
Lecture Notes in Networks and Systems 253

Juan M. Corchado
Saber Trabelsi Editors

Sustainable
Smart
Cities and
Territories

Lecture Notes in Networks and Systems

Volume 253

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA,
School of Electrical and Computer Engineering—FEEC, University of Campinas—
UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering,
Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University
of Illinois at Chicago, Chicago, USA, Institute of Automation, Chinese Academy
of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering,
University of Alberta, Alberta, Canada, Systems Research Institute,
Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering,
KIOS Research Center for Intelligent Systems and Networks, University of Cyprus,
Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong

The series “Lecture Notes in Networks and Systems” publishes the latest
developments in Networks and Systems—quickly, informally and with high quality.
Original research reported in proceedings and post-proceedings represents the core
of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new
challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks,
spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor
Networks, Control Systems, Energy Systems, Automotive Systems, Biological
Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems,
Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems,
Robotics, Social Systems, Economic Systems and other. Of particular value to both
the contributors and the readership are the short publication timeframe and the
world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art
and future developments relevant to systems and networks, decision making, control,
complex processes and related areas, as embedded in the fields of interdisciplinary
and applied sciences, engineering, computer science, physics, economics, social, and
life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/15179

Juan M. Corchado • Saber Trabelsi
Editors

Sustainable Smart Cities
and Territories

123

Editors
Juan M. Corchado
Department of Computing Science
Universidad Salamanca
Salamanca, Spain

Saber Trabelsi
Texas A&M University at Qatar
Doha, Qatar

ISSN 2367-3370 ISSN 2367-3389 (electronic)
Lecture Notes in Networks and Systems
ISBN 978-3-030-78900-8 ISBN 978-3-030-78901-5 (eBook)
https://doi.org/10.1007/978-3-030-78901-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

A Novel Model for Detection and Classification Coronavirus
(COVID-19) Based on Chest X-Ray Images Using CNN-CapsNet 187
Dahdouh Yousra, Anouar Boudhir Abdelhakim,
and Ben Ahmed Mohamed

Distributed Platform for the Extraction and Analysis
of Information . 200
Francisco Pinto-Santos, Niloufar Shoeibi, Alberto Rivas,
Guillermo Hernández, Pablo Chamoso, and Fernando De La Prieta

Intelligent Development of Smart Cities: Deepint.net Case Studies 211
Juan M. Corchado, Francisco Pinto-Santos, Otman Aghmou,
and Saber Trabelsi

Applications of AI systems in Smart Cities (APAISC)

Intelligent System for Switching Modes Detection and Classification
of a Half-Bridge Buck Converter . 229
Luis-Alfonso Fernandez-Serantes, José-Luis Casteleiro-Roca,
Paulo Novais, and José Luis Calvo-Rolle

A Virtual Sensor for a Cell Voltage Prediction of a Proton-Exchange
Membranes Based on Intelligent Techniques . 240
Esteban Jove, Antonio Lozano, Ángel Pérez Manso, Félix Barreras,
Ramon Costa-Castelló, and José Luis Calvo-Rolle

Intrusion Detection System for MQTT Protocol Based on Intelligent
One-Class Classifiers . 249
Esteban Jove, Jose Aveleira-Mata, Héctor Alaiz-Moretón,
José-Luis Casteleiro-Roca, David Yeregui Marcos del Blanco,
Francico Zayas-Gato, Héctor Quintián, and José Luis Calvo-Rolle

Smart Mobility for Smart Cities (SMSC)

Infrastructure for the Enhancement of Urban Fleet Simulation 263
Pasqual Martí, Jaume Jordán, Fernando De la Prieta, Holger Billhardt,
and Vicente Julian

Modern Integrated Development Environment (IDEs) 274
Zakieh Alizadehsani, Enrique Goyenechea Gomez, Hadi Ghaemi,
Sara Rodríguez González, Jaume Jordan, Alberto Fernández,
and Belén Pérez-Lancho

Smart Cyber Victimization Discovery on Twitter 289
Niloufar Shoeibi, Nastaran Shoeibi, Vicente Julian, Sascha Ossowski,
Angelica González Arrieta, and Pablo Chamoso

Contents xxi

Modern Integrated Development
Environment (IDEs)

