software and computing R &D for

the 2020s. Comput. Softw. Big Sci. (2019). https://doi.org/10.

1007/s41781-019-0031-6

Cluster Computing

123

http://opendata.cern.ch/record/4902
http://opendata.cern.ch/record/4902
http://opendata.cern.ch/record/4900
https://github.com/vepadulano/rdf-rntuple-daos-tests
https://github.com/vepadulano/rdf-rntuple-daos-tests
https://github.com/vepadulano/root/tree/rntuple-cache-release-v2
https://github.com/vepadulano/root/tree/rntuple-cache-release-v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cpc.2021.108281
https://docs.aws.amazon.com/s3/
https://docs.aws.amazon.com/s3/
https://doi.org/10.1088/1742-6596/119/6/062011
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1088/1742-6596/664/2/022001
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://doi.org/10.1007/JHEP08(2021)008
https://doi.org/10.1146/annurev-nucl-102010-130059
https://doi.org/10.1146/annurev-nucl-102010-130059
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1051/epjconf/202024502030
https://arxiv.org/abs/1903.01955
https://arxiv.org/abs/1903.01955
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/2043556.2043571
https://cds.cern.ch/record/2691951
https://doi.org/10.1088/1742-6596/341/1/012003
https://doi.org/10.1088/1742-6596/341/1/012003
https://doi.org/10.1109/CCGrid.2014.27
https://doi.org/10.1109/CCGrid.2014.27
https://docs.daos.io/v2.0/user/filesystem/#caching
https://docs.daos.io/v2.0/user/filesystem/#caching
https://doi.org/10.1016/j.future.2019.11.022
https://doi.org/10.1007/s41781-019-0031-6
https://doi.org/10.1007/s41781-019-0031-6

22. Hanushevsky, A., Ito, H., Lassnig, M., et al.: Xcache in the atlas

distributed computing environment. EPJ Web Conf. 214, 04008
(2019). https://doi.org/10.1051/epjconf/201921404008

23. ISO Central Secretary (2014) Information technology—Proce-

dures for the operation of object identifier registration authori-

ties—Part 8: Generation of universally unique identifiers

(UUIDs) and their use in object identifiers. Standard ISO/IEC

9834-8:2014, International Organization for Standardization,

Geneva, CH, https://www.iso.org/standard/62795.html

24. Jette, M., Dunlap, C., Garlick, J. et al.: Slurm: simple linux utility

for resource management. Tech. rep., LLNL, (2002) https://www.

osti.gov/biblio/15002962

25. Kang, G., Kong, D., Wang, L., et al.: OStoreBench: bench-

marking distributed object storage systems using real-world

application scenarios. In: Wolf, F., Gao, W. (eds.) Benchmarking,

Measuring, and Optimizing, pp. 90–105. Springer International

Publishing, Cham (2021)

26. LHCb Collaboration (2017) Matter antimatter differences (b

meson decays to three hadrons)—project notebook. http://open

data.cern.ch/record/4902. Accessed 1 Feb 2022

27. Liang, Z., Lombardi, J., Chaarawi, M., et al.: DAOS: a scale-out

high performance storage stack for storage class memory. In:

Panda, D.K. (ed.) Supercomputing Frontiers, pp. 40–54. Springer

International Publishing, Cham (2020)

28. Liu, J., Koziol, Q., Butler, G.F. et al.: Evaluation of HPC appli-

cation I/O on object storage systems. In: 2018 IEEE/ACM 3rd

International Workshop on Parallel Data Storage Data Intensive

Scalable Computing Systems (PDSW-DISCS), pp. 24–34 (2018)

https://doi.org/10.1109/PDSW-DISCS.2018.00005

29. Lombardi, J.: DAOS: Nextgen Storage Stack for AI, Big Data

and Exascale HPC. CERN openlab Technical Workshop. (2021)

https://cds.cern.ch/record/2754116

30. López-Gómez, J., Blomer, J.: Exploring object stores for high-

energy physics data storage. EPJ Web Conf. 251(02), 066 (2021).

https://doi.org/10.1051/epjconf/202125102066

31. Matri, P., Alforov, Y., Brandon, A. et al.: Could blobs fuel

storage-based convergence between HPC and big data? In: 2017

IEEE International Conference on Cluster Computing (CLUS-

TER), pp. 81–86, (2017) https://doi.org/10.1109/CLUSTER.

2017.63

32. Mu, J., Soumagne, J., Tang, H. et al.: A transparent server-

managed object storage system for HPC. In: 2018 IEEE Inter-

national Conference on Cluster Computing (CLUSTER),

pp. 477–481, (2018) https://doi.org/10.1109/CLUSTER.2018.

