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A B S T R A C T

The prolonged latent phase of Induction of Labour (IOL) is associated with increased risks

of maternal mortality and morbidity. Electrohysterography (EHG) has outperformed tradi-

tional clinical measures monitoring labour progress. Although parity is agreed to be of par-

ticular relevance to the success of IOL, no previous EHG-related studies have been found in

the literature. We thus aimed to identify EHG-biomarkers to predict IOL success (active

phase of labour in � 24 h) and determine the influence of the myoelectrical response on

the parity of this group. Statistically significant and sustained differences between the suc-

cessful and failed groups were found from 150 min in amplitude and non-linear parame-

ters, especially in Spectral Entropy and in their progression rates. In the nulliparous-

parous comparison, parous women showed statistically significantly higher amplitude pro-

gression rate. These biomarkers would therefore be useful for early detection of the risk of

induction failure and would help to develop more robust and generalizable IOL success-

prediction systems.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocyber-

netics and Biomedical Engineering of the Polish Academy of Sciences. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. General overview of induction of labour

Induction of labour (IOL), defined as the process of artificially

stimulating the uterus to start labour [1], is indicated when
the outcome for the fetus, the mother, or both is expected

to be better than waiting for the spontaneous start of labour

and to prevent situations of risk such as prolonged labour,

postpartum haemorrhage, foetal distress or traumatic birth

[1,2]. Due to recent changes in the obstetric population’s char-

acteristics (higher maternal age, increased maternal weight
ineering of
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and weight gain, larger newborn weights), there is a growing

trend for intervention in current clinical management of

labour, including IOL [3,4] whose prevalence is around 25 %

worldwide [1] and 33 % in Europe [5].

Pharmacological agents such as prostaglandins are com-

monly used to ripen the cervix and stimulate uterine contrac-

tions to promote vaginal delivery before the spontaneous

onset of labour [2]. The IOL process may take between 24

and 48 h, but its success is not guaranteed [6,7]. In fact, up

to 33 % of induced patients do not respond to induction with

prostaglandins or oxytocin [8]. Indeed, pharmacological

induction is associated with longer hospital stays and more

frequent complications than spontaneous onset of labour

[9]. These include hypertonic and hyperdynamic uterine

activity, foetal heart rate abnormalities, uterine rupture,

meconium aspiration, water intoxication and cord prolapse

post amniorrexis [10]. IOL also increases the risk of caesarean

delivery by 20 %, with prolonged labour being one of its main

causes (11.65 %) [9] and also of instrumental deliveries for

both medical and elective inductions [11]. In addition, there

is consistent evidence that the increased duration of the

latent phase of labour results in increased maternal morbid-

ity [9,12]. In comparison to the Active Phase of Labour (APL)

in>24 h, women who achieved APL � 24 h were found to have

a 3.19 times lower risk of caesarean delivery, 3.23 times of

chorioamnionitis, 2.98 times of endometriosis, 1.5 times of

postpartum haemorrhage and, 1.59 and 1.68 times of Apgar<7

after one and five minutes [12]. Early identification of induc-

tion failure and intervention could reduce the maternal-

foetal mortality and morbidity associated with prolonged

labour due to the increased risk of postpartum haemorrhage

and sepsis, foetal distress and asphyxia [9]. It is estimated

that the cost of a caesarean after failed induction can reach

$7,595 (1.3 times a standard caesarean section) in the USA

[13]. In addition to the significant impact on maternal and

neonatal health, IOL overloads delivery rooms and affects

health care costs, with an annual cost of more than $2 billion

in the USA [14]. The development of a robust and reliable sys-

tem to aid IOL decision making would therefore be a key fac-

tor in enabling clinicians to better plan and manage

deliveries, prevent maternal and foetal complications and

optimise hospital resources.

1.2. Risk factors for failed induction of labour

Previous studies have identified numerous risk factors for

failure of induction, such as prolonged labour, advanced

maternal age, early gestational age, maternal obesity,

comorbidities, oligohydramnios, foetal macrosomia, nulli-

parity, and unfavourable cervix [7,15]. The influence of par-

ity on IOL is widely described in the literature [2,7,16–20].

Nulliparous women not only have a higher IOL rate than

parous women (42.9 % versus 31.8 %) [2], but also have a

2.9 times higher risk of suffering from induction failure

[17]. Almost half of IOLs in nulliparous women end up in

instrumental delivery [11] and 37 % in caesarean section,

being much lower in parous women (10 %) [21]. Friedman

[18,19] first described differences in the progress of labour,

finding slower progress in the first and second stages of

labour (latent and active phase) for nulliparous than parous
women [19]. Despite the fact that current obstetric manage-

ment can substantially reduce the duration of the active

phase of labour, labour progress in nulliparous women

has been found to be slower than in parous [20]. In fact,

the first Consensus Document on Obstetric Care suggests

up to two hours of pushing in the case of parous women

and three for nulliparous women before diagnosing labour

arrest in the second stage [22]. Batinelli et al found that

labour in parous women differed from nulliparous in term

of the timing of the birth, perineal lacerations and the

maternal and foetal outcome [7], suggesting that parity is

of special relevance as a predictor of IOL success [7,15].

Another IOL risk factor is unfavourable cervix assessed by

the Bishop score (BS) [15,23], which is a common method of

predicting labour induction success in obstetrics. The BS

summarizes various characteristics of cervical status in the

form of a score based on: dilatation, effacement, station, con-

sistency and position. Each element is scored from 0 to 3

points, the sum of which is the total BS [23]. However, this

measure has been proven to be subjective and has low repro-

ducibility [23,24]. Bastani et al. [25] found that the accuracy of

the BS to predict induction success was low (area under the

curve = 0.39), as was the area under the curve to predict

induction success for other obstetric characteristics: 0.69 for

cervical length [16,25], 0.72 for cervical dilatation [16] and

0.60 for foetal weight [26], so that no reliable models are cur-

rently available to predict the outcome of labour induction in

clinical practice.

1.3. The role of electrohysterography in obstetrics

Uterine contractile activity tends to push the foetus down-

wards and is a key mechanism in labour together with the

aforementioned cervical effacement. The electrophysiological

state of the uterus may thus provide relevant information to

determine the labour outcome. Electrohysterography (EHG)

consists of the abdominal surface of recording of the uterine

myoelectric activity generated by billions of myometrial cells.

