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Abstract- The mmWave frequencies will be widely used in future 
vehicular communications. At these frequencies, the radio 
channel becomes much more vulnerable to slight changes in the 
environment like motions of the device, reflections or blockage. In 
high mobility vehicular communications the rapidly changing 
vehicle environments and the large overheads due to frequent 
beam training are the critical disadvantages in developing these 
systems at mmWave frequencies. Hence, smart beam 
management procedures are desired to establish and maintain the 
radio channels. In this paper, we propose that using the positions 
and respective velocities of the vehicles in the dynamic selection 
of the beam pair, and then adapting to the changing environments 
using ML algorithms, can improve both network performance 
and communication stability in high mobility vehicular 
communications.  

I. INTRODUCTION 

Waves propagating in the mmWave band suffer from 
increased path loss and severe channel intermittency, and even 
changing the orientation of the vehicles relative to the base 
station can lead to a rapid drop in signal strength [1]. To deal 
with these impairments, vehicular networks must be provided 
by a set of mechanisms in which Vehicle to Infrastructure 
(V2I) radio channels are established by high-directional 
transmission links typically using high-dimensional phased 
arrays to benefit from the resulting beamforming gain and to 
maintain acceptable communication quality. These directional 
radio links require precise alignment of the transmitter and 
receiver beams, which is achieved through a series of 
operations known as beam management procedures. They are 
essential to perform various control tasks including (i) Initial 
access (IA) [2] for inactive users, which allows vehicles to 
establish a physical link connection with the Infrastructure, and 
(ii) Beam tracking for connected users [3], which enables beam 
adjustment schemes and can trigger handover procedures, 
route selection and recovery of radio link failures. However, 
directionality can significantly delay access procedures and 
make performance sensitive to beam alignment. These are 
particularly important issues in vehicular networks and 
motivate the need to extend current practices to innovative 
smart beam management methods using machine learning 
algorithms. 

II. 5G FRAME STRUCTURE FOR TRACKING UE 
The cell search is a process on the User Equipment (UE) 

side that is responsible for finding cells around the location of 
the UE. This is done thanks to the processing of the so-called 
Synchronization Signal block (SSB), a structure that consists 
of a Primary synchronization signal (PSS), a Secondary 
synchronization signal (SSS), and finally Physical broadcast 
channel (PBCH) blocks. The SSB’s are grouped into the first 
5 ms of an SS burst [4] and are transmitted by a gNodeB (gNB) 
with a configurable periodicity TSS [5]  with 
{5,10,20,40,80,160}ms intervals. Moreover, UE assumes a 
default periodicity of 20ms [6] during initial cell search or idle 
mode mobility. Fig. 1 shows the time and frequency structure 
of an SSB. Note that time and frequency are defined in terms 
of OFDM symbols and subcarriers. In a slot of 14 symbols, 
there are two possible locations for SSB’s: symbols 2–5 and 
symbols 8–11.  

 

 
 

Fig. 1. SSB frame structure 

The maximum number of SSB’s (NSSB) in a burst is 
frequency-dependent and is configured between NSSB{4,8,64} 
[6] and at mm-wave frequencies, there could be up to 64 blocks 
per burst. When considering frequencies for which beam 
operations are required, each SSB can be mapped to a certain 
angular direction which reduces UE’s processing power/time 



  

 

for cell search. And the subcarrier spacings (SCS) associated 
with each band are clearly defined by 3GPP. The SSB’s occupy 
20 Resource Blocks (RB) and there are 12 subcarriers in each 
RB, so there are a total of 240 subcarriers. Hence, the 
bandwidth occupied by a single SSB is 240 times the SCS. At 
mmWave frequencies, SCS considered for IA are 120 and 240 
kHz, thus out of 400 MHz per carrier  (total channel bandwidth 
(BW)), the bandwidth reserved for the SSB's would be 
respectively 28.8 MHz and 57.6 MHz [3] respectively. Given 
that 240 subcarriers are allocated in frequency to an SSB, the 
remaining bandwidth in the symbols which contain an SSB 
is	BW − 240 × SCS. Therefore, it is possible to either allocate 
the remaining bandwidth as shown in Fig. 2 for data 
transmission towards users or the information in the first 240 
subcarriers i.e SSB is repeated in the remaining subcarriers to 
enhance the detection capabilities for high mobility users. And 
there are guard band intervals in frequency among the different 
repetitions of the SSB. 
 

