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Abstract

In this paper we present a new computational framework for anisotropic elastoplas-
ticity with mixed hardening which presents the following characteristics: (1) it is
motivated by a one-dimensional rheological model where the main differences are
due to geometric nonlinearities and three-dimensional effects; (2) it uses the Lee
multiplicative decomposition; (3) it is valid for anisotropic yield functions; (4) it
is valid for any anisotropic stored energy, either linear or nonlinear in logarithmic
strains; (5) it is valid for (non-moderate) large elastic strains; (6) it results in a six-
dimensional additive corrector update, parallel to that of the infinitesimal theory;
(7) it does not explicitly employ plastic strain tensors or plastic metrics, circumvent-
ing definitely the “rate issue”; (8) the incremental plastic flow is isochoric using a
simple backward-Euler scheme, without explicitly using exponential mappings; (9)
no hypothesis is needed for the plastic spin in order to integrate the symmetric flow
derived from the dissipation equation; (10) the Mandel stress tensor plays no role
in the formulation; (11) it yields a fully symmetric algorithmic linearization consis-
tently with its associative nature and the principle of maximum dissipation; and (12)
it recovers the formulation of Simó for isotropy as a particular case.
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1. Introduction

The development of anisotropic elastoplastic material models and algorithms for
finite element implementation plays a fundamental role in industrial processes [1],
[2], [3], [4]. In manufacturing processes of metals, the influence of elastic anisotropy
is important, for example during elastic recovery processes as the springback. The
consideration of large elastic strains in these models and algorithms becomes also
important for the numerical analysis of some polymers, which undergo large elastic
strains accompanied by molecular chain reorientations, developing a high elastic
anisotropy.

Constitutive models and integration algorithms for infinitesimal elastoplasticity,
relying mainly on the classical return mapping schemes of Wilkins [5], Maenchen and
Sacks [6] and Krieg and Key [7], have achieved nowadays an acceptable accuracy and
efficiency [2], [8], [9]. Much effort has been done in order to extend the small strain
formulations to the finite deformation regime [10], always with the main aim of pre-
serving as much as possible the simplicity of the infinitesimal formulation through
an algorithm that computes the closest point projection of the trial stresses onto
the elastic domain [11]. Very different extended formulations, restricted to isotropy
or including some kind of anisotropy, can be found in the literature, as for example
computational models based on hypoelastic relations for stresses in rate form [12],
[13], [14], [15], [16], [17]; models formulated in terms of different types of stress and
strain measures [18], [19], [20], [21], [22], [23], [11]; models employing different in-
ternal variables as the basic ones [24], [25], [26], [27]; and hyperelastic formulations
based on either plastic metrics [28], [29], [30], [31], [32], [33], [34] or the multiplicative
decomposition of the deformation gradient [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45]. Unlike additive plasticity models, multiplicative plasticity models are
micromechanically motivated from single crystal metal plasticity [46], [47], with the
elastic part of the deformation gradient accounting for the elastic lattice deforma-
tion, so the corresponding strain energy may be considered well defined. A recent
publication considering the numerics of the multiplicative decomposition, including
combined isotropic-kinematic hardening models, can be found in [48]. However, the
most controversial aspect of the theory is arguably associated with the derivation
of continuum evolution equations for the plastic flow [49] and with their numerical
integration [50], i.e. the “rate issue” as coined by Simó [11].

Regarding this last issue, the formulation and further integration of evolution
equations expressed in terms of the plastic deformation gradient rate tensor, which
goes back to the works of Eterovic and Bathe [21] and Weber and Anand [20], is
probably the most common approach. A different approach relies on the ideas of
the early works of Eckart [24], Besseling [25] and Leonov [26], who suggested that
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the internal elastic strains, from which the stresses directly derive, should govern
the internal dissipation [27]. Indeed, from a strictly numerical viewpoint, this is the
key feature of the classical integration algorithms [5], [6], [7], where the dissipative
return onto the elastic domain is governed by the trial elastic stresses. Certainly, the
extension of these ideas to the finite strain anisotropic case is not straightforward.
Following this line, Simó and Miehe derived a continuum flow rule expressed in terms
of the Lie derivative of the elastic left Cauchy–Green deformation tensor [51], which
was further integrated in terms of elastic logarithmic strains yielding a computational
framework that preserved the main structure of the classical return mapping schemes
[11]. However, the formulation is fully restricted to isotropy, so an extrapolation to
the anisotropic context that preserves the appealing structure of the infinitesimal
plasticity algorithms without modification is missing.

In Ref. [49] we present a new class of flow rules valid for anisotropic elastoplas-
ticity and large elastic strains consistent with the Lee multiplicative decomposition.
Generalizing Simó’s approach [11], internal elastic strain variables are taken as the
basic variables, so the evolution equations become entirely formulated in terms of
corrector elastic strain rates rather than plastic ones. The concepts of variable depen-
dencies, partial differentiation and mapping tensors [52] play a fundamental role on
the kinematics. The procedure is described in different configurations and in terms
of different stress and strain measures. Importantly, the generally non-symmetric
Mandel stress tensor [53], power-conjugate of the plastic velocity gradient in the
intermediate configuration, is not present in the dissipation inequality if one fol-
lows this approach. On the contrary, respective thermodynamical symmetric stress
tensors and power-conjugate elastic symmetric strain rates govern the dissipation
process in the selected configuration. In each case, an associative flow rule based
on the notion of the corrector elastic strain rate is trivially obtained consistently
with the principle of maximum dissipation. These flow rules may be considered con-
ventional in the sense that they adopt the same structure as the small strain one,
hence being simplified to a great extent and definitively solving the “rate issue” in
its continuum part. The particularization of the spatial formulation to isotropy and
with the additional restriction of vanishing plastic spin [54] gives as a result the Simó
framework. Another interesting characteristic of the six-dimensional flow rules de-
rived in Ref. [49] is that the plastic spin does not take explicit part in them, exactly
as it occurs in the infinitesimal theory. Consistently with Ref. [55], any flow rule for
the plastic spin must be postulated as an additional hypothesis independent of the
maximum dissipation principle.

In this work, we present a continuum elastoplasticity framework and implicit
computational formulation in full space description valid for anisotropic stored en-
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ergies and large elastic strains consistent with the Lee multiplicative decomposition.
As a fundamental ingredient, we take special advantage of the flow rule given in
Ref. [49] written in terms of the corrector elastic logarithmic symmetric strain rate
tensor [56] and its power-conjugated generalized Kirchhoff symmetric stress tensor,
both defined in the intermediate configuration. Importantly, this flow rule may be
immediately recast in a remarkably simple incremental form by direct backward-
Euler integration, resulting into an additive return mapping scheme in full tensorial
form that preserves the appealing structure of the classical schemes of infinitesimal
plasticity without modification, hence solving the “rate issue” in its computational
part as well. Exact preservation of plastic volume for pressure insensitive yield cri-
teria is readily accomplished in this case. Since the formulation is entirely written in
terms of the elastic logarithmic strains in the intermediate configuration, the plas-
tic deformation gradient tensor is updated in a proper incremental fashion at each
converged step as an additional independent assumption inherently related with the
skew-symmetric flow. As we show, our associative flow rule written directly in terms
of the elastic logarithmic strain evolution yields a fully symmetric finite element for-
mulation of finite strain anisotropic multiplicative elastoplasticity, thus generalizing
the solution restricted to isotropy that Simó and Miehe [51] provided for an open
issue raised in the pioneering work of Argyris et al. [57]. The Simó’s integration
scheme in principal strain/stress directions is recovered (in its unrotated form) when
the formulation is restricted to isotropy, even though the exponential mapping is not
explicitly employed.

We include kinematic hardening effects in the present model following a novel,
different approach to the standard methodology based on the explicit consideration
of a backstress tensor. We motivate the kinematic hardening formulation from a one-
dimensional “think” (rheological) model [58]. The macroscopic backstress may there-
after be implicitly determined as a result, if desired. Furthermore, this formulation,
which has some similarities with others in the literature based on the Armstrong–
Frederick kinematic hardening, e.g. [59], which is based on the pioneering work of
Lion [37], enables us to use a very similar computational framework to the one we
presented in Ref. [60] in the context of anisotropic finite strain viscoelasticity based
on the Sidoroff multiplicative decomposition. Indeed, the formulation derived herein
is equivalent in many aspects to that in Ref. [60]. This approach reproduces the
observed kinematic hardening behavior from a macroscopic standpoint, even though
without modifying the evolution equation and the stress integration algorithm.

The rest of the paper is organized as follows. We next present in Section 2 the
ideas for one-dimensional infinitesimal elastoplasticity including combined harden-
ing effects in both continuum and incremental forms. We present in Section 3 the
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large strain formulation in the intermediate configuration using directly logarithmic
strains. Section 4 is devoted to the consistent linearization of the continuum elasto-
plastic response, where its similarity with the infinitesimal case can be noticed. In
Section 5 we perform the integration of the flow rule and derive the implicit algo-
rithmic formulation, showing that a fully symmetric consistent algorithmic tangent
tensor is obtained parallel to the infinitesimal one. In Section 6 we explain how to
determine the internal model parameters from experimental testing. Finally, in Sec-
tion 7 some examples including homogeneous and non-homogeneous deformations
and large elastic strains prove the consistency of the formulation and its excellent
numerical efficiency.