Zakieh Alizadehsani1(B), Enrique Goyenechea Gomez1, Hadi Ghaemi2,
Sara Rodŕıguez González1, Jaume Jordan3, Alberto Fernández4,

and Belén Pérez-Lancho5

1 BISITE Research Group, University of Salamanca, Salamanca, Spain
{zakieh,egoyene,srg}@usal.es

2 Computer Engineering Department, Ferdowsi University of Mashhad,
Mashhad, Iran

hadi.qaemi@um.ac.ir
3 Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat

Politècnica de València, Valencia, Spain
jjordan@dsic.upv.es

4 Universidad Rey Juan Carlos, Madrid, Spain
alberto.fernandez@urjc.es

5 Department of Computer Science and Automation, University of Salamanca,
Salamanca, Spain
lancho@usal.es

Abstract. One of the important objectives of smart cities is to provide
electronic services to citizens, however, this requires the building of related
software which is a time-consuming process. In this regard, smart city
infrastructures require development tools that can help accelerate and
facilitate software development (mobile, IoT, and web applications). Inte-
grated Development Environments (IDEs) are well-known tools that have
brought together the features of various tools within one package. Mod-
ern IDEs include the advantages of Artificial Intelligence (AI) and Cloud
Computing. These technologies can help the developer overcome the com-
plexities associated with multi-platform software products. This paper
has explored AI techniques that are applied in IDEs. To this end, the
Eclipse Theia (cloud-based IDE) and its AI-based extensions are explored
as a case study. The findings show that recommender system models, lan-
guage modeling, deep learning models, code mining, and attention mech-
anisms are used frequently to facilitate programming. Furthermore, some
researches have used NLP techniques and AI-based virtual assistance to
promote the interaction between developers and projects.

Keywords: Integrated Development Environment (IDE) · Online
IDEs · Software development · Artificial intelligence (AI) · Theia

1 Introduction

Today, cities have a strong desire to make their infrastructure smarter,
which requires electronic infrastructure and developing the related software.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. M. Corchado and S. Trabelsi (Eds.): SSCTIC 2021, LNNS 253, pp. 274–288, 2022.
https://doi.org/10.1007/978-3-030-78901-5_24

Modern IDEs 275

Unfortunately, software development is a time-consuming process. To enable cities
to create electronic services faster, several tools have emerged which accelerate
and facilitate the software development life cycle. Integrated Development Envi-
ronments (IDEs) are well-known tools that have brought together the features of
various tools within one package. The main goal of IDEs is to increase develop-
ment speed, reduce errors, and increase the accuracy of the programming process
[1,2]. According to the literature, there are many functionalities (features) such as
debugging, autocomplete, etc. These features can fall into two categories, 1) Fea-
tures that are usually running continuously in the background most of which can
verify source code state such as live syntax checker and facilitate developments,
including code autocomplete during program writing time. 2) Features that users
can apply arbitrarily such as control versioning, code search, etc. However, IDEs
could have more automation and intelligence to help developers. These features
can be obtained by using Artificial Intelligence (AI) and Machine Learning tech-
niques. Most IDEs include several tools to cover most aspects of software devel-
opment like analyzing, designing, implementing, testing, documenting, and main-
taining [3]. To increase the intelligence, these IDEs have embedded training models
into the modern versions. This task can fall into two methods:

– Improving current functionalities (features)
– Adding new functionalities.

In this regard, Eclipse Theia [4] which is a cloud-based IDE, includes several
AI-based extensions which have been explored in the case study. The findings
of the present study can help researchers use this paper to identify popular
IDE functionalities and related research areas, for example, the auto-complete
functionality benefits from language modeling [5] and NLP techniques. Moreover,
popular desktop and popular cloud IDEs have been investigated which can give
knowledge about practical aspects.

The structure of the paper is as follows. Section 2 gives an overview of the
available IDE functionalities. Section 3 reviews the related works. Section 4 con-
ducts AI-based IDE functionalities. Section 5 describes the case study conducted
with Theia Cloud IDE, and finally, Sect. 6 concludes the paper.

2 Background: IDE Functionality

Although programmers can develop without the IDEs and use simple text edi-
tors, IDEs are a set of tools that help programmers significantly. Syntax high-
lighting, debugging and editing features, which run in background, are the most
common and basic features of IDEs [6]. Also, popular IDEs have provided
advanced functionalities such as version controlling, terminal console, program
element suggestion. These functionalities can be significantly improved by AI
algorithms. Moreover, with emerging cloud-based services and the requirement
of multiple development environments for different applications, IDEs are moving
from desktop-based to cloud-based which are accessible through a web browser
such as AWS Cloud9 [7], Codeanywhere [8] Eclipse Che [9].

276 Z. Alizadehsani et al.

Fig. 1. Classified popular IDE features

Regarding related functionality topics, in the current paper, IDE function-
alities are categorized within the three classifications 1) basic and common 2)
advanced 3) cloud based. The details are illustrated in Fig. 1.

