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Abstract

Constrained mixture models of soft tissue growth and remodeling can simulate many evolving

conditions in health as well as in disease and its treatment, but they can be computationally

expensive. In this paper, we derive a new fast, robust finite element implementation based on

a concept of mechanobiological equilibrium that yields fully resolved solutions and allows com-

putation of quasi-equilibrated evolutions when imposed perturbations are slow relative to the

adaptive process. We demonstrate quadratic convergence and verify the model via comparisons

with semi-analytical solutions for arterial mechanics. We further examine the enlargement of aor-

tic aneurysms for which we identify new mechanobiological insights into factors that affect the

nearby non-aneurysmal segment as it responds to the changing mechanics within the diseased

segment. Because this new 3D approach can be implemented within many existing finite element

solvers, constrained mixture models of growth and remodeling can now be used more widely.
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1. Introduction

A distinguishing feature of soft biological tissues is their ability to grow (change mass) and

remodel (change microstructure) in response to diverse stimuli, often mechanical and chemical.

Multiple approaches for mathematically modeling such growth and remodeling (G&R) have proven

useful in describing diverse situations for many different tissues [1–5]. Among these approaches,

a constrained mixture model has proven particularly useful when there is a need to account for
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the different natural configurations, material properties, and rates of turnover of the individual

constituents that define the tissue [6]. The classical (heredity integral-based) formulation of this

mixture approach is computationally expensive, however, hence most implementations have fo-

cused on simple geometries (e.g., cylindrical bodies or axisymmetric membranes).

Herein, we exploit a recent concept of mechanobiologically equilibrated G&R [7] and show

computational advantages for illustrative cases that allow direct comparison with full constrained

mixture solutions. We also extend prior kinematics to account for general three-dimensional G&R

with finite deformations and possible rotations. The proposed rate-independent framework can

compute evolving homeostatic states efficiently by enforcing mechanical and mechanobiological

equilibrium without the need to track the past history of deposition and removal, as in integral-

based approaches, or to integrate evolution equations, as in rate-based approaches. We submit

that this new 3D formulation, which can be implemented easily within existing finite element

solvers though with a non-symmetric tangent stiffness matrix, will enable fast, reliable finite

element simulations of many G&R problems while accounting for critical differences in the diverse

constituents that characterize soft tissues.

2. A mechanobiologically equilibrated constrained mixture model

We first review local equations for mechanobiologically equilibrated mass fractions, deformation

gradients, strain energy functions, and stresses, at constituent and mixture levels, which when

complemented with an equilibrium value for a given stimulus function for mass production furnish

a set of equations to compute fully resolved states at any material point and G&R time s.

2.1. Mechanobiological equilibrium

Consider an in vivo loaded configuration κ of a soft tissue that consists of a mixture of multiple

constituents, in particular, various types of cells, extracellular matrix proteins, glycosaminogly-

cans, and abundant water. Because effects of internal solid-fluid interactions are negligible with

respect to other characteristics exhibited by these tissues for applications of interest (e.g., ex vivo

testing and in vivo behaviors during cyclic loading), we do not account explicitly for a solid-fluid

mixture with momentum exchanges. Rather, the tissue is modeled as a constrained mixture of

multiple hydrated solid constituents, with the hydrostatic pressure associated with interstitial wa-

ter absorbed by a Lagrange multiplier that enforces transient incompressibility. In a continuum

theory of constrained mixtures for G&R [6], properties at a material point in configuration κ are
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represented in a locally averaged sense, in terms of multiple structurally significant constituents

α = 1, ..., N , to satisfy mass balance in spatial form

∂ρα

∂s
+ div (ραvα) = m̄α , (1)

where ρα is the homogenized, apparent mass density (mass of constituent α per unit current

volume of mixture), vα the velocity (constrained to equal the velocity v of the mixture), and m̄α

the net rate of mass density production or removal, which must be prescribed constitutively. Let

m̄α be defined in terms of true rates of mass density production mα > 0 and removal nα > 0

as m̄α = mα − nα, both of which must be prescribed constitutively. It proves useful to define

a stimulus function Υα = mα/nα > 0, which enhances (Υα − 1 > 0), reduces (Υα − 1 < 0), or

balances (Υα − 1 = 0) mass production with respect to mass removal. Constitutively prescribing

mα and nα is tantamount to prescribing nα and Υα, which is often more convenient from a

modeling perspective. Because div (ραvα) = ρα div vα + vα· grad ρα, thus ∂ρα/∂s + vα· grad ρα =

ρ̇α, with ρ̇α the material time derivative of ρα, and div vα = div v = J̇/J , with J = det F the

Jacobian determinant of a deformation gradient F defined at the mixture level, which conveniently

describes (measurable) deformations between an initial, original homeostatic configuration κo and

κ. Equation (1) can thus be written in terms of the referential mass density ραR = Jρα (defined

per unit reference volume of mixture) as

ρ̇αR
J
≡ ρ̇α + ρα

J̇

J
= mα − nα = nα(Υα − 1) , (2)

which generalizes rate equations for ρ̇αR obtained previously [7, 8] from an integral-based approach

based on a first-order kinetic decay nα = kαρα, with kα a rate parameter that defines the removal.

Similarly, spatial linear momentum balance for constituent α, with vanishing interactive forces

among constituents due to their constrained motion, may be written as

ραv̇α = divσαt + ραbα + pαopen (3)

where σαt is the total Cauchy stress tensor (i.e., including a contribution σα derived from a strain

energy function and others arising from kinematic constraints, such as incompressibility) for a

constituent at the mixture level and bα is the constituent body force per unit current mass of
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constituent; additionally, pαopen represents the (excess) exchange of momentum not caused by the

net exchange in mass m̄α, which is typically zero in soft tissues.

Summation of mass (2) and momentum (3) balances over all constituents, with vα = v and∑
pαopen ' 0, yields the mixture relations

ρ̇R

J
≡ ρ̇+ ρ

J̇

J
= m− n =

N∑
α=1

nα(Υα − 1) = m̄ (4)

and

ρv̇ = divσ + ρb (5)

where ρR =
∑
ραR = Jρ, m =

∑
mα, n =

∑
nα, σ =

∑
σαt , and ρb =

∑
ραbα.

As in [7], and because nα > 0, we observe from Eqs. (2) and (4) that a sufficient condition for

a soft tissue to be in mechanobiological equilibrium (to preserve its mixture mass, composition,

and properties) is

Υα ≡ 1 ∀α =⇒ ρ̇αR ≡ 0 ∀α , ρ̇R = 0 . (6)

Mechanical (static) equilibrium in a homeostatic state (denoted by subscript h) additionally re-

quires, from Eq. (5),

vα = v ≡ 0 ∀α =⇒ 0 = divσ + ρb , F ≡ Fh (7)

with Fh describing deformations between κo and any homeostatic configuration κh, original or

evolved (Fig. 1), which allows adaptive homeostasis [9]. Importantly, Eqs. (6) and (7) also

approximate G&R processes wherein the characteristic rate for adaptation is faster than the rate

of change of the stimulation, thus yielding mechanobiologically quasi-equilibrated G&R evolutions

[10, 11].

2.2. Mechanobiologically equilibrated mass fractions

To generalize the present formulation, consider two types of load-bearing constituents α = ζ∪ξ

within a soft tissue at G&R time s = 0 that evolve differently for s > 0. Let constituents

ζ = 1, .., N ζ not turnover, whereby their mass remains constant and their response can be de-

scribed with (rate-independent) hyperelasticity. In contrast, let constituents ξ = 1, .., N ξ turnover

continuously within extant matrix, thus contributing to local changes in mass and microstructure,
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with their response described with rate-independent G&R. Respective initial mass fractions φζo and

φξo satisfy
∑
φζo +

∑
φξo = 1, with N ζ +N ξ = N . Examples within the arterial wall are functional

elastic fibers (= ζ), consisting of elastin and associated microfibrils, which are produced during

the perinatal period and have a half-life of decades, and collagen fibers (= ξ), which are produced

continuously and have a half-life of weeks to months. Because differential production and removal

of constituents ξ contribute to changes in mass of the mixture, both types of constituents can

present evolved mass fractions φζh 6= φζo and φξh 6= φξo at κh, satisfying
∑
φζh +

∑
φξh = 1, with

φαo =
ραo
ρ

, φαh =
ραh
ρ

(8)

for all constituents α = 1, ..., N ζ + N ξ, where ραo and ραh are equilibrated mass densities (defined

locally at o or h, respectively), and ρ is the actual mass density of the overall tissue (mixture),

which we assume to be constant due to the highly hydrated states of all solid constituents.

2.2.1. Constituents that do not turnover

Because the mass of constituent ζ remains constant, a Piola transformation yields ρζh (Jh) =

ρζo/Jh ≡ ρζRh/Jh, thus

φζh (Jh) =
φζo
Jh

, ζ = 1, ..., N ζ . (9)

2.2.2. Constituents that turnover

To delineate differential changes in mass of constituents ξ under mechanobiological equilibrium,

one needs first to describe how they evolve with respect to each other under general G&R. For

example, without explicitly prescribing nξ and Υξ in Eq. (2), let all constituents ξ respond to

changes in stimuli with proportional out-of-equilibrium stimulus functions and mass-specific rates

for removal: Υξi − 1 = ηijΥ(Υξj − 1) and nξi/ρξi = ηijq n
ξj/ρξj for ξi 6= ξj = 1, ..., N ξ, with ηijΥ and

ηijq respective proportionality ratios. Then, from Eq. (2), local changes in constituent mass per

respective unit mass satisfy

ρ̇ξiR
ρξiR

= ηij
ρ̇
ξj
R

ρ
ξj
R

, ξi 6= ξj = 1, ..., N ξ (10)
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with ηij = ηijq η
ij
Υ . Exact integration of Eqs. (10) from state κo (for which ρξRo = ρξo) to κh yields

the following N ξ − 1 independent relations among the mass fractions φξh

Jhφ
ξi
h

φξio
=

(
Jhφ

ξj
h

φ
ξj
o

)ηij

, ξi 6= ξj = 1, ..., N ξ (11)

where we used ρξRh = Jhρ
ξ
h and Eqs. (8), which are equivalent to those obtained in [7] between

the two evolving constituents considered therein (smooth muscle cells “m” and collagen fibers “c”,

with a single η = ηqηΥ). Finally, the constraint
∑
φαh = 1, with φζh (Jh) from Eq. (9), requires

1 =
Nζ∑
ζ=1

φζo
Jh

+
Nξ∑
ξ=1

φξh (12)

which, along with Eqs. (11), form a system of N ξ independent equations that provide implicit

expressions for φξh (Jh). If ηij = 1 ∀{ξi, ξj}, then Eq. (11) reduces to φξih /φ
ξi
o ≡ φξh/φ

ξ
o ∀ξi, and Eq.

(12) to

1 =
Nζ∑
ζ=1

φζh (Jh) +

1−
Nζ∑
ζ=1

φζo

 φξh
φξo

(13)

where
∑
φξo = 1−

∑
φζo, which yields

φξh (Jh)

φξo
=

1−
∑
φζh (Jh)

1−
∑
φζo

, ξ = 1, ..., N ξ . (14)

2.3. Mechanobiologically equilibrated deformation gradients

In a full constrained mixture theory, constituents are assumed to be deposited within the

mixture at deposition time τ ≤ s in intermediate configurations, relative to their own possibly

evolving natural configurations καn (τ), via symmetric and volume-preserving deposition stretch

tensors Gα (τ). Since the motion of each constituent, once deposited, equals that of the soft

tissue, the deformation experienced by the material deposited at time τ that survives at s is

Fα
n(τ) (s) = F (s) F−1 (τ) Gα (τ) [12]. Because newly deposited constituents at time τ satisfy

Fα
n(τ) (τ) = Gα (τ), one notices (Appendix A) that καn (τ) can be interpreted as natural con-

figurations that evolve with the configuration of the mixture κ (τ), with Gα playing the role of

a (spatial) left (pre)stretch tensor when referred to a rotated natural configuration καN (τ) that

evolves while attached to the rotated configuration of the mixture κR (τ). In that case, it proves
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convenient to let an associated deformation gradient

Fα
N(τ) (s) = F (s) F−1 (τ) Fα

G (τ) (15)

map line elements (fibers) from the rotated natural configuration καN (τ) to the current configura-

tion κ (s), where

Fα
G (τ) := Gα (τ) R (τ) = R (τ) Gα

N (τ) (16)

is a constituent-specific deposition tensor at τ , with R the rotation tensor from a polar decompo-

sition of F, thus

Gα
N (τ) := RT (τ) Gα (τ) R (τ) (17)

is the associated (symmetric, volume-preserving) right (pre)stretch tensor defined in configura-

tion καN (τ) (which is rotated with respect to the spatial configuration καn (τ) but unrotated with

respect to the reference configuration of the mixture κ(0)). We then obtain mechanobiologically

equilibrated deformation gradients for all constituents α from their respective equilibrated natural

configurations to the equilibrated current configuration of the mixture κh, described by F (s) = Fh

(see Eq. (7) and Fig. 1).

2.3.1. Constituents that do not turnover

Constituents ζ are deposited and cross-linked prior to s = 0; we account for their elastic

response through mechanically equivalent deposition stretch tensors defined at the initial time

Gζ (τ = 0) = Gζ = const. Hence, their fictitious natural configurations κζn (0) = κζN (0) do not

evolve over time, but are fixed and attached to the reference configuration for the mixture κo.