 

Fig. 2. Data transmission and SSB Repetition scenarios 

III. EXPENSE OF OVERHEAD ON HIGH MOBILITY VEHICULAR 
TRACKING 

Narrow beams are key to establishing highly directional 
radio links which are desired for mmWave vehicular 
communications. However, they are limited to low mobility 
users, because vehicles moving at high speeds could suffer 
from a precise alignment of transmitter and receiver beams. So, 
to avoid beam pointing errors, the vehicle must always be in 
the radiation footprint (Radft) of the gNB where the Radft is 
expressed as a function of beamwidth and radial or relative 
distance (Rd) as represented in equation 1. 

Rad!" = ∆θ#$%R$           (1) 
 

The gNB estimates the new position of a vehicle every TSS 
period and if the moving vehicle position is correctly estimated 
then it falls in the radiation footprint. Hence, to be correctly 
estimated by gNB, the limits on vehicular velocities (V&'() are 
calculated by equation 2 as a function of radiation footprint and 
SSB burst periodicity.   

V&'( < Rad!"/T))           (2) 
 

Using equation 2 we calculated the maximum limits on 
vehicular velocities for which N{16,32,64} elemental antenna 

array could be able to establish radio channel during IA 
procedure whereby default TSS is 20ms and plotted on Fig. 4. 

 

Fig. 4. Velocity as a function of relative distances, that can be processed by 
different N-elemental arrays during the IA procedure 

Moving from idle to connected mode mobility, if the gNB 
configures SSB burst periodicity of 5ms for better estimating 
the high mobility vehicles, it comes with the expense of high 
overhead. We characterize this overhead(ρ) for IA and beam 
tracking in terms of the ratio between the total time and 
frequency resources Rtotal that are allocated to SSBs with the 
duration of the SSB burst, or the entire TSS interval. 
 

ρ = *!"!#$
+%%%,

            (3) 
 

Where the Rtotal is scheduled for the transmission of NSSB, 
each spanning 4 OFDM symbols and 240 (or multiple of 240) 
subcarriers  
 

R"-"./ = N))%4T0123240N456SCS   (4)  
 

TOFDM is the OFDM symbol time and is expressed in 𝜇s. 
From equation 4 we could observe that overhead varies with 
the number of SSBs per burst (NSSB) and SSB burst 
periodicities (TSS) configured by gNB. Fig. 5 shows the 
increasing NSSB per burst can result in a large overhead.  
 

 
 

Fig. 5. Overhead as a function of NSSB for different SCS and TSS is set to 5ms 



  

 

 

Fig. 6. Overhead as a function of TSS for different SCS and NSSB is set to 64 

Fig. 6 shows the dependency of the overhead for tracking 
procedures with TSS, which follows an inverse proportionality 
law. In particular, for very small TSS (i.e., 5 ms) the impact of 
the SSB’s with repetitions in frequency is massive, with up to 
43% of the resources allocated to the SSB’s. For TSS = 20 ms 
or higher, instead, the overhead is always below 10%. Hence, 
the design and configuration of efficient IA and beam tracking 
procedures are of extreme importance in vehicular networks 
operating at mmWaves. In this paper, we propose that knowing 
the Global Positioning System (GPS) location of vehicles and 
their velocities before they arrival at a cell, can help the gNB 
to decide the beamwidths based on antenna array architectures 
to be used for the completion of the beam sweeping and 
reporting procedures in a single burst, so that it is possible to 
increase TSS (e.g., to 20 or 40 bems), and reduce the overhead. 