3 Related Works

Software development is a broad research area with different application domains
in mobile, web, multimedia, IoT, etc. Thus, many studies have been conducted
in the different fields of software development, which are mainly related to the
stages of designing (identify requirements and dependencies), developing (imple-
ment, compile, run, test, debug), and optimizing (code reviews, integration).

IDEs combine tools that facilitate the development process. Several stud-
ies have investigated IDE technologies and their future [6,10,11]. Although sec-
ondary studies on IDE tools and identifying all related topics have received little
attention, [12] has presented a valuable study that has investigated the role and

Modern IDEs 277

applications of AI in classical software engineering. Their survey can serve as an
informative guideline for researchers to build intelligent IDE tools [13].

Moreover, given the notable role of cloud technologies in modern IDEs, [14]
has researched cloud-based IDEs. Also, [15] is a valuable work on Cloud IDE
creation, which includes the required environment and reviewing the challenges
posed to building cloud IDEs. From a more general perspective, [16] have inves-
tigated the effect of AI in software development and the role of learning from
available codes. These codes can be collected from online code repositories or
local code projects for IDEs. The methods and learning process from code have
been investigated in depth in [17], which can be of help to researchers when
designing intelligent IDE tools.

Besides, recent studies in the field of IDEs have been conducted to create
a more appropriate and efficient interaction between the programmer and the
programming environment, making the software production process more rapid.
For example, some works used virtual assistants. [18] have trained the model
which identified speech action types in developer question/answer conversations
while bug repair.

The current study tries to give a big picture of popular AI approaches in
desktop and online IDEs which have considered more practical aspects.

4 AI-Based IDE Functionality

Merging artificial intelligencewith existing IDE functionality can bring newoppor-
tunities in most involved area in software development tools. This improvement
can fall into two methods: 1) Improving current features 2) Adding new features.

4.1 Improve Current Functionalities

Existing features, such as code suggestion or code search, usually resort to rec-
ommender systems so as to provide more accurate results to developers [16].

Compiler: Compilers turn a programming language into low-level machine lan-
guages which can hide complexity from the developer and also help execute
written code on different platforms [19]. This feature is essential and must be
included as a basic IDE feature. However, it can be added as a third-party exten-
sion as well. Instruction selection, translation validation, and code optimization
are some implementation issues in compiler construction. Recently, some efforts
applied machine learning [20] or deepening [21] for code optimization.

Code Completion: In traditional IDEs, code completion can suggest
lists of programming language function during program writing. Improv-
ing this functionality through AI can be divided into two groups 1)
API/function/Class/variable suggestion improved by recommender systems
2) Automatic programming based on language modeling [5]. The first cate-
gory can improve the accuracy of suggestions and provide an efficient list of
API/function/variable suggestions [22].

278 Z. Alizadehsani et al.

The second group is for the code completion approach in which AI can be used,
such as NLP techniques for language modeling [23]. These suggestions can consider
local code features in the current IDEfile. In otherwords, when developers arewrit-
ing the code, IDEs automatically collect the data in the background and provide
the data needed to train the models. These approaches usually use Deep Neural
Networks (DNN) that need to learn from large amounts of code. In practical works,
some efforts applied this solution in one-line code generation. For example, Tab-
Nine [24] has sped up programming by offering APIs. TabNine is a tool for code
completion suggestions, trained on millions of open-source Java applications. This
plugin works on the basis of the local code on which the developer is working.

Debugging: Debugging software is a process for the detection, location and
fixing of the bugs during software testing which takes more than 50% of a pro-
grammer’s time [25]. According to software development literature, automation
has been used to speed up the software development process. Fully automated
debugging is still being investigated. Semi-automatic debugging, which requires
human participation, has also been investigated by researchers. Existing methods
can be divided into two general categories: 1) Generate-and-validate approaches,
which first produce a set of candidate patches, and are then tested and validated
by the test suite. 2) Synthesis-based approaches, collect information by running
a test suite while using this information to create a problem solver [26].

Recently, one of the most widely used methods of debugging is the use of
automatic translation methods. For example, in [27,28], the patch created for
debugging is based on the use of neural machine translation. The method applied
in these studies is based on sequence-to-sequence learning.