Equation (15) particularized to a mechanobiologically equilibrated state for which F (s) = Fh,

with F (τ = 0) = I, yields (see Fig. 1)

Fζ
h ≡ Fζ

Nh = Fζ
nh = FhG

ζ . (18)

2.3.2. Constituents that turnover

Deposition stretches arise when synthetic cells act on the newly-secreted matrix via actomyosin

activity [13], with magnitudes becoming constitutive parameters and so too the orientation of the

new tissue when deposited [12, 14]. We assume that the magnitude and orientation of Gξ
N (τ) in
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Eqs. (15)-(17) remain constant ∀τ , including mechanobiologically equilibrated evolutions ∀s, thus

Gξ
N = const. Conversely, Gξ

h = RhG
ξ
NRT

h 6= const, in general, because rotations may arise as the

vessel evolves. Equation (15) particularized for constituents that turnover within a homeostatic

state, with F (τ) = F (s) = Fh ∀τ , yields (see Fig. 1)

Fξ
Nh = FhF

−1
h Fξ

Gh = Fξ
Gh = RhG

ξ
N , (19)

which will prove useful when computing mechanobiologically equilibrated (rotated) Cauchy stresses

subject to material frame indifference. Of course, more complex theories can include remodeling

of deposition stretches in referential or spatial settings, with either their magnitude (e.g., via a

fibrosis-driven maladaptation [15]) or alignment (e.g., via stress-, stretch-, or energy-driven re-

orientations [12, 16]) evolving over G&R time scales, but we do not consider such cases here for

simplicity.

2.4. Mechanobiologically equilibrated strain energy

2.4.1. Constituents that do not turnover

Consider strain energy functions Ŵ ζ per unit reference volume of their natural configurations

κζ ≡ κζn (0) = κζN (0). Since constituents ζ are deposited within κo = κ(0), associated contributions

at the mixture level (per unit reference volume of mixture) are weighted directly by respective

original volume fractions Φζ
o as W ζ

R = Φζ
oŴ

ζ . Noting that Φζ
o coincides with the mass fraction φζo

for mixtures of constituents with the same mass density [7], as assumed herein,

W ζ
Rh = φζoŴ

ζ
h = φζRhŴ

ζ
h (20)

where φζRh = φζo and Ŵ ζ
h = Ŵ ζ(Cζ

h) depends on the equilibrated ζ-constituent-specific right

Cauchy–Green tensor Cζ
h = FζT

h Fζ
h = GζChG

ζ , from Eq. (18), with Ch = FT
hFh the right

Cauchy–Green tensor for the equilibrated mixture.

2.4.2. Constituents that turnover

Consider strain energy functions Ŵ ξ per unit reference volume of their natural configurations

καN ≡ καN(s), with καN(s) 6= καn(s) in general. Since constituents ξ are deposited within κh = κ(s),

contributions at the mixture level (per unit current volume of mixture) are weighted by evolved
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volume fractions Φξ
h as W ξ = Φξ

hŴ
ξ, whereupon W ξ

R = JhW
ξ = JhΦ

ξ
hŴ

ξ. Noting that Φξ
h ≡ φξh,

W ξ
Rh = Jhφ

ξ
hŴ

ξ
h = φξRhŴ

ξ
h (21)

where φξRh = Jhφ
ξ
h and Ŵ ξ

h = Ŵ ξ(Cξ
Nh) depends on the equilibrated ξ-constituent-specific right

Cauchy–Green tensor Cξ
Nh = FξT

h Fξ
h = (Gξ

N)2, from Eq. (19).

2.4.3. Mixture

Hence, we obtain the following rule-of-mixtures relation for WRh, defined per unit volume in

κo, in terms of Ŵ ζ
h , defined per unit volume in κζ , and Ŵ ξ

h , defined per unit volume in κξN

WRh =
Nζ∑
ζ=1

W ζ
Rh +

Nξ∑
ξ=1

W ξ
Rh =

Nζ∑
ζ=1

φζRhŴ
ζ
h +

Nξ∑
ξ=1

φξRhŴ
ξ
h =

Nζ∑
ζ=1

φζoŴ
ζ
h + Jh

Nξ∑
ξ=1

φξhŴ
ξ
h (22)

which, importantly, evolves consistent with both limits: WRh(
∑
φζo = 0) = Jh

∑
φξhŴ

ξ
h = JhWh

(all constituents turn over) and WRh(
∑
φζo = 1) =

∑
φζoŴ

ζ
h = Wh (constituents do not turn over,

thereby Jh ≡ 1 relates WR and W ). The mechanobiologically equilibrated strain energy for the

mixture reads

WR(Ch) =
Nζ∑
ζ=1

φζoŴ
ζ(Cζ

h) + Jh

Nξ∑
ξ=1

φξh(Jh)Ŵ
ξ(Cξ

Nh) (23)

with φξh(Jh), ξ = 1, ..., N ξ, from Section 2.2.2. This energy defines that stored by the mixture as

a consequence of its current, pre-stretched homeostatic, in vivo state. An extension of Eq. (23)

that allows computation of hyperelastic responses with respect to the configuration κh is given in

Appendix B.

2.5. Mechanobiologically equilibrated stresses

The second Piola–Kirchhoff stress for the mixture S during transient loading reads

S =
Nζ∑
ζ=1

Sζ +
Nξ∑
ξ=1

Sξ − JhpC−1

=
Nζ∑
ζ=1

φζoG
ζŜζ(Cζ)Gζ + Jh

Nξ∑
ξ=1

φξhU
−1
h Gξ

NŜξN(Cξ
N)Gξ

NU−1
h − JhpC

−1 (24)
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with the appropriate C, Cζ(C), and Cξ
N (C) given in Appendix B. Note, too, that the mixture-

level Lagrange multiplier p associates with the (intermittently imposed) constraint J = Jh, and

Ŝζ(Cζ) = 2
∂Ŵ ζ(Cζ)

∂Cζ
, ŜξN(Cξ

N) = 2
∂Ŵ ξ(Cξ

N)

∂Cξ
N

(25)

are second Piola–Kirchhoff stresses at the constituent level for both types of constituents. Straight-

forward particularization of these expressions to F = Fh provides mechanobiologically equilibrated

stresses at the current in vivo state.

2.5.1. Constituents that do not turnover

Cζ particularizes to Cζ
h = GζChG

ζ 6= const, Ŝζ to Ŝζh = Ŝζ(Cζ
h) 6= const (in general), and Sζ

in Eq. (24) to

Sζh = φζoG
ζŜζhG

ζ . (26)

Associated equilibrated Cauchy stresses read

σζh =
1

Jh
FhS

ζ
hF

T
h =

φζo
Jh

FhG
ζŜζhG

ζFT
h = φζhF

ζ
hŜ

ζ
hF

ζT
h , (27)

where we used Eq. (18) (see Fig. 1).

2.5.2. Constituents that turnover

Cξ
N particularizes to Cξ

Nh = Gξ2
N = const, ŜξN to ŜξNh = ŜξN(Cξ

Nh) = const = ŜξN, and Sξ in Eq.

(24) to

Sξh = Jhφ
ξ
hU
−1
h Gξ

NŜξNGξ
NU−1

h . (28)

Associated equilibrated Cauchy stresses read

σξh =
1

Jh
FhS

ξ
hF

T
h = φξhRhG

ξ
NŜξNGξ

NRT
h = φξhF

ξ
NhŜ

ξ
NFξT

Nh = φξhRhσ̂
ξ
NRT

h (29)

where we used FhU
−1
h = Rh, Eq. (19) (see Fig. 1), and a rotated Cauchy stress tensor for

constituent ξ at the constituent level

σ̂ξN = Gξ
NŜξNGξ

N = const (30)

which remains constant during the mechanobiologically equilibrated evolutions considered here.
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2.5.3. Mixture

Hence, at homeostatic states F = Fh, equilibrated second Piola–Kirchhoff stresses for the

mixture are

Sh =
Nζ∑
ζ=1

Sζh +
Nξ∑
ξ=1

Sξh − JhphC
−1
h (31)

with Sζh and Sξh given in Eqs. (26) and (28), respectively. Associated Cauchy stresses, to be used

in Eq. (7), specialize to the following evolved rule of mixtures

σh =
N∑
α=1

σαth =
Nζ∑
ζ=1

σζh +
Nξ∑
ξ=1

σξh − phI =
Nζ∑
ζ=1

φζhF
ζ
hŜ

ζ
hF

ζT
h +

Nξ∑
ξ=1

φξhF
ξ
NhŜ

ξ
NhF

ξT
Nh − phI . (32)

with σξh given alternatively in terms of σ̂ξN = const in Eq. (29). Note that σαth in Eq. (3) includes

σαh , derived from the strain energy, and an associated reaction from the Lagrange multiplier −phI.

2.6. Mechanobiologically equilibrated stimulus function and Lagrange multiplier

The hyperelastic stresses σζh in Eq. (32) are computed from the equilibrated deformation

gradient Fh, Jacobian-dependent mass fraction φζ(Jh) = φζo/Jh, and equilibrated stresses Ŝζh =

Ŝζ(Cζ
h), in Eq. (27); in contrast, σξh, in Eq. (29), are computed from the unique equilibrated

rotation Rh from Fh, Jacobian-dependent mass fraction φξ(Jh), in Section 2.2.2, and the constant

tensor σ̂ξNh, in Eq. (30). Hence, only ph in Eq. (32) remains unknown, which one obtains by

invoking mechanobiological equilibrium conditions in Eq. (6).

Motivated by Fung’s call for mass-and-structure growth-stress relations [17], and consistent

with previous constrained mixture models, let ξ-constituent-specific stimulus functions Υξ ac-

count for changes in mass production in response to cell-perceived changes in stress relative to

homeostatic baseline values. In particular, among other possible equilibrated stimuli, let Υξ
h

depend on a set of invariants σ̃ih of the total Cauchy stress tensor σh, and perhaps structural

tensors, that include the extent of ph, that is σ̃ih(ph) from Eq. (32). Moreover, let the out-

of-equilibrium stimulus functions Υξ − 1 be proportional to each other, as in Section 2.2.2, so

equilibrium conditions in Eq. (6) reduce ∀ξ to a single nonlinear algebraic equation Υh = 1.

Finally, let Sxh :=
∑

Sαh =
∑

Sζh +
∑

Sξh in Eq. (31) be the total “extra” [18], with superscript

x, second Piola–Kirchhoff stresses, with associated Cauchy stresses σxh = 1
Jh

FhS
x
hF

T
h given in

Eq. (32), which allows invariants σ̃ih to be expressed in terms of scalar products involving the
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second-order tensors Ch, Sxh, scalars Jh, ph, and their couplings, that depend on Ch and ph. Thus

Υh

(
σ̃1
h (Ch, ph) , ..., σ̃

I
h (Ch, ph)

)
= 1 =⇒ ph(Ch) , (33)

which is a generally implicit relation that yields the (a priori unknown) volumetric contribution

to stress at the mixture level in Eq. (32). As an important consequence, the mechanobiologically

equilibrated stress field given by Eq. (32), complemented by (33), depends only on the current

state of deformation and, hence, is path-independent. Nonetheless, similar to the stress field for a

Cauchy elastic material [19], the mechanical work done by this mechanobiologically equilibrated

stress field is, in general, path-dependent, which will have further implications regarding its con-

stitutive tangent, as noted in Section 3. The associated material model is summarized in Box

1.

Example. For illustrative purposes and based on previous G&R analyses of prototypical

cylindrical arteries [7, 8, 10], consider a linearized Υh (σ̃h), with σ̃h = σIh = trσh the first principal

invariant of σh, that is,

Υh (σIh) = 1 +Kσ

(
σIh − σIo

σIo

)
(34)

with Kσ a gain parameter for mass production; hence, a possible flow-induced shear stress stimulus

for G&R is neglected here for simplicity (see Appendix C for possible accounts of this effect on

different 3D computational frameworks). Thus, Υh = 1 yields σIh = σIo, or, in terms of volumetric

(hydrostatic) components of stress σv = 1
3

trσ,

σvh = σvo (35)

which thereby remains constant during mechanobiologically equilibrated G&R, with its initial

value σvo = 1
3

trσo known from the reference state. This choice of stress stimulus, initially moti-

vated to capture the biaxial nature of in vivo wall stresses during arterial G&R adaptations (with

the arterial wall subject to transmural pressure and axial stretch), relates closely to other choices

in the literature where representative scalars of the volumetric stress contribution were identified

as thermodynamic forces driving growth [20, 21]. From Eq. (32), σvh =
∑
σαvh − ph = σvo, which
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yields ph as

ph(Ch) = σxvh − σvo =
1

3
σxh : I− σvo =

1

3Jh(Ch)
Sxh(Ch) : Ch − σvo (36)

and Cauchy stresses, from Eq. (32), decompose into deformation-dependent deviatoric and con-

stant volumetric components

σh =
N∑
α=1

(σαh − σαvhI) + σvoI . (37)

Remark 1. For quasi-static incompressible hyperelastic behaviors, one generally satisfies

mechanical equilibrium subject to boundary conditions and the incompressibility constraint J = 1.

This set of equations determines the Lagrange multiplier p required to maintain incompressibility.

In contrast, in the present G&R framework, one solves mechanical equilibrium (Eq. (7)) subject

to boundary conditions and the mechanobiological equilibrium constraint Υh = 1 (Eq. (6)). This

set of equations determines the evolved homeostatic Lagrange multiplier ph consistent with a

mechanobiologically equilibrated evolution. Note the difference between these two complementary

rate-independent frameworks. The former satisfies the kinematic constraint J = 1, with p its

associated stress-like Lagrange multiplier and σv to be determined. The latter satisfies the stress-

like constraint Υh = 1 (e.g., σv constrained via Eq. (35)), with ph an associated stress-like

consistency parameter and Jh to be determined. Thus, ph does not enforce incompressibility

during mechanobiologically equilibrated evolutions; it yet enables a smooth transition to stresses

associated with intermittent hyperelastic responses superimposed at a given G&R time s = sh,

for which an evolved constraint J = Jh is to be considered, see Appendix B.