EHG recordings are made up of two different components: the

SlowWave and the Fast Wave. The former is supposed to gen-

erate the electrical conditions needed for cells to contract and

the latter is associated with the contractile activity itself

[27,28]. The Fast Wave is usually subdivided into two compo-

nents: the Fast Wave Low, which has been associated with

signal propagation; and the Fast Wave High, which is related

to cellular excitability [28,29]. Terrien [30] has suggested the

peak frequency of the Fast Wave Low ranges from 0.13 to

0.26 Hz and that of the Fast Wave High from 0.34 to 4 Hz. How-

ever, there is some controversy in the literature on the band-

widths of these components. The 0.1 to 0.2 frequency range is

strongly influenced by the baseline oscillation and as cardiac

activity mostly affects frequencies above 1 Hz, many studies

consider 0.2–1 Hz to characterise the spectrum of EHG-

Bursts [6,27,28,31]. EHG has been shown to outperform tradi-

tional clinical tocography in detecting uterine contractions or

EHG-Bursts during pregnancy and delivery [27,31] and is espe-

cially useful for obese patients [4].

Some studies have revealed that the EHG amplitude rises

as labour approaches due to increased recruitment of the

cells involved in contraction [6,27,32,33]. At the same time,
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the spectral content of the EHG signal shifts towards higher

frequencies due to increased cell excitability [27,34–37]. The

EHG signal also becomes more regular and organised, as sug-

gested by the non-linear parameters [6,27,28,36,38,39] so that

temporal, spectral and non-linear parameters have been

widely used to characterise them. Previous studies demon-

strated the ability of EHG parameters to distinguish the usual

‘‘ineffective” contractions during pregnancy from those asso-

ciated with imminent labour (‘‘effective” contractions), with

promising results for predicting labour [9,40], preterm labour

[37,41,42] and imminent labour in women with threatened

preterm labour [41,43], achieving an accuracy of up to 99.7 %

when predicting preterm labour [44]. As labor approaches

activity becomes synchronous in order to ultimately expel

the foetus, many researchers are focusing on the degree of

coupling and synchronization of uterine contractions

[29,45,46]. Since these studies require many electrodes on

the abdomen, they mainly focus on scenarios less stressful

to the mother, such as predicting preterm labor, and have

achieved accuracies of up to 91 % [45]. Table 1 summarises

some recently published studies in labour prediction with

EHG: preterm vs term prediction; labor vs non-labour or

imminent labour in women with threatened preterm labor.

We have included the database used for the studies; the type

of EHG segmentation used: Whole EHG Window Analysis

(WEWA) or EHG-Burst Analysis (EBA); parameters calculated

and prediction accuracy.

In contrast, few studies have been found that examine the

uterine myoelectric response to labour induction drugs

[6,59,60] despite their significant relevance as outlined above.

Aviram et al. [59] studied the evolution of uterine activity dur-

ing the first 12 h after Dinoprostone (E2 prostaglandins)

administration. No significant changes in mean uterine mus-

cle electrical activity were identified 0–2 h after the drug

administration but a substantial increase was found after 2–

8 h. In a similar study comparing electrohysterographic activ-

ity between successful and failed inductions [60], significant

changes in the uterine activity index were found 210 min

after Dinoprostone administration. In a former work we

found no significant sustained changes in uterine myoelectric

activity with respect to baseline activity (before drug adminis-

tration) during the first 4 h of induction with Dinoprostone [6]

or any significant differences in the drug response of uterine

myoelectric activity between induction success and failure in

this period, having defined induction success as the achieve-

ment of APL at any time [6]. This could indicate an important

bias in that study, since oxytocin is usually administered in

clinical practice to promote uterine contractility if a woman

does not achieve APL in<24 h. We hypothesised that those

women who achieved APL � 24 h may exhibit a faster uterine

myoelectric response to the drug than those who did not. On

the other hand, as far as we are aware no study has been pub-

lished focusing on the analysis of the parity effect on uterine

myoelectrical activity during IOL.

The aim of this study was therefore to characterise and

compare the uterine myoelectric response between induction

success and failure in pregnant women given Dinoprostone

drug during the first hours of IOL, induction success being

defined as those women who achieved APL � 24 h. In addi-
tion, we also aimed to assess the effect of parity on uterine

myoelectric response to labour induction drugs, with the gen-

eral purpose of identifying biomarkers for early detection of

the risk of induction failure. For this, we determined the

changes in uterine contractility by analysing a set of tempo-

ral, spectral and non-linear EHG characteristics during the

first 5 h of IOL. Significant sustained differences with respect

to baseline activity from 2 to 3 h after labour induction onset

were found for successful inductions in EHG-biomarkers

related to the number of uterine cells recruited, excitability

and predictability of uterine contractions, with no significant

changes for failed inductions. Successful inductions also

exhibited a significantly higher progression rate (steeper

slope) of these biomarkers during IOL than failed cases. As

for the influence of parity, parous women with successful

IOL resulted in a significantly higher progression rate of EHG

signal amplitude.

2. Materials and methods

2.1. Study design

A prospective observational cohort study was conducted on

pregnant women admitted for cervical ripening by Dinopros-

tone (10 mg, Propess, Ferring SAU) inserted into the posterior

vaginal fornix with removal after at least 12 h in the Univer-

sity and Polytechnic Hospital La Fe (Valencia, Spain). Foetal

macrosomia, multiple pregnancies, advanced maternal age

(>45 years), severe preeclampsia, placenta praevia, premature

rupture of membranes, vaginal bleeding during pregnancy,

suspected foetal compromise (growth restriction, oligohy-

dramnios, known foetal anomalies, etc.) and active cardiac,

renal, pulmonary or hepatic disease; were factors for exclu-

sion from this study due to their bias. This work adhered to

the guidelines of the Declaration of Helsinki and was

approved by the hospital’s Institutional Review Board (Regis-

ter Number 2018/0530). Patients were informed of the nature

of the study and gave their written informed consent. Women

who achieved APL before 24 h were included in the successful

induction group (GS) and the remainder in the failed induc-

tion group (GF). The possible difference between nulliparous

and parous women was analysed in the successful induction

group. Since the failed induction group did not show notable

uterine myoelectric activity response to the drug during the

early hours of induction, as reported in the literature [6], this

comparison was not included. EHG recordings began 30 min

before drug administration and lasted until approximately

300 min afterwards.