00063

33. Padulano, V.E., Cervantes Villanueva, J., Guiraud, E., et al.:

Distributed data analysis with ROOT RDataFrame. EPJ Web

Conf. 245(03), 009 (2020). https://doi.org/10.1051/epjconf/

202024503009

34. Padulano, V.E., Tejedor Saavedra, E., Alonso-Jordá, P.: Fine-

grained data caching approaches to speedup a distributed RDa-

taFrame analysis. EPJ Web Conf. 251(02), 027 (2021). https://

doi.org/10.1051/epjconf/202125102027

35. Panda, D.K., Sur, S.: InfiniBand. Springer, Boston, pp. 927–935.

(2011) https://doi.org/10.1007/978-0-387-09766-4_21

36. Piparo, D., Canal, P., Guiraud, E., et al.: RDataFrame: easy

parallel ROOT analysis at 100 threads. EPJ Web Conf. 214(06),
029 (2019). https://doi.org/10.1051/epjconf/201921406029

37. Plechschmidt, U.: Lustre expands its lead in the Top 100 super-

computers. https://community.hpe.com/t5/Advantage-EX/Lustre-

expands-its-lead-in-the-Top-100-supercomputers/ba-p/7141807#.

YukqZUhByXJ. Accessed 2 August 2022 (2021)

38. ROOT team (2021) RNTuple class reference guide. https://root.

cern.ch/doc/master/structROOT_1_1Experimental_1_1RNTuple.

html. Accessed 1 Feb 2022

39. ROOT team (2021) TTree class reference guide. https://root.cern.

ch/doc/master/classTTree.html. Accessed 1 Feb 2022

40. Rupprecht, L., Zhang, R., Hildebrand, D.: Big data analytics on

object stores : a performance study. In: The International Con-

ference for High Performance Computing, Networking, Storage

and Analysis (SC’14) (2014)

41. Rupprecht, L., Zhang, R., Owen, B. et al.: SwiftAnalytics: opti-

mizing object storage for big data analytics. In: 2017 IEEE

International Conference on Cloud Engineering (IC2E),

pp. 245–251. https://doi.org/10.1109/IC2E.2017.19 (2017)

42. Seiz, M., Offenhäuser, P., Andersson, S., et al.: Lustre I/O per-

formance investigations on Hazel Hen: experiments and heuris-

tics. J. Supercomput. 77, 12508–12536 (2021). https://doi.org/10.

1007/s11227-021-03730-7

43. Shin, H., Lee, K., Kwon, H.: A comparative experimental study

of distributed storage engines for big spatial data processing using

GeoSpark. J. Supercomput. 78, 2556–2579 (2022). https://doi.

org/10.1007/s11227-021-03946-7

44. Soumagne, J., Henderson, J., Chaarawi, M., et al.: Accelerating

HDF5 I/O for exascale using DAOS. IEEE Trans. Parallel Dis-

trib. Syst. 33(4), 903–914 (2022). https://doi.org/10.1109/TPDS.

2021.3097884

45. Spiga, D., Ciangottini, D., Tracolli, M., et al.: Smart caching at

CMS: applying AI to XCache edge services. EPJ Web Conf. 245,
04024 (2020). https://doi.org/10.1051/epjconf/202024504024

46. Tang, H., Byna, S., Tessier, F. et al.: Toward scalable and

asynchronous object-centric data management for HPC. In: 2018

18th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), pp. 113–122 (2018) https://doi.org/

10.1109/CCGRID.2018.00026

47. Tannenbaum, T., Wright, D., Miller, K., et al.: Condor—a dis-

tributed job scheduler. In: Sterling, T. (ed.) Beowulf Cluster

Computing with Linux. MIT Press, New York (2001)

48. The ATLAS Collaboration, Aad, G., Abat, E., et al.: The ATLAS

experiment at the CERN large Hadron Collider. J. Instrum. 3(08),
S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/s08003

49. The LHCb collaboration: angular analysis of the rare decay

B0
s ! /lþl�. J. High Energy Phys. (2021). https://doi.org/10.

1007/JHEP11(2021)043

50. The LHCb Collaboration, Alves, A.A., Andrade, L.M., et al.: The

LHCb Detector at the LHC. JINST 3, S08,005 (2008). https://doi.

org/10.1088/1748-0221/3/08/S08005 , also published by CERN

Geneva in 2010

51. Vernik, G., Factor, M., Kolodner, E.K. et al.: Stocator: a high

performance object store connector for spark. In: Proceedings of

the 10th ACM International Systems and Storage Conference.