Remark 2. The pressure-sensitive stimulus function Υ in Eq. (33), which drives changes in

volume via mass growth, resembles a pressure-sensitive yield function in rate-independent elasto-

plasticity, which triggers changes in volume via inelastic mechanisms but without mass exchange

(such as for geomaterials, metallic foams, or filled polymers [22]). Since the present G&R formula-

tion contains other noticeable differences when compared to classical elastoplasticity (e.g., mixture

theory describing different behaviors of different constituents, not a homogenized material; pre-

stresses with evolving natural configurations; and a multiplicative decomposition without explicit

consideration of an elastic gradient), elastic predictor / inelastic corrector integration schemes typ-

ically used in computational plasticity [23, 24] do not seem well suited for integrating the present
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rate-independent constrained-mixture equations. Rather, we solved this set of nonlinear equations

exactly using a different stress-point resolution procedure (Box 1), whose consistent linearization

for efficient finite element implementations is addressed next. Of course, other resolution (or in-

tegration) schemes and consistent continuum (or algorithmic) linearizations may apply for other

rate-independent G&R theories built upon different kinematic and / or constitutive assumptions

(cf. [25]).

3. Consistent linearization of the continuum theory

In Section 2.5, we obtained (pre-)stresses for different constituents within a soft tissue in

mechanobiological equilibrium by deriving, first, associated hyperelastic stresses during intermit-

tent loading at a fixed G&R time s = sh, with J = Jh and all constituent-specific natural con-

figurations fixed, and, second, expressions specialized to a particular in vivo state F = Fh along

the hyperelastic response path. During an incremental mechanobiologically equilibrated evolu-

tion, the soft tissue and ξ-constituent-specific natural configurations, with associated equilibrated

stresses, evolve following different paths over (longer) G&R time scales [10]. We derive here tan-

gent tensors for all load-bearing constituents and the mixture, consistent with a quasi-static G&R

evolution of this type. Subsequent consideration of an evolving homeostatic Lagrange multiplier

ph, arising from the mechanobiologically equilibrated constraint Υh = 1, completes the (exact)

consistent linearization of the formulation. Importantly, since numerical approximations (arising,

typically, from integration of evolution equations) are absent in this formulation, the continuum

and algorithmic linearizations coincide; a similar situation arises in computational hyperelasticity

but not computational plasticity, where linearization of the resulting discrete equations is essential

to preserve asymptotic rates of quadratic convergence characteristic of Newton’s methods [26].

3.1. Constituents that do not turnover

Equilibrated second Piola–Kirchhoff stresses in Eq. (26) can be written

Sζh = φζoG
ζŜζhG

ζ = φζoŜ
ζ
h : Gζ �Gζ (38)

where the symbol : implies the usual contraction of two indices and (Gζ �Gζ)ijkl = Gζ
ikG

ζ
jl, with

Gζ symmetric. Since Gζ is constant, but Sζh = Ŝζ(Cζ
h) depends on Ch through Cζ

h = GζChG
ζ ,
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the constitutive (hyperelastic) tangent at the mixture level reads

Cζ
h = 2

∂Sζh
∂Ch

= φζoG
ζ �Gζ : Ĉζ

h : Gζ �Gζ (39)

with Ĉζ
h = 2∂Ŝζh/∂Cζ

h the associated tangent at the constituent level.

3.2. Constituents that turnover

Equilibrated second Piola–Kirchhoff stresses in Eq. (28) can be written, using Eq. (30),

Sξh = Jhφ
ξ
hU
−1
h σ̂

ξ
NU−1

h = Jhφ
ξ
hσ̂

ξ
N : U−1

h �U−1
h . (40)

Since σ̂ξN = Gξ
NŜξNGξ

N remains constant during mechanobiologically equilibrated evolutions, with

natural configurations κξN evolving accordingly, the (consistent) constitutive tangent at the mixture

level reads

Cξ
h = 2

∂Sξh
∂Ch

= 2U−1
h σ̂

ξ
NU−1

h ⊗
∂(Jhφ

ξ
h)

∂Ch

+ 2Jhφ
ξ
hσ̂

ξ
N :

∂(U−1
h �U−1

h )

∂Ch

(41)

with ⊗ the usual dyadic product and the fourth-order tensor σ̂ξN : 2∂(U−1
h � U−1

h )/∂Ch = Cξ
σ̂,

resulting from the double contraction between a second-order tensor σ̂N with a sixth-order tensor

2∂(U−1
h �U−1

h )/∂Ch, given in spectral decomposition form in Appendix D. Recalling from Section

2.2.2 that Jhφ
ξ
h = φξRh depends exclusively on Jh, the chain rule on ∂(Jhφ

ξ
h)/∂Ch, with ∂Jh/∂Ch =

(Jh/2)C−1
h , leads to

Cξ
h =

1

φξh

d(Jhφ
ξ
h)

dJh
Sξh ⊗C−1

h + Jhφ
ξ
hC

ξ
σ̂ . (42)

Note that Eqs. (11) and (12), each differentiated with respect to Jh, constitute a linear system

of N ξ equations with N ξ unknowns d(Jhφ
ξ
h)/dJh, which can be solved explicitly. For example, if

ηij = 1 ∀{ξi, ξj}, differentiation of the explicit result in Eq. (14) yields

d(Jhφ
ξ
h)

dJh
=

φξo

1−
∑
φζo

, ξ = 1, ..., N ξ . (43)

3.3. Lagrange multiplier contribution

The term Sph := −JhphC−1
h in Eq. (31) evolves consistent with the requirement in Eq. (33),

that is Υ̇h ≡ 0, which defines ph(Ch) constitutively during mechanobiological equilibrium and
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enables computation of a consistent tangent tensor

Cp
h = 2

∂Sph
∂Ch

= −2C−1
h ⊗

∂(Jhph)

∂Ch

− 2Jhph
∂C−1

h

∂Ch

. (44)

3.4. Mixture

Using Eq. (31), the referential tangent tensor for the mixture is

Ch = 2
∂Sh
∂Ch

=
Nζ∑
ζ=1

Cζ
h +

Nξ∑
ξ=1

Cξ
h + Cp

h =
N∑
α=1

Cα
h + Cp

h = Cx
h + Cp

h (45)

where all contributions are given above (Eqs. (39), (42), (44)). Its associated spatial tangent is

given by the push-forward operation, from κo to κh,

Ch =
1

Jh
Fh � Fh : Ch : FT

h � FT
h . (46)

Linearization of the material model is summarized in Box 2.

Example. (Cont.) Equation (36), expressed in terms of mixture-level Lagrangian deforma-

tions and stresses, yields Sph := −JhphC−1
h = (Jhσvo − 1

3
Sxh : Ch)C

−1
h in Eq. (31). From Eq.

(44)

Cp
h = 2

∂Sph
∂Ch

= 2σvoC
−1
h ⊗

∂Jh
∂Ch

− 2

3
C−1
h ⊗

∂(Sxh : Ch)

∂Ch

− 2Jhph
∂C−1

h

∂Ch

(47)

which, with ∂Jh/∂Ch = (Jh/2)C−1
h , Cx

h :=
∑

Cα
h from Section 3.1 and 3.2, and (∂C−1/∂C)ijkl :=

−(C−1 } C−1)ijkl = −1
2
(C−1

ik C
−1
jl + C−1

il C
−1
jk ), finally yields

Cp
h = JhσvoC

−1
h ⊗C−1

h −
1

3
C−1
h ⊗Ch : Cx

h −
2

3
C−1
h ⊗ Sxh + 2JhphC

−1
h } C−1

h . (48)

Remark 3. The referential tangent tensor in Eq. (45), with Cartesian components (Ch)ijkl,

includes different contributions that lack the major symmetry ijkl ↔ klij, in general. First, the

tensor Cξ
h in Eq. (42) was derived from mechanobiological equilibrium considerations at the con-

stituent level, that is σ̂ξN = Gξ
NŜξNGξ

N = const in Eq. (40), so its symmetry is not guaranteed.

This is in contrast with the tensor Cζ
h in Eq. (39), which derives from a hyperelastic potential,

and hence is symmetric, even during G&R evolutions. Second, linearization of the consistency

parameter ph in Sph = −JhphC−1
h may yield additional contributions lacking major symmetry, for
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example, the second and third terms in the right-hand side of Eq. (48), because the extra stresses

Sxh in Eq. (36) are not purely deviatoric, in general. This is in contrast with the first and fourth

terms in Eq. (48), which are symmetric. All these non-symmetric tensors (cf. previous expressions

and Appendix D as well) preserve the minor symmetries ijkl↔ jikl↔ jilk ↔ ijlk, which allows

one to store their components for computational analyses using 6 × 6 matrices. This was not an

issue for illustrative computations below, which required a non-symmetric finite element formula-

tion consistent with the application of follower forces (pressure) that change direction as a body

deforms (cf., for example, [27, 28]). Other constitutive formulations based on internal variables,

such as finite kinematic growth [21], experimentally motivated non-associative plasticity [22], or

fully (elastic and viscous) anisotropic finite strain nonlinear viscoelasticity [29], may similarly lead

to non-symmetric consistent tangents for finite element implementations.

4. Original (loaded, in vivo) homeostatic state

The formulation outlined in Boxes 1 and 2 is intended to yield quasi-static G&R evolutions

of three-dimensional solids under continuous states of mechanobiological equilibrium. The for-

mulation is defined locally at arbitrary material points and, hence, can be used to solve general

boundary value problems employing standard finite element procedures. Inasmuch as Υh depends

on changes in stress relative to baseline values, one needs to pre-compute the original in vivo

state, that is, an initially loaded state under mechanical and mechanobiological equilibrium. If

the soft tissue behaves elastically under transient loads, then we can compute this initial state,

subject to initial loads, by departing from a given initial geometry, close to the one at G&R time

s = 0, and solving a boundary value problem with a nearly incompressible hyperelastic response.

The (pre)stress computed at each material point after this initial, required calculation serves as a

reference for the subsequent G&R computations by means of the specified equilibrium condition

in Υh = 1, as, for example, the local preservation of volumetric Cauchy stresses at the mixture

level specified in Eq. (35).

Hence, consider the stresses derived in Appendix B and particularized to the initial in vivo

state κo, see Eq. (74), with p an actual Lagrange multiplier associated with the incompressibility

constraint J = det F = 1 (i.e., at G&R time s = 0). In finite element implementations, however,

one usually imposes near incompressibility through a penalty volumetric strain energy function

U(J) (with an associated bulk modulus far exceeding the shear modulus), from which −p(J) is
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approximated by dU(J)/dJ , with J ' 1. For convenience, we consider a penalty function U(ln J)

and approximate −Jp(J) in Eq. (74) as dU(ln J)/d ln J =: U ′(ln J), whereupon

S =
Nζ∑
ζ=1

φζoG
ζŜζ(Cζ)Gζ +

Nξ∑
ξ=1

φξoG
ξ
NŜξN(Cξ

N)Gξ
N + U ′(ln J)C−1 (49)

where Ŝζ(Cζ) and ŜξN(Cξ
N) are computed from respective constituent-specific strain energy func-

tions, see Eq. (72), with Cζ = FζTFζ and Cξ
N = FξTFξ along with Fζ = FGζ and Fξ = FGξ

N.

This expression for stresses is consistent with a constrained mixture theory for hyperelastic soft

tissues with reference configuration κo [30]. The constitutive tangent C = 2∂S/∂C during this

initial, elastic pre-loading step reads

C =
Nζ∑
ζ=1

φζoG
ζ �Gζ : Ĉζ(Cζ) : Gζ �Gζ

+
Nξ∑
ξ=1

φξoG
ξ
N �Gξ

N : Ĉξ
N(Cξ

N) : Gξ
N �Gξ

N

+ U ′′(ln J)C−1 ⊗C−1 − 2U ′(ln J)C−1 } C−1 (50)

which can be implemented readily in a material subroutine for finite element analyses.

A step-by-step algorithm, including computations of associated stress and tangent moduli

during both stages of our formulation (i.e., an initial pre-stressed state and subsequent equilibrated

G&R evolution), is summarized in Box 3.

5. Illustrative numerical examples

Consider particular relations that have proven useful in describing vascular G&R, particularly

for aneurysmal enlargement [12], cerebral vasospasm [31], aortic maladaptation in hypertension

[15], and even the in vivo development of tissue engineered constructs [32]. A “four-fiber family”

model includes three contributions: a stored energy function for an amorphous elastin-dominated

matrix (ζ ≡ e)

Ŵ e =
ce

2
(Ce : I− 3) (51)

where ce is a shear modulus, plus circumferentially oriented passive smooth muscle (ξ ≡ m)

and circumferentially, axially, and diagonally oriented (with angle α0 with respect to the axial
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direction) collagen fibers (ξ ≡ c) described by

Ŵ ξ =
cξ1

4cξ2

(
exp(cξ2(Cξ

N : aξN ⊗ aξN − 1)2)− 1
)

(52)

with cξ1 and cξ2 material parameters and aξN unit vectors along fiber orientations in κξN. Effects of

other constituents (such as proteoglycans) are captured phenomenologically via regression-based

fits to data [15]. In addition, removal of constituents ξ = m, c is governed via a first-order type of

kinetic decay, with kξ rate parameters [7]. Finally, recall that net mass production is given by Eq.

(4) via the removal and stimulus functions, here driven quasi-statically through Eq. (6). Table

1 lists all needed geometric and material parameters for an illustrative mouse aorta, noting that

arteries tend to preserve their overall mass density ρ = 1050 kg /m3.

We implemented the present rate-independent constrained-mixture framework for G&R (Boxes

1 to 3) as a user material plugin in the open source software FEBio [33]. Because there is no

need for local integration to update internal variables between incremental steps or storing long-

term history-dependent variables, the implementation is straightforward and, from a numerical

viewpoint, resembles that for a hyperelastic material (except for the non-symmetric consistent

tangent and the need to solve numerically a system of equations for the Jacobian-dependent

mass fractions φξ(J)). Solutions proceed in two stages. Stage I is not particular to the present

formulation for G&R, but to any formulation that requires a pre-stressed initial configuration, such

as hyperelastic [34] or G&R [35] formulations. Also note that mixture volumetric and constituent

stresses are only stored once, at the end of Stage I, hence these initially computed variables play

the role of (local) material parameters for Stage II. Importantly, however, the current version of

FEBio used here (2.8.2) did not support materials with tangents having only minor symmetries,

hence we added a new class of matrices and associated algebraic operators. In addition, some

procedures within the FEBio source code were extended to handle non-symmetric constitutive

tangents (i.e., an output from our material plugin) and FEBio was re-compiled accordingly.