The clinical data collected during the study included:

maternal age, Body Mass Index (BMI), number of previous ges-

tations, parity, gestational age at delivery, initial BS, incre-

ment of BS during IOL (12 h after insertion), achievement of

APL, time to achieve APL, time to delivery, vaginal delivery

ending, requirement for oxytocin, arterial newborn pH,

venous newborn pH and foetal newborn weight. The chi-

square test was used to detect statistically significant differ-

ences in nominal variables between the groups. Ordinal vari-

ables were compared using the Wilcoxon rank-sum test.

Continuous variables were compared with the Student’s t-



Table 1 – Selected recently published articles labour prediction with EHG. Sc: Scenario. CrD: contractions detection. BPL: biomarkers of preterm labour. PrPL: prediction of
preterm labour. ImPL: imminent labour in women with threatened preterm labor. BL: biomarkers of labour. PDB: Private Database. BW: bandwidth. WEWA: Whole EHG
Window Analysis. EBA: EHG-Burst Analysis. Acc: Accuracy. NA: Not available.

Sc Author (year) Database Length (min) BW (Hz) Analysis window Acc (%) Significant
parameters

PrPL Fergus (2013) [47] 300 recordings (TPEHG) 30 0.34–1 WEWA 90.8 Root Mean Square, Median and Peak Frequency, Sample Entropy
PrPL Idowu (2014) [48] 300 recordings (TPEHG) 30 0.34–1 WEWA 92.4 Root Mean Square, Median and Peak Frequency, Sample Entropy
BPL Horoba (2016) [37] 300 recordings (TPEHG) 30 0.08–4, 0.3–4,0.3–3 WEWA NA Area, Auto-Correlation, Power, Max. Frequency, Median and Mean

Frequency,
Sample Entropy, Corr. Dim.

BPL Lemancewicz
(2016) [38]

60 recordings (PDB) 30–45 0.24–4 EBA NA Approximate Entropy, Binary Lempel-Ziv

BPL
PrPL

Sadi-Ahmed (2017) [49] 30 recordings (TPEHG) 30 0.08–4 WEWA 95.7 Huang-Hilbert Transform, Intrinsic Mode Functions

CrD Muszynski (2018) [50] 51 recordings (ICLEHG) 30–60 0.1–0.34 EBA 96.0 H2 Coefficient
BPL
PrPL

Mischi (2018) [41] 58 recordings (PDB) 30 0.3–0.8 EBA 73.0 Sample and Approximate Entropy

PrPL Asmi (2018) [39] 300 recordings (TPEHG) 30 0.34–3 WEWA 95.8 Higuchi Fractal Dimension, Detrended Fluctuation Analysis
BPL
PrPL

Jager (2018) [51] 326 recordings
(TPEHGT, TPEHG)

30 0.08–1, 1–2.2,
2.2–3.5, 3.5–5

WEWA 100.0 Sample Entropy, Median frequency, Peak Amplitude

CrD Hao (2019) [33] 34 recordings (PDB) 30 0–3 EBA 81.0 Power, Sample Entropy
BL Chen (2019) [42] 122 recordings (ICLEHG) 8–86 0.1–3 EBA 90.0 Sample Entropy, Wavelet Coefficients
PrPL You (2019) [52] 254 recordings (TPEHG) 30 0.08–4, 0.3–4, 0.3–3 WEWA 94.7 Root Mean Square, Mean Normalized Frequency, Peak

and Median Frequency,
Approximated Entropy, Sample Entropy

BPL
ImPL

Mas-Cabo (2019) [32] 88 recordings (PDB) 30–60 0.1–4 WEWA and EBA NA Peak-to-Peak Amplitude, Mean and Dominant Frequency, Sample
and Spectral Entropy, Time Reversibility, Binary and Multistate
Lempel-Ziv

CrD
BL

Allahem (2020) [53] 369 recordings
(TPEHG, TPEHGT and ICLEHG)

30 NA EBA 99.5 Amplitude, Number Of Contractions

BPL
PrPL

Peng (2020) [54] 300 recordings (TPEHG) 20 0.08–4 WEWA 93.0 Sample Entropy, Median and Mean Frequency,
Wavelet Coefficients, Auto-Regression.

PrPL Prats-Boluda (2021) [43] 140 recordings (PDB) 30 0.1–4 WEWA 93.4 23 temporal, spectral and non-linear EHG parameters and 6
Obstetrical variables

BPL
PrPL

Saleem (2020) [45] 26 recordings (PDB) 30 0–5 EBA 91.0 Granger Causality

PrPL Xu (2020) [55] 300 recordings (TPEHG) 30 NA NA 75.0 Root mean Square, Peak and Median
Frequencies, Sample Entropy

PrPL Nieto-del-Amor (2021) [56] 326 recordings (TPEHG and TPEHGT) 30 0.1–4, 0.2–0.34,
0.34–4, 0.34–1

WEWA 91.6 18 temporal, spectral and non-linear EHG parameters and 5
Obstetrical variables

PrPL Lou (2022) [57] 300 recordings (TPEHG) 30–60 0.08–4, 0.3–3,
0.3–4

EBA 75.0 Approximate and Sample Entropy

PrPL Allahem (2022) [58] 469 EHG (ICLEHG, TPEHG, TPEHGT
and OB-1) + 552 cardiotocography
(CTU-CHB) recordings

30 NA WEWA 95.7 Amplitude, Median and Mean Frequency, Gestational Age,
Maternal Age, Parity

BPL
ImPL

Zhang (2022) [29] 219 recordings (PDB) 30 0.34–1 WEWA NA Multivariate Sample and Direct Transfer Entropy,
Mutual Information, Correlation
Coefficient, Coherence, Direct Partial Granger Causality

BPL
PrPL

Mohammadi (2022) [44] 300 records (TPEHG) 30 0.08–4 WEWA 99.7 Empirical Mode Decomposition: Root Mean Square, Sample
Entropy, Teager–Kaiser Energy
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test or Wilcoxon rank-sum test, according to whether or not

they were considered normal by the Shapiro-Wilk test.

2.2. Recording protocol and EHG acquisition

For the EHG recording sessions, the abdominal surface was

prepared by gentle exfoliation with abrasive gel (Nuprep,

Weaver and Company, Aurora, CO, USA) and cleanedwith iso-

propyl alcohol to reduce skin-electrode impedance. Four

single-use Ag/AgCl electrodes (Red Dot 2660–5, 3 M, St. Paul,

MN, USA) were then placed as shown in Fig. 1. Two electrodes

(M1 and M2) were symmetrically positioned with respect to

the median axis at a distance of 6 cm from each other. Taking

into account the gestational age of the women who under-

went IOL, we decided to place the electrodes midway between

the pubic symphysis and the uterine fundus, near to the

navel, where signals were expected to present the highest

SNR [61,62]. The other two electrodes were placed on each

hip to provide reference and ground biopotentials. Both

monopolar signals were conditioned by a custom-made wire-

less recording module, providing a 2059 V/V gain in the 0.1–

150 Hz bandwidth and digitalised by a 24 bit analogue-to-

digital converter at 500 Hz [63].

