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Abstract 
Nowadays, the search for new active and constructive learning methodologies is one of the pedagogical 
objectives in universities and other educational institutions. In the degrees taught at the Escola Tècnica 
Superior d'Enginyeria Agronòmica i del Medi Natural (ETSEAMN), the phenomena associated with heat 
transport and the underlying physics are studied. In the master classes, within the framework of food 
science and technology subjects, the phenomenon of this energy balance in a one-dimensional system 
is explained. In the present work, the analytical solution is developed and evaluated, and a numerical 
model achieving the same solution is shown. One of the advantages of using numerical tools is that 
more complex solutions can be obtained, even if the corresponding analytical solution does not exist or 
is not known, which is useful for engineering students. In this work, it is shown that changing the 
boundary conditions, geometry, or dimension in the system and the mathematical model, and solving it 
by applying a numerical solution method is easier and more comprehensive for students rather than 
facing the complexity of the analytical solutions. To demonstrate the applications and possibilities of this 
approach, a simple way of modifying the degrees of freedom of the same problem applied in the case 
of a vegetable subjected to a heat treatment is shown. Thus, the students can understand how these 
modifications affect the solution and comprehend that the dimension of some problems can be simplified 
in order to contextualize them. The development of PoliformaT, the e-learning platform implemented in 
the Universitat Politècnica de València facilitates the use of these new teaching models that combine 
traditional on-site laboratory tasks assignments with other learning assignments carried out 
autonomously online by students. 

Keywords: finite elements method, active learning, meaningful learning, heat transfer, teaching 
methodologies. 

1 INTRODUCTION 
Nowadays, thermodynamics and heat transfer problems contextualized to different cases are used for 
students to implement them in their future professional careers. Heat transfer problems are applied in 
various fields of physics, both in engineering and science, including in industrial applications [1], water 
heating or food treatment [2], automotive [3], electronic systems [4], design of hot-cold systems [5], and 
so on. 

Following the zero principle of thermodynamics [6], a heat transfer process occurs when two systems 
that do not have the same temperature come into contact. As long as more elements with different 
temperatures are added to the system, the energy transfer process will continue to occur until these 
surfaces reach thermal equilibrium. The mechanisms of heat transfer are radiation, convection, and 
conduction. In this work, a problem that contains the mechanism of conduction and convection is 
proposed. These mechanisms will be studied for a non-steady state case for which energy variations 
occur in time because the temperature changes, unlike in the steady state case. It is known that 
analytical solutions are complex for studying non-steady states, but the understanding of the physical 
laws that govern them is not. Therefore, it is easy for the student to understand the concept of heat 
transport, because it is simple, but solving problems can present difficulties for her/him. 

In the first part of this work, the heat transfer phenomenon is presented showing the equations and 
physical laws that govern it. The analytical resolution of the mathematical expressions is also shown, 
offering, in addition, a numerical resolution [7]. This definition is important since it allows to demonstrate 
that by means of numerical tools, the solution to an analytical problem can be obtained. Considering 
and knowing that the complexity of the solution increases as we increase the degrees of freedom of the 
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problem (such as the spatial dimensions), we propose a problem in which the student can visualize the 
different solutions by adding all those degrees of freedom that he/she considers. For example, the initial 
or boundary conditions of the problem can be changed in a simple way, even if there is no analytical 
solution to the problem. Using simulation tools by means of the finite element method, these solutions 
can be obtained and the evolution of the temperature over time in the system can be visualized. 

Teaching through these numerical tools also allows to improve the student's computational skills. These 
tools can be used in other subjects in which they can apply the knowledge of numerical problem 
definition to solve other physical phenomena with different conditions and degrees of freedom. All this 
is designed for engineering students of the degrees offered by the «Escuela Técnica Superior del Medio 
Agronómico y Natural» in Universitat Politècnica de València. These students need to solve problems 
of thermodynamics, mechanics, electromagnetism, among others. In this work, we present a problem 
of heat transmission in a non-stationary state in a fruit or vegetable that must be treated by a thermal 
process for its preservation and consumption. 