Code Search: In the code search area, a search query can be written in natural
languages or structured text (E.g. code). Therefore, search code AI models need
both search queries and related codes. Most of the studies apply NLP techniques
to search code. The main problem with these methods is that they do not take
into account the difference between text and code which is structured code. In
this regard, [29] introduced the DNN model which has used code snippets and
description. Moreover, using AI approaches in code search requires a large code
dataset, which might lead to an increase in training and test time [30]. Therefore,
some efforts have employed embedded neural networks to reduce the dimension
of huge code snippets and to make similar codes close together [29].

Automated Testing: Testing is an important part of quality assurance in
which to verify that software is bug-free. In software engineering, testing can
be applied at different levels and with different techniques [31]. Ideally, the goal
of an automated data generation system for testing is to generate experimental
data in a way that enables all branches of the program with the least possi-
ble computational effort. Machine learning methods are one of the most widely
used methods in this field. For example, in [32] a productive statistical learning
approach for files is introduced.

Modern IDEs 279

Although, IDE is used as an environment which facilitates code writing,
some of these IDEs can provide automatic testing as well. However, some tests
are usually presented in separate tools due to the high complexity. For example,
to find security vulnerabilities, different inputs are repeatedly tested and the
inputs are modified, which is called the fuzzing process. There are three general
methods for fuzzing. Blackbox random fuzzing [33], Whitebox constraint-based
fuzzing [34], grammar-based fuzzing [35]. Also, abnormally detection have been
used for this purpose, as well.

Graphical Editor: Interactive graphical editors allow even non-expert users
to create software [36]. MDA presents levels of abstraction which enable Visual
Programming Language (VPL) [37] in graphical editors. These visual items can
be modules, services, etc. When the user defines the sequence of visual items, the
code generator can transfer them into executable code. Recently some works have
used computer vision, to improve visual programming. The main idea behind
these approaches is generating text from an image. However, in the automatic
code generation field, the text is code (structured text) instead of natural lan-
guage text [38]. Convolutional neural network (CNN) and recurrent neural net-
work (RNN) have been used in this type of studies which are well-known deep
neural networks [38–40].

Live Templates: Static IDs’ templates can include class, function template,
expression (loop, switch cases). Predefined placeholders in templates, usually
filled by developers. However, the prediction ability of AI has led to the emer-
gence of live templates in modern IDEs. These models can predict variables
based on collecting information from local code projects [41].

Fig. 2. Live template data

4.2 Adding New Functionalities

With the advent of online code repositories and improved data collection, it has
become possible to add more new intelligent functionalities.

IDE Functionality Recommendations: [42] have found that users would
rarely use all the functionalities of IDEs (on average they use just 42 commands
out of the 1100 available commands). Therefore, some of the efforts [43,44] have

280 Z. Alizadehsani et al.

presented new feature for offering IDE functionalities. These employ recommen-
dation system models to make users aware of the existing functionalities. Some
of theses functionalities have been outlined in this section.

Code Summarizing: The process of summarizing source code is to generate
short descriptions in the natural language of written code. Code summarization
can be considered as the basis of software documentation. The main idea of
giving a short explanation to a programmer is to help them understand the
code quickly and easily without having to read the code [45]. In general, source
code memorization methods can be divided into two categories. 1) Pattern-based
methods, 2) Artificial intelligence-based methods. For example, [46] has used
pattern-based methods to create code explanations. The use of deep learning
techniques, such as language modeling, has attracted the researchers’ attention
to this area as well [45,47].

AI Virtual Assistant: The AI-based virtual assistant is a program that can
perform duties on the basis of commands or requests [48]. It identifies speech
action types in developer question/answer conversations during bug repair.
Google Assistant and Apple’s Siri are popular assistants in the real-world. How-
ever, some works such as [18,49,50] have used virtual assistants in IDEs as well.

Comment Generation: Although comments are very useful, developers are
not utilizing them enough in their coding, even if they add comments, they are
not in the same style. Therefore, some research efforts have focused on gener-
ating descriptive comments for source code blocks [51]. Most of the academic
works have focused on generating text description based on the source code
functionality [52,53].

5 Case Study: Theia Cloud IDE

IDEs include several features, each of which is related to different disciplines,
such as software development, user interaction, etc. Therefore, creating IDEs
from scratch is troublesome. Under these circumstances, reusing other high-level
frameworks can save time. These frameworks already provided the basic features,
such as editing text (highlighting syntax, search, undo, find and replace), debug-
ging, autocomplete for functions, block comment/uncomment [54]. As a result,
using ready-made frameworks will facilitate the process for the developers, mak-
ing it possible for them to invest more time in their custom IDEs. Table 1 shows
the comparison between Eclipse Theia and Other IDEs.