The general formulation that we present (until Section 6), with nonlinear func-
tions, presents a natural framework for anisotropic elastoplasticity of both metals,
with moderately large elastic strains, and soft materials, with large elastic strains.
However, the kinematic hardening laws used in the examples, linear in terms of log-
arithmic strains, may not be suitable for certain metals, for which the Armstrong–
Frederick hardening is more appropriate.

2. Motivation: infinitesimal elastoplasticity

The purpose of this section is to motivate the model in the simpler infinitesimal
one-dimensional description, within both the continuum and the algorithmic frame-
works. The presented concepts result in a remarkable parallelism with the large
strain algorithmic formulation presented in next sections.

2.1. Continuum theory

Consider the elastoplastic standard solid for small strains including a Prandtl
(friction-spring) element in parallel with a single Hooke (spring) element shown in
Figure 1, where ε and σ are the external, measurable strain and stress, respectively,
and εe and εp are internal, non-measurable variables describing the internal elastic
and plastic behaviors. We will see below that the branch with the single spring
element in the device of Figure 1 is responsible for the phenomenologically observable
(say macroscopic) kinematic hardening of the model, hence we use the subscript kin
in the strain energy function associated to that spring. We refer to the internal spring
within the Prandtl branch in Figure 1 with the subscript int. We denote the internal
flow stress associated to the friction element as k. Note that the current approach to
the kinematic hardening differs from the classical Prager-type kinematic hardening
usually adopted for metals [61], which includes the Armstrong-Frederick hardening.
In particular, even though the implemented approach in the examples below does
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not allow for stress saturation, stress saturation could be modelled by the present
model using an appropriate nonlinear function Ψkin.

We note that the elastoplastic rheological model shown in Figure 1 presents an
homologous arrangement to that of the viscoelastic one used in Ref. [60], where we
have replaced the Newton (dashpot) element by a Saint-Venant (friction) element.
This standard solid including kinematical hardening effects is also employed in, for
example, Ref. [58] as a one-dimensional rheological model (therein named “think”
model), where it is additionally compared with other more classical arrangements.

The internal strains in Figure 1 relate to the external one through ε = εe+ εp, so
if we know the total deformation and one internal variable, then the another one is
uniquely determined. We will consider ε and εp as the independent variables of the
dissipative system and εe will be the two-variable dependent internal variable, i.e.

εe (ε, εp) = ε− εp (1)

which provides also a relation between the corresponding partial contributions to ε̇e
—we use the notation ∂ (·) /∂(◦) for partial differentiation

ε̇e =
∂εe
∂ε

∣
∣
∣
∣
ε̇p=0

ε̇+
∂ε

∂εp

∣
∣
∣
∣
ε̇=0

ε̇p = ε̇− ε̇p = ε̇e|ε̇p=0 + ε̇e|ε̇=0 (2)

The stored energy in the device of Figure 1 is given by Ψ (ε, εe) = Ψkin (ε) +
Ψint (εe). The (non-negative) dissipation rate D is calculated from the external stress
power P and the total strain energy rate Ψ̇ through

D = P − Ψ̇kin − Ψ̇int = σε̇− σkinε̇− σ
|e
intε̇e ≥ 0 (3)

where we define —we use the notation d (·) /d(◦) for total differentiation

σkin :=
dΨkin (ε)

dε
and σ

|e
int :=

dΨint (εe)

dεe
(4)

No dissipation takes place if we consider an isolated evolution of the external,
independent variable ε̇ 6= 0, i.e. with ε̇p = 0. Then ε̇e ≡ ε̇e|ε̇p=0 and Eq. (3) reads

D = σε̇− σkinε̇− σ
|e
int ε̇e|ε̇p=0 =

(

σ − σkin − σ
|e
int

∂εe
∂ε

∣
∣
∣
∣
ε̇p=0

)

ε̇ = 0 if ε̇p = 0 (5)
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which yields

σ = σkin + σ
|e
int

∂εe
∂ε

∣
∣
∣
∣
ε̇p=0

= σkin + σ
|e
int = σkin + σint (6)

where we recognize the following definition based on a chain rule operation —note
the abuse of notation Ψint (εe) = Ψint (εe (ε, εp)) = Ψint (ε, εp)

σint := σ
|e
int

∂εe
∂ε

∣
∣
∣
∣
ε̇p=0

=
dΨint (εe)

dεe

∂εe (ε, εp)

∂ε
=

∂Ψint (ε, εp)

∂ε
=

∂Ψint

∂ε

∣
∣
∣
∣
ε̇p=0

(7)

Definitions of this type, based on the concept of partial differentiation, will prove
extremely useful in the finite deformation context, where they furnish the proper
pull-back and push-forward operations between the different configurations being
defined [60][63][49].

Consider now an isolated internal evolution of the other independent variable in
the problem, i.e. the case for which ε̇ = 0 and ε̇p 6= 0. Then ε̇e ≡ ε̇e|ε̇=0. The
dissipation inequality of Eq. (3) must be positive because plastic deformation is
taking place

D = −σ
|e
int ε̇e|ε̇=0 > 0 if ε̇p 6= 0 (8)

Since ε̇e|ε̇=0 = −ε̇p and σ
|e
int = σint, recall Eqs. (2) and (6), then Eq. (8) adopts the

usual form
D = σintε̇p > 0 if ε̇p 6= 0 (9)

Equations (8) and (9) represent both the same physical concept, the former written
in terms of the partial contribution ε̇e|ε̇=0 to the total rate of the dependent internal
variable εe (ε, εp) and the latter written in terms of the total rate ε̇p of the independent
internal variable εp.

Inequality (8) is automatically fulfilled if we choose

− ε̇e|ε̇=0 = γ̇
σ
|e
int

k
(10)

which yields

D =

(

σ
|e
int

k

)2

kγ̇ > 0 if ε̇p 6= 0 (11)

where k > 0 is the yield stress of the internal frictional element of Figure 1 and
we define γ̇ ≥ 0 as its power-conjugate plastic strain rate, as we see just below.
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If k = k (γ) increases with the accumulated plastic deformation γ =
∫ t

0
γ̇dt we will

obtain the case with combined kinematic and isotropic hardening. If k is constant, the
model describes the case with kinematic hardening only. We rephrase the dissipation
Inequality (11) as

D =





(

σ
|e
int

k

)2

− 1



 kγ̇ + kγ̇ > 0 if γ̇ > 0 (12)

If we force the plastic dissipation of the model to be given by the flow stress times
the frictional strain rate —compare with Eqs. (8) and (9)

D = kγ̇ ≥ 0 for γ̇ ≥ 0 (13)

then we immediately recognize the yield function and the loading/unloading Kuhn-
Tucker conditions in Eq. (12), i.e.

γ̇ > 0 ⇒ f(σ
|e
int, k) = (σ

|e
int)

2 − k2 = 0 (plastic loading) (14)

and

f(σ
|e
int, k) = (σ

|e
int)

2 − k2 < 0 ⇒ γ̇ = 0 (elastic loading/unloading) (15)

which are to be finally complemented with the consistency requirement

f(σ
|e
int, k) = 0 ⇒ γ̇ḟ(σ

|e
int, k) = 0 (16)

Using the first addend in Eq. (2) and Eq. (14), the flow rule of Eq. (10) adopts the
usual expression in terms of the plastic strain rate [62]

ε̇p = γ̇ sign(σ
|e
int) (17)

The interpretation given in Eq. (10), however, will allow us to extend the formulation
to the finite strain context following analogous steps to those followed within the
infinitesimal theory [49].

2.2. Incremental theory

In the previous section we have derived the set of equations that describe the
elastoplastic behavior of the device of Figure 1. We integrate these equations in the
“time” (t) domain by means of the usual elastic predictor/plastic corrector algorithm
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in order to compute the internal state at t + ∆t, namely t+∆t
0εe and t+∆t

0εp, when
both the elastoplastic state at t, namely t

0ε = t
0εe +

t
0εp, and the total strain at

t+∆t, namely t+∆t
0ε, are known. We use the notation of Ref. [1] for the incremental

formulation.
First of all, assume that the incremental deformation between times t and t+∆t

has been purely elastic. Accordingly, we define the trial elastic strain trεe at instant
t+∆t as that obtained with the plastic strain retained fixed, i.e. with trεp =

t
0εp

trεe =
t+∆t

0ε−
t
0εp (18)

Since t
0εp remains fixed during the current step, Eq. (18) establishes a one-to-one

relation between t+∆t
0ε and trεe. Hence, for further algorithmic convenience, we

can perform a change of the independent variable ε in Eq. (1) —note the abuse of
functional notation for t+∆t

0εe (†, ⋆)

t+∆t
0εe(

t+∆t
0ε,

t+∆t
0εp) → t+∆t

0εe(
trεe,

t+∆t
0εp) (19)

such that we obtain the following partial derivative of t+∆t
0εe with respect to the

new independent variable trεe —compare with the corresponding partial derivative
present in Eq. (2)

∂ t+∆t
0εe

∂ t+∆t
0ε

∣
∣
∣
∣
ε̇p=0

=
∂ t+∆t

0εe
∂ trεe

∣
∣
∣
∣
ε̇p=0

= 1 (20)

The generalization of the only apparently obvious Eqs. (19) and (20) to the three-
dimensional, finite strain context will prove crucial during the integration of the
incremental formulation derived below.