Association for Computing Machinery, New York, NY, USA,

SYSTOR ’17, (2017) https://doi.org/10.1145/3078468.3078496

52. Vincenzo Eduardo Padulano: Test suite repository. (2021) https://

github.com/vepadulano/rdf-rntuple-daos-tests. Accessed 1 Feb

2022

53. Virgo Cluster: User Manual. (2022) https://hpc.gsi.de/virgo/pre

face.html. Accessed 2 Aug 2022

54. Vohra, D.: Apache Parquet, Apress, Berkeley, CA, pp. 325–335.

(2016) https://doi.org/10.1007/978-1-4842-2199-0_8

55. Walker, C.J., Traynor, D.P., Martin, A.J.: Scalable Petascale

storage for HEP using Lustre. J. Phys. 396(4), 042063 (2012).

https://doi.org/10.1088/1742-6596/396/4/042063

56. Zhong, J., Huang, R.S., Lee, S.C.: A program for the Bayesian

Neural Network in the ROOT framework. Comput. Phys. Com-

mun. 182(12), 2655–2660 (2011). https://doi.org/10.1016/j.cpc.

2011.07.019

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing

123

https://doi.org/10.1051/epjconf/201921404008
https://www.iso.org/standard/62795.html
https://www.osti.gov/biblio/15002962
https://www.osti.gov/biblio/15002962
http://opendata.cern.ch/record/4902
http://opendata.cern.ch/record/4902
https://doi.org/10.1109/PDSW-DISCS.2018.00005
https://cds.cern.ch/record/2754116
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1109/CLUSTER.2017.63
https://doi.org/10.1109/CLUSTER.2017.63
https://doi.org/10.1109/CLUSTER.2018.00063
https://doi.org/10.1109/CLUSTER.2018.00063
https://doi.org/10.1051/epjconf/202024503009
https://doi.org/10.1051/epjconf/202024503009
https://doi.org/10.1051/epjconf/202125102027
https://doi.org/10.1051/epjconf/202125102027
https://doi.org/10.1007/978-0-387-09766-4_21
https://doi.org/10.1051/epjconf/201921406029
https://community.hpe.com/t5/Advantage-EX/Lustre-expands-its-lead-in-the-Top-100-supercomputers/ba-p/7141807#.YukqZUhByXJ
https://community.hpe.com/t5/Advantage-EX/Lustre-expands-its-lead-in-the-Top-100-supercomputers/ba-p/7141807#.YukqZUhByXJ
https://community.hpe.com/t5/Advantage-EX/Lustre-expands-its-lead-in-the-Top-100-supercomputers/ba-p/7141807#.YukqZUhByXJ
https://root.cern.ch/doc/master/structROOT_1_1Experimental_1_1RNTuple.html
https://root.cern.ch/doc/master/structROOT_1_1Experimental_1_1RNTuple.html
https://root.cern.ch/doc/master/structROOT_1_1Experimental_1_1RNTuple.html
https://root.cern.ch/doc/master/classTTree.html
https://root.cern.ch/doc/master/classTTree.html
https://doi.org/10.1109/IC2E.2017.19
https://doi.org/10.1007/s11227-021-03730-7
https://doi.org/10.1007/s11227-021-03730-7
https://doi.org/10.1007/s11227-021-03946-7
https://doi.org/10.1007/s11227-021-03946-7
https://doi.org/10.1109/TPDS.2021.3097884
https://doi.org/10.1109/TPDS.2021.3097884
https://doi.org/10.1051/epjconf/202024504024
https://doi.org/10.1109/CCGRID.2018.00026
https://doi.org/10.1109/CCGRID.2018.00026
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1007/JHEP11(2021)043
https://doi.org/10.1007/JHEP11(2021)043
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1145/3078468.3078496
https://github.com/vepadulano/rdf-rntuple-daos-tests
https://github.com/vepadulano/rdf-rntuple-daos-tests
https://hpc.gsi.de/virgo/preface.html
https://hpc.gsi.de/virgo/preface.html
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1088/1742-6596/396/4/042063
https://doi.org/10.1016/j.cpc.2011.07.019
https://doi.org/10.1016/j.cpc.2011.07.019

Vincenzo Eduardo Padulano
Doctoral student at CERN in the

Software Development for

Experimentsgroup and enrolled

in a Computer Science Ph.D.