2 METHODOLOGY 
The practical case of food preservation is an excellent example of a non-steady state heat transfer 
problem. Thus, we pose the following question: Consider that we want to produce slices of a vegetable 
for its use in salads. In this case, we will choose carrots to be able to assign a numerical value to the 
characteristic parameters of the material. The manufacturing procedure consists of immersing the carrot 
slices in a solution of different compounds at 25°C to prevent browning. In addition, the slices must be 
kept at a temperature of 1°C. For this reason, after the previous treatment, they are placed in another 
bath with other preservatives at a temperature of -1ºC. The slices will remain in this second bath until 
all their points reach a temperature less than or equal to the desired temperature (1ºC), so we will have 
to determine how long they should remain there. We will consider that the slices are cylindrical in shape 
with a diameter of 2.5 cm and a thickness (2L) of 1.5 mm. The thermal diffusivity (α) of the carrot is 
0.002 cm2/s [8], and we will consider that the convective heat transfer coefficient is very high, i.e., the 
external resistance to convective heat transfer is negligible. 

2.1 Heat conduction equations and analytical solution 
This first part of the paper summarizes the physical laws governing heat conduction and its energy 
balance for the one-dimensional case. To simplify the case, the system is defined as an infinite sheet 
(Figure 1a). By means of the superposition principle, the cases for higher spatial dimensions could be 
solved. For the resolution, it is considered that the sum of the Input and the Generation is equal to the 
Output plus the Accumulation; the initial temperature is uniform throughout the system; the heat flow by 
conduction that reaches the surface of the system is exchanged by convection with the surrounding fluid 
(Figure 1b); there is a symmetrical temperature distribution with respect to the central axis; the 
temperature surrounding the system does not change with time, the material does not shrink, and the 
physical properties remain constant throughout the process. 

Considering the previous statements, the general heat conduction equation is defined as follows: 

𝑞!"#! − 𝑞! +
𝜕%𝜌𝐶$𝑇𝑑𝑉+

𝜕𝑡 = 𝑔𝑑𝑉 
(1) 

Applying the conditions of the proposed problem and making a change of variable, it can be reformulated 
as shown: 

𝜓(𝑥, 𝑡) =
𝑇(𝑥, 𝑡) − 𝑇%
𝑇& − 𝑇%

 
(2) 

The boundary conditions and constraints of the problem result in the following expressions: 

𝛼
𝜕'𝜓
𝜕𝑥' =

𝜕𝜓
𝜕𝑡  

(3) 

𝜓(𝑥, 0) = 1 (4) 
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−𝑘
𝜕𝜓(𝐿, 𝑡)
𝜕𝑥 = ℎ	𝜓(𝐿, 𝑡) 

(5) 

𝜕𝜓(0, 𝑡)
𝜕𝑥 = 0 

(6) 

This model fulfils the conditions for applying the method of separation of variables (all the equations, 
except one, are homogeneous and of constant coefficients), 

𝜓(𝑥, 𝑡) = 𝐹(𝑥)𝐺(𝑡) → 	
1

𝐹(𝑥)
𝑑'𝐹(𝑥)
𝑑𝑥' =

1
𝐺(𝑡)

𝑑𝐺(𝑡)
𝑑𝑡 = −𝜔' 

(7) 

The equation 𝐺(𝑡) is a first order equation and 𝐹(𝑥) is a second order equation, so integrating them 
results in: 

? 𝐺(𝑡) = 𝐶(𝑒)*+
!,

𝐹(𝑥) = 𝐶' 𝑠𝑖𝑛(𝜔𝑥) + 𝐶- 𝑐𝑜𝑠(𝜔𝑥)
 

(8) 

Now, substituting equation (8) into equation (7), we obtain: 

𝜓(𝑥, 𝑡) = 𝑒)*+!,[𝐴 𝑠𝑖𝑛(𝜔𝑥) + 𝐵 𝑐𝑜𝑠(𝜔𝑥)] (9) 

where 𝐴 and 𝐵 are integration constants obtained from the boundary conditions. Imposing the symmetry 
boundary condition on equation we obtain, 