In order to determine whether the step has really been elastic, the yield function
must be checked with the trial stress, obtained from the trial elastic strain

trσ
|e
int =

dΨint (εe)

dεe

∣
∣
∣
∣
tr

(21)

so
trf = f(trσ

|e
int,

trk) = (trσ
|e
int)

2 − trk2 (22)

where trk = k (trγ) = k (t0γ) =
tk. In the case trf ≤ 0, the premise was correct, so

we get t+∆t
0εp =

trεp,
t+∆t

0εe =
trεe and

t+∆tσ
|e
int =

trσ
|e
int.

In the case trf > 0, a plastic-elastic correction must be performed by means of
an internal evolution for which the external strain t+∆t

0ε is retained fixed. This is,
indeed, the main usefulness of Eq. (10), which we integrate employing a backward-
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Euler scheme as

t+∆t
0εe −

trεe =

∫ t+∆t

t

dεe|ε̇=0 = −

∫ t+∆t

t

σ
|e
int

k
dγ = −

t+∆tσ
|e
int

t+∆tk
∆γ (23)

with the nonlinear relations t+∆tk = k
(
t+∆t

0γ
)
and t+∆tσ

|e
int = dΨint(εe)/dεe|t+∆t.

The incremental plastic slip ∆γ := t+∆t
0γ − trγ = t+∆t

0γ − t
0γ and the elastic strain

t+∆t
0εe are also related from the discrete consistency equation

t+∆tf = (t+∆tσ
|e
int)

2 − t+∆tk2 = 0 (24)

Both Equations (23) and (24) are to be solved in an incremental manner to give
the elastoplastic state at t + ∆t. We give below more details about the general
iterative procedure employed within the three-dimensional finite strain setting, which
remarkably follows the same (simple) steps addressed herein.

3. Multiplicative elastoplasticity based on logarithmic strains

In this section we outline the main ingredients of the novel finite strain contin-
uum framework presented in Ref. [49], which represent the point of departure for
the derivation of the computational formulation and that we directly present herein
specialized to logarithmic strains. In addition, we extend the finite strain formu-
lation of Ref. [49] to include kinematical hardening effects in an also unusual, yet
simpler setting for algorithmic implementation. The main novelty is the derivation
of a plastic flow evolution equation expressed in terms of the corrector contribution
of an elastic strain rate instead of the usual plastic strain rates. This flow rule, which
is valid for anisotropic multiplicative elastoplasticity, arbitrarily large elastic strains
and arbitrary yield functions, will result in a remarkably simple additive update
for internal logarithmic elastic strains and may be considered the proper generaliza-
tion to anisotropy in the full strain space of the well-known flow rule for isotropic
elastoplasticity derived by Simó and Miehe [51] and Simó [11], which was ultimately
written in terms of principal logarithmic strains within the computational part.

3.1. Multiplicative decomposition

The so-called Lee multiplicative decomposition [35] states the decomposition of
the deformation gradient into an elastic part and a plastic part as—we use the symbol
· for the usual single index contraction operation

X = Xe ·Xp (25)
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When using this decomposition, a rigid body motion results into

X+ = Q ·X = X+
e ·X+

p = (Q ·Xe) · (Xp) (26)

so the superimposed rigid body motion naturally enters the “elastic” gradient, whereas
the plastic gradient remains unaltered. A much debated issue is the uniqueness of
the intermediate configuration arising from Xp since any rotation tensor Q with its
inverse may be inserted such that X = (Xe ·Q) · (QT · Xp). However since Xp

is path dependent and is integrated step-by-step during the incremental formulation
(whether directly as usual, or indirectly as below), we consider that it is uniquely
determined at all times [64].

3.2. Logarithmic strain rate tensors

Just as an analytical example, consider the total Green–Lagrange strains in the
reference configuration and the elastic Green–Lagrange strains in the intermediate
configuration obtained from the Lee decomposition of Eq. (25) —I stands for the
second-order identity tensor

A :=
1

2

(
XT ·X − I

)
and Ae :=

1

2

(
XT

e ·Xe − I
)

(27)

Following the idea introduced for small strains, see Eq. (1), we write the dependent,
internal elastic variable Ae as a function of the independent, external variable A and
the independent, internal plastic variable Xp as—we use the symbol : for the usual
double index contraction operation

Ae (A,Xp) = X−T
p · (A−Ap) ·X

−1
p = X−T

p ⊙X−T
p : (A−Ap) (28)

where the Green–Lagrange plastic strain tensor is defined in the reference configu-
ration as

Ap :=
1

2

(
XT

p ·Xp − I
)

(29)

and the symbol ⊙ performs the mixed dyad product between second-order tensors
(Y ⊙Z)ijkl = YikZjl.

Since the one-to-one relations Ee = Ee (Ae) and E = E (A) hold, where Ee =
1
2
ln(XT

e ·Xe) and E = 1
2
ln(XT ·X) are the elastic and total material logarithmic

strain tensors respectively, we have also the general dependence Ee (E,Xp), which
generalizes Eq. (1) to the logarithmic strain space. It is important to note that
we do not need to know the explicit analytical expression for Ee (E,Xp) in the
derivation of the present framework. In fact, what we mean with Ee (E,Xp) is the
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also important observation that if we know both E and Xp, then we can know Ee,
which moreover is uniquely determined. Analogously to Eq. (2), we can decompose
the material tensor rate Ėe by means of the addition of two partial contributions

Ėe =
∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

: Ė +
∂Ee

∂Xp

∣
∣
∣
∣
Ė=0

: Ẋp = Ėe

∣
∣
∣
Ẋp=0

+ Ėe

∣
∣
∣
Ė=0

(30)

Equation (30) naturally sets “perpendicular”, independent rates within a continuum
framework (where they occur both instantaneously and simultaneously) in the sense
that the path constrained by Ẋp = 0 would bring the corresponding stress power

without any internal dissipation and the path constrained by Ė = 0 would perform
the plastic dissipation without exchange of external power. This decomposition in
rate form is the origin of the trial elastic predictor, for which Xp is frozen, and
plastic corrector, for which E is frozen, operator split typically employed for elas-
tic internal variables in computational inelasticity within an algorithmic framework
(where they occur incrementally and sequentially). These last considerations will
prove very useful below. We want to remark that the general expression of Eq. (30)
is fully consistent with the continuum kinematic formulation derived from the Lee
decomposition and bypasses the definition of any plastic metric, see discussion in
Ref. [49].

3.3. Dissipation in terms of the elastic logarithmic strain rate

The dissipation inequality may be written in different configurations employing
the previous kinematic relations. The stress power is written as [52]

P = S : Ȧ = T : Ė = τ : d (31)

where S is the material second Piola–Kirchhoff stress tensor, work-conjugate of the
Green-Lagrange strains A; T is the so-called material Generalized Kirchhoff stress
tensor, work-conjugate of the logarithmic strains E; and τ is the spatial Kirchhoff
stress tensor, work-conjugate of the Almansi strains a := 1

2
(I −X−T ·X−1) when

its referential configuration, i.e. the current configuration, is maintained fixed, see
Refs. [52][49].

The stored energy function may be written in terms of any Lagrangian strain
measure, whose selection is just a matter of convenience regarding the hyperelastic
relation to be used. Motivated by the small strain rheological model of Figure 1, the
stored energy function may be written in terms of the total logarithmic strains and
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of the elastic ones as

Ψ (E,Ee) = Ψkin (E,a1 ⊗ a1,a2 ⊗ a2) + Ψint (Ee,a1 ⊗ a1,a2 ⊗ a2) (32)

where we have additionally assumed that the material is orthotropic, with a1 and a2

(and a3 = a1×a2) defining the orthogonal preferred directions in both the reference
and the intermediate configurations. As a first step in the derivation of more com-
plex formulations including texture evolution [43], which require an experimentally
motivated constitutive equation additional to that for the plastic spin wp = skw(lp)

(with lp = ẊpX
−1
p being the plastic velocity gradient in the intermediate configu-

ration), see examples in Ref. [65], we assume in this work that the texture of the
material is permanent. As we explain below within the variables update phase of
the computational algorithm, we are additionally considering wp = 0 as a posteriori
simplifying assumption once the symmetric flow has been integrated.

The dissipation rate in Lagrangian description is

D = P − Ψ̇ = P − Ψ̇kin − Ψ̇int ≥ 0 (33)

which can be written as

D = T : Ė − T kin : Ė − T
|e
int : Ėe ≥ 0 (34)

where we have introduced the following notation for the total derivative (stress)
tensors

T kin :=
dΨkin (E)

dE
and T

|e
int :=

dΨint (Ee)

dEe

(35)

with T kin lying in the reference configuration, as E does, and T
|e
int lying in the

intermediate configuration, as Ee does.
Consider first the case for which Ẋp = 0, i.e. we have Ėe ≡ Ėe|Ẋp=0

=

∂Ee/∂E|
Ẋp=0

: Ė and

D = T : Ė − T kin : Ė − T
|e
int : Ėe

∣
∣
∣
Ẋp=0

= 0 if Ẋp = 0 (36)

so we arrive at —compare to Eq. (6)

T = T kin + T
|e
int :

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

= T kin + T int (37)

13



with the partial derivative (stress) tensor —cf. Eq. (7)

T int := T
|e
int :

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

=
dΨint (Ee)

dEe
:
∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

=
∂Ψint (Ee)

∂E

∣
∣
∣
∣
Ẋp=0

(38)

representing the pull-back operation over T
|e
int from the intermediate configuration to

the reference configuration. Note that Ee is the strain at the intermediate configura-
tion and E is the strain at the material one. Note also that in this case T int 6= T

|e
int

in general, compare to Eq. (6).
On the other side, the dissipation inequality whenever Ẋp 6= 0 reduces to the

general expression —compare to Eq. (8)

D = −T
|e
int : Ėe

∣
∣
∣
Ė=0

> 0 if Ẋp 6= 0 (39)

which, note, is fully expressed in terms of symmetric tensors of purely elastic na-
ture lying in the intermediate configuration, namely the corrector contribution to
the elastic logarithmic strain rate Ėe and its power-conjugate generalized Kirchhoff
stress tensor T

|e
int. Remarkably, even though the general dissipation inequality of Eq.