5.1. Computation of the original homeostatic state (Stage I)

We compute here an original in vivo homeostatic state that will serve as the reference for all

subsequent numerical simulations. Hence, consider an initially cylindrical arterial segment with

inner radius ao, thickness ho, and length lo (Table 1) as a 3D finite element (FE) geometry (shown

partially in Figure 2(a)). We fix axial displacements at both ends, with rigid body motions sup-
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pressed. As an external (pre-)load, we apply an in vivo value of blood pressure on the inner

surface of the cylinder. Using a simple analytical (uniform) solution, see Appendix E or [7], one

finds an in vivo pressure Po = 13.98 kPa = 104.9 mmHg consistent with model parameters in

Table 1, as well as an original homeostatic Lagrange multiplier po = 10.21 kPa. Hence, consis-

tent with the concept of prestretch (and associated prestress), we define a volumetric function

U(ln (JJG)) = 1
2
κ (ln(JJG))2, with κ = 103ce a (penalty) bulk modulus and JG a pre-Jacobian

satisfying U ′(ln JG) = κ ln JG = −po, that is, JG = exp(−po/κ) for J = 1. With this, local stresses

computed by Eq. (49) during the pre-loading stage are numerically close to those given analyti-

cally, the main difference being that the FE solution is appropriately non-uniform through the wall

thickness. Only one static load step (with two-to-three global Newton–Raphson iterations) was

needed to find associated equilibrium solutions (to machine precision) for the preload considered

using different FE meshes. In any case, the computed equilibrium displacements for Stage I in

Box 3 were negligible with respect to any characteristic length of the geometrical model, with

F = Fo ' I and J = Jo ' 1 as desired; compare initial (a, input) and computed (b, output)

cross-sections in Figure 2. Furthermore, note that we do not prescribe an in vivo axial stretch

λiv
z > 1 on this geometry (as one would do experimentally given an excised, unloaded vessel)

because the computed solution implicitly includes an in vivo axial force (born by the axial con-

straints) consistent with the deposition stretches and associated stresses, in Table 1, which in turn

allows us to refer deformations to this loaded configuration (i.e., λz = λzo = 1 refers to the original

homeostatic state).

We next conducted a mesh convergence study to determine an appropriate description of in

vivo through-the-thickness stresses (3). After using different types of finite elements and dis-

cretizations, and because of the presence of pre-stresses (that tend to homogenize the stress field

across the wall) and a relatively low thickness-to-radius ratio in the mouse aorta, we found that

four displacement-based hexahedral elements give an accurate through-the-thickness solution for

the present unilayered model. Figure 2(b) shows associated in vivo volumetric Cauchy pre-stresses

σvo = (1/3) trσo. This discretization is consistent with the one for displacements adopted in

[36], where twelve mixed elements, linear in displacements and constant in pressure, were used to

discretize three layers through the wall. As we explain below, volumetric locking is not expected

during our quasi-static computations of mechanobiologically equilibrated G&R during Stage II,

hence, mixed formulations with additional interpolations of pressure at the element level are not
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needed.

After computing this equilibrium solution, we stored total volumetric stresses for the mixture

σvo = (1/3Jo)So : Co and rotated Cauchy stresses for smooth muscle and collagen families σ̂ξN =

(1/Joφ
ξ
o)UoS

ξ
oUo at integration points, which were needed (as reference variables) subsequently to

compute mechanobiologically equilibrated G&R evolutions (Box 3). Note that we must compute

these local values consistent with the non-uniform FE solution obtained, hence incorporating the

extent of Fo ' I, rather than from exact theoretical expressions (e.g., Eq. (30)) consistent with

the exact reference limit Fo = I. Thus, in practice, one needs to store Fo and then compute

G&R deformations during Stage II via Fh = FF−1
o and Jh = JJ−1

o . This ensures a smooth

numerical transition between Stages I and II, that is, when F = Fo (i.e., Fh|I→II = FoF
−1
o = I

and Jh|I→II = JoJ
−1
o = 1, whereupon G&R starts right when Stage II does).

5.2. Equilibrated G&R response (Stage II) to increase in pressure, flow rate, or axial stretch

We verify here that mechanobiologically equilibrated responses computed for cylindrical geome-

tries (that remain cylindrical) with the proposed FE formulation agree with responses computed

with our previous theoretical formulation for thin-walled cylindrical arteries [7]. We note that the

analytical rate-independent formulation was already verified and validated against a full integral

heredity-based constrained model in [7] for long-term equilibrium solutions, and in [10] for slow

loading relative to G&R.

For uniform material properties, the computed solutions are uniform in the circumferential and

axial (in-plane) directions, but non-uniform along the radial direction consistent with different

traction (pressure) conditions on the inner and outer boundaries. As explained in Appendix C, we

can include a uniform flow-induced shear stress stimulus for mass production in the equilibrated

function Υh in Eq. (33); that is, we can include mechanobiological effects of a shear stress that is

negligible mechanically (five orders of magnitude smaller [18]). Consideration of this augmented

function will let us compute, first, pressure- and/or axial stretch-induced G&R responses for

different intramural-to-shear stress gain ratios for mass production, and, second, flow-induced

G&R responses. It will also let us compare FE outcomes against their corresponding analytical

solutions, see Appendix C and Appendix E. Consistent with an axially uniform solution, we

employ a single element along the axial direction and report deformations and band plots for a

representative cross section.

Figure 2 also shows deformed cross-sections and contour plots of volumetric stress obtained for
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Ph = 1.6Po = 22.38 kPa for two ratios of gain parameter, Kτ/Kσ = 0 (i.e., vanishing shear stress

stimulus for mass production; mesh c) and Kτ/Kσ = 1 (i.e., both intramural and shear stress

stimuli for mass production; mesh d). Figure 4 additionally shows associated pressure-dependent

evolutions for global geometric parameters from the FE simulation (symbols) such as normalized

inner radius (panel a) and thickness (b), as well as local variables at the mid-thickness such as

volume ratio (c), and circumferential (d), axial (e), and volumetric (f) stresses, all compared to

results computed with the uniform semi-analytical cylindrical model [7] (equivalently, Appendix

E), which show excellent agreement. Note, however, the remarkably different responses that the

mechanobiologically equilibrated models predict forKτ/Kσ = 0 versus 1, which may be understood

by examining the associated stimulus function Υh.

For Kτ/Kσ = 0, the constraint Υh = 1 implies preservation of volumetric stresses σvh = σvo

(recall Eqs. (35) or (37)), which the FE simulation satisfies locally at each radial location (Fig.

2) and, in particular, at the mid-thickness (Fig. 4). Albeit shown at only the mid-thickness,

circumferential and axial Cauchy stresses remain nearly constant during this quasi-static G&R

evolution. Yet, this restoration of stress via mass growth arises from increases in inner radius

(circumferential stretch) and thickness (radial stretch), and thus associated volume (Jacobian),

which depart from the theoretical mechano-adaptive limits ah/ao → ε
1/3
h = 1 and hh/ho → γhε

1/3
h =

1.6 (when εh = Qh/Qo = 1 and γh = Ph/Po = 1.6, with Q blood flow rate), cf. [18]. Indeed, the

analytical model predicts a marked growth response (ah/ao →∞ and hh/ho →∞) for Kτ/Kσ = 0

and Ph → 1.95Po, which suggests a static mechanobiological instability (or unbounded critical

point) against increases in pressure, cf. [8]. Importantly, when accounting for the radially non-

uniform distributions of stress / stretch, this instability developed earlier at the outer than at the

inner layer of elements, which caused the FE simulation to diverge before reaching the theoretical

blow-up pressure 1.95Po predicted by the uniform formulation. This finding suggests that full 3D

simulations can be needed even for thin-walled arteries. It also reminds us of the need to account

for all mechanobiological stimuli (endothelial cell shear and interstitial cell normal stresses) even

when one component of stress is negligible mechanically.

In particular, for Kτ/Kσ = 1, the constraint Υh = 1 introduces an additional restriction on

changes in flow-induced wall shear stress τwh, which must offset changes in volumetric stress σvh

(recall Eq. (79)). For example, for the idealized wall shear stress expression τw = 4µQ/πa3 (with

µ the blood viscosity) that we employ, a restriction on τwh with preserved cardiac output controls
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luminal dilation, which in turn affects the equilibrium solution. The FE simulation then predicts

a slight decrease in volumetric stress σvh at each radial coordinate for Ph/Po = 1.6 (Fig. 2), shown

at the mid-thickness for different pressures in Fig. 4. For Kτ/Kσ = 1 and Ph/Po = 1.6, σvh/σvo =

τwh/τwo ≈ 0.94 leads to an increase in inner radius ah/ao = (τwo/τwh)
1/3 ≈ 1.02, much lower

than for Kτ/Kσ = 0, and consistent with analytical solutions. The nearly preserved inner radius

(circumferential stretch) and increase in thickness (radial stretch), with an associated increase in

volume (Jacobian), closely follow the mechano-adaptive limits ah/ao → ε
1/3
h and hh/ho → γhε

1/3
h .

Yet, a slight, non-ideal over-thickening (∼ 10%, due to the presence of elastin, which does not

turnover and prevents perfect adaptations) was consistent with the slight decrease in σvh due to

a decrease in circumferential (∼ 10%) rather than axial (which remained nearly constant) stress.

Importantly, the pressure-driven mechanobiologically equilibrated (analytical and FE) solutions

followed this trend up to Ph/Po = 2, hence suggesting a mechanobiologically stable (bounded)

quasi-static evolution within physiological limits [8].

Similar quasi-uniform FE simulations were performed for prescribed changes in flow rate Qh >

Qo (Figure 5) and axial stretch λh > λo (Figure 6) with or without shear stress effects on G&R.

Like the pressure-driven simulations addressed above, values computed at the mid-thickness agreed

well with the analytical calculations. In particular, an artery does not respond to increases in flow

if Kτ = 0, whereas it mechanoadapts for Kτ = Kσ with, unlike the previous pressure-driven cases,

an associated increase in volumetric stress consistent with a computed increase in flow-induced

wall shear stress τwh/τwo = εh/(ah/ao)
3 ≈ 1.05 for εh = 1.6 (Figure 5). Consideration of shear

stress effects to achieve mechanoadaptation was even more critical for isolated changes in axial

stretch (i.e., with εh = γh = 1). Indeed, Figure 6 shows that the artery increased its length

lh/lo = λzh > 1 while nearly preserving inner radius (λθh ≈ 1) and thickness (λrh ≈ 1) if Kτ = Kσ,

hence Jh > 1 (i.e., by net mass production), indicative of a mechanical adaptation in terms of

intramural volumetric and wall shear stresses. Note, however, that axial stress necessarily increases

consistent with the axially stretched (elastic) elastin, with circumferential stress regulated and

nearly maintained consistent with the slight change in inner radius and thickness with constant

blood pressure. In contrast, inner radius (λθh < 1) and thickness (λrh < 1) decreased for Kτ = 0,

which even led to respective decrements in volume Jh < 1 (i.e., by net mass removal) for lh/lo =

λzh > 1.2, indicative of a mechanical maladaptation by flow shear stress dysregulation along with

excessive increments and decrements of axial and circumferential stresses, respectively, even if the
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volumetric stress is preserved. Again, the elastically stretched elastin, and its associated increase

in axial stress at the mixture level, plays a central role in this lack of adaptation by G&R.

Although it was possible to compute these quasi-uniform solutions in single load steps during

Stage II in Box 3, we nevertheless re-computed them with 10 incremental load steps (plus an initial

one for Stage I; symbols in Figs. 4 to 6) to compare quasi-static evolutions with the analytical

formulation. Table 2 shows associated quadratic rates of convergence for residual force and energy

during global Newton–Raphson iterations, without line searches, and total simulation times (on

a single CPU processor Intel R© Xeon R© E5 at 3 GHz in a Workstation Dell Precision 5810 with

32GB RAM). Note that the computational efficiency of this rate-independent G&R formulation

is comparable to that obtained for hyperelastic computations, for which we used the same mesh,

boundary conditions, applied loads, and incremental steps along with Eqs. (49) and (50), and,

hence, is expected to be comparable as well to that obtained by efficient rate-dependent G&R

formulations (e.g., in 2D FE analyses [37]). Lastly, because mechanobiologically equilibrated

G&R is not constrained isochorically (recall Remark 1), no special formulations were needed to

prevent volumetric locking during these computations, a numerical issue characteristic of nearly

incompressible elastic or distortional elastoplastic responses [24, 38], but also transient elastic

responses during G&R [36, 39]. In this respect, all solution variables changed gradually between

adjacent elements and agreed well with analytical results, including global geometric outputs (e.g.,

inner radius and thickness).

5.3. Non-uniform equilibrated G&R response (Stage II) to localized degradation of elastin

Next, consider non-uniform deformations of an arterial segment. Since the idealized formula

τw = 4µQ/πa3 is only valid for fully developed steady flows in a long circular segment, we first

considered G&R driven by intramural stresses only, for which Kσ 6= 0 and Kτ = 0, such that

volumetric stresses were preserved locally, recall Eq. (35). As an example, a G&R response

that can be modeled with Kτ = 0 in Υ is the enlargement of fusiform aneurysms, where the

medial layer appears to be severely damaged (hence no shear stress regulation of smooth muscle

tone) and enlargement likely occurs primarily via turnover of remnant collagen in the adventitia

[12, 35, 40–43].