There are different terms involved in Theia platform architectures. For exam-
ple, the term “Theia” means Theia platform or Theia editor. Therefore, it is
necessary to first define the terms used to refer to this technology.

Modern IDEs 281

Table 1. Comparison between Eclipse Theia and other IDEs

Title Open source Desktop/online Building IDE product

VS Code Only desktop version +/+ −
Intelligent IDE Freemium +/+ −
Codeanywhere Freemium +/+ −
AWS Cloud9 Freemium +/+ −
JSFiddle Free −/+ −
Eclipse Theia Free +/+ +

– Workspace is a specific machine, acting as a container that holds the project
files, package managers, and an IDE-Interface. The interesting thing about
workplaces is that developers can deploy a project and its dependencies in
a workplace, then provide an image of it. This new workplace can be used
as a basis for other projects [15]. However, it should be regarded that as the
number of workplaces is increasing, using an orchestration tool for managing
workplaces is essential. This is where that workplace server plays an important
role.

– Workspace server supports the management of developer workplaces. It
can give a dashboard for creating, ending, starting and sharing workspaces.
This dashboard is similar to the management of a virtual machine on cloud
technologies [55].

– Theia platform, Theia is a platform and some developers utilize products
based on Theia (Che Theia). However, Che Theia is an editor for Eclipse Che
based on the Theia platform and it is called Theia as well [56].

– Eclipse Che, is a developer workspace server for the Eclipse Theia platform.
[57].

After understanding the basic concepts, it is helpful to learn about the struc-
ture of the Theia platform. Theia is available as a desktop and web-based appli-
cation. To handle both architectures with a single source, Theia uses the client-
server architecture. Moreover, Theia can also reuse other high-level frameworks,
technologies, protocols, etc. Theia benefits from several technologies, including:

– Keycloak: In fact, Che Theia is an editor for Eclipse Che. Therefore, it
is not responsible for multi-developer management on the system level, via
containers or OS user rights. These services are related to Eclipse Che, which
manages developer workspaces. Eclipse Che utilizes Keycloak to authenticate
developers [57].

– Monaco: Not only Eclipse Theia has followed most of VS code objects but
it uses VS code abilities such as Monaco code editor (the editor of VS Code),
as well. This reuse allows developers to use VS Code extensions in Theia [58].

– TypeScript: Considering that JavaScript cannot support complex applica-
tions; Typescript is used to enhance maintainability. In this regard, Theia UI
is fully implemented through Typescript [59].

282 Z. Alizadehsani et al.

– InversifyJS: Theia uses the dependency injection framework Inversify.js to
compose and configure the frontend and backend applications. InversifyJS is a
lightweight inversion of control (IoC) container for TypeScript and JavaScript
apps. This feature contributes to extensibility and the future growth of prod-
ucts [60].

– Language server protocol (LSP): Theia has a distributed architecture
that needs to communicate between the client and the server. LSP is designed
for communicating between a tool (the client) and a language smartness
provider (the server). This protocol allows to implement the autocomplete
feature of IDEs in client-server structure [61,62].

All of the mentioned technologies convert Theia into a platform for building
IDEs and developing tools. Theia not only has most of the basic code editor
features - highlight syntax, debugging, etc., but also, has significant expendabil-
ity. Theia has core and other extensions that help to build extensions. This is
where deep learning models can be extended as extensions for desktop or cloud
IDE products. Also, researchers can use the benefits of VS code extensions in
the VS code marketplace which contains several AI-based extensions [63]. This
study has conducted some traditional and AI-based extensions that can be used
as developer assistants (Table 2). In general, practical tools has focused on pro-
viding features. Therefore, finding theoretical background which is used in their
development is difficult. However, there are some works on IDE extensions that
have provided valuable information:

kite [64,65] is an auto-complete tool that supports many back-end and front-
end languages such as Python, Java, JavaScript, etc. The unique feature of this
plugin is the completion of multi-line codes. Kite uses GPT-2 (utilizing deep
learning) which is a prepared general-purpose model called strong AI. This kind
of learner can be used for different tasks, such as text translation, answering
questions, summarizing passages, etc. This model used 25 million open-source
code files that can be run locally.

Table 2. Traditional and AI-based extensions example

Title Extension title AI techniques Ref

Kite Auto-complete DNN/GPT-2 [65]

Flutter Debugger – [66]

DeepL Auto-complete DNN [67]

VSearch Code search – [68]

Voice-enabled programming Virtual assistant NLP techniques [49]

Virtual assistant and skill templates Virtual Assistant – [69]

DeepL, [67]. This API is a JSON-RPC API for direct translation of text from
Visual Studio code. This plugin is a language translation service based on neural
networks and deep learning algorithms, and is currently supported in German,
English, French, Spanish, Italian, and Polish.