(39) is entirely written in the intermediate configuration, note that the traditional
non-symmetric Mandel stress tensor, power-conjugate of the non-symmetric plastic
velocity gradient tensor, is no longer present in it. As it occurs in the small strain
regime and it should do in the continuum-based finite strain one [55], plastic spin
effects do not take explicit part in the dissipation inequality and become fully un-
coupled from the integration of the evolution equation for the elastic internal strains
[49].

3.4. A six-dimensional evolution equation for natural elastic strains

The dissipation inequality obtained in Eq. (39) must be positive for all the
possible motions according to the second law of thermodynamics, which imposes
restrictions on the possible forms of the evolution equations. Our choice herein is
the associative flow rule —we include the deviatoric uniaxial factor 2/3 for further
convenience

− Ėe

∣
∣
∣
Ė=0

= γ̇
1
2
3
k
∇φT (40)

where γ̇ stands for the plastic consistency parameter, k is the internal flow stress
parameter and φT (T

|e
int) is the Lagrangian internal convex potential

φT (T
|e
int) =

1
2
T

|e
int : NT : T

|e
int (41)
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Thus —compare to Eq. (10)

− Ėe

∣
∣
∣
Ė=0

= γ̇
1
2
3
k
(NT : T

|e
int) (42)

automatically fulfills the physical requirement

D = γ̇
1
2
3
k
T

|e
int : NT : T

|e
int > 0 if γ̇ > 0 (43)

when NT is a positive-definite fully symmetric fourth order tensor.
As we show below, Equation (40) provides the optimal computational framework

for multiplicative elastoplasticity and arguably solves the so-called “rate issue” [11],
exactly preserving the classical return mapping schemes of the infinitesimal theory
even for the most general orthotropic elastoplasticity case. Indeed, we will be able to
directly integrate the corrector contribution to the elastic strain rate tensor present
in Eq. (40) in an additive manner in the same way as we did in the infinitesimal
setting, recall Eq. (23), which will be physically sound thanks to the intrinsic use of
logarithmic strains [56].

3.5. The stem yield function

The dissipation inequality and the yield function can be expressed in terms of
tensor variables lying in any configuration and in terms of any arbitrary pair of stress
and strain work-conjugate measures [49]. Our preference herein (as well as in Refs.
[43, 45]) are the elastic logarithmic strains in the intermediate configuration Ee and

their work-conjugate internal generalized Kirchhoff stresses T
|e
int. Consistently, we

choose NT as the specific (stem) tensor of yield constants associated to the pre-
ferred material axes in the intermediate configuration, which we denote as the stem
configuration as well.

We can rephrase Eq. (43) as

D = γ̇
1
2
3
k

(

T
|e
int : NT : T

|e
int −

2
3
k2
)

+ kγ̇ > 0 if γ̇ > 0 (44)

where we immediately (and naturally) recognize the yield function fT (T
|e
int, k), writ-

ten in the intermediate configuration in terms of the generalized Kirchhoff stresses
T

|e
int, and the plastic loading condition as

fT (T
|e
int, k) := T

|e
int : NT : T

|e
int −

2
3
k2 = 0 if γ̇ > 0 (45)
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such that the dissipation inequality is finally given in terms of the internal flow stress
k > 0 and its power-conjugate slip rate γ̇ > 0 through

D = kγ̇ > 0 if γ̇ > 0 (46)

The tensor NT in Eq. (45) may be deviatoric as in Hill’s yield function (hence
the convenience of the factor 2/3) or include volumetric terms for pressure-sensitive
plasticity. We refer to Ref. [49] for other possibilities.

Finally, the elastic loading/unloading condition just reads

γ̇ = 0 if fT (T
|e
int, k) = T

|e
int : NT : T

|e
int −

2
3
k2 < 0 (47)

so we can write
D = kγ̇ ≥ 0 if γ̇ ≥ 0 (48)

The analyzed material model is summarized in Box 1.

4. Consistent linearization of the continuum theory

The total external stresses, as given in Eq. (37), include two contributions. The
stresses T kin depend exclusively on the external strain tensor E and are directly
calculated from the strain energy function Ψkin(E) once the logarithmic strains E =
1
2
ln(XT X) are obtained from the deformation gradient tensor X, cf. Eq. (35)1.

The strain energy function Ψkin(E) may be determined from experimental data as
shown in Section 6 and is associated with the kinematic-type hardening response
of the material, as we show in the examples below —see Ref. [59] for a different
interpretation based on the Armstrong–Frederick kinematic hardening and the work
of Lion [37]. Hence, the linearization of T kin(E) in the reference configuration is
trivial and is given by the hyperelastic-type moduli

Akin :=
dT kin

dE
=

d2Ψkin (E)

dEdE
(49)

Thereafter in this section we address the consistent elastoplastic linearization of
the truly dissipative contribution to the total stresses, i.e. T int, within the contin-
uum framework. As we show, the procedure is completely parallel to the consistent
elastoplastic linearization of the small strain continuum theory.
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Box 1: Finite strain anisotropic hardening multiplicative elastoplasticity model formulated in terms
of logarithmic strains.

(i) Multiplicative decomposition of the deformation gradient X = XeXp

(ii) Symmetric elastic strain variable Ee =
1
2
ln(XT

e Xe)

(iii) Kinematics induced by Ee(E,Xp)

Ėe = Ėe

∣
∣
∣
Ẋp=0

+ Ėe

∣
∣
∣
Ė=0

6= Ė − Ėp

(iv) Symmetric stresses deriving from the stored energy Ψ (E,Ee)

T =
∂Ψ (E,Ee)

∂E
=

dΨkin(E)

dE
+

dΨint(Ee)

dEe
︸ ︷︷ ︸

T
|e
int

:
∂Ee

∂E
= T kin + T int

(v) Evolution equation for associative symmetric plastic flow

− Ėe

∣
∣
∣
Ė=0

= γ̇
1
2
3
k
∇φT (T

|e
int) 6= Ėp

γ̇ ≥ 0 , fT (T
|e
int, k) = 2φT (T

|e
int)−

2
3
k2 ≤ 0 , γ̇fT (T

|e, k) = 0

(vi) Additional evolution equation for skew-symmetric plastic flow wp

Note: Potentials Ψkin, Ψint and function fT are anisotropic, in general.

4.1. Relation between trial and corrector elastic logarithmic strain rate tensors during
plastic flow

We assume that the stem yield function is given by Eq. (45). We first note that

the internal stress tensor T
|e
int depends on the same independent variables as Ee,

namely E and Xp, and that k = k (γ). Therefore the rate of the yield function given
in Eq. (45) may be obtained applying the chain rule of differentiation as

ḟT = ḟT

∣
∣
∣
Ẋp=0

+ ḟT

∣
∣
∣
Ė=0

(50)
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For the first addend, which stands for a trial elastic evolution within the continuum
theory, we have—recall Eq. (41)

1
2
ḟT

∣
∣
∣
Ẋp=0

= ∇φT : Ṫ
|e
int

∣
∣
∣
Ẋp=0

= ∇φT : A
|e
int : Ėe

∣
∣
∣
Ẋp=0

(51)

where we define the hyperelastic logarithmic constitutive tensor in the intermediate
configuration as

A
|e
int :=

dT
|e
int

dEe
=

d2Ψint (Ee)

dEedEe
(52)

For the second addend, which stands for a corrector elastic evolution within the
continuum theory, in Eq. (50) we have

1
2
ḟT

∣
∣
∣
Ė=0

= ∇φT : Ṫ
|e
int

∣
∣
∣
Ė=0

− 2
3
kk′γ̇ = ∇φT : A

|e
int : Ėe

∣
∣
∣
Ė=0

− 2
3
kk′γ̇ (53)

where k′ = dk/dγ is the derivative of the function k (γ) that we consider herein to
allow for isotropic hardening. Using Eq. (40) we arrive at the following expression
for ḟT |Ė=0

1
2
ḟT

∣
∣
∣
Ė=0

= −γ̇
1
2
3
k
(∇φT : A

|e
int : ∇φT + 4

9
k2k′) (54)

The consistency requirement ḟT = 0 over Eq. (50) when γ̇ > 0 yields the consistency
requirement at any time t as

γ̇
1
2
3
k
=

(

A
|e
int : ∇φT

∇φT : A
|e
int : ∇φT + 4

9
k2k′

)

: Ėe

∣
∣
∣
Ẋp=0

if γ̇ > 0 (55)

Finally, the combination of Eq. (55) and Eq. (40) yields

Ėe

∣
∣
∣
Ė=0

= −

(

∇φT ⊗ (A
|e
int : ∇φT )

∇φT : A
|e
int : ∇φT + 4

9
k2k′

)

: Ėe

∣
∣
∣
Ẋp=0

if γ̇ > 0 (56)

which establishes the consistent coupling between the rates of the two (a priori)

independent variables on which T
|e
int (Ee) depends, namely the logarithmic strain

tensor E (through Ėe|Ẋp=0
, see Eq. (30)) and the plastic deformation gradient Xp

(through Ėe|Ė=0
, see Eq. (30)), such that the stresses T

|e
int remain over the yield

surface fT (T
|e
int, k) = 0 during plastic flow.
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4.2. Relation between total and trial elastic logarithmic strain rate tensors during
plastic flow

We rephrase now Eq. (30) using Eq. (56) to arrive at

Ėe =

(

I
S −

∇φT ⊗ (A
|e
int : ∇φT )

∇φT : A
|e
int : ∇φT + 4

9
k2k′

)

: Ėe

∣
∣
∣
Ẋp=0

if γ̇ > 0 (57)

which will facilitate the consistent linearization of the finite strain continuum theory
in terms of logarithmic strains in the intermediate configuration.