IV. NUMERICAL RESULTS 
In this paper, we used a 32x 32 elemental Uniform planar 

array (UPA) to study the beam management procedures in 
different vehicular mobility scenarios and used an open-source 
traffic simulation package called Simulation of Urban Mobility 
(SUMO) for realistic traffic simulation data [7]. The SUMO 
simulation output file consists of the vehicular types (car, bus, 
etc.), their IDs, and respective GPS positions at every time 
step. The simulation gives 45 minutes of traffic data and the 
GPS positions of vehicles are noted every 100 ms. 

  

 

Fig. 7.  Beam Management Zones    

This data is then processed to extract 3 feature vectors. The 
decision boundaries to group the data into different clusters 
were set based on the conditions to reduce the overhead in high 

mobility and to establish directional links in low mobility 
scenarios. These conditions are formulated based on the 
relation between vehicular velocities and their relative 
distances from the base station for a 32x32 UPA as shown in 
Fig.4. and they are defined as follows: 1) Vehicles moving 
closer to base station with high velocities are allocated wide 
beams or lower elemental array configurations 2) Vehicles 
moving at lower speeds are associated with narrow beams or 
higher array configurations and finally 3) Vehicles entering 
from acute left or right to the base station are assigned with a 
cosecant pattern as shown in Fig.8 which have small secondary 
lobes towards ground, so the errors from the ground reflection 
are minimized.  

 

Fig. 8.  Cosecant Pattern 

 

Fig. 9.  3D scatter plot  

Fig. 9 is a 3D scatter plot between relative distances, 
velocities, and Angle of arrival (AOA) of vehicles to the base 
station that showcases different clusters based on the decision 
boundaries. The yellow data points in the scatter plot are 
defined from condition 1 that represents a wide beam. And the 
green data points in the plot are defined from condition 2 that 
represents a narrow beam. Whereas left and right data points 
are defined from condition 3 which represents the cosecant 
pattern beams. Finally, the black data points in the figure 
represents that there are beyond the range of serving cells. To 
further clarify the conditions explained above in Fig.4 and 
Fig.9 for beam assignment, a vehicle moving at a speed of 100 
kmph and driving in a lane within the relative distance of 12m 
or less from the base station is assigned with the wide beam. 
Whereas, a vehicle with the same speed driving in a lane farther 
than 12m is allocated with the narrow beam.  



  

 

 To better represent and for better understanding of the 
clusters, a 2D plot, Fig. 10, a top view of the scatter plot in Fig. 
9 between  the AOA in the y-axis and relative distance from a 
base station in the x-axis is created.  

 

Fig. 10.  2D plot between angle of arrival and relative distance form base 
station  

This information is used to train the Kernel Nearest 
Neighbors (KNN) algorithm [8][9] to implement the beam 
patterns for vehicular channels as discussed above. The KNN 
algorithm is used to predict new data based on the above-
mentioned decision boundaries. This KNN algorithm shows 
99% accuracy in detecting the 1) high mobility vehicles and 
assign them wide beam widths, 2) vehicles arriving from left 
and right corners of the base station and allocate the cosecant 
pattern, and 3) assigning narrow beams for low mobility users. 
Further information about the performance metrics [10] of the 
KNN algorithm for each condition or cluster is shown in 
Fig.11.  
 

 

Fig. 11.  Classifier evolution metrics 

Finally, the detailed breakdown of the beam allocation 
process for vehicular networks using ML is shown in Fig.12. 
 

 
Fig. 12.  Block diagram of smart beam management procedure 

By this classification of vehicular traffic using KNN, we 
can assign the best beam pairs to vehicles in high mobility 
scenarios which in turn reduces, misalignment errors during 
the IA procedure in idle mode mobility and frequent overhead 
usage to maintain the connectivity in connected mode mobility. 

V. CONCLUSIONS 
mmWaves are widely studied to enhance the capacity of 

future vehicular networks. However, their performance 
depends on the precise beam alignment between the vehicle 
and the network. In this paper, we proposed a KNN based 
machine learning approach to solve the beam management 
problem by leveraging the information about the vehicle’s 
mobility before it arrives at the base station. This approach 
also incurs a considerable reduction of beam tracking 
overhead. Finally, the benefits of our proposal are particularly 
useful for the high mobility vehicular use cases envisioned for 
5G and beyond.   
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