The digitalised monopolar EHG signals were filtered

between 0.1 and 4 Hz (5th order Butterworth bandpass filter

of zero phase), as the spectral content of the EHG is mainly

distributed in that range, and then downsampled at 20 Hz to

maintain the trade-off between temporal resolution and com-

putational cost [28,32,64]. A bipolar signal was then calculated

as their difference (M2-M1) to reduce common-mode interfer-

ences and increase signal quality [27,65]. Uterine contractions

were then identified by two experts [64], in which each EHG-

burst was related to substantial changes in amplitude and

frequency with respect to the baseline tone with durations

longer than 40 s and without respiratory interference or

motion artefacts [27,31,32].
Fig. 1 – Electrodes positioning for uterine myoelectrical

recording. M1: monopolar electrode 1. M2: monopolar

electrode 2. REF: Reference electrode. GND: Ground

electrode.
2.3. EHG parametrisation

A set of temporal, spectral, and non-linear parameters were

computed to characterise uterine contractions.

2.3.1. Temporal parameters
Since obstetricians are familiar with monitoring and manag-

ing IOL, we included the following temporal parameters:

Number of Contractions (NCT) and Root Mean Square (RMS),

calculated in 0.1–4 Hz, as a measure of amplitude related to

uterine contraction intensity [27,31–33,66].

RMS x n½ �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
k¼1x n½ �2

q
ð1Þ

Where x represents an EHG contraction time series and N

represents its sample size. As labour progresses, the contrac-

tions are more frequent and of higher intensity, which is

equivalent to a higher signal amplitude [6,27]. Both NCT and

RMS are expected to show an upward trend throughout IOL.

2.3.2. Spectral parameters
As the spectral content is expected to shift towards higher

frequencies due to increased cell excitability as delivery

approaches, we computed the Mean Frequency (MNF) [6,37],

defined as the centroid frequency of the power spectrum

and is obtained as follows:

MNF ¼
PfH

k¼f L
PSD½k� � f ½k�PfH

k¼f L
PSD½k�

ð2Þ

Where PSD represents the power spectral density of EHG-

bursts and f the frequency distribution. The fH and the f L
are, respectively, the upper and lower cut-off frequencies of

the target bandwidth. In this work, we computed the MNF

in 0.2–1 Hz to minimise the negative influence of the remain-

der baseline fluctuation in 0.1–0.2 Hz and the cardiac interfer-

ence above 1 Hz [27,51].

We also worked out the Uterine Activity Index (UAI) [6],

which provides combined information from the temporal

and spectral domains. UAI was defined as the product of the

peak-to-peak amplitude of the signal (App) and the H=Lratio

divided by duration of contractions

H=LRatio ¼
PfH¼1

fL1¼0:34
PSD½k�PfH¼0:34

fL¼0:2
PSD½k�

ð3Þ

UAI ¼ App �H=LRatio
duration

ð4Þ

Where PSD represents the power spectral distribution, H/L

ratio is normalized energy of high frequency components

(0.34–1 Hz) to low frequency ones (0.2–0.34 Hz).

2.3.3. Non-linear parameters
As labour approaches, myoelectric activity also tends to

become more organised and predictable, giving rise to a

downward trend in the non-linear parameters [6,56]. In this

work, we also computed a set of non-linear parameters com-

puted in the Fast Wave High bandwidth to provide robust EHG

characterisation since it has been shown to better detect pre-

term labour and/or imminent labour [27,28]: Sample Entropy
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[27,28], Spectral Entropy [6,27,64], Binary Lempel-Ziv [28,38,67]

and Higuchi Fractal Dimension [39,68].

Firstly, Sample Entropy (SampEn) is a statistically measure

for determining the regularity of a time series based on the

existence of patterns without any previous knowledge about

the source generating the dataset [69,70]. It represents the

probability that similar patterns (delay vectors) in a time ser-

ies will remain similar once the pattern lengths are increased

(extended delay vectors), thereby providing a natural measure

of the time series regularity [69,71]. Formally, given a time ser-

ies x[n] of length N, a pattern vector aj ¼ fxj; xjþ1; :::; xjþm�1g of

length m is defined. Um rð Þ expresses the probability that the

time series matches the pattern within a threshold r deter-

mined by the Chebyshev distance function

d xm jð Þ � xm ið Þj j½ �ði–jÞ.

UmðrÞ ¼ 1
N�m� 1

� 1
N�m

XN�m

i¼1

XN�m

j¼1;j–i

½number of times d½jxmðjÞ

� xmðiÞj�
< r� ð5Þ

SampEn is then defined as the negative natural logarithm

of the probability that two similar sequences remain similar

at the next point within a tolerance, where self-

comparisons are not included when calculating probability.

For this work we used m = 2 and r = 0.15, as described in [6].

This parameter has been widely used both in the discrimina-

tion of preterm delivery [28,66] and also in characterising the

evolution of the delivery process [6,64].

SampEnðm; r;NÞ ¼ �lnðUðmþ1ÞðrÞ=UmðrÞÞ; ifUðmþ1Þ–0Um–0

�lnðððN�mþ 1ÞÞ=ððN�mÞÞÞ

(
; otherwise

ð6Þ

Therefore, the lower value of sample entropy the more

self-similarity in the time series, which is equivalent to a

higher organization degree or signal regularity. The higher

value of sample entropy the lower signal regularity and

higher randomness of time series [69,71].

Secondly, Spectral Entropy (SpEn) is a measure of the

uncertainty associated with the occurrence of a particular

event at a given frequency [72]. It is computed by applying

the Shannon Entropy formula to the normalised PSD of a time

series x[n], such that the normalised energy of each of the fre-

quency points is considered as a probability [73].