𝜕𝜓(0, 𝑡)
𝜕𝑥 = J𝑒)*+!,[𝐴𝜔 𝑐𝑜𝑠(𝜔𝑥) − 𝐵𝜔	𝑠𝑖𝑛	(𝜔𝑥)]K

!./
= 0 

(10) 

Then, 𝐴 = 0 is obtained and equation (10) is rewritten as 

𝜓(𝑥, 𝑡) = 𝑒)*+!,[	 𝐵 𝑐𝑜𝑠(𝜔𝑥)] (11) 

The conduction heat flux that arrives to the surface of the system is interchanged by convection with the 
fluid that around the system (Figure 1b). Therefore, it could be stated that: 

𝜕𝜓(𝐿, 𝑡)
𝜕𝑥 = J𝑒)*+!,[	 −𝐵𝜔 𝑠𝑖𝑛(𝜔𝑥)]K

!.0
= −

ℎ
𝑘 𝑒

)*+!,[	 𝐵 𝑐𝑜𝑠(𝜔𝐿)]	 
(12a) 

𝑜𝑟	𝜓(𝐿, 𝑡) = 𝑒)*+!,[	 𝐵 𝑐𝑜𝑠(𝜔𝑥)] = 0, (12b) 

Where ℎ, is the convective heat transfer coefficient. If ℎ is very high, which it turns out to be: 

𝑡𝑎𝑛(𝜔𝐿) =
ℎ𝐿
𝑘𝜔𝐿 =

𝑁12
𝜔𝐿  

(13) 

Where 𝑁12, is the Biot number and is equal to ℎ𝐿/𝑘. The eigenvalues ωn are the positive roots of equation 
(13). 

𝜔3𝐿 = 𝑓(𝑁12); 			𝑛 = 1,2, … (14) 

Therefore, the function 𝜓(𝑥, 𝑡)  will be a linear combination of all possible solutions: 

𝜓(𝑥, 𝑡) = S𝐵3𝑒)*+"
! 	,

%

3.(

	

𝑐𝑜𝑠(𝜔3𝑥)	 
(15) 

To solve for the coefficients 𝐵3, the initial condition is applied, 
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𝜓(𝑥, 0) = S𝐵3

%

3.(

	

𝑐𝑜𝑠(𝜔3𝑥) = 1	 
(16) 

And, by orthogonality of the eigenfunctions: 

T cos(𝜔3𝑥)	cos	(𝜔5𝑥)dx
0

/
== Z

0	𝑖𝑓	𝑛 ≠ 𝑚
𝐿
2 +

1
4𝜔3

sen(2𝜔3𝐿) 𝑖𝑓	𝑛 = 𝑚 
(17) 

At this point, introducing cos	(𝜔5𝑥) is on both sides of equation (17) and integrating gives (18), where 
the eigenvalues 𝜔3 are the positive roots of the transcendental equation when ℎ  is very high: 

𝐵3 `
𝐿
2 +

1
4𝜔3

sin(2𝜔3𝐿)b =
1
𝜔3

sen(𝜔3𝐿) → 𝐵𝑛 =
2	sen(𝜔𝑛𝐿)

𝜔𝑛𝐿 + sen(𝜔𝑛𝐿) 𝑐os(𝜔𝑛𝐿)
=
2(−1)!"#

	𝜔!𝐿

	 	

	 
(18) 

Finally, the result of the equation is: 

𝜓(𝑥, 𝑡) = 2S
𝑠𝑒𝑛(𝜔!𝐿)

𝜔!𝐿 + 𝑠𝑒𝑛(𝜔!𝐿) 𝑐𝑜𝑠(𝜔!𝐿)
𝑒"%&"!

	
' 𝑐𝑜𝑠 	 (𝜔!𝑥)

(

!)#

		

 

where 𝜔! is		𝑡𝑎𝑛(𝜔!𝐿) =
*$%
&"+

, or 

(19a) 

𝜓(𝑥, 𝑡) = 2S
(−1)!"#

	𝜔!𝐿
𝑒"%&"!

	
'

(

!)#

	

𝑐𝑜𝑠(𝜔!𝑥)	 
(19b) 

with 	𝜔!𝐿 = (2n − 1) ,
-
,	when ℎ  is very high. 