Since medial damage implies degradation of elastin laminae, consider the mechanobiologically

equilibrated G&R analysis in Figure 7 performed for a uniform, progressive degradation of elastin,

either with decreasing ceh < ceo or an increasing damage parameter ϕeh = 1 − ceh/ceo ∈ [0, 1], while
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preserving inner pressure Ph = Po, cf. [8]. Due to the close agreement between the uniform

analytical and (quasi-)uniform FE simulations shown in Fig. 7, for both Kτ/Kσ = 0 and a

slight Kτ/Kσ = 0.1, these results provide important guidance for the interpretation of more

complex FE simulations. In this case, uniformly degraded elastin, without shear stress effects on

G&R, can eventually lead to an unbounded G&R response, specifically for ϕeh → 0.725 (Fig. 7,

Kτ/Kσ = 0), which suggests that locally degraded elastin coupled with endothelial dysfunction

could associate with local aneurysmal expansions that may develop quasi-statically but remain

bounded because constraints on lateral displacements prevent a local asymptotic enlargement.

To test this hypothesis within our rate-independent G&R framework, consider the same initial

cylindrical geometry (hence, the same homeostatic state after Stage I), although discretized with

60 elements along the axial direction to enable finer non-uniformities within the central region

(see meshes (a) in Figure 8, computed after Stage I). Subsequently, we locally increase ϕeh at

selected regions to drive quasi-static G&R FE simulations. This way, we model effects of elastin

degradation on fully resolved G&R, not the underlying cause of this degradation, for which one

would need to couple a damage model with the present rate-independent formulation.

With preserved inner pressure Ph = Po, consider two different spatial distributions for ϕeh in

terms of cylindrical coordinates ro ∈ [ao, ao+ho], θo ∈ [0, 2π], and zo ∈ [zomin, zomax] in the reference

homeostatic configuration κo, where zomin and zomax = zomin + lo are minimum and maximum axial

coordinates. Consider first an axisymmetric degradation localized at zom = (zomax + zomin)/2 that

diminishes gradually with |zo − zom|, namely

ϕeh (ro, θo, zo) = ϕehm exp

(
−
∣∣∣∣zo − zomzod

∣∣∣∣νz) (53)

with νz > 0 and zod > 0 respective axial exponential decay and deviation parameters. More-

over, ϕehm = ϕeh(ro, θo, zom) describes the maximum local degradation at a given “load” step, and

ϕeh(ro, θo, zomin) = ϕeh(ro, θo, zomax) → 0 at both ends. Also, ϕeo(ro, θo, zo) = 0 = ϕeom throughout

the arterial wall at the original homeostatic state. Then, for constant blood pressure, the FE

simulation can be advanced in a quasi-static (time-independent) manner by increasing a single

scalar ϕehm ∈ [0, 1] over subsequent steps.

In a first attempt to reproduce this local enlargement of the artery, we prescribed Kτ = 0

throughout. Because axial displacements are fixed at the boundary ends, and a circumferential

expansion with an overall axial retraction was observed at the central region of the artery, local
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axial stretching is expected next to the ends. Recalling the G&R response against increases in

axial stretch with Kτ = 0 (Figure 6), one would expect a constriction of the artery close to the

ends of the model. Albeit not shown, this abnormal response was verified numerically with our

FE model, which suggested the need for a shear stress effect on G&R, with associated inner radius

regulation, in the non-damaged areas. Hence, as a first approximation (in the absence of a fluid-

solid interaction solution), we simulated this effect by letting Kτ > 0 (along with τw = 4µQ/πa3,

recall Eq. (79)) next to the lateral ends, which yet remain cylindrical, but Kτ = 0 in a central

damaged area where the aneurysm develops. To do so, we considered an axial distribution for

Kτ/Kσ similar to that for elastin degradation in Eq. (53), namely

Kτ

Kσ

(zo) =
Kτ

Kσ

(zomin)

(
1− exp

(
−
∣∣∣∣zo − zomzod

∣∣∣∣νz)) . (54)

Thus, Kτ/Kσ(zomin) = Kτ/Kσ(zomax) > 0 is maximum at both ends and Kτ/Kσ(zom) = 0 at

the central cross-section. Meshes (b) in Figure 8 show the deformed configuration and associated

contour plots of the volume ratio (left) and volumetric stress (right) for ϕehm = 0.65, zod = lo/4,

νz = 2, and Kτ/Kσ(zomin) = 0.35 in Eqs. (53) and (54), which forms an axisymmetric fusiform

aneurysm. Importantly, while the uniform formulation, with ϕeh = 0.65 and Kτ = 0, predicts

a nearly isotropic expansion within a given cross-section, with λθh = ah/ao = 3.97 and λrh =

hh/ho = 4.17, and λzh = lh/lo = 1 prescribed (cf. Figure 7), the non-uniform 3D FE simulation

predicts a different expansion at the central cross-section zom, with λθh = 2.50 ' ah/ao and

λrh = 1.44 ' hh/ho at the mid-thickness, but λzh = 1.50 6= lh/lo. Furthermore, lateral, radially

unexpanded, cross-sections yet cause the aneurysm to grow axially at zom (λzh = 1.50 vs. 1 for the

uniform case) and prevent it from growing asymptotically, reducing growth along circumferential

(λθh = 2.50 vs. 3.97) but especially radial (λrh = 1.44 vs. 4.17) directions, that is, reduced dilation

but especially thickening. In contrast, mean in-plane mechanobiologically equilibrated stresses at

zom (σθθh = 215 kPa and σzzh = 259 kPa) remain close to the uniform predictions (σθθh = 214 kPa

and σzh = 260 kPa), cf. Figure 7. Note, too, that a marked axial retraction predicted at the

shoulders of the aneurysm contributes to an overall retraction of the central region. Hence, as

mentioned above, finite elements close to the boundaries zomin and zomax are highly stretched

axially (reaching up to λzh = 1.69), which justify the distribution for Kτ/Kσ in Eq. (54) to

prevent radial constriction, to some extent, by wall shear stress regulation (recall the analysis in

Figure 6, conducted up to a more moderate λzh = 1.3) at the expense of an increased volumetric

26



stress σvh in those regions (mesh (b)-right in Figure 8) consistent with an increased shear stress

for constant cardiac output and reduced lumen. The volumetric stress then rapidly decreases in

the transition zone where the inner radius starts to increase, consistent with a lower shear stress

combined with some remnant Kτ/Kσ > 0, to finally recover the original homeostatic distribution

for σvo within the aneurysmal region (compare to mesh (a)-right), consistent with a vanishing

shear stress effect for Kτ/Kσ = 0.

Indeed, it is instructive to consider a different set of boundary conditions at both ends zomin

and zomax to analyze different responses of the nearby elements. Hence, to alleviate the constraint

on axial displacements as well as the associated axial stretching of elastin and consequent radial

constriction of the artery, we repeated the previous simulation while prescribing a constant axial

force at the ends, coupled with Kτ = 0 throughout the arterial segment. Meshes (c) in Figure 8

show the formation of an axisymmetric fusiform aneurysm similar to the previous one (b), though

with a pronounced axial recoiling (lh = 9.85 mm vs. lo = 15 mm) that effectively alleviates the

local axial stretching (λzh ' 1) near the boundaries. Consistent with the analysis in Figure 6, the

inner radius at the boundaries is preserved in this case even without considering shear stress effects

on G&R. Also consistent with Kτ = 0, and unlike the simulation (b), the distribution of σvh is

preserved with respect to the original homeostatic preloaded state (a). Equilibrium values at the

apex reach, in this case, λθh = 2.41, λrh = 1.33, λzh = 1.11, σθθh = 221 kPa, and σzzh = 253 kPa,

measured at the mid-thickness. Arguably, neither axial displacements nor force are necessarily

fixed in actual aneurysms; hence, although these simpler boundary conditions served to illustrate

limiting situations and radically different implications, more realistic boundary conditions are

needed to simulate aneurysmal enlargement and associated implications.

Consider now a degradation localized at zom and θom = π that diminishes gradually with

|zo − zom| and |θo − θom|, namely

ϕeh (ro, θo, zo) = ϕehm exp

(
−
∣∣∣∣zo − zomzod

∣∣∣∣νz) exp

(
−
∣∣∣∣θo − θomθod

∣∣∣∣νθ) (55)

with νθ > 0 and θod > 0. Moreover, ϕehm = ϕeh(ro, zom, θom) describes maximum local degradation

at a given “load” step, ϕeh(ro, θo, zomin) = ϕeh(ro, θo, zomax) → 0 at both ends, and ϕeh(ro, 0, zo) =

ϕeh(ro, 2π, zo) → 0. As before, we advance the quasi-static FE simulation, for constant inner

pressure, by increasing a single scalar ϕehm ∈ [0, 1] over subsequent steps. Meshes (d) in Figure

8 show the deformed configuration as well as contour plots for Jh and σvh, with ϕehm = 0.65,
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zod = lo/3, θod = π/3, and νz = νθ = 5 in Eq. (55). This yields an axially longer but radially

asymmetric fusiform aneurysm. Axially non-uniform shear stress effects were included again, with

Kτ/Kσ(zomin) = 0.35, zod = lo/3, and νz = 5, in Eq. (54). Importantly, even if the maximum

local value for ϕehm is the same as in simulations (b) and (c), the larger surrounding area of non-

damaged material (in axial and circumferential directions) prevents the aneurysm from growing

to a larger extent. In this case, both λθh = 2.29 > 1 and λrh = 1.35 > 1, but λzh = 0.65 < 1 at

the apex (zo = zom, θo = π), where in-plane local stresses (σθθh = 250 kPa and σzzh = 224 kPa) yet

remained bounded. Indirectly induced growth at the diametrically opposed location (zo = zom,

θo = 0) was lower, namely λθh = 1.17 > 1 and λrh = 1.30 > 1, but λzh = 0.78 < 1, where in-plane

local stresses reached the same equilibrium values as at the apex.

Finally, let an asymmetric degradation of elastin as in Eq. (55), with the same distribution

parameters zod = lo/3, θod = π/3, and νz = νθ = 5, as well as Kτ/Kσ(zomin) = 0.35 in Eq. (54) and

simulation (d), develop in parallel with an increase in transmural pressure Ph > Po. Meshes (e) in

Figure 8 show deformed configurations and contour maps for ϕehm = 0.35 and Ph = 1.5Po, where

both drivers were increased simultaneously during the quasi-static computation. Compared to the

previous case (d), where Ph ≡ Po remained constant but elastin degraded to a greater extent up

to 0.65, the uniform increase in pressure accentuated thickening (λrh = 2.18 at mid thickness) and

the change in volume (by mass exchange, mesh (e)-left), but not dilation (λθh = 1.87) or axial

retraction (λzh = 0.65) in the most damaged region (zo = zom, θo = π); it also rendered more

uniform the deformation within the cross-section, with λrh = 2.10, λθh = 1.42, and λzh = 0.71 at

θo = 0. Mechanobiologically equilibrated stresses remained bounded throughout the arterial wall

again, reaching mean values σθθh = 248 kPa and σzzh = 226 kPa at the central cross section.

All FE simulations – even when non-uniform along radial, circumferential, or axial directions

and when computed for marked local degradation of elastin (b to d) combined with simultaneous

increases in pressure (e) – were computed over 10 incremental global steps during Stage II, with

asymptotically quadratic rates of convergence and CPU times (∼ 10 min) shown in Table 3. Hence,

the implementation is robust and efficient for computing fully resolved G&R responses, with possi-

ble numerical issues encountered only when locally approaching mechanobiological static instabili-

ties or excessively distorting the FE mesh, as expected. Indeed, given the computational efficiency,

we considered full arterial segment geometries in all of the analyses, with up to 38400 elements,

even though by obvious symmetry considerations partial sectors of the specimen could have been
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analyzed equivalently. Importantly, a recent FE implementation of the original heredity-integral

constrained mixture G&R formulation reported 30 hours, on average, to complete a simulation

for a 2o cylindrical sector of an axisymmetric fusiform aneurysm meshed with 1200 elements [36].

Thus, the computational time reduces drastically when one employs a rate-independent counter-

part of the full formulation, which, with ∼ 30 times more elements, and running ∼ 150 times

faster, roughly represents a 3-fold enhancement in computational efficiency. Nevertheless, the

present formulation is not designed to replace the more general heredity-integral formulation in

all cases. For example, the present implementation cannot compute transient G&R responses

to step changes in blood pressure, flow, or axial stretch, or predict mechanobiological dynamic

instabilities, for which the full formulation is yet needed [8, 10, 36].

5.4. A parametric study

In the previous examples, we constrained the collagen fibres to deposit along referential orienta-

tions aξN = const with prestretches Gξ
N = const. This modeling assumption may be appropriate

for abdominal aortic aneurysms (AAAs) [44]. Nonetheless, collagen fiber orientation appears gen-

erally orthotropic and widely dispersed at the most dilated sites in AAAs, for example, with a

circumferential alignment of collagen fibers observed in some cases [45]. Given the computational

efficiency of the present approach, we parametrically test possible in-plane anisotropic effects on

the final shape of developed aneurysms by prescribing a gradual re-orientation for the angle α0 at

which symmetric diagonal fibers are deposited during mechanobiologically equilibrated evolutions.

Figure 9 shows contour maps for circumferential (first and third rows of panels) and axial

(second and fourth rows) G&R responses of six different aneurysms that result from respective

axisymmetric or asymmetric losses of elastic fiber integrity (up to ϕehm = 0.65) combined with

either an alignment α0h = α0o ≈ 30o that remains constant (left column of panels; cf. meshes (b)

and (d) in Figure 8), increases modestly up to α0h = (4/3)α0o ≈ 40o (central column), or reorients

dramatically up to α0h = (5/3)α0o ≈ 50o (right column). In general, a constant alignment for

diagonal collagen fibers causes an overall axial retraction of the central region of the aneurysms

that induces an expansion of the non-aneurysmal lateral regions (as a result of the axially fixed

ends, cf. also meshes (c) in Figure 8 for fixed axial tractions); the modest reorientation causes no

overall lengthening of the central region or at the ends; the severe reorientation, in contrast, causes

an overall axial expansion of the central region and resulting retraction of the regions next to the

fixed ends (as observed in, for example, [40] using a bilayered membrane model with layer-specific
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fiber orientations).

Interestingly, the more pronounced the axial growth during the formation of an asymmetric

aneurysm, the more tortuous its luminal centerline, as commonly seen with AAAs, which appears

to mark the development of axial-growth-induced tortuosity, that is, an axial-growth-induced

lengthening of the aneurysm between fixed ends in the presence of axially and circumferentially

geometric and material asymmetries (i.e., in the presence of an asymmetric aneurysm itself).