Modern IDEs 283

Voice-Enabled Programming Extension. [49] have introduced a VS Code
extension that provides Voice-Enabled Programming. This model used the Lan-
guage Understanding (LUIS) concept in the Microsoft Azure LUIS app. In
general, extensions send query text to Azure and receive the results as JSON
responses. Typical client extensions for LUIS are virtual assistants offering online
chat communication via text or text-to-speech (chatbots).

In [15], the authors addressed the Eclipse Che structure. Figure 2 demon-
strates the structure of AI-based extensions which can add to cloud based IDEs
and bring the new structure (Fig. 3).

Fig. 3. Structure of AI-based extension in a Cloud IDE

6 Conclusion

There are some processes in software development such as implementing, debug-
ging, bug detection, testing, etc. which can take the developers time. In this
regard, IDEs include several tools that can be used to speed up these processes

284 Z. Alizadehsani et al.

and provide automation. Recently, AI models have been utilized in IDEs to
increase the automation. This growth can fall into two methods: 1) Improving
current functionalities (features) 2) Adding new functionalities.

The first category includes improving current functionalities such as code
autocomplete, code search, live templates, etc. These functionalities have been
improved extensively by AI algorithms, especially through recommendation sys-
tem models. The second category involves new IDE features such as AI vir-
tual assistance, code summarization, etc. Some fields within AI have been more
attended to so as to provide IDE features. Language modeling based on the
sequence to sequence models, recommender systems, learning from existing code,
and source code analyzing are some instances to name a few.

According to the literature, generative models and language modeling (RNN)
have presented a powerful role in IDE learning models (autocomplete, test gen-
eration, code summarizing, etc.). However, learning long-term text is still a chal-
lenge. In this regard, attention-based neural networks have been investigated in
recent academic works.

Moreover, there are some efforts that have used NLP techniques for promot-
ing conversational experiences (Bots) and the interaction between developers
and projects.

In the present study, Theia has been exclusively taken into account. Not only
does Theia have most of the basic code editor features, but it also has significant
extendibility which includes using VS code extensions.

Modern IDEs can bring many benefits, however, there can also be challenges
in using online IDEs which must be addressed by researchers and engineers:

– One of the main features of online IDEs is that they can provide desktop
and online IDE version. However, the findings show that some extensions,
which work well in the desktop version, may encounter problems in the online
version.

– Web technologies are changing fast, making maintenance difficult. Therefore,
using high-level designs, such as templates, can be useful when developing
extensions.

– The embedded learning models should bring a real-time application which
needs to have a lightweight training model and low-latency prediction. There-
fore, this feature should be considered when engineers choose an extension or
develop it.

– When developing a Cloud IDE, it is important that it provide basic IDE
features and support different languages, versioning tools, databases (SQL,
NoSQL), cross-platform and multimedia development, online debugging, etc.
Although most of the theses features can be found in extension market places,
the serious projects need more guaranty. This is because maintenance, ver-
sioning, and extending these extensions may be challenging. Therefore, if a
new IDE product is designed for the use of several extensions, engineers must
carefully choose the extensions to minimize the risk that other extensions
from other IDE functionalities have other requirements. Moreover, extensions
should be investigated in terms of maintenance.

Modern IDEs 285

Acknowledgements. Supported by the project “Intelligent and sustainable mobility
supported by multi-agent systems and edge computing (InEDGEMobility): Towards
Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security”, Refer-
ence: RTI2018–095390-B-C32, financed by the Spanish Ministry of Science, Innovation
and Universities (MCIU), the State Research Agency (AEI) and the European Regional
Development Fund (FEDER).

References

1. Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado,
J.M.: Can building “artificially intelligent cities” safeguard humanity from natu-
ral disasters, pandemics, and other catastrophes? An urban scholar’s perspective.
Sensors 20(10), 2988 (2020)

2. Chamoso, P., González-Briones, A., Prieta, F.D.L., Venyagamoorthy, G.K., Cor-
chado, J.M.: Smart city as a distributed platform: toward a system for citizen-
oriented management. Comput. Commun. 152, 323–332 (2020)

3. Gasparic, M., Murphy, G.C., Ricci, F.: A context model for IDE-based recommen-
dation systems. J. Syst. Softw. 128, 200–219 (2017)