PSDn½k� ¼ PSD½k�2Pfm=2

k¼0PSD½k�2
ð7Þ

SpEnt ¼ �
Pfm=2

k¼0 PSDn½k� � log2ðPSDn½k�Þ
log2ðMÞ ð8Þ

Where PSDn½k� is the probability distribution of power

spectral density of the target signal, M is the number of fre-

quency points for which the power spectrum of the signal

has been estimated and fm is the sampling frequency. Physi-

cally, SpEn provides information about disorder in the fre-

quency spectrum, so that the sharper the frequency

distribution, the lower the value of the parameter. Widely

used to assess the progress of labour induction [6,40,64], but
also in prediction of preterm labour [32]. SpEn is expected to

decrease as the time of delivery approaches, suggesting a

higher degree of organisation in the EHG signal spectrum.

Thirdly, the Binary Lempel-Ziv (BLZ) is a measure of the

variation regularity in the time series [74,75]. The time series

of the signal x½n� is firstly transformed into a finite binary

sequence S ið Þ from left-to-right comparison with a threshold

Td[74]. This can be expressed mathematically as:

S ið Þ ¼ 0; ifx ið Þ < Td

1; otherwise

�
ð9Þ

For this we set up Td ¼ 0. The resulting binary sequence is

scanned sequentially looking for distinct structures or pat-

terns, building up a dictionary that summarises the

sequences seen so far [74]. Let S = {S(i)} "i = 1,. . .n denote a

symbolic sequence; S(i, j) denotes a sub-sequence of S that

starts at position i and ends at position j; V(S) denotes the

set of all sub-sequences {S(i, j), i = 1, 2, � � � n; j � i}. Starting

with i = 1 and j = 1, a substring S(i, j) is compared with V(S).

If S(i, j) is present in V(S), then increase j by 1 and repeat

the process. Otherwise, the complexity counter cðnÞ is

increased by one unit, since a new sub-sequence of consecu-

tive characters is encountered, and updates i = j + 1, while the

process continues until it scans thewhole symbolic sequence.

Physically, as labour induction progresses, uterine contrac-

tions becomes more regular, which should be reflected by

lower BLZ complexity, characterized by a small number of

patterns [6].

Finally, in signal analysis the fractal dimension is an index

of complexity and fragmentation, comparing how the details

of a signal’s pattern change when measured on different

scales [39,68]. It has been shown to provide relevant informa-

tion in predicting preterm labour [39] and to differentiate

between successful and failed labour induction [64]. In this

work, we found the Higuchi fractal dimension (HFD) to be

one of the most accurate and consistent fractal dimension

estimation algorithms for non-periodic and irregular physio-

logical time series signals [39,68]. Given a time series x(n),

consisting of N points and a parameter kmax � 2, for each k2
{1, . . ., kmax}, m2{1, . . ., k}, the length Lm(k) is defined as:

LmðkÞ ¼ N� 1
N�m
k � k2

XðN�mÞ=k

i¼1

jx½mþ i � k� � x½mþ ði� 1Þ � k�j ð10Þ

Then the average length Lm kð Þ was calculated and yielded

the mean curve length LðkÞ for each k.

L kð Þ ¼
Pk

m¼1
Lm kð Þ

k
ð11Þ

HFD was thus estimated as the slope of the best linear

least squares fit of the plot of lnðLðkÞÞ versus lnð1=kÞ [68].
Due to the intrinsic variability of uterine contractility, we

analysed the response of uterine myoelectrical activity to

the induction drug in time intervals of 30 min (analysis win-

dow). We had 11 windows per record: 1 in basal condition (be-

fore drug administration) and 10 to assess the response

during the first five hours of IOL. The median value of the

EHG-bursts present in a 30-minute window was worked out

for each plot, to obtain a single representative value per anal-
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ysis window of each recording session. The mean of the

parameters in the 30-minute windows was then calculated

for each group, as shown in Fig. 2. To characterise the progres-

sion rate of uterine myoelectric activity throughout IOL, the

slope of the median values of the 30-minute windows (a total

of 11 samples) was also calculated for individual parameters

and patients (Dpi=Dt).

2.4. Statistical analysis

We then analysed the possible differences in uterinemyoelec-

trical response between successful and failed (GS vs GF)

inductions and identified any differences in uterine myoelec-

tric activity between nulliparous and parous women in the

induction success group during IOL (GSN vs GSP). To do that

we first determined whether there were significant changes

with respect to baseline activity for individual EHG parame-

ters and groups (GS, GF, GSN and GSP) in each analysis window

in the first 5 h of IOL using the Wilcoxon signed-rank test

(a = 0.05). We also determined any significant differences by

means of the Wilcoxon rank sum test (a = 0.05) for each EHG

parameter and analysis window between the groups (GS vs

GF and GSN vs GSP). Significant differences were considered

to be sustained when they appeared in 4 or more consecutive

30-minute analysis windows. Finally, we worked out the Wil-

coxon rank sum test (a = 0.05) to analyse differences in the

progression rates in the above-mentioned groups.

3. Results

3.1. Obstetric data and outcomes of labour induction

The 35 womenwho achieved APL before 24 h were included in

the successful induction group (GS) and the remaining 22 in

the failed induction group (GF), either because they did not

reach APL or because they did so, far from the start of induc-

tion (>24 h). The possible difference between the 16 nulli-

parous (GSN) and 19 parous (GSP) women in the successful
Fig. 2 – Flowchart of the param
induction group was also analysed. In the GF, 16 were nulli-

parous and 6 were parous. Obstetric, delivery and newborn

characteristics are summarised in Table 2 for both scenarios.

Due to the group segregation bias, as expected, GS presented

a significantly higher rate of achieving APL, shorter time to

APL and delivery, reduced oxytocin augmentation and higher

rate of vaginal delivery than GF. GS presented significantly

lower BMI and higher progression in BS (DBS) than GF. No sig-

nificant differences were found between the GSN and GSP
groups except for the number of gestations and parity, which

was associated with the segregation criterion.

3.2. Comparative of the success and failure of the labour
induction

The evolution of uterine myoelectric activity parameters in

response to the Dinoprostone labour induction drug are rep-

resented in Fig. 3 for the GS (blue) and GF (orange) groups. A

steady increase in NCTwas observed in the GS group through-

out the recording session. Statistically significant sustained

differences with respect to the baseline were found in GS

from 60 min to the end. GF showed no specific trend with

abrupt changes. Differences between the GS and GF groups

for NCT were only found at 270 min from induction onset.

As for the NCT progression rate, it did not show any signifi-

cant difference between GS and GF (see violin plot Fig. 3).