6. Discussion

Many have simulated complex 3D biological growth in diverse soft tissues using a finite (kine-

matic) growth framework [2, 4, 5, 46–48]. Advantages of this approach include its computational

tractability, enabling implementations in existing finite element solvers. A prior disadvantage, how-

ever, has been the lack of consideration of the different material properties and rates of turnover

of the different constituents that make up native and tissue engineered soft tissues.

In this paper, we presented a new constrained mixture formulation that enables computa-

tional tractability while retaining the biologically important characteristic of individual constituent

properties, including rates of production and removal. This efficiency was achieved by using a

mechanobiologically equilibrated framework, which avoids the heredity integral basis of a full con-

strained mixture model while providing precise information on the long-term “relaxed” solution

[7]. This approach is also useful when time scales associated with G&R are shorter than those

associated with perturbations in mechanical or chemical stimuli to which the cells respond [10].

Illustrative solutions for idealized murine arteries subjected to perturbations in blood pressure and

flow as well as changes in axial loading or degradation of elastin (Figs. 4 to 7) demonstrated near

exact correspondence between the current and prior constrained mixture models. Importantly,

the present formulation is also easily implemented within available finite element solvers, though

for non-symmetric tangent stiffness matrices. Results were presented for a modified open source

code, FEBio, but preliminary simulations showed similar results using ADINA. The associated

solutions revealed quadratic convergence with computational efficiency comparable to that for

a nonlinear hyperelastic solution, though here for the simultaneous solution of mechanical and

mechanobiological equilibrium at load steps that capture evolving geometries, compositions, and

properties of interest.

Enlargement of a fusiform aneurysm was simulated easily (Fig. 8), with results similar to
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previous studies [35, 40, 41, 49], though revealing an important new mechanobiological finding.

Not all past simulations of aneurysmal G&R have included both pressure-induced wall stress and

flow-induced shear stress in their “stimulus functions” for mass production, and in some cases

uncontrollable G&R was noted at the non-aneurysmal ends. The present results demonstrate

that flow-induced shear stress-mediated matrix turnover contributes to control the biaxial G&R

near the non-aneurysmal ends. This finding is biologically sensible for the endothelial cells should

be mechanobiologically responsive, and so too the underlying smooth muscle cells, in these non-

aneurysmal end regions. In contrast, endothelial dysfunction could manifest within the enlarged

aneurysmal region, where disturbed flows exist and smooth muscle cell drop-out is prevalent.

These model predictions during quasi-static mechanobiologically equilibrated evolutions, comple-

mented with others in [36] that show a dynamic stabilization of the expansion of abdominal aortic

aneurysms afforded by similar effects of flow-induced shear stresses [8], thus motivate the need for

new regional-specific assessments of cell functionality in these lesions.

For simplicity in presenting this new computational G&R framework, we did not consider spe-

cific criteria for elastin degradation (e.g., induced by low wall shear stress in fluid-solid growth

computational frameworks [50–52]) or damage (e.g., induced by excessive stretching [49]), which

was prescribed herein as the stimulation driver for the quasi-static computations of aneurysmal

enlargement. Simulated effects of varying deposition stretches, rates of turnover, and material

stiffness of collagen have been previously investigated parametrically and proven to play funda-

mental roles in the natural history of AAAs [53, 54]. We explored effects of the degree of wall

heterogeneity and anisotropy on the resulting G&R response in terms of varying orientations of the

newly incorporated collagen fibers within the aneurysmal wall (Fig. 9). Consistent with previous

studies that predicted local axial expansions influenced by marked axial off-loadings and noted

a propensity for the aneurysm to buckle [40, 54], our results revealed that increasing ratios of

axial to circumferential growth emerged for a prescribed marked loss of local elastic fiber integrity

(up to 65%) in combination with a gradual reorientation of diagonal fibers of collagen towards the

circumferential direction, which led to increasing out-of-plane deformations of the aortic centerline

for the asymmetric aneurysms. Collectively, these results highlight the importance of considering

anisotropic G&R when modeling biological tissues [55, 56] and, especially, of quantifying not only

circumferential growth responses (i.e., maximum diameter) but also axial growth responses (i.e.,

overall lengthening), along with their expansion rates, when assessing the potential of aneurysms
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to rupture [57, 58]. In this regard, the present approach need not prescribe a predefined di-

rectionality for the G&R or associated deformation tensors; rather, case-specific G&R responses

emerge from the simultaneous solution of mechanical (Eq. (7)2) and mechanobiological (Eq.

(6)1) equilibrium equations complemented by mechanobiologically-inspired constitutive relations

for constituent stresses (Section 2.5) and stimulus functions (Section 2.6) subject to case-specific

boundary conditions (see also [56]).

Although full, heredity-based constrained mixture models (e.g., [12, 15, 31, 32]) will continue

to be needed to study particular physiological and pathophysiological situations, the present for-

mulation appears to apply in many cases, provided that the loading or structural perturbations

remain static or are slow enough relative to the G&R process. We submit, therefore, that this eas-

ily implemented, fast, rate-independent finite element approach to modeling soft tissue G&R will

enable previously impractical parametric studies that can be used to evaluate novel mechanobio-

logical hypotheses, which in turn can better focus cost- and time-intensive experimental studies

for a host of soft tissues [11].

There is, of course, further need to understand better the actual mechanical stimuli that the

cells sense and respond to, noting that different cells may respond to different magnitudes or

even different stimuli. We considered σvo and τwo as homeostatic targets, which yielded numerical

responses that reflect experimental observations. Much more remains to be discovered, and then

modeled, in soft tissue mechanobiology.
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[26] J. C. Simó, R. L. Taylor, Consistent tangent operators for rate-independent elastoplasticity,

Computer Methods in Applied Mechanics and Engineering 48 (1) (1985) 101–118.

[27] K. Schwlizerhof, E. Ramm, Displacement dependent pressure loads in nonlinear finite element

analyses, Computers & Structures 18 (6) (1984) 1099–1114.

[28] K.-J. Bathe, Finite element procedures, 2nd Edition, Klaus-Jürgen Bathe, 2014.
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Appendix A. Deformation gradients during general G&R responses

Within a general constrained mixture theory, the deformation gradient for a constituent α

deposited at time τ within extant matrix, and that survives at current G&R time s ≥ τ , reads

[12]

Fα
n(τ) (s) = F (s) F−1 (τ) Gα (τ) (56)

which maps line elements (fibers) from an evolving natural configuration καn (τ) to the current

configuration of the mixture κ (s), with Gα (τ) = (Gα (τ))T, and det Gα (τ) = 1. At deposition

time τ ,

Fα
n(τ) (τ) = F (τ) F−1 (τ) Gα (τ) = Gα (τ) , (57)

thus the natural configuration καn (τ) evolves with the current configuration of the soft tissue at τ .

It is for this reason that newly produced collagen families are often assumed to be incorporated

within the wall, at a homeostatic stretch, along unit vectors relative to spatial directions (i.e.,

eigenvectors) of the Cauchy stress tensor in the loaded configuration at time of deposition [12, 14,

59]. Consequently, καn (τ) is subject to possible rigid-body motions superimposed on the current

configuration at τ . In other words, the magnitude of Gα (e.g., its eigenvalues) might be assumed

to remain constant over time, but not so its spatial orientation (i.e., its eigenvectors).

To develop formulations insensitive to rigid body motions, it is often convenient to define

equivalent variables in a referential (Lagrangian) description. Hence, upon considering the right

polar decomposition of the deformation gradient

F (τ) = R (τ) U (τ) (58)

and, because of the inherent link between καn (τ) and the corresponding current configuration of

the mixture κ (τ), we can define a (yet symmetric, volume-preserving) prestretch tensor rotated

by RT (τ) as

Gα
N (τ) := RT (τ) Gα (τ) R (τ) (59)

which is determined relative to an evolving natural configuration καN (τ) that is rotated with

respect to καn (τ) but remains unrotated with respect to the reference configuration of the mixture

κ(0) = κo. This motivates the introduction of a two-point linear transformation defined at the

39



constituent level as

Fα
G (τ) := Gα (τ) R (τ) = R (τ) Gα

N (τ) (60)

which, importantly, allows one to interpret (the original) Gα and (the herein introduced) Gα
N as

respective left and right prestretch tensors defined with respect to the Lagrangian-type natural

configuration καN. Therefore, we can also define (cf. Eq. (56))

Fα
N(τ) (s) := Fα

n(τ) (s) R (τ) = F (s) F−1 (τ) Fα
G (τ) (61)

which maps line elements (fibers) from καN (τ) to the current configuration of the mixture κ (s).

Hence, at deposition time τ (cf. Eq. (57))

Fα
N(τ) (τ) = F (τ) F−1 (τ) Fα

G (τ) = Fα
G (τ) . (62)

In this way, one can conveniently remove possible sources of non-objectivity by considering the

rotated (right) deposition stretch tensor Gα
N. Here, we posit, for example, that both its magnitude

and orientation remain constant

Gα
N (τ) = Gα

N = const ∀τ =⇒ Gα (τ) = R (τ) Gα
NRT (τ) . (63)

In cases that rotations are absent, as, for example, for axisymmetrically loaded arteries treated as

thin-walled [7, 8] or thick-walled [14] cylinders, this assumption yields Gα (τ) = Gα
N = const ∀τ ,

as assumed therein.

For mechanobiologically equilibrated states, when F (τ) = F (s) =: Fh, we have, in general

Fα
nh = FhF

−1
h Gα = Gα , (64)

and

Fα
Nh = FhF

−1
h Fα

Gh = Fα
Gh = RhG

α
N . (65)

The latter decomposition, expressed in terms of Rh 6= const and Gα
N = const, proves useful

when defining mechanobiologically equilibrated (rotated) Cauchy stresses subject to objective

requirements. In this regard, note that an arbitrary rigid-body rotation Q ∈ orth+ superimposed
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on Fα
Nh yields

QFα
Nh = QRhG

α
N = R∗hG

α
N ≡ Fα∗

Nh (66)

with the superimposed rotation absorbed by R∗h = QRh, and Gα
N remaining unaltered (i.e.,

constant, defined in καN). In contrast, because καn evolves with the current configuration of the

mixture, an arbitrary rotation superimposed on Fα
nh implies a rotation on καn and, hence, enforces

a rotation of Gα by means of

QFα
(n∗)h = QFα

nhQ
T = QGαQT = Gα∗ ≡ Fα∗

(n∗)h (67)

with Gα∗ = QGαQT defined in a rotated natural configuration καn∗ , and QT ≡ Q−1 rotating

line elements from καn∗ to καn accordingly. Again, note that Fα
nh = Gα = const for cylindrical

geometries [7, 8].

Appendix B. Stresses during transient hyperelastic responses

The energy WR(Ch) in Eq. (23) gives that stored by the mixture as a consequence of its pre-

stretched in vivo state. To determine associated pre-stresses by differentiation of WR under the

assumption that the bulk modulus of the tissue far exceeds its shear modulus (i.e., volume may

change with growth but not loading over short periods), one can consider arbitrary isochoric (elas-

tic) deformations superimposed to the equilibrated current configuration of the mixture κh. Par-

ticularization of these expressions to F ≡ Fh provides mechanobiologically equilibrated stresses.

Consider the combined gradient F = F̄Fh, with Fh fixed and F̄ superimposed. From Fζ =

F̄F
ζ
h = FF−1

h Fζ
h = FGζ , Cζ = FζTFζ yields, with C = FTF,

Cζ = GζCGζ = Gζ �Gζ : C = Cζ(C) . (68)

Similarly, from Fξ
N = F̄F

ξ
Nh = FF−1

h Fξ
Nh = FU−1

h Gξ
N, Cξ

N = FξT
N Fξ

N yields

Cξ
N = Gξ

NU−1
h CU−1

h Gξ
N = Gξ

NU−1
h �Gξ

NU−1
h : C = Cξ

N(C) . (69)

Since J̄ = det F̄ = 1, then J = det F = J̄Jh = Jh, and the strain energy for the mixture, particu-
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larized to a homeostatic state in Eq. (23), generalizes to

WR(C) =
Nζ∑
ζ=1

φζoŴ
ζ(Cζ) +

Nξ∑
ξ=1

φξRhŴ
ξ(Cξ

N) (70)

with φξRh = φξR(Jh) = Jhφ
ξ(Jh) = Jhφ

ξ
h remaining constant.

The stress power per unit reference volume in κo is, for this intermittent hyperelastic response,

P = S : 1
2
Ċ = ẆR(C) = 2∂WR(C)/∂C : 1

2
Ċ, with S the second Piola–Kirchhoff stress for the

mixture, which yields

S :
1

2
Ċ =

 Nζ∑
ζ=1

2φζo
∂Ŵ ζ(Cζ)

∂Cζ
:
∂Cζ(C)

∂C
+

Nξ∑
ξ=1

2φξRh
∂Ŵ ξ(Cξ

N)

∂Cξ
N

:
∂Cξ

N(C)

∂C
− JhpC−1

 :
1

2
Ċ

where we accounted for dependencies in Eqs. (68) and (69) and added the last term consistent

with the kinematic constraint J̇ = 0 = JhC
−1 : 1

2
Ċ, with p the associated Lagrange multiplier.