4. Theia, E.: Platform to develop Cloud & Desktop (2019). https://theia-ide.org/.
Accessed 2020

5. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

6. Rustan, K., Leino, M., Wüstholz, V.: The Dafny integrated development environ-
ment. arxiv Preprint arxiv:1404.6602 (2014)

7. Cloud9, Cloud IDE. https://aws.amazon.com/cloud9/. Accessed 2021
8. Codeanywhere, Cloud IDE. https://codeanywhere.com/. Accessed 2021
9. Eclipse Che, Eclipse next-generation IDE. https://www.eclipse.org/che/. Accessed

2021
10. Omori, T., Hayashi, S., Maruyama, K.: A survey on methods of recording fine-

grained operations on integrated development environments and their applications.
Comput. Softw. 32(1), 60–80 (2015)

11. Aho, T., et al.: Designing ide as a service. Commun. Cloud Softw. 1(1) (2011)
12. Barenkamp, M., Rebstadt, J., Thomas, O.: Applications of AI in classical software

engineering. AI Perspect. 2(1), 1–15 (2020)
13. Corchado, J.M., et al.: Deepint.net: a rapid deployment platform for smart terri-

tories. Sensors 21(1), 236 (2021)
14. Arora, P., Dixit, A.: Analysis of cloud IDEs for software development. Int. J. Eng.

Res. General Sci. 4(4) (2016)
15. Applis, L.: Theoretical evaluation of the potential advantages of cloud ides for

research and didactics. In: SKILL 2019-Studierendenkonferenz Informatik (2019)
16. Lin, Z.-Q., et al.: Intelligent development environment and software knowledge

graph. J. Comput. Sci. Technol. 32(2), 242–249 (2017)
17. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning

for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 1–37 (2018)
18. Wood, A., Rodeghero, P., Armaly, A., McMillan, C.: Detecting speech act types

in developer question/answer conversations during bug repair. In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 491–502 (2018)

19. Cooper, K., Torczon, L.: Engineering a Compiler. Elsevier, Amsterdam (2011)

286 Z. Alizadehsani et al.

20. Wang, Z., O’Boyle, M.: Machine learning in compiler optimization. Proc. IEEE
106(11), 1879–1901 (2018)

21. Chen, T., et al.: {TVM}: an automated end-to-end optimizing compiler for deep
learning. In: 13th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 2018), pp. 578–594 (2018)

22. Nguyen, A.T., et al.: API code recommendation using statistical learning from fine-
grained changes. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 511–522 (2016)

23. Loaiza, F.L., Wheeler, D.A., Birdwell, J.D.: A partial survey on AI technologies
applicable to automated source code generation. Technical report, Institute for
Defense Analyses Alexandria United States (2019)

24. TabNine, Autocompletion with deep learning 2019. https://www.kite.com/.
Accessed 2020

25. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. Software Eng. 45(1), 34–67 (2017)

26. Martinez, M., Monperrus, M.: Astor: exploring the design space of generate-and-
validate program repair beyond GenProg. J. Syst. Softw. 151, 65–80 (2019)

27. Hata, H., Shihab, E., Neubig, G.: Learning to generate corrective patches using
neural machine translation. arXiv preprint arXiv:1812.07170 (2018)

28. Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., Mon-
perrus, M.: SEQUENCER: sequence-to-sequence learning for end-to-end program
repair. IEEE Trans. Softw. Eng. (2019)

29. Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE), pp. 933–944. IEEE (2018)

30. Cambronero, J., Li, H., Kim, S., Sen, K., Chandra, S.: When deep learning met
code search. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 964–974 (2019)

31. Portolan, M.: Automated testing flow: the present and the future. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 39(10), 2952–2963 (2019)

32. Godefroid, P., Singh, R., Peleg, H.: Machine learning for input fuzzing. US Patent
App. 15/638,938, 4 October 2018

33. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education (2007)

34. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In:
Proceedings of NDSS (2008)

35. Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C language
errors by deep learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31 (2017)

36. Casado-Vara, R., Rey, A.M.-d., Affes, S., Prieto, J., Corchado, J.M. : IoT network
slicing on virtual layers of homogeneous data for improved algorithm operation in
smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)

37. Coronado, E., Mastrogiovanni, F., Indurkhya, B., Venture, G.: Visual programming
environments for end-user development of intelligent and social robots, a systematic
review. J. Comput. Lang. 58, 100970 (2020)

38. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image
caption generator. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3156–3164 (2015)

39. Beltramelli, T.: pix2code: generating code from a graphical user interface screen-
shot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 1–6 (2018)