The RMS parameter showed a clear upward trend in GS after

60 min, suggesting increased intensity of uterine contrac-

tions, while this phenomenon was not observed in GF. Signif-

icant differences from the baseline were only found at

300 min in GS, but not in the GF group. GS showed a signifi-

cantly higher amplitude than GF at 150, 180 and 270 min, with

no sustained differences. Of note, GS presented a significantly

higher RMS progression rate than GF in the first 5 h of induc-

tion, with a significant statistical difference, as shown by

their violin plots.

In the spectral parameters, MNF presented a progressive

upward trend for GS with significant sustained differences
eter computation process.



Table 2 – Obstetric data and outcomes of labour induction of women enrolled in the study, mean ± standard deviation or
number of cases. BMI: Body Mass Index. GAD: Gestational Age at Delivery in weeks. BS: Bishop Score. APL: Active Period of
Labour. NW: Newborn Weight. p-value: Wilcoxon Rank-sum test p-value (in bold: statistically significant difference, p < 0.05).
*: The statistical test was applied only to those achieving APL.

Variable GS GF p-value GSN GSP p-value

Maternal age (years) m±r 33.9 ± 5.9 34.5 ± 5.2 0.805 32.4 ± 5.4 35.3 ± 6.0 0.119
BMI (kg/m2) m±r 25.6 ± 6.6 27.7 ± 8.1 0.037 25.6 ± 8.5 25.6 ± 3.1 0.884
Gestations m±r 2.1 ± 1.2 1.8 ± 1.5 0.065 1.3 ± 0.5 2.8 ± 1.1 < 0.001
Parity m±r 0.7 ± 0.7 0.7 ± 0.7 0.073 0.0 ± 0.0 1.3 ± 0.5 < 0.001
GAD (weeks) m±r 40.6 ± 0.6 40.5 ± 0.7 0.801 40.6 ± 0.6 40.5 ± 0.5 0.224
Initial BS m±r 3.5 ± 1.7 2.9 ± 1.3 0.329 3.6 ± 1.8 3.3 ± 1.5 0.795
DBS m±r 3.9 ± 2.6 2.0 ± 1.5 0.021 3.1 ± 2.1 4.6 ± 2.9 0.237
Achieve APL N 35/35 15/22 0.002 16/16 19/19 –
Time to APL (h)* m±r 11.7 ± 5.8 28.0 ± 3.2 < 0.001 12.8 ± 6.3 10.7 ± 5.4 0.417
Vaginal ending N 33/35 12/22 0.001 14/16 19/19 0.397
Time to Del. (h)* m±r 14.7 ± 7.7 32.1 ± 10.0 < 0.001 17.4 ± 8.7 12.4 ± 6.0 0.085
Oxytocin N 0/35 16/22 < 0.001 0/16 0/19 –
Arterial pH m±r 6.8 ± 1.7 6.6 ± 2.1 0.653 6.8 ± 1.8 6.9 ± 1.7 1.000
Venial pH m±r 7.1 ± 1.2 7.3 ± 0.1 0.420 7.3 ± 0.1 6.9 ± 1.7 0.344
NW (kg) m±r 3.5 ± 0.4 3.4 ± 0.3 0.166 3.5 ± 0.4 3.5 ± 0.4 0.882

Fig. 3 – Temporal evolution of temporal, spectral and non-linear parameters and violin plots of their slopes for success (GS)

and failure (GF) groups. Statistical differences between groups are indicated by grey downward-pointing triangles and with

respect to basal activity by blue rightward (GS) and orange leftward (GF) triangles. In the violin plots statistical differences

between GS and GF slopes are indicated by grey shading.
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with respect to basal activity from 150 min until the end of

the recording. Despite showing a similar trend to that of GS,

the GF group did not show any statistical difference from

the baseline, which may be due to the wide variability of this

parameter in the GF group. Differences were only found

between GF and GS at baseline. On the other hand, UAI

resulted in a remarkable upward trend with significant sus-

tained differences from baseline in GS from 120 min, which

were not observed in GF. We also found significant differences

between GS and GF for UAI at 150, 180 and 270 min. Even

though the MNF also showed slightly higher slope values for

GS, the between-group slope difference (GF vs GS) was only

found for UAI as depicted in the corresponding violin plot.

Finally, as expected, non-linear parameters showed a

decreasing trend in the GS group as IOL progressed. In com-

parison to baseline activity, the GS group obtained significant

differences at some time intervals from the third hour after

induction onset, without being sustained over time, for Sam-

pEn, BLZ and HFD. However, SpEn resulted in statistically sig-

nificant sustained differences from 210 to the end of the

recording. Again, no significant difference was found with

respect to basal activity in the GF group. Significant differ-

ences between GS and GF were obtained at 150–210 and 300
Fig. 4 – Temporal evolution of temporal, spectral and non-linea

Nulliparous (GSN) and Parous Group of Success (GSP). Statistical

triangles and with respect to basal activity by blue rightward (G

statistical differences between GSN and GSP slopes are indicated
for SampEn, BLZ and HFD. SpEn showed significant sustained

differences between the GS and GF groups from 90 to 300 min.

It is noteworthy that all non-linear parameters revealed a sig-

nificantly more negative progression rate for GS than GF, with

slopes statistically different.

3.3. Comparative of nuliparous and parous uterine
myoelectrical activity in labour induction success

Fig. 4 shows the median values of the EHG parameters

throughout the recording session calculated for both GSN
and GSP, together with the violin plots of their slope distribu-

tions. GSN showed a more pronounced increasing NCT trend

throughout the recording session than GSP, obtaining a signif-

icant difference with respect to baseline activity at some time

intervals, which was not reached in GSP group. Statistically

significant differences between GSN and GSP were only found

at 60, 270 and 300 min time intervals. As for RMS, parous

women showed higher amplitude than nulliparous ones, with

no significant differences between them, although GSP had a

significantly higher progression rate than GSN.

Again, GSN exhibited a more marked upward trend for

MNF and UAI than GSP, with significant sustained differences
r parameters and violin plots of their slopes for the

differences between groups are indicated by inverted pink

SN) and black leftward (GSP) triangles. In the violin plots,

by grey shading.
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with respect to baseline activity from 210 and 240 m, respec-

tively, for GSN, but not for the GSP group. We found no signif-

icant difference for either MNF or UAI or in their slopes

between nulliparous and parous women.