Then, ∀Ċ subject to J̇ = 0, we obtain

S =
Nζ∑
ζ=1

φζoG
ζŜζ(Cζ)Gζ +

Nξ∑
ξ=1

φξRhU
−1
h Gξ

NŜξN(Cξ
N)Gξ

NU−1
h − JhpC

−1 (71)

where we defined second Piola–Kirchhoff stresses at the constituent level for both type of con-

stituents

Ŝζ(Cζ) = 2
∂Ŵ ζ(Cζ)

∂Cζ
, ŜξN(Cξ

N) = 2
∂Ŵ ξ(Cξ

N)

∂Cξ
N

. (72)

Note that Eqs. (70) and (71), obtained for hyperelastic (isochoric) responses with respect to an

evolved, grown and remodeled, state κh, constitute a generalization of both the mass averaged rule-

of-mixture strain energy and stresses in Ref. [30], obtained for hyperelastic (isochoric) responses

with respect to an original homeostatic state κo, for which WR ≡ W , φξRh ≡ φξo, Jh ≡ Jo = 1, and

Uh ≡ Uo = I, namely

W (C)|o =
Nζ∑
ζ=1

φζoŴ
ζ(Cζ) +

Nξ∑
ξ=1

φξoŴ
ξ(Cξ

N) (73)

and

S|o =
Nζ∑
ζ=1

φζoG
ζŜζ(Cζ)Gζ +

Nξ∑
ξ=1

φξoG
ξ
NŜξN(Cξ

N)Gξ
N − pC

−1 . (74)
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Appendix C. A stimulus function for arterial G&R

In previous works, we have analyzed G&R of prototypical cylindrical arteries with stimulus

functions for mass production

Υξ
h − 1 = Kξ

σ∆σh −Kξ
τ∆τwh (75)

where

∆σh =
σ̃h − σ̃o
σ̃o

and ∆τwh =
τwh − τwo

τwo
(76)

with σ̃ = σI = trσ the first principal invariant of the mean wall stress and τw = 4µQ/πa3

a measure of the wall shear stress over the endothelium for a fully developed Newtonian flow

through a long cylindrical sector, with µ the viscosity of blood, Q the volumetric flow rate, and

a the current luminal radius. Note that, while we can still employ σ̃ = σI = trσ in the present

general framework, with σ now defined pointwise in Eq. (32), we cannot compute local values

for τw for complex geometries, for which one would need to incorporate computations for the

blood flow to account for fluid-solid interactions, namely perform fluid-solid-growth cardiovascular

simulations [60] particularized in the present case to quasi-steady flows.

Intramural and wall shear stress stimuli: general case. For quasi-steady-state fluid-solid-growth

formulations modeled with the present framework, fluid and solid computations interact through

the mechanobiologically equilibrium condition Υξ
h = 1. From Eq. (75), considering also propor-

tional out-of-equilibrium stimulus functions Υξ − 1 for smooth muscle and collagen, such that

ηK = Kξ
σ/K

ξ
τ [7], we arrive at

σIh − σIo
σIo

=
1

ηK

τwh − τwo
τwo

. (77)

From Eq. (32) we obtain σIh = σxIh − 3ph, which leads to

ph = σxvh − σvo
(

1 +
1

ηK

(
τwh
τwo
− 1

))
(78)

with the volumetric stresses σvo = 1
3
trσo (known from the original homeostatic, loaded state) and

σxvh = 1
3

trσxh. Importantly, note that Eq. (78) couples solid stress computations, through Eq.

(32), with blood flow computations, through the wall shear stress measure τwh. In particular, the
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volumetric Cauchy stress for the mixture σvh = σxvh − ph in Eq. (32) reads

σvh = σvo

(
1 +

1

ηK

(
τwh
τwo
− 1

))
(79)

where, consistent with the considered stimulus function, the flow-induced wall shear stress modu-

lates the intramural volumetric stress.

Intramural and wall shear stress stimuli: cylindrical arterial segments. Consider a long cylindrical

artery that remains cylindrical over G&R time scales, for which the wall shear stress expression

τw = 4µQ/πa3 applies. Yet, this analytical expression for τw cannot be assessed locally in our

arterial wall model because of the presence of the luminal radius a, which represents a geometrical

outcome of the boundary value problem (i.e., the computed radial coordinate of the inner surface).

However, we can relate the global variable a with variables defined locally within a cylindrical

arterial wall, at a given current radial coordinate r, satisfying a ≤ r ≤ rout, with rout the current

outer radius, as

a = r − (r − a) = ro
r

ro
− (ro − ao)

r − a
ro − ao

' roλθ − (ro − ao)λr (80)

where ro is the original radial coordinate, r/ro = λθ is the (exact) local circumferential stretch

computed from C = FTF as λθ =
√

C : eθ ⊗ eθ, and (r − a) / (ro − ao) ' λr is an (approxi-

mated) local radial stretch computed as λr =
√

C : er ⊗ er, with eθ and er unit vectors along

circumferential and radial directions. With τwh/τwo = Qha
3
o/Qoa

3
h, Eq. (78) becomes

ph = σxvh − σvo
(

1 +
1

ηK

(
Qh/Qo

((ro/ao)λθ − (ro/ao − 1)λr)
3 − 1

))
(81)

which, compared to Eq. (36), requires additional straightforward tangent contributions in Eq.

(48) expressed in terms of the derivatives

2
∂λi
∂C

= 2
∂
√

C : ei ⊗ ei
∂ (C : ei ⊗ ei)

∂ (C : ei ⊗ ei)

∂C
=

1

λi
ei ⊗ ei (82)

for both i = r, θ, and that we used to illustrate qualitative results for arterial G&R in examples

above.
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Appendix D. Derivation of tangent moduli contribution σ̂ξN : 2∂(U−1
h � U−1

h )/∂Ch

We derive here the expression for a fourth-order tensor Cξ
σ̂ = σ̂ξN : 2∂(U−1

h �U−1
h )/∂Ch based

on spectral decompositions for the rate of change of the different tensors involved [61, 62]. For

notation simplicity, we disregard subscript h in deformation tensors. The spectral decomposition

of the right Cauchy–Green tensor C reads

C =
3∑
i=1

λ2
iNi ⊗Ni =

3∑
i=1

λ2
iNii

where λi are stretches and Ni Lagrangian strain eigenvectors, and we define eigentensors Nab...c :=

Na ⊗Nb ⊗ ...⊗Nc. The material time derivative of Ċ yields

Ċ =
3∑
i=1

2λiλ̇iNii +
3∑
i=1

∑
j 6=i

(
λ2
j − λ2

i

)
ΩijNij

where Ṅii = Ṅi ⊗Ni + Ni ⊗ Ṅi and Ωij = −Ωji are components of the angular velocity (skew)

tensor of Lagrangian eigenvectors Ω expressed in that same basis, such that

Ṅi = ΩNi =
3∑
j=1

ΩjiNj =
3∑

j=1,j 6=i

ΩjiNj =:
∑
j 6=i

ΩjiNj .

Consider now the spectral decomposition of the inverse of the right stretch tensor

U−1 =
3∑
i=1

1

λi
Ni ⊗Ni =

3∑
i=1

1

λi
Nii .

The spectral decomposition of the fourth-order tensor U−1 �U−1 is

U−1 �U−1 =
3∑
i=1

3∑
j=1

1

λiλj
Nii �Njj =

3∑
i=1

3∑
j=1

1

λiλj
Nijij .

Its material time derivative, proceeding similarly as we did for Ċ, and after few algebraic (index)

manipulations, reads

·
U−1 �U−1 = −

3∑
i=1

3∑
j=1

λ̇i
λ2
iλj

(Nijij + Njiji) +
3∑
i=1

3∑
j=1

∑
k 6=i

Ωik

(
1

λkλj
− 1

λiλj

)
(Nijkj + Njijk) .
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Since
·

U−1 �U−1 =
∂ (U−1 �U−1)

∂C
: Ċ, by comparing expressions for Ċ and

·
U−1 �U−1, one

identifies the sixth-order tensor

∂ (U−1 �U−1)

∂C
=−

3∑
i=1

3∑
j=1

1

2λ3
iλj

(Nijijii + Njijiii)

−
3∑
i=1

3∑
j=1

∑
k 6=i

1

2λiλjλk

1

λi + λk
(Nijkjik + Nijkjki + Njijkik + Njijkki)

which could be implemented, as is, in finite element codes to be subsequently doubly contracted,

numerically, with 2σ̂ξN to give Cξ
σ̂. More efficiently, however, we perform the double contraction

analytically, and the result is implemented directly as a fourth-order tensor in our user-defined

material subroutine. Consider then the spectral decomposition for the rotated stress tensor σ̂ξN in

terms of the eigentensors Nij, which are not coaxial, in general, thereby

σ̂ξN =
3∑
i=1

3∑
j=1

σ̂ξijNij

from which Cξ
σ̂ is obtained as

Cξ
σ̂ = −

3∑
i=1

3∑
j=1

σ̂ξij
λ3
iλj

(Nijii + Njiii) −
3∑
i=1

3∑
j=1

∑
k 6=i

σ̂ξij
λiλjλk (λi + λk)

(Nkjik + Nkjki + Njkik + Njkki) .

Importantly, note that the fourth-order tensor Cξ
σ̂ preserves minor symmetries (abcd)↔ (bacd)↔

(abdc), but (generally) not the major symmetry (abcd)↔ (cdab).

Appendix E. Specialization: an equivalent thin-walled artery

We reformulate here the main algebraic equations derived in [7] to show their consistency with

the general boundary value formulation above.

Formulation in [7]

We solve a system of nonlinear algebraic equations formed by mechanobiological equilibrium

Υh = 1, the constraint
∑
φαh = ραh/ρ = 1, and mechanical equilibrium along both (in-plane)
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circumferential and axial directions of a cylindrical artery, namely

Υh = 1 +Kσ

(
σθθh + σzzh
σθθo + σzzo

− 1

)
−Kτ

(
Qha

3
o

Qoa3
h

− 1

)
= 1 (83)

ρ = ρeh + ρmh + ρch (84)

σθθh =

m,c∑
α

ραh
ρ
σ̂αθθ +

ρeh
ρ
ŜeθθhG

e2
θ λ

2
θh +

ρmh
ρ
σ̂actθθh −

ρeh
ρ
ŜerrhG

e2
r λ

2
rh =

Phah
hh

(85)

σzzh =

m,c∑
α

ραh
ρ
σ̂αzz +

ρeh
ρ
ŜezzhG

e2
z λ

2
zh −

ρeh
ρ
ŜerrhG

e2
r λ

2
rh =

fzh
πhh(2ah + hh)

(86)

where the primary unknowns are ah, hh, ρ
c
h, and fzh. In particular, the evolved homeostatic

Lagrange multiplier ph (not shown) is obtained from the (not shown) radial equilibrium equation

and associated boundary condition (σrrh = 0), which enables substitution of ph in expressions for

in-plane stresses, hence, representing a specific resolution procedure for a cylindrical artery.

An equivalent formulation aimed for finite element implementation

One can alternatively solve an equivalent system of nonlinear algebraic equations formed by

mechanobiological equilibrium Υh = 1 plus mechanical equilibrium along the (out-of- and in-plane)

radial, circumferential, and axial directions, namely

Υh = 1 +Kσ

(
σrrh + σθθh + σzzh
σrro + σθθo + σzzo

− 1

)
−Kτ

(
Qha

3
o

Qoa3
h

− 1

)
= 1 (87)

σrrh =

e,m,c∑
α

σαrrh − ph =
ρeh
ρ
ŜerrhG

e2
r λ

2
rh − ph = −Ph

2
(88)

σθθh =

e,m,c∑
α

σαθθh − ph =

m,c∑
α

ραh
ρ
σ̂αθθ +

ρeh
ρ
ŜeθθhG

e2
θ λ

2
θh +

ρmh
ρ
σ̂actθθh − ph =

Phah
hh

(89)

σzzh =

e,m,c∑
α

σαzzh − ph =

m,c∑
α

ραh
ρ
σ̂αzz +

ρeh
ρ
ŜezzhG

e2
z λ

2
zh − ph =

fzh
πhh(2ah + hh)

(90)

where the primary unknowns are ah, hh, ph, and fzh, noting in Eqs. (87) and (88) additionally

the consideration of a mean radial stress −Ph/2 for more accurate comparisons with FE analyses.

In particular, the evolved homeostatic Lagrange multiplier ph can be obtained in this case from

the mechanobiological equilibrium equation (recall Eq. (33)), which enables substitution of ph in

expressions for out-of- and in-plane stresses (recall Eq. (32)), hence, representing a generalized

resolution procedure for a cylindrical artery consistent with the general formulation derived above.
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Figure 1: Schematic representation of different configurations κi involved in mechanobiologically equilibrated arte-
rial G&R, with ξ ≡ collagen (c) and smooth muscle (m) experiencing continuous turnover but ζ ≡ elastin (e) not
turning over. Note that κo and κh are both homeostatic; all configurations are in vivo.
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Figure 2: Initial (a) and computed after Stage I (b) quarter cross-section geometries (and meshes) for the initially
cylindrical arterial segment considered in all FE simulations. Shown in (b), too, is the volumetric stress contour plot
for this triaxially pre-stressed state consistent with parameters in Table 1, inner pressure Po = 13.98 kPa, flow rate
ratio εo = 1, and (implicit, with respect to an unloaded state) in vivo axial stretch λivz = 1.62. In addition, deformed
cross-sections and volumetric stress contour plots are shown for increases in pressure up to Ph = 1.6Po without
(panel c, Kτ/Kσ = 0) or with (panel d, Kτ/Kσ = 1) flow-induced shear stress effects on G&R (see Appendix
C). Note the excessive dilation and thickening for the simulation (c) that preserves local values of volumetric
stress with respect to (b) but neglects shear stress effects, see Eq. (35); in contrast, observe the mechano-adaptive
thickening with little dilation (d), with slightly decreased volumetric stresses consistent with shear stresses reduced
with respect to (b), see Eq. (79). Shown are smoothed stresses computed from (constant, but monotonic through
the thickness) elemental stresses.
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Figure 3: Mesh convergence study during the Stage I computation of the original pre-stressed homeostatic con-
figuration as a function of the number of elements through the thickness of a mouse DTA (ao ≤ ro ≤ ho, Table
1) at a homeostatic state (Po = 13.98 kPa, denoted by an arrow in panel c, with λivz = 1.62). Four transmural
elements were sufficient for this uni-layered wall model and thus were used in all subsequent simulations. Shown are
axial (a), circumferential (b), and radial (c) Cauchy stresses at nodes interpolated from (constant, but monotonic
through the thickness) elemental stresses. Note the different scales on the ordinates for the 40-micron thick wall.
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Figure 4: Analytical (thin-wall; lines) versus finite element (cylindrical model at mid-thickness; symbols) pressure-
driven quasi-static G&R calculations for increases in pressure from Ph = Po to Ph = 1.6Po without (dashed line
and open circles, Kτ/Kσ = 0) or with (solid line and open squares, Kτ/Kσ = 1) shear stress effects on G&R (see
associated meshes and contour plots for Ph/Po = 1.6 in Figure 2).