2.2 Finite Elements Method modelling 
One of the most widely used methods for simulations is the finite element method (FEM). It is a flexible 
method that can be used in multiple areas of science and engineering [9]. Using the FEM, it is possible 
to generate numerical solutions for problems with different complexity. To do so, it is necessary to know 
the initial and boundary conditions of the problem to be solved. The commercial software COMSOL 
Multiphysics allows the application of FEM, working with problems of various dimensions and degrees 
of freedom. To simulate a non-steady-state heat problem, the geometry (1D, 2D or 3D) must first be 
defined. To reduce the degrees of freedom, and therefore the computational cost, it is important to start 
with simple problem approaches that allow obtaining valid solutions. Once the geometry of the problem 
has been defined, when selecting the module (in this case the one containing the heat equation), the 
physical conditions of the problem are defined (boundary and initial conditions). Now, once the physics 
of the problem has been configured, the mesh size and type are selected. The mesh generates a finite 
number of points called nodes where the equations with partial derivatives will be solved to obtain the 
numerical solution of the problem. In the 1D case, the mesh is formed by several points. When the 
problems become two-dimensional, different geometries can be used, such as triangular geometry. The 
number of nodes to be solved must meet certain conditions for the solution to be convergent and robust; 
it needs a minimum number of elements that limits the maximum element size. In short, it is a 
compromise between the number of points and the computational cost (the higher the number of points, 
the higher the computational cost). Once the mesh type and the number of elements is established, the 
solver is defined. For non-steady state problems, a temporary solver is used. Therefore, both the time 
range and the time steps must be configured. It is important to define a suitable time step in order not 
to increase the computational cost excessively and, at the same time, to obtain a good time solution that 
allows to see and understand the physics of the problem. 

3 RESULTS 
Given that the diameter of the slice is much larger than its thickness, the heat that the slice exchanges 
with the water through its peripheral surface could be neglected with respect to the heat it exchanges 
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through its other surfaces. Therefore, the problem is simplified to a one-way heat transfer. Due to the 
high convective heat transfer coefficient (h) and thus a high value of NBi, and with the objective of 
determining the time required for the center of the carrot slice to reach 1ºC, equation (19b) has been 
used as follows: 

𝑡/𝜓(0, 𝑡) 	=
𝟏 − (−𝟏)
𝟐𝟓 − (−𝟏) = 2S

(−1)!"#

𝜔!𝐿
𝑒"%&!'

(

!)#

		

 
(20) 

The time required for the center of the carrot slice to reach 1°C is obtained by iterating equation (20). 
To determine an initial value of 𝒕 , it has been assumed that it is sufficient to consider only the first term: 

𝟏
𝟏𝟑 =

𝟒
𝝅𝒆

"𝟎.𝟎𝟎𝟐1 𝝅
𝟎.𝟏𝟓5

𝟐

𝒕 

𝒕 = 𝟑. 𝟐𝒔 

Considering that the Fourier number at the calculated time (𝑭𝒐 = ∝		𝒕
𝐋𝟐
= 𝟏. 𝟏𝟑𝟖) is higher than 0.2 [3], the 

error produced by considering the first term of the series, and disregarding all the others, is less than 
2%, which is a margin more than valid to perform the calculations.  Therefore, the result will be:            

𝒕 = 𝟑. 𝟐𝒔 

Once the analytical solution has been obtained, we proceed to obtain the numerical solutions. Given the 
type of problem, a one-dimensional system is proposed to obtain the solution initially. First, it is 
necessary to define the geometry of the problem. In this case, it is a line of length equal to half the 
thickness of the carrot. The next step is to define the physics of the problem. Using the heat modulus, 
the initial and boundary conditions must be established. In this regard, the initial condition for all points 
on the initial temperature line is the proposed one (25°C). The boundary conditions are defined as 
follows: the heat equation must be set with a diffusion coefficient of 2·10-7 W/(mK); the symmetry at the 
0 coordinate of the straight line is acting as the center of the carrot; the Dirichlet condition at the other 
end of the straight line behaving as a fixed temperature value, in this case -1°C. As for the meshing, 
several equidistant and separated nodes along the 25 µm line is selected. Finally, to obtain the results 
of Figure 2, a step of 0.1 seconds between 0 and 8 seconds has been selected in the solver. 