4.3. Internal continuum elastoplastic tangent

The internal (Prandtl-branch-type) contribution to the continuum elastoplastic
tangent in the logarithmic strain space relates variations of the generalized Kirchhoff
stresses T int associated to variations of the external logarithmic strains E, both
tensors operating in the reference configuration. However, on the one hand, the
primary stress tensor from which T int is calculated is T

|e
int = dΨint (Ee) /dEe, which

lies in the actual intermediate configuration (cf. Eq. (37)). On the other side, we
have seen that we can relate Ė with Ėe|Ẋp=0

through the push-forward operation

given in the first addend of Eq. (30). Hence, the main core of this constitutive
tangent is easily calculated in the intermediate configuration through the stress rate

Ṫ
|e
int = A

|e
int : Ėe = A

|e
ep : Ėe

∣
∣
∣
Ẋp=0

(58)

i.e.

A
|e
ep := A

|e
int −

(A
|e
int : ∇φT )⊗ (A

|e
int : ∇φT )

∇φT : A
|e
int : ∇φT + 4

9
k2k′

(59)

where we have used Eqs. (52) and (57) and we interpret A
|e
ep as the internal contin-

uum elastoplastic tangent, lying in the actual intermediate configuration, which is
remarkably identical in structure to the small strains one [62].

However, an important difference arises in this case when it is compared with the
infinitesimal framework, where there is no distinction between different referential
configurations. In this case, however, the stresses T int are defined in the reference
configuration whereas the internal stresses T

|e
int lie in the intermediate configuration.

A plastic-deformation-dependent mapping tensor relates both stress tensors through
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the second addend in Eq. (37), so

Ṫ int = Ṫ
|e
int :

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

+ T
|e
int :

d

dt

(

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

)

(60)

and a one-to-one mapping between the total rates Ṫ int and Ṫ
|e
int cannot be derived in

the continuum framework due to the continuous change of configuration between T int

and T
|e
int. However, consistently with the mapping of the first addend of Eq. (30)

between Ė and Ėe (i.e. between one of the independent variables and the depen-
dent one), which is performed with the intermediate configuration assumed fixed,

the mapping between their (respective) work-conjugate stress rates Ṫ int and Ṫ
|e
int

should be also performed with the same kinematic constraint over the intermediate
configuration, in a way that the proper pull-back operation over A

|e
ep, as defined in

Eq. (58), is performed from the intermediate to the reference configuration —note
that this is basically the concept of Lie derivative [49]. Hence, introducing firstly Eq.
(58)2 into the first addend of the right-hand side of Eq. (60) and then considering
the first addend of the right-hand side of Eq. (30) we arrive at

Ṫ int

∣
∣
∣
Ẋp=0

:= Ṫ
|e
int :

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

= Ėe

∣
∣
∣
Ẋp=0

: A|e
ep :

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

= Aep : Ė (61)

where we define the continuum elastoplastic tangent moduli in the reference configu-
ration Aep by means of the following pull-back operation over its internal counterpart

A
|e
ep

Aep :=
∂Ee

∂E

∣
∣
∣
∣

T

Ẋp=0

: A|e
ep :

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

(62)

with Aep preserving the symmetric associative nature of A
|e
ep, see Eq. (59).

Importantly, the concept introduced in Eq. (61) naturally arises within the corre-
sponding predictor/corrector computational framework derived in the trial interme-
diate configuration that we obtain below for finite element computations. As we will
see, within the algorithmic framework the trial plastic deformation gradient trXp

remains constant between global iterations at each integration point. As a result,
the trial intermediate configuration and the mapping tensor between T int and T

|e
int

remain also frozen between iterations, so the respective second addend in the right-
hand side of Eq. (60) effectively vanishes. The stresses T

|e
int have to be previously

mapped from the updated to the trial intermediate configuration. Moreover, the
expression of the purely geometrical mapping tensor ∂Ee/∂E|

Ẋp=0
, present in Eq.
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(62), is neither needed if the algorithmic linearization is fully derived in the trial
intermediate configuration. We refer to Ref. [60] for a very similar consistent algo-
rithmic linearization in the context of anisotropic multiplicative viscoelasticity based
on logarithmic strains in the intermediate configuration.

5. Large strain algorithmic formulation

We draw now our attention to the algorithmic formulation that derives from the
previous continuum formulation. The computation of T kin and their corresponding
tangent moduli are carried out by straightforward evaluations of the hyperelastic law
Ψkin(E) (i.e. first and second derivatives) once the total strain tensor E is known at
each step/iteration from the polar decomposition of the total deformation gradient
tensorX. Hence, they are obtained in the same way as the equilibrated contributions
of the model of Ref. [60], see Section 6 therein, so we give no additional details about
them.

Thereafter in this section we address the procedure to obtain the truly dissipative
contribution to the total stresses, i.e. T int, and their consistent elastoplastic tangent
moduli within the algorithmic framework. The procedure becomes remarkably sim-
ple and preserves the appealing additive structure of the classical return mapping
schemes of the small strain theory, being at the same time fully consistent with
the Lee factorization of the deformation gradient. A fully symmetric algorithmic
linearization is obtained.

5.1. Stress-point integration algorithm

We develop herein the stress-point integration algorithm and the consistent algo-
rithmic tangent moduli for finite element analysis in the space of logarithmic strains.
This framework is specially useful because of the relevant features of these strain
measures in the integration procedure. The large strain kinematics is essentially
staggered in a previous pre-processor and an ulterior geometric post-processor.

5.1.1. Geometric pre-processor: Elastic predictor

Assume that the total deformation gradient t+∆t
0X is given at the step t + ∆t

and that the plastic deformation gradient t
0Xp is also known by integration of the

previous steps (obviously we also know t
0Xe). First of all, we define the trial elastic

deformation gradient at t + ∆t as that obtained from the Lee decomposition with
the plastic deformation gradient frozen, i.e. that for which trXp =

t
0Xp

trXe =
t+∆t

0X · t
0X

−1
p (63)
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The elastic logarithmic strains associated to this gradient are

trEe =
1

2
ln(trXT

e · trXe) (64)

This algorithmic strain tensor resides in the trial intermediate configuration at time
t + ∆t or, in other words, in the updated (converged) intermediate configuration
at time t, see Eq. (63). Note that these strains inherently correspond to the exact
integration of the trial elastic strain rate tensor, i.e. the first addend in the right-hand
sides of Eq. (30).

In order to determine whether the incremental loading is elastic or not, the yield
function of Eq. (45) must be assessed with the trial stresses in the fixed intermediate
configuration, obtained from the trial elastic strains

trT
|e
int :=

dΨint (Ee)

dEe

∣
∣
∣
∣
tr

=
dΨint (

trEe)

dtrEe

(65)

Then the yield function is

trfT = fT
(
trEe,

trk
)
= trT

|e
int : NT : trT

|e
int −

2
3
trk2 (66)

where trk = k (trγ) = k (t0γ) = tk. Note that trfT is an invariant; i.e. it can be
computed in any configuration using the proper tensors. In the case trfT ≤ 0, the
step has been elastic and the trial state represents the solution at t + ∆t. In the
case trfT > 0, the elastic solution is not admissible and the plastic correction must
be computed.

5.1.2. Local Newton iterations: Plastic corrector (of the elastic strain)

In the case trfT > 0, the external deformation is frozen and we perform the sub-
sequent internal correction for Ee. We remark that this substep is usually performed
directly over plastic strain variables. However, note that we are explicitly integrating
the elastic strain evolution rather than the plastic strain evolution (obviously, they
are internally connected). In other words, we integrate in this substep the corrector
elastic strain rate tensor, i.e. the second addend in the right-hand sides of Eq. (30).
This is, in fact, the key characteristic of the present return mapping scheme that
makes it so appealing from an algorithmic standpoint and that makes the difference
with current anisotropic multiplicative elastoplasticity computational models based
on explicit internal plastic evolutions.