51



1 1.2 1.4 1.6
0.5

1

1.5

2

2.5

1 1.2 1.4 1.6
0.5

1

1.5

2

2.5

1 1.2 1.4 1.6
0

1

2

3

4

1 1.2 1.4 1.6
0

100

200

300

1 1.2 1.4 1.6
0

100

200

300

1 1.2 1.4 1.6
0

100

200

300

(b)(a) (c)

(d) (e) (f)

Figure 5: Analytical (thin-wall; lines) versus finite element (cylindrical model at mid-thickness; symbols) flow-
driven quasi-static G&R calculations for increases in blood flow rate from Qh = Qo to Qh = 1.6Qo without (dashed
line and open circles, Kτ/Kσ = 0) or with (solid line and open squares, Kτ/Kσ = 1) shear stress effects on G&R.
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Figure 6: Analytical (thin-wall; lines) versus finite element (cylindrical model at mid-thickness; symbols) axial
stretch-driven quasi-static G&R calculations for increases in axial stretch from λh = λo = 1 to λh = 1.3λo = 1.3
without (dashed line and open circles, Kτ/Kσ = 0) or with (solid line and open squares, Kτ/Kσ = 1) shear stress
effects on G&R. Note the increase in axial stress contributed by the elastically stretched elastin.

53



0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

(a) (b) (c)

(d) (e) (f)

Figure 7: Analytical (thin-wall; lines) versus finite element (cylindrical model at mid-thickness; symbols) elastin
degradation-driven quasi-static G&R calculations for increases in the degradation parameter ϕeh = (ceo − ceh)/ceo
from ϕeh = ϕeo = 0 up to ϕeh = 0.5, while preserving inner pressure Ph = Po, without (dashed line and open circles,
Kτ/Kσ = 0) or with slight (solid line and open squares, Kτ/Kσ = 0.1) shear stress effects on G&R. Both models
predict asymptotic thickening and dilation with moderate change in biaxial stress for ϕeh → 0.725 when Kτ/Kσ = 0
(not shown), cf. [8].
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Figure 8: Initial (after Stage I; a) and computed (in Stage II; b to e) mechanobiologically equilibrated states for
an arterial segment with axisymmetrically (b, c) or asymmetrically (d, e) prescribed elastin damage given either
prescribed axial displacements (b, d, e) or force (c) at the ends, as well as normotensive (b to d) or hypertensive (e)
conditions. Shown are deformed meshes and contour plots of the Jacobian deformation (left column) and volumetric
Cauchy stress (right column) for: (b) ϕehm = 0.65, zod = lo/4, and νz = 2 in Eq. (53), with Kτ/Kσ(zomin) = 0.35
in Eq. (54), for Ph = Po; (c) ϕehm = 0.65, zod = lo/4, and νz = 2 in Eq. (53), with Kτ/Kσ = 0, for Ph = Po;
(d) ϕehm = 0.65, zod = lo/3, θod = π/3, and νz = νθ = 5 in Eq. (55), with Kτ/Kσ(zomin) = 0.35 in Eq. (54), for
Ph = Po; and (e) ϕehm = 0.35, zod = lo/3, θod = π/3, and νz = νθ = 5 in Eq. (55), with Kτ/Kσ(zomin) = 0.35 in
Eq. (54), for Ph = 1.5Po. The FE model comprised Nr × Nθ × Nz = 4 × 160 × 60 = 38400 displacement-based
linear hexahedral elements.
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Figure 9: Mechanobiologically equilibrated states for an arterial segment under normotensive conditions (Ph = Po)
with axisymmetrically (a, b, c) or asymmetrically (d, e, f) prescribed elastin damage (ϕehm = 0.65 for all cases) in
combination with gradually increased orientations of diagonal collagen fibers towards the circumferential direction
as (a, d) α0h = α0o ≈ 30o, (b, e) α0h = (4/3)α0o ≈ 40o, and (c, f) α0h = (5/3)α0o ≈ 50o. Shown are deformed
meshes and contour plots of circumferential (first and third rows) and axial (second and fourth rows) stretches with
respect to an initially straight arterial segment under homeostatic conditions (see mesh (a) in Figure 8). Additional
parameters that define the spatially distributed material insults and properties for the axisymmetric or asymmetric
aneurysms are the same as described for simulations (b) or (d) in Figure 8. Note the increase in local axial growth
within the damaged regions for an increased reorientation of diagonal fibers towards the circumferential direction
for both axisymmetric and asymmetric aneurysms (from left to right).
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Box 1: Mechanobiologically equilibrated constrained mixture model for G&R: kinematics and stresses

(i) Deformation gradient for the mixture (from κo to κh, see Fig. 1)

Fh = RhUh, with associated right Cauchy–Green tensor Ch = FT
hFh

(ii) Deformation gradient for constituents ζ (from κζN = κζn to κh), which do not turnover

Fζh = FhG
ζ , with associated right Cauchy–Green tensor Cζ

h = FζTh Fζh = GζChG
ζ

(iii) Deformation gradient for constituents ξ (from κξN 6= κξn to κh), which turnover

FξNh = RhG
ξ
N, with associated right Cauchy–Green tensors Cξ

Nh = FξTNhF
ξ
Nh = Gξ2

N

(iv) Jacobian (Jh = detFh) dependent mass fractions for different constituents

φζh (Jh) =
φζo
Jh

; φξh (Jh) determined implicitly from Eqs. (11) and (12)

(v) Second Piola–Kirchhoff stresses for constituents ζ (at mixture-level)

Sζh = Jhφ
ζ
hG

ζŜζhG
ζ = φζoG

ζŜζhG
ζ , with constituent-level stresses Ŝζh =

∂Ŵ ζ(Cζ)

∂Cζ

∣∣∣∣∣
Cζh

(vi) Second Piola–Kirchhoff stresses for constituents ξ (at mixture-level)

Sξh = Jhφ
ξ
hU

−1
h Gξ

NŜ
ξ
NG

ξ
NU

−1
h , with constituent-level stresses ŜξN =

∂Ŵ ξ(Cξ
N)

∂Cξ
N

∣∣∣∣∣
CξNh

(vii) Cauchy stresses for different constituents (at mixture-level)

σζh = φζhF
ζ
hŜ

ζ
hF

ζT
h ; σξh = φξhF

ξ
NhŜ

ξ
NF

ξ
Nh = φξhRhσ̂

ξ
NR

T
h (rotated stresses σ̂ξN = Gξ

NŜ
ξ
NG

ξ
N = const)

(viii) Consistency parameter (i.e., evolving Lagrange multiplier) enforcing mechanobiological equilibrium

Υh = 1
(e.g.)
=⇒ ph =

N∑
α=1

σαvh − σvo, with volumetric stresses σv = 1
3 trσ

(ix) Rule-of-mixtures stresses for the mixture

Sh = Sxh + Sph =
N∑
α=1

Sαh − JhphC
−1
h ; σh =

1

Jh
FhShF

T
h = σxh + σph =

N∑
α=1

σαh − phI
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Box 2: Mechanobiologically equilibrated constrained mixture model for G&R: Consistent linearization

(i) Derivative of (referential) mass fractions for constituents ξ with respect to Jh

d(Jhφ
ξ
h)

dJh
, ξ = 1, ..., N ξ determined explicitly from derivatives of Eqs. (11) and (12 )

(ii) Constitutive tangent for constituents ζ (mixture-level), which do not turnover

Cζh = 2
∂Sζh
∂Ch

= φζoG
ζ �Gζ : Ĉζh : Gζ �Gζ

with constituent-level tangent Ĉζh = 2
∂Ŝζh
∂Cζ

h

= 4
∂2Ŵ ζ(Cζ

h)

∂Cζ
h ⊗ ∂C

ζ
h

(iii) Constitutive tangent for constituents ξ (mixture-level), which turnover

Cξh = 2
∂Sξh
∂Ch

=
1

φξh

d(Jhφ
ξ
h)

dJh
Sξh ⊗C−1

h + Jhφ
ξ
hC

ξ
σ̂

with Cξσ̂ = σ̂ξN : 2
∂(U−1

h �U−1
h )

∂Ch
given in spectral form in Appendix D

(iv) Contribution from evolving ph enforcing mechanobiologically equilibrated evolution

Υ̇h = 0
(e.g.)
=⇒ Cph = JhσvoC

−1
h ⊗C−1

h −
1
3C

−1
h ⊗Ch : Cxh − 2

3C
−1
h ⊗ Sxh + 2JhphC

−1
h }C−1

h

(v) Referential and spatial tangent tensors for the mixture

Ch = Cxh + Cph =
N∑
α=1

Cαh + Cph ; Ch =
1

Jh
Fh � Fh : Ch : FT

h � FT
h = Cxh + Cph
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Box 3: Two-stage algorithm to compute mechanobiologically equilibrated G&R evolutions

Stage I: Hyperelastic pre-loading to the original homeostatic state

Given (properties defined pointwise, in general):

· Geometry, external loads, and boundary conditions at G&R time s = 0

· Mass fractions φαo for all constituents α at G&R time s = 0

· Deposition stretch tensors Gζ and Gξ
N for all constituents ζ and ξ at G&R time s = 0

· Strain energy functions Ŵα for all constituents α

· Volumetric (penalty) strain energy function U(ln J) for the mixture

(I.1) Solve boundary value problem at s = 0, with:

Stresses and constitutive tangents in Eqs. (49) and (50)

(I.2) Store at integration points (for the only time, for a smooth transition to Stage II):

Fo ' I , σvo = 1
3Jo

So : Co , and σ̂ξN = 1

Joφ
ξ
o
UoS

ξ
oUo ' Gξ

NŜ
ξ
NG

ξ
N (ξ = 1, ..., Nξ)

Stage II: Mechanobiologically equilibrated G&R evolution

Given, additionally (properties defined pointwise, in general):

· Change in external loads and/or other stimuli over G&R time s > 0

· Nξ − 1 independent gain-removal ratios ηij between constituents {ξi, ξj}

(II.1) Solve boundary value problem at each s = sh, with:

Stresses and consistent tangents in Boxes 1 and 2
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Inner Radius, Thickness, Length ao, ho, lo 0.647 mm, 0.040 mm, 15 mm
Mass Fractions φeo, φ

m
o , φ

c
o 0.34, 0.33, 0.33

Collagen Fractions βθ, βz, βd 0.056, 0.067, 0.877
Diagonal Collagen Orientation α0 29.91o

Elastin Parameter ce 89.71 kPa
Smooth Muscle Parameters cm1 , c

m
2 261.4 kPa, 0.24

Collagen Parameters cc1, c
c
2 234.9 kPa, 4.08

Elastin Deposition Stretches Ge
r, G

e
θ, G

e
z 1/(Ge

θG
e
z), 1.9, 1.62

Muscle/Collagen Deposition Stretches Gm, Gc 1.20, 1.25
Combined Production-Removal ηmc = (km/kc) · (Km/Kc) 1

Table 1: Representative baseline model parameters for a mouse descending thoracic aorta, assuming that elastin
does not turnover during the G&R period but smooth muscle and collagen turnover continuously with constant
deposition stretches (adapted from original homeostatic parameters in [15], with ηmc = 1 because gain and rate
parameters were determined while including inflammatory effects, which we do not consider here). Collagen family
mass fractions are defined by βj = φcjo /φ

c
o, with j = θ, z, d representing circumferential, axial, and symmetric

diagonal directions. The angle α0 is defined with respect to the axial direction. Additional values for ηK = Kξ
σ/K

ξ
τ

in Eq. (77) are given in the examples when appropriate.
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G&R (Kτ/Kσ = 0) G&R(Kτ/Kσ = 1) Hyperelastic
force energy force energy force energy

Iteration 0 2.9E+00 1.5E-00 2.6E+00 9.0E-02 6.5E+00 5.1E-01
Iteration 1 2.2E-01 9.7E-03 3.3E-02 5.1E-04 7.3E+01 6.8E-02
Iteration 2 1.5E-04 1.4E-08 1.2E-05 4.3E-09 4.9E-01 2.3E-04
Iteration 3 6.1E-10 1.7E-18 3.2E-10 3.6E-20 9.4E-04 4.7E-09
Iteration 4 1.1E-10 1.7E-18

Time (1+10 steps) 6.63 s 6.76 s 6.37 s

Table 2: Asymptotically quadratic rates of convergence for residual force (left sub-columns) and energy (right
sub-columns) during a typical global time step for the two axially uniform G&R simulations shown in Fig. 2 (c
and d) as well as total elapsed CPU time (1 + 10 time steps each, Fig. 4) using a single processor. Note that both
convergence rate and computational time are comparable to those for a hyperelastic computation using the same
FE model and increase in pressure without G&R (not shown).
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force energy

Iteration 0 1.2E+00 8.7E-01
Iteration 1 1.1E-01 3.1E-02
Iteration 2 2.5E-03 3.5E-06
Iteration 3 5.5E-06 1.0E-10
Iteration 4 2.1E-11 2.2E-19

Time (1+10 steps) 11 min 20 s

Table 3: Asymptotically quadratic rates of convergence for residual force (left column) and energy (right column)
during a typical global time step for the simulation of a hypertensive asymmetric fusiform aneurysm, with an
asymmetric degradation of elastin and uniform increase in pressure, shown in Fig. 8 (mesh e), as well as total elapsed
CPU time (1+10 time steps) using a single processor. The FE model comprised Nr×Nθ×Nz = 4×160×60 = 38400
displacement-based hexahedral elements.
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