 
Figure 2. Numerical solution for the 1D FEM model T(t). 
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Figure 2 shows the solution of the first one-dimensional model. In this case, the temperature is shown 
as a function of time, and it can be stated that the solution is consistent in obtaining the value of 𝒕 = 3.2 
seconds to reach the target temperature. Therefore, the analytical and numerical results are in good 
agreement and, therefore, the model is validated. One of the advantages of the FEM is that the degrees 
of freedom can be easily increased. The solution for a two-dimensional model is shown below. In this 
case, to reduce the degrees of freedom, a simplification using the geometry of the carrot slice is used. 
The boundary conditions remain the same as in the previous model, except that a single point on the 
line is no longer defined, but a contour in each zone that satisfies the problem conditions. Figure 3 shows 
the 2D solution of the proposed problem for time	𝒕 = 3.2 seconds. Solutions of how the heat is distributed 
at each instant of time can be obtained. 

 
Figure. 3 Numerical solutions using the two-dimensional FEM for time 𝒕  = 3.2 seconds. 

Finally, we want to show the possibility of solving the same problem in a three-dimensional way. In this 
case, we must take advantage of the geometrical characteristics of the carrot, for example, using its 
revolution symmetry properties. Therefore, it can be stated that a cross section can be reproduced by 
generating a revolution. That is, it has a 2D-axisymmetric geometry. To define the proposed model, a 
rectangle has been prepared which, when rotated 360°, generates a carrot slice. In this case, Figure 4 
shows a two-dimensional XY slice for the solution time.  

 
Figure. 4 Numerical solutions generating a 3D solution using a 2D axis FEM model for time 𝒕  = 3.2 seconds. 
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Once these results have been completed and the numerical models have been validated, further 
simulations can be carried out by simply changing the boundary conditions. For example, the initial 
temperature could be modified. By changing one variable or performing a parametric simulation, the 
student can obtain all the solutions. Table 1 shows the results by modifying 𝑇0. The solutions shown are 
consistent, because the higher the initial temperature, the longer the cooling time. 

Table 1. Numerical solutions for different initial temperatures (𝑇0). 

Temperature (°C) Time (s) 

20 3.00 

25 3.20 

30 3.45 

35 3.60 

40 3.75 

45 3.85 

Another possible option, for example, is to modify the thickness of the vegetable slice. By modifying a 
geometrical parameter in a simple way, the solutions can be recalculated and the values in Table 2 can 
be obtained. 

Table 2. Numerical solutions for different thicknesses. 

Thickness (mm) Time (s) 

1.5 3.20 

2.0 5.70 

2.5 8.90 

In this way, the student can see which parameters influence most the problem. For example, if we 
consider the values in Table 1 and 2, we can state that the most influential parameter is the thickness. 
Not as much as the initial temperature. 

4 CONCLUSIONS 
A non-steady state heat transport problem has been proposed in order to understand a very important 
phenomenon in the field of engineering and science. The underlying physics has been explained for the 
case of an infinite sheet. A proposed problem related to this type of physics has been solved analytically. 
Using FEM, we have solved the same problem, both one-dimensionally, 2D and 3D, obtaining a 
consistent solution that validates the model. One of the advantages of using FEM is that it is possible to 
start from a simple model explained theoretically, as proposed in this work. Subsequently, 2D or 3D 
models can be generated, whose solution is analytically more complicated to demonstrate and validate. 
For a student, it is a very complete way to see the time evolution of such a problem and to understand 
the physical behavior of the problem. In addition, the initial and boundary conditions can be added or 
changed, being the use of FEM a procedure that allows, at an academic level, the understanding of the 
physical phenomena involved in a problem of these characteristics. Digital tools such as PoliformaT 
provided by the Universitat Politècnica de València, allow teachers to upload example numerical models, 
videos and other tools and resources. Therefore, these tools and our work can be implemented for 
teaching physical phenomena in a dynamic way. 
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