program at UniversitatPolitec-

nica de Valencia. Member of

the team in charge of mantain-

ing anddeveloping ROOT, the

most commonly used software

for High Energy Physics(HEP)

analysis. Currently researching

and developing distributedcom-

puting solutions aimed at filling

the needs of the HL-LHC sci-

entificprogram. Obtained a B.Sc. In Physics with a thesis on com-

putationalsimulations of a PET scanner and a M.Sc. In Data Science

with a thesisdeveloped at CERN on blending state-of-the-art software

and techniquesfrom the data science community (namely Spark and

Kubernetes) with ROOTanalysis.Doctoral student at CERN in the

Software Development for Experimentsgroup and enrolled in a

Computer Science PhD program at UniversitatPolitecnica de Valen-

cia. Member of the team in charge of mantaining anddeveloping

ROOT, the most commonly used software for High Energy Physic-

s(HEP) analysis. Currently researching and developing distributed-

computing solutions aimed at filling the needs of the HL-LHC

scientificprogram. Obtained a B.Sc. In Physics with a thesis on

computationalsimulations of a PET scanner and a M.Sc. In Data

Science with a thesisdeveloped at CERN on blending state-of-the-art

software and techniquesfrom the data science community (namely

Spark and Kubernetes) with ROOTanalysis.

Enric Tejedor Saavedra received

his Ph.D. from the Technical

University ofCatalonia(UPC,

Spain) in 2013. He conducted

his doctorate research as a

member oftheGrid Computing

and Clusters group of the Bar-

celona Supercomputing Cen-

ter,wherehis researched focused

on parallel programming mod-

els for distributedinfrastructures

and where he participated in

several EU researchprojects.

Aspart of his Ph.D., he also

carried out two nternships at the

IBM T.J.WatsonResearch Center (NY, USA). In 2015 he joined the

CERN EP-SFT group as aseniorfellow and later became a staff

member. He is currently working on ROOTparallelization, the ROOT

Python bindings and the SWAN service. He isalso oneof the

administrators of the Google Summer of Code student program

(GSoC)atCERN-HEP Software Foundation.

Pedro Alonso-Jordá received the

bachelor (1994) and Ph.D.

(2003) degreesinComputer Sci-

ence from Universitat Poli-

tècnica de València. He has

beendeveloping his academic

activity since 1996 at this uni-

versity, wherecurrentlyis Full

Professor. His research field is

in High Performance Comput-

ingbeing themain research areas

heterogeneous parallel comput-

ing and energy awarecomput-

ing.He currently is director of

the Master’s degree in Cloud

and High-Performance Computing.

Javier López Gómez is a com-

puter scientist from University

Carlos III of Madrid.During the

last few years, his focus has

been on low-level software

(e.g.operating systems, embed-

ded software and electronics,

and compilers). Hewill finish his

PhD in October 2020. His thesis

is focused on providingtech-

niques that improve software

reliability while achieving a

goodtrade-off between reliabil-

ity and performance. During his

PhD, hecollaborated with the

ROOT project; specifically, he worked on supportingentity redefini-

tion on the Cling C?? interpreter. He joined EP-SFT againas a fel-

low in September 2020, where he will work on improving

ROOT’sRNtuple storage layer.

Jakob Blomer joined CERN for

the first time as a summer stu-

dent in 2007. Hegraduated from

the University of Karlsruhe and

obtained a Ph.D. in computer-

science from the Technical

University of Munich. Jakob

works ondistributed systems and

storage software. He created the

CernVM FileSystem, which he

evolves ever since. Jakob has

been a Marie Curie fellowand a

visiting scholar at the RAM-

Cloud research group at Stan-

fordUniversity. In the ROOT

team, Jakob works on the columnar data storagefor event data,

searching for ever faster and more robust ways to readand write

hierarchically nested ntuples.

Cluster Computing

123

	A caching mechanism to exploit object store speed in High Energy Physics analysis
	Abstract
	Introduction
	Related work
	Background
	Intel DAOS
	ROOT I/O
	ROOT RDataFrame

	Design of the caching system
	Integration within RNTuple
	Optimisations for HEP use cases
	Interaction of the caching system with DAOS

	Experiments
	Testbed specification
	DAOS cluster
	Lustre cluster

	Methodology
	Results
	Caching RNTuple to DAOS
	Distributed RDataFrame analysis benchmarks reading data from DAOS
	Distributed RDataFrame analysis benchmarks reading data from Lustre

	Discussion

	Conclusions
	Acknowledgements
	Author contributions
	Data availability
	References