The numerical implementation is based on the backward-Euler Closest Point Pro-
jection algorithm. There are several possible implementations of this algorithm [70].
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However, we develop here one based on the residual of both elastic strains and yield
function. The solution variables are the elastic strains t+∆t

0Ee and the consistency
parameter t+∆t

0γ. The first residue is readily obtained through the integration of Eq.
(40) employing a first-order accurate backward-Euler scheme, which results into the
following additive update —note that, as in the infinitesimal setting, see Eq. (23),
we bypass the explicit use of any exponential mapping thanks to the intrinsic use of
logarithmic (natural) strains by the model [56]

∫ t+∆t

t

dEe|Ė=0
= −

∫ t+∆t

t

1
2
3
k
∇φTdγ (67)

i.e.
t+∆t

0Ee −
trEe = −

∆γ
2
3
t+∆tk

t+∆t∇φT (68)

where t+∆tk = k
(
t+∆t

0γ
)
and

t+∆t∇φT = NT : t+∆tT
|e
int (69)

with—note that this stress tensor resides in the (yet unconverged) intermediate con-
figuration at time t+∆t

t+∆tT
|e
int =

dΨint (Ee)

dEe

∣
∣
∣
∣
t+∆t

(70)

which yields the residual elastic strain tensor

t+∆tρe =
t+∆t

0Ee +
∆γ

2
3
t+∆tk

t+∆t∇φT − trEe −→ 0 (71)

The incremental plastic slip ∆γ := t+∆t
0γ−

trγ = t+∆t
0γ−

t
0γ and the elastic strains

t+∆t
0Ee may also be related from the discrete consistency equation t+∆tfT −→ 0,

which constitutes the second residual equation

t+∆tfT = t+∆tT
|e
int :

t+∆t∇φT − 2
3
t+∆tk2 −→ 0 (72)

We write the following vector form

t+∆t
R
(j)
(
t+∆t

0E
(j)
)
:=

{
t+∆tρ

(j)
e

t+∆tf
(j)
T

}

−→ 0 with t+∆t
0E

(j) :=

{
t+∆t

0E
(j)
e

t+∆t
0γ

(j)

}

(73)
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where (j) stands for the local iteration counter. The residual vector is solved in an
incremental manner, as usual

t+∆t
0E

(j+1) = t+∆t
0E

(j) −
[
∇ t+∆t

R
(j)
]−1 t+∆t

R
(j) (74)

until
∥
∥t+∆t

R
(j+1)

(
t+∆t

0E
(j+1)

)∥
∥ < tolerance (75)

where the starting values (j = 0) are the trial ones, i.e. t+∆t
0E

(0)
e = trEe and

t+∆t
0γ

(0) = tγ, and the acceptable solutions must fulfill ∆γ > 0. The gradient is

∇ t+∆t
R
(j) =

[
∂ρe/∂Ee ∂ρe/∂γ
∂fT /∂Ee ∂fT /∂γ

](j)

t+∆t

(76)

which contains the following derivatives evaluated at step t+∆t and local iteration
(j)

• ∂ρe/∂Ee can be obtained from Eq. (71) as

∂ρe

∂Ee
= I

S +
∆γ
2
3
k
∇∇φT :

dT
|e
int

dEe
= I

S +
∆γ
2
3
k
NT : A

|e
int (77)

where A
|e
int is the hyperelastic constitutive tangent tensor as given in Eq. (52).

• ∂ρe/∂γ is readily obtained also from Eq. (71) as

∂ρe

∂γ
=

k −∆γk′

2
3
k2

∇φT =
k −∆γk′

2
3
k2

NT : T
|e
int (78)

• ∂fT /∂Ee is obtained from of Eq. (45) as

∂fT
∂Ee

= 2∇φT :
dT

|e
int

dEe
= 2T

|e
int : NT : A

|e
int (79)

• ∂fT /∂γ is a scalar derivative which simply contains

∂fT
∂γ

= −4
3
kk′ (80)

Remarkably, the resulting Closest Point Projection algorithm for this large strain
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anisotropic model with mixed hardening has dimension of seven; i.e. there are no
additional internal plastic variables involved [62], [70].

5.1.3. Geometric post-processor: Variables update

Once the iterative algorithm has converged, we know t+∆t
0Ee and t+∆t

0γ. Then

we can readily obtain the internal stresses t+∆tT
|e
int in the updated intermediate

configuration at t + ∆t through Eq. (70). They must be further pulled back to
the reference configuration employing the proper mapping tensors. As already done
in Ref. [60], it is algorithmically convenient to perform the pull-back of internal
variables from the updated intermediate configuration to the reference configuration
via the trial intermediate configuration, which remains fixed during each global step
and may be seen as a modified reference configuration. As shown in Ref. [60], recall
also Eq. (18), there exists a one-to-one relation between the strain tensor t+∆t

0E

(lying in the reference configuration) and the strain tensor trEe (lying in the trial
intermediate configuration), thereby the latter one may be conceptually understood
as a modified independent variable on which t+∆t

0Ee depends, i.e. we can perform
the following change of independent variable, recall Eq. (19)

t+∆t
0Ee(

t+∆t
0E, t+∆t

0Xp) → t+∆t
0Ee(

trEe,
t+∆t

0Xp) (81)

Thus, in the same way as t+∆tT int is obtained from the pull-back of t+∆tT
|e
int to the

reference, fixed configuration, see Eq. (38), we can define the stress tensor t+∆tT
|tr
int

as the pull-back of t+∆tT
|e
int to the trial, fixed configuration (i.e. the intermediate

configuration at time t) through—compare with Eq. (38)

t+∆tT
|tr
int =

∂Ψint (Ee)

∂ trEe

∣
∣
∣
∣
Ẋp=0

=
dΨint (Ee)

dEe

∣
∣
∣
∣
t+∆t

:
∂ t+∆t

0Ee

∂ trEe

∣
∣
∣
∣
Ẋp=0

≃ t+∆tT
|e
int : I

S = t+∆tT
|e
int (82)

where the fourth-order partial gradient tensor ∂ t+∆t
0Ee/∂

trEe|Ẋp=0
is approximately

IS for small plastic increments ∆γ under generic loadings and is exactly IS for purely
axial (rotationless) states thanks to the unique properties of the logarithmic strains
[56]. Indeed, in the unidimensional case it is exactly the identity, recall Eq. (20). We
give more details about this approximation below, see also the discussion in Ref. [60].
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We also note that t+∆tT
|tr
int in Eq. (82), which represents the updated (final) stress

tensor t+∆tT
|e
int mapped to the trial configuration, and trT

|e
int in Eq. (65), evaluated

directly in the trial configuration with trEe, are both conceptually and numerically
different, which may be easily verified in the unidimensional (linearized) case of

Section 2.2. That is, t+∆tT
|tr
int are the converged stresses modified by a convenient

algorithmic, purely geometric mapping and trT
|e
int are the (unconverged) stresses

at iteration (0). Then it is straightforward to perform another geometric mapping
[52] to obtain the respective second Piola–Kirchhoff stresses in the referential, trial
intermediate configuration for quadratic measures —cf. Eq. (103) in Ref. [60]

t+∆tS
|tr
int =

t+∆tT
|tr
int :

d trEe

d trAe
(83)

which are subsequently mapped to the reference configuration through the fourth-
order total gradient tensor d trAe/d

t+∆t
0A —cf. Eq. (100) in Ref. [60]

t+∆tSint =
t+∆tS

|tr
int :

d trAe

d t+∆t
0A

= t+∆tS
|tr
int :

trX−T
p ⊙ trX−T

p = t
0X

−1
p · t+∆tS

|tr
int·

t
0X

−T
p

At this point, we note that the associative six-dimensional flow rule given in
Eq. (40) has been integrated independently of the plastic spin evolution [55][49],
which is again another salient feature of the present model, inherited at the same
time from the infinitesimal model. Thus, after the integration of the symmetric
flow the intermediate configuration, defined by t+∆t

0Xp, remains undetermined up
to an arbitrary finite rotation t+∆t

0Re [18], which we must finally update during the
convergence phase at t +∆t for the computation of the next incremental load step
and to complete the formulation. As we did in Ref. [60], we update the elastic
deformation gradient tensor through

t+∆t
0Xe =

t+∆t
0Re ·

t+∆t
0U e =

t+∆t
0Re · exp

(
t+∆t

0Ee

)
(84)

where we take t+∆t
0Re =

trRe, i.e. we assume that the elastic rotation tensor is not
modified during plastic flow. This assumption is the same to that in [21], [45], but
in the present context it is merely a posteriori prescription for the skew-symmetric
flow, not a consequence of any needed approximation for the integration of the nine-
dimensional evolution of the plastic deformation gradient [49]. Hence this assumption
may be modified to accommodate any other plastic spin evolution and/or texture
evolution if desired [43] in a completely uncoupled fashion, i.e. after the symmetric
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flow is integrated. The plastic deformation gradient may be recovered if desired

t+∆t
0Xp =

t+∆t
0X

−1
e · t+∆t

0X (85)

Remark

The relation between t+∆t
0Re,

trRe and the plastic spin t+∆twp = skw( t+∆tlp),

with lp = ẊpX
−1
p being the plastic velocity gradient in the intermediate configura-

tion, is given by Eq. (28) in Ref. [43]

t+∆t
0Re ≃

trRe
t+∆t

tR
T
w (86)

where t+∆t
tRw is the incremental plastic rotation—Eq. (17) in Ref. [43]

t+∆t
tRw = exp(∆t t+∆twp) (87)

Hence, the assumption t+∆t
0Re = trRe taken above is equivalent to the common

assumption in computational anisotropic elastoplasticity models t+∆twp = 0, i.e. a
vanishing plastic spin in the intermediate configuration.