Both GSN and GSP presented a similar downward ten-

dency for non-linear parameters as labour induction pro-

gressed, GSP achieved significant differences to baseline at

some time intervals from the third hour in the four non-

linear parameters, although this was not sustained over

time. In contrast, GSN reached significant SpEn differences

to basal in most windows after 150 min, but this was not

sustained over time. Differences were achieved for BLZ

and HFD at 300 min. GSP seemed to present a more negative

progression rate for non-linear parameters than GSN
throughout the recording session, but without significant

differences.

4. Discussion

4.1. Labour induction success vs failure

In this work we analysed and compared the difference in

myoelectric uterine response to the Dinoprostone induction

drug between women who achieved APL in<24 h from IOL

onset (GS) and the remainder (GF). Firstly, as labour induc-

tion progressed, the uterine myoelectric activity of the GS

showed an increasing trend in temporal and spectral

parameters, suggesting a higher number of cells involved

in contraction and also greater cell excitability [6]. This

result is consistent with the fact that the increased con-

centration of prostaglandins E2 may induce increased

myometrial contractility, this phenomenon being the indi-

rect response of cervical ripening rather than a direct

effect on the myometrium [8]. We also found that the set

non-linear parameters worked out showed a downward

trend for the GS group, suggesting an increased degree of

organisation and predictability of the EHG signal. These

findings agree with our previous studies [6,64].

We also found significant sustained changes from baseline

in NCTafter 60 min for spectral parameters from between 120

and 150 min and after 210 min for SpEn in the GS group. Our

results are consistent with other findings in the literature that

stated that changes from EHG basal activity were achieved

between 2 and 8 h after administration of Dinoprostone [59]

and were especially marked around the fifth hour [7,76]. Our

results also agree with the pharmacokinetics of Dinopros-

tone: in [77] it was reported that the peak plasma level and

the median time to obtain sustained uterine activity was at

60–120 and 127 min respectively after administration of vagi-

nal Dinoprostone insert [77].

We did not obtain any significant change in uterine

myoelectric activity in the GF group in comparison to base-

line activity. During the first hours of IOL onset, these

patients’ lack of response to the drug could be related to

their expression of prostaglandin receptors EP1, EP3 and

EP4 in the cervix tissue, which has been shown to play

an important role in delivery [8]. Konopka et al. showed

that upregulated EP1 mRNA expression was associated
with induction failure [78]. The increased expression of

contractile EP3 and reduced expression of relaxatory EP4

in the GF group has also been reported [79]. The faster

response of uterine myoelectric activity in GS is consistent

with the shorter time to achieve APL, shorter time to deliv-

ery and lower percentage of women requiring oxytocin

augmentation from obstetric data, which is in agreement

with other findings in the literature [12,26]. It should be

noted that there is some controversy over the influence

of the BMI on labour induction outcomes. Batinelli [7]

and Pitarello [16] found it irrelevant, while Prado et al. sug-

gested that a lower BMI indicated a higher probability of

vaginal delivery [26]. In the present work, we found that

the GF group had a significantly higher BMI than GS. Since

our database was relatively small, future studies will be

needed to corroborate this result.

We also found significant differences between induction

success and failure, especially for non-linear parameters,

which we had not found in a previous study in which we only

analysed the first four hours after induction onset [6]. This

discrepancy could be mainly due to the definition of the

induction success group, which is somewhat controversial

[15]. It has been defined as achieving vaginal delivery within

24 h [12,20] or 48 h [80] after the start of labour induction

[20] to any time after the start of labour induction [7]. In the

present work, we opted for time-to-APL � 24 h to avoid the

bias due to oxytocin administration further promoting uter-

ine contractility in women who do not achieve APL in 24 h.

Achieving APL after 24 h may be related to the increased cell

excitability associated with using of exogenous oxytocin,

which is not attributable to the response to Dinoprostone.

Finally, the GS group presented a significantly higher slope

than GF in almost all the EHG parameters, suggesting that the

progression rate of uterine contractility contains relevant

information to determine labour induction success. As the

progression rate involves analysing repeated measures from

different time intervals, this is undoubtedly a more reliable

measure than a single measure from a specific time interval,

due to intrinsic uterine contractility variability. To our knowl-

edge, this is the first time this type of EHG-biomarker has

been reported and it could be helpful in designing robust

and generalizable labour induction success prediction

systems.

4.2. Influence of parity on uterine myoelectric response
during IOL

The parity effect on the IOL outcome has been extensively

studied in the literature [7,16,17,22]. In general, nulliparous

women seem to be less responsive than parous to Dinopros-

tone: a greater need for oxytocin and longer time to achieve

both APL and vaginal delivery [20]. In fact, according to Bati-

nelli et al [7], the trend changes in the Kaplan-Meier curves

from the fifth hour onwards are mainly caused by the parous

population, as nulliparous show this change from the eighth

hour onwards [76]. Moreover, Juhasova [81] found faster cervi-

cal dilatation rates in parous than nulliparous, which could be

associated with the fact that dilatation in nulliparous is pre-
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ceded by a thinning of the cervix, whereas in parous both

occur simultaneously [17]. In addition, nulliparous are associ-

ated with a higher risk of IOL failure [7,17], which the litera-

ture suggests could be influenced by cervical stiffness [17].

Our results on obstetric data and outcomes of labour induc-

tion are in agreement with this, although no significant differ-

ences were found. In fact, only 50 % of the nulliparous women

included in the present study achieved APL � 24 h compared

to 83 % of the parous women.

In this work we specifically focused on the analysis of the

effect of parity on the response of uterine myoelectric activity

to the induction drug reaching APL � 24 h, which has been lit-

tle studied to date. We found a significantly higher number of

contractions in nulliparous than in parous women after 4 h,

which is consistent with other authors who reported that

NCTwas significantly lower in women with a previous deliv-

ery [82]. By contrast, we also found that parous women pre-

sented a greater uterine contraction amplitude than

nulliparous women, with no significant differences at a speci-

fic time interval. This finding is consistent with the literature,

given that a previous pregnancy may induce a greater number

of gap-junctions in the myometrium [83]. Likewise, we found

a significantly higher rate of amplitude progression in parous

women, which may suggest that parous women have a

greater response to prostaglandin E2. Our results partially

support Ryan’s findings, which reported that nulliparous have

a lower uterine contractility response to oxytocin than parous

women in an in vitro setting [84], as both prostaglandin E2

and oxytocin are induction drugs that promote uterine con-

tractility. Our results of greater contraction amplitude in par-

ous women, although with no significant differences between

both groups, are consistent with [82]. In that work, it was

found that women with more than one previous delivery

showed a higher mean contractile force than nulliparous

ones, which has been proven to be related to contraction

amplitude [85]. Physiologically, vaginal parity has been linked

to reduced collagen alignment and poorer biomechanical

properties without affecting the overall histomorphology of

the tissue [86], which may be related to the faster cervical

dilatation rates in parous women [3]. Therefore, the combined

interaction between uterine contractility and cervical dilata-

tion may explain why the uterus of parous women appears

to require significantly less effort to complete vaginal delivery

than that of nulliparous women.