Modern IDEs 287

40. Pang, X., Zhou, Y., Li, P., Lin, W., Wu, W., Wang, J.Z.: A novel syntax-aware
automatic graphics code generation with attention-based deep neural network. J.
Netw. Comput. Appl. 161, 102636 (2020)

41. JetBrains, High-speed coding with Custom Live Templates. https://www.
jetbrains.com/help/idea/using-live-templates.html. Accessed 2020

42. Murphy-Hill, E.: Continuous social screencasting to facilitate software tool discov-
ery. In: 2012 34th International Conference on Software Engineering (ICSE), pp.
1317–1320. IEEE (2012)

43. Gasparic, M., Janes, A., Ricci, F., Murphy, G.C., Gurbanov, T.: A graphical user
interface for presenting integrated development environment command recommen-
dations: design, evaluation, and implementation. Inf. Softw. Technol. 92, 236–255
(2017)

44. Gasparic, M., Gurbanov, T., Ricci, F.: Improving integrated development envi-
ronment commands knowledge with recommender systems. In: Proceedings of the
40th International Conference on Software Engineering: Software Engineering Edu-
cation and Training, pp. 88–97 (2018)

45. LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via
a graph neural network. In: Proceedings of the 28th International Conference on
Program Comprehension, ICPC 2020, pp. 184–195. Association for Computing
Machinery, New York (2020)

46. Oda, Y., et al.: Learning to generate pseudo-code from source code using statistical
machine translation (t). In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 574–584. IEEE (2015)

47. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using
a neural attention model. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083
(2016)

48. Bedia, M.G., Rodŕıguez, J.M.C., et al.: A planning strategy based on variational
calculus for deliberative agents (2002)

49. Joshi, P., Bein, D.: Audible code, a voice-enabled programming extension of visual
studio code. In: Latifi, S. (eds.) 17th International Conference on Information
Technology-New Generations (ITNG 2020). AISC, vol. 1134, pp. 335–341. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-43020-7 44

50. Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/
items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2020

51. Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language:
promise and challenges. arXiv preprint arXiv:2101.11149 (2021)

52. Wong, E., Yang, J., Tan, L.: Autocomment: mining question and answer sites for
automatic comment generation. In: 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 562–567. IEEE (2013)

53. Xing, H., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with
hybrid lexical and syntactical information. Empir. Softw. Eng. 25(3), 2179–2217
(2020)

54. Sidhanth, N., Sanjeev, S., Swettha, S., Srividya, R.: A next generation ide through
multi tenant approach. Int. J. Inf. Electron. Eng. 4(1), 27 (2014)

55. Shi, S., Li, Q., Le, W., Xue, W., Zhang, Y., Cai, Y.: Intelligent workspace. US
Patent 9,026,921, 5 May 2015

56. Eclipse Foundation (2020). https://ecdtools.eclipse.org/. Accessed 2021

288 Z. Alizadehsani et al.

57. Saini, R., Bali, S., Mussbacher, G.: Towards web collaborative modelling for the
user requirements notation using Eclipse Che and Theia IDE. In: 2019 IEEE/ACM
11th International Workshop on Modelling in Software Engineering (MiSE), pp.
15–18. IEEE (2019)

58. Kahlert, T., Giza, K.: Visual studio code tips & tricks, vol. 1. Microsoft Deutsch-
land GmbH (2016)

59. Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: Jones, R.
(eds.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9 11

60. Inversify, lightweight inversion of control (IoC) container for TypeScript and
JavaScript apps (2018). https://github.com/inversify/InversifyJS. Accessed 2021

61. langserver, Language Server protocol. https://langserver.org/. Accessed 2020
62. Bünder, H.: Decoupling language and editor-the impact of the language server

protocol on textual domain-specific languages. In: MODELSWARD, pp. 129–140
(2019)

63. Microsoft. VS Marketplace, Extensions for the Visual Studio products. https://
marketplace.visualstudio.com/. Accessed 2021

64. Kite, AI powered code completions (2019). https://www.kite.com/. Accessed 2020
65. Kite visualstudio. https://marketplace.visualstudio.com. Accessed 2021
66. Flutter,Dart-Code.https://marketplace.visualstudio.com/items?itemName=Dart-

Code.flutter. Accessed 2021
67. deepl, AI powered code completions (2019). https://www.deepl.com/en/docs-api/.

Accessed 2020
68. VSearch code. https://marketplace.visualstudio.com/items?itemName=mario-0.

VSearch102. Accessed 2021
69. Virtual Assistant and Skill Templates. https://marketplace.visualstudio.com/

items?itemName=BotBuilder.VirtualAssistantTemplate. Accessed 2021