If a plastic spin evolution wp is prescribed as an additional constitutive equation,
then we know t+∆t

tRw through Eq. (87), which should be considered in the update of
the elastic deformation gradient tensor. In this case (non-vanishing plastic spin), the
definition of a rotationally-frozen intermediate configuration would greatly facilitate
the integration of the internal flow and the consistent linearization of the algorithm
[43].

5.2. Plastic volume preservation
If a pressure insensitive yield criterion is considered, namely tr(∇φT ) = ∇φT :

I = 0, then Eq. (68) gives

ln( t+∆t
0Je) = tr( t+∆t

0Ee) = tr( trEe) = ln( trJe) (88)

i.e. t+∆t
0Je =

trJe, where Je := det(Xe). From Eqs. (63) and (85), we immediately
arrive at

t+∆t
0Jp = det( t+∆t

0Xp) = det( t
0Xp) =

t
0Jp (89)

so the present algorithmic procedure automatically preserves plastic volume in that
case.

5.3. Special cases of isotropy
In the most general case of fully anisotropic elastoplasticity, the plastic potential

gradient t+∆t∇φT of Eq. (69) does not commute with t+∆tT
|e
int or

t+∆t
0Ee, so the
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terms in Eq. (68) are not coaxial and Eq. (68) is effectively six-dimensional, in

general. For isotropic elasticity along with anisotropic plasticity responses, t+∆tT
|e
int

and t+∆t
0Ee commute but the presence of NT in t+∆t∇φT involves a rotation of the

elastic strain/stress principal directions (from trial to updated) in Eq. (68), which
still remains six-dimensional. For a fully isotropic elastoplasticity response, all the
terms in Eq. (68) commute, so the return mapping takes place at fixed, trial principal
axes and we recover the well-known three-dimensional additive update in principal
logarithmic strain space of Ref. [11], but written in this case in terms of elastically
rotated variables.

The advantage of the formulation presented in this paper, which hinges on the
application of the novel elastic strain corrector-type evolution equation given in Eq.
(68), should be apparent now because, having been derived following a very sim-
ple and clear procedure, it provides a more general, fully anisotropic, formulation
than the works of Simó [11], Eterovic and Bathe [21] and Weber and Anand [20].
In addition, due to its remarkable similarity with the infinitesimal case, the present
formulation also becomes simpler than current computational anisotropic elastoplas-
ticity models.

5.4. Consistent algorithmic moduli

The main core of the consistent algorithmic elastoplastic tangent tensor may now
be calculated in the trial intermediate configuration, which remains fixed during the
current step, through—note that this tangent moduli tensor, which is defined in
the trial intermediate configuration, is the algorithmic counterpart of the contin-
uum elastoplastic tangent A

|e
ep given in Eq. (58), which is defined in the updated

intermediate configuration

t+∆t
A

|tr
ep : =

d t+∆tT
|tr
int

d trEe

≃
d t+∆tT

|e
int

d trEe

=

=
dT

|e
int (Ee)

dEe

∣
∣
∣
∣
∣
t+∆t

:
d t+∆t

0Ee

d trEe
= t+∆t

A
|e
int :

d t+∆t
0Ee

d trEe
(90)

which is a linearization consistent with the approximation of Eq. (82). We also re-
mark the difference between the tensors ∂ t+∆t

0Ee/∂
trEe|Ẋp=0

and d t+∆t
0Ee/d

trEe

present in Eqs. (82) and (90), respectively. The former tensor ∂ t+∆t
0Ee/∂

trEe|Ẋp=0

operates during a hypothetical situation in which the updated configuration is re-
tained frozen, i.e. in which t+∆tẊp = 0; it converges to the symmetric projector
tensor IS within the continuum theory, i.e. when ∆γ → 0; and it is used to compute
stresses, which involve the condition t+∆tẊp = 0 by definition, see for example Eq.
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(38). On the contrary, the tensor d t+∆t
0Ee/d

trEe operates when plastic flow is tak-
ing place, i.e. when t+∆tẊp 6= 0; it converges to the fourth-order tensor present in
Eq. (57) in the limit of the continuum theory, as we show below; and it is used to
compute derivatives of stresses during plastic flow, i.e. elastoplastic tangent mod-
uli, which must include a plastic correction contribution additional to the elastic
predictor contribution.

The fourth-order tensor for the finite increment d t+∆t
0Ee/d

trEe must be obtained
in this case from the backward-Euler stress integration algorithm employed above,
as we show next. The first residue given in Eq. (71) brings the following Equation
because t+∆tρe = 0 holds between global iterations at step t+∆t

O =
d t+∆tρe

d trEe

(91)

so

O =
∂ t+∆tρe

∂ t+∆t
0Ee

:
d t+∆t

0Ee

d trEe
+ t+∆t∇φT ⊗

dΓ

d trEe
− I

S (92)

with the following definition Γ (γ) := 3
2
∆γ/k (γ). The term ∂ t+∆tρe/∂

t+∆t
0Ee is

t+∆t
K :=

∂ t+∆tρe

∂ t+∆t
0Ee

=

(

I
S +

∆γ
2
3
t+∆tk

t+∆t∇∇φT :
d t+∆tT

|e
int

d t+∆t
0Ee

)

(93)

and is known from Eq. (77) once the local iterations have converged at each global
iteration. Thus we can factor-out

d t+∆t
0Ee

d trEe
= t+∆t

K
−1 :

(

I
S − t+∆t∇φT ⊗

d t+∆tΓ

d trEe

)

(94)

From this expression only d t+∆tΓ/d trEe is still unknown. Due to the fact that the
yield condition t+∆tfT = 0 (second residual equation) is also fulfilled between global
iterations, we have

0 =
1

2

d t+∆tfT
d trEe

= t+∆t∇φT :
d t+∆tT

|e
int

d t+∆t
0Ee

:
d t+∆t

0Ee

d trEe
− 2

3
kk′ d∆γ

d trEe
(95)

so, using Eq. (94)

0 = t+∆t∇φT : t+∆t
D−

(
t+∆t∇φT : t+∆t

D : t+∆t∇φT

) d t+∆tΓ

d trEe
−

4

3

k2k′

3− 2Γk′

d t+∆tΓ

d trEe
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where we define the elastic algorithmic moduli t+∆t
D as —note that t+∆t

K → I
S

when ∆γ → 0
t+∆t

D := t+∆t
A

|e
int :

t+∆t
K

−1 (96)

i.e.—note that D−1 (hence, D) has major symmetries

d t+∆tΓ

d trEe
=

t+∆tD : t+∆t∇φT

t+∆t∇φT : t+∆tD : t+∆t∇φT + 4
3

k2k′

3−2Γk′

(97)

Equation (94) is then

d t+∆t
0Ee

d trEe
= t+∆t

K
−1 :

[

I
S −

t+∆t∇φT ⊗
(
t+∆tD : t+∆t∇φT

)

t+∆t∇φT : t+∆tD : t+∆t∇φT + 4
3

k2k′

3−2Γk′

]

(98)

which effectively approaches the fourth-order tensor present in Eq. (57) in the con-
tinuum limit, with Γ → 0. Finally, the introduction of this last expression into Eq.
(90) yields

t+∆t
A

|tr
ep =

d t+∆tT
|tr
int

d trEe
= t+∆t

D−

(
t+∆tD : t+∆t∇φT

)
⊗
(
t+∆tD : t+∆t∇φT

)

t+∆t∇φT : t+∆tD : t+∆t∇φT + 4
3

k2k′

3−2Γk′

(99)

which clearly represents the algorithmic counterpart of the continuum elastoplastic
tangent A

|e
ep given in Eq. (59) (just replace the hyperelastic continuum moduli A

|e
int

by the elastic algorithmic moduli D and take Γ = 0) and consistently approaches
to it in the continuum limit. Remarkably, the expression given in Eq. (99) adopts
an analogous form to that obtained for the equivalent infinitesimal elastoplasticity
model [62]. It is also readily seen that the algorithmic elastoplastic tangent moduli
t+∆tA

|tr
ep is fully symmetric according to the associative nature of the elastoplastic

evolution equation and, ultimately, to the principle of maximum plastic dissipation.
Now, a proper mapping may be performed to the basic stress-strain measures

being employed in the finite element program and the selected configuration. As
usual in Total Lagrangian finite element codes, we may proceed as in Ref. [60], i.e.

t+∆t
A

|tr
ep =

d t+∆tT
|tr
int

d trEe
→ t+∆t

C
|tr
ep =

d t+∆tS
|tr
int

d trAe
→ t+∆t

Cep =
d t+∆tSint

d t+∆t
0A

where we take great advantage from the fact that the trial intermediate configuration
remains fixed during global iterations at step t+∆t, so the final pull-back operation
over t+∆tC

|tr
ep to give t+∆tCep in the reference configuration becomes straightforward,
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i.e. a mere mapping between fixed, referential configurations, cf. Eq. (102) in Ref.
[60].

The developed numerical algorithm for the internal contribution to stresses and
consistent tangent moduli are summarized in the flow-chart diagrams of Boxes 2 and
3.