On the other hand, Prevost found that higher parity was

related to lower endogen oxytocin generation and conse-

quently to lower cell excitability [87]. This agrees with our

MNF results, which are associated with cell excitability [29].

We found that the GSP group (with no grand parous women)

exhibited slightly lower values and progression rates than the

GSN group, with no significant difference. The non-linear

parameters of the EHG showed no statistically significant dif-

ferences between nulliparous and parous except for some iso-

lated time interval and none between them. Despite of that

the physiological interpretation of non-linear parameters is

still unclear, we speculate that the slightly lower signal com-

plexity in parous women may be linked with the increased

coupling or synchronization degree between cells. As labor

approaches, the increase of both number and density of gap

junctions [88,89] gives rise to an enhanced signal propagabil-
ity and higher synchronization degree at myometrium level.

Indeed, using magnetomyometriogram it has been shown

that parous women exhibited higher synchronization degree

than nulliparous women from 36 weeks of gestation onwards

[90]. Since EHG is the result of weighted sum of uterine myo-

electric activity around the electrodes, an enhanced propaga-

bility is reflected as an increased signal amplitude of parous

women (Fig. 4) [36]. Our hypothesis is that the more synchro-

nized and propagated the action potentials (high connectivity

between myometrium cells) the more reduced pattern num-

ber in EHG signals, which is equivalent to a more organized

signal [91].

To sum up, the main differences between nulliparous and

parous women consist of structural changes in the cervix,

which have been associated with a higher rate of cervical

dilatation in parous women. At the myometrium level, we

found a lower number of contractions but faster evolution

(greater progression rate) of the amplitude of the signal in

parous women, but no significant differences in cell excitabil-

ity or signal predictability and complexity. It is therefore

important to take these factors into account when designing

an induction success prediction system.

4.3. Limitations of the study

Despite obtaining consistent results, the present study has

some limitations. Firstly, the size of the database could lead

to some bias in the analysis due to intrinsic biological vari-

ability. Future work will aim to increase the sample size to

corroborate the present results and to design robust and gen-

eralizable induction success prediction systems based on EHG

and obstetric data.

Secondly, two approaches are commonly used in EHG sig-

nal analysis, [27]: whole EHG window analysis [28,29,44] and

EHG-burst analysis [45,53,57]. The former facilitates segment-

ing the process, since it only requires the removal of motion

artefacts from the EHG records and does not involve discrim-

ination between uterine contraction and baseline activity [64].

Our previous study found that EHG-burst analysis to be more

suitable for characterising the uterine myoelectric response

to the induction drug than whole EHG-window analysis [64],

while in this work the manual segmentation of contractions

performed by experts in a double-blind process to reduce bias

is inherently subjective and cumbersome for large datasets.

Multiple systems for the automatic detection of contractions

in EHG recordings during routine pregnancy monitoring

[31,50] and/or threatened preterm labour [31,53] can be found

in recent studies. The performance of this system in the

labour induction has yet to be tested, as theremay be a higher

rate of movement artefacts due to maternal and foetal stress

associated with imminent labour [92,93]. Also, the EHG-bursts

associated with contraction can exhibit subtle changes in the

latent phase of labour, making it really challenging to detect

uterine contractions in this scenario.

Thirdly, we here characterised the EHG signal by assessing

the degree of cell recruitment and excitability as well as uter-

ine contraction complexity and regularity. Other indicators

have been proposed based on the synchronization degree of

multichannel EHG recordings to determine the uterine the

degree of coupling of the uterine cell which is directly related
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to the formation of the gap junction union, e.g.: iCOH [35,36],

non-linear H2 [35,50], NPCMI [35,46], partial Granger causality

[29,45] and partial transfer entropy [29]. Despite of the physi-

ological interpretation of the synchronization measures,

which could provide complementary information to tempo-

ral, spectral and non-linear measures, in this work we pre-

ferred to use a simplified protocol considering the highly

stressful situation of labour induced for women and clini-

cians in clinical practice [93]. Also, a simplified protocol that

does not radically alter routine clinical praxis will facilitate

transferring the EHG technique to clinics. However, future

work on additional simultaneous EHG recording electrodes

will address the problem of obtaining additional information

on the degree of synchronisation to predict successful labour

induction. Despite these limitations, our findings pave the

way to investigating any differences in uterine myoelectric

response to other drugs, which will help to optimise drug

doses and administration routes.

5. Conclusions

In this work, we analysed the different uterine myoelectric

responses to Dinoprostone between labour induction success

(APL � 24 h) and failure groups (the remainder). We found sig-

nificant sustained differences in EHG biomarkers with respect

to baseline activity from 2 to 3 h after the start of labour

induction in the successful induction group: increased num-

ber of contractions and Mean Frequency (associated with cell

excitability) and reduction of SampEn and SpEn (associated

with reduced complexity). In contrast, no significant changes

from baseline activity were found for failed induction group.

Women with successful inductions also showed a statistically

higher rate of progression (steeper slope) of amplitude of the

EHG-bursts and the spectral UAI parameter, and statistically

lower slopes for the whole set of non-linear parameters.

We also determined the influence of parity on uterine

myoelectric response to a labour induction drug in those

women who achieved APL � 24 h. Nulliparous women

showed a higher number of contractions and larger changes

in the mean frequency progression rate than parous women,

with no significant differences between them. No differences

were found in the non-linear parameters between nulliparous

and parous women. The most relevant finding at the myome-

trium level consisted of a significantly higher progression rate

of the EHG signal amplitude in parous women.

The present study not only expanded current information

on electrophysiological knowledge of the in-vivo response of

uterine myoelectric activity to the induction drug without

the confounding factor of exogenous oxytocin, but also iden-

tified new EHG-biomarkers that could allow the early detec-

tion of the risk of induction failure. We therefore propose

that they should be used to develop robust and generalizable

induction success prediction systems to help clinicians to

optimise induction decision-making, to better plan and man-

age deliveries, to prevent maternal and foetal complications

and their associated mortality and morbidity and optimise

hospital resources.
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