6. Model determination from experimental data

In this section we explain how to fully determine the finite strain elastoplastic
model presented above from simple experimental tests. Once the involved stored en-
ergy functions and plastic material parameters are identified from experimental data,
the model may be used to predict the inelastic response of the characterized mate-
rial when it is subjected to more general multiaxial non-homogeneous deformation
states.

6.1. Finite strain isotropic compressible material with linear elastoplastic behavior
in terms of τ̄ and E

Consider an isotropic elastoplastic material from which we have obtained the
following relations from a tension-compression uniaxial test, performed in direction
1, see Figure 2

τ1 = ∆τ1 = Ye∆E1 = YeE1

E2 = ∆E2 = −νe∆E1 = −νeE1

}

0 ≤ τ ≤ τyt Elastic loading (100)

∆τ1 = Yep∆E1

∆E2 = −νep∆E1

}

τyt ≤ τ ≤ τur Elastoplastic loading

(101)

∆τ1 = Ye∆E1

∆E2 = −νe∆E1

}

τyc ≤ τ ≤ τur Elastic unloading (102)

where τ1, E1 and E2 stand for the macroscopic (measured) uniaxial Kirchhoff stress,
uniaxial logarithmic strain and transverse logarithmic strain, respectively. The elas-
tic response is characterized by the Young modulus Ye and the Poisson ratio νe, where
the subscript (·)e refers to macroscopic “elastic” material constants. The elastoplas-
tic loading starts at the tensile yield point τ1 = τyt > 0 and is characterized by
the elastoplastic modulus Yep and the associated transverse-to-axial strain ratio νep,
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where the subscript (·)ep refers to macroscopic “elastoplastic” material constants. Fi-
nally, an elastic response occurs again between the maximum uniaxial stress reached
τur (unloading reference stress) and the plastic-deformation-dependent compressive
yield stress τ1 = τyc < 0.

We assume that the internal plastic response is perfectly isochoric. Accordingly,
we use Flory’s decomposition

X = Xv ·Xd =
(
J1/3I

)
·
(
J−1/3X

)
(103)

where J = detX is the volume ratio or Jacobian of the deformation and the super-
scripts (·)d and (·)v stand for the deviatoric and volumetric parts of the associated
tensor variable (·). Then we decompose the truly isochoric deformation gradient
using Lee’s decomposition

Xd = Xd
e ·X

d
p (104)

and propose the following split of the total stored energy Ψ into its volumetric,
hyperelastic, part U and deviatoric, elastoplastic, part W = Wkin +Wint

Ψ (E,Ee) = U(Ev) +W(Ed,Ed
e) = U(Ev) +Wkin(E

d) +Wint(E
d
e) (105)

so the deviatoric nature of the internal inelastic response is explicitly enforced by
construction [60].

Since the “observed” isotropic behavior is fully linear in terms of the conjugate
stress-strain measures pair {τ̄ ,E} ≡ {T ,E}, where τ̄ are the rotated Kirchhoff
stresses [52], the stored energy contributions are quadratic in terms of the respective
arguments, i.e.

Ψ (E,Ee) =
1
2
κ(trEv)2 + µkin

∥
∥Ed

∥
∥
2
+ µint

∥
∥Ed

e

∥
∥
2

= 1
2
κ (ln J)2 + µkinE

d : Ed + µintE
d
e : E

d
e (106)

where µkin and µint are the respective deviatoric, shear moduli (Lame’s constants)
and κ is the (external, unique) bulk modulus. The operation ‖·‖2 = (·) : (·) stands
for the squared standard two norm. The stresses that directly derive from Eq. (106)
are obtained through Eq. (37), which are purely deviatoric herein, along with the
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additional volumetric stress τ̄ v = T v = dU(Ev)/dE

τ̄ = κ ln JI + 2µkinE
d : PS + 2µintE

d
e : P

S : IS (107)

= κ ln JI + 2µkinE
d + 2µintE

d
e (108)

= τ̄ v + τ̄ d
kin + τ̄ d

int (109)

where I = d(ln J)/dE is the second-order identity tensor and PS = dEd/dE =
dEd

e/dEe is the symmetric fourth-order deviatoric projector tensor. In addition, we
have taken into consideration that the fourth-order partial gradient tensor ∂Ee/∂E|

Ẋp=0

specializes for this simple uniaxial rotationless case to the symmetric projection ten-
sor, i.e.

∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

=
∂Ed

e

∂Ed

∣
∣
∣
∣
Ẋp=0

=
∂(Ed −Ed

p)

∂Ed

∣
∣
∣
∣
∣
Ẋp=0

=
dEd

dEd
= I

S (110)

The incremental Kirchhoff stress tensor and the volumetric-deviatoric decompo-
sitions are respectively — since no rotations are present τ = τ̄

∆τ = diag{1, 0, 0}∆τ1 , ∆τ d = diag{2,−1,−1}
∆τ1
3

, ∆τ v =
∆τ1
3

I (111)

with ∆τ1 = Y#∆E1 and where the subscript (·)# is either (·)e or (·)ep, depending on
the branch being analysed. On other hand, the incremental logarithmic strain tensor
is

∆E = diag{2,−ν#,−ν#}∆E1 (112)

so

∆Ed = diag{2,−1,−1}
(1 + ν#)∆E1

3
, ∆Ev =

( 1− 2ν#)∆E1

3
I (113)

Hence, the uniaxial component (axis 1) of Eq. (108), in incremental form, specializes
to the following deviatoric-volumetric uncoupled scalar equations

∆τd1 = 2
3
∆τ1 =

2
3
Y#∆E1 = 2µkin∆Ed

1 + 2µint∆Ed
e1 (114)

∆τ v1 = 1
3
∆τ1 =

1
3
Y#∆E1 = κ∆ ln J = κ (1− 2ν#)∆E1 (115)

We first deal with Eq. (115), from which we obtain

κ =
Y#

3 (1− 2ν#)
(116)
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The particularization of Eq. (116) to both the elastic parameters and the elastoplastic
parameters yields a basic relation among the four material constants Ye, νe, Yep and
νep, hence only three of them are independent. Thus, for example, the logarithmic
Poisson ratio during elastoplastic loading is given by

Yep

3 (1− 2νep)
=

Ye

3 (1− 2νe)
⇒ νep =

1

2
−

Yep

Ye

1− 2νe
2

(117)

which is an expression that we will verify in the first example below.
We focus now on the deviatoric equation in the test direction 1, Eq. (114). Define

the macroscopic deviatoric modulus, either elastic or elastoplastic, as

2µ# =
Y#

1 + ν#
(118)

Then, we can rephrase the left-hand side of Eq. (114) making use of the relation
obtained above ∆Ed

1 = 2
3
(1 + ν#)∆E1 as

2µ#∆Ed
1 = 2µkin∆Ed

1 + 2µint∆Ed
e1 (119)

Consider now the initial elastic loading case, as described in Eq. (100), for which
∆Ed

p = 0, i.e. ∆Ed
e ≡ ∆Ed, so from Eq. (119) we obtain

Ye

1 + νe
=: 2µe = 2µkin + 2µint (120)

Consider now Eq. (119) particularized to the tensile yield point, with Ed
1 = Ed

e1 =
Ed

yt =
2
3
(1 + νe)Eyt. The macroscopic deviatoric flow stress (left-hand side of Eq.

(119)) is 2µeE
d
1 = 2µeE

d
yt = τdyt =

2
3
τyt and the internal deviatoric flow stress (second

addend in the right-hand side of Eq. (119)) is 2µintE
d
e1 = 2µintE

d
yt = kd

0 = 2
3
k0,

so—note that in this case ∆ (·) ≡ (·)

2
3
τyt = 2µkinE

d
yt +

2
3
k0 ⇒

2
3
τyt

2
3
k0

=
2µkinE

d
yt

2µintE
d
yt

+ 1 (121)

i.e. the internal (initial) yield stress parameter k0 = k (γ = 0), associated to the
Saint-Venant (friction) element of the deviatoric counterpart of Figure 1, relates to
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the measured, macroscopic flow stress τyt through

k0
τyt

=
2µint

2µkin + 2µint
(122)

which is the corresponding macro-to-micro stress conversion factor. We subsequently
consider the elastoplastic loading case described in Eq. (101), for which ∆Ed

p 6= 0

and ∆Ed
e ≡ ∆Ed

e |γ̇>0, so from Eq. (119) we obtain

Yep

1 + νep
=: 2µep = 2µkin + 2µint

∆Ed
e1

∆Ed
1

∣
∣
∣
∣
γ̇>0

(123)

The ratio ∆Ed
e1/∆Ed

1 |γ̇>0 may be obtained from the following increments

∆Ed
1 |γ̇>0 =

1

2µep

(
τdur − τdyt

)
=

2

3

1 + νep
Yep

(τur − τyt) (124)

∆Ed
e1|γ̇>0 =

1

2µe

(

τdur − τdyc
2

− τdyt

)

=
2

3

1 + νe
Ye

(
τur − τyc

2
− τyt

)

(125)

which may be separately calculated from the experimental stress values τyt, τur and
τyc obtained from the stress-strain response curve in Figure 2. Equation (125) repre-
sents the increment of the deviatoric elastic domain originated by the plastic defor-
mation path of Eq. (101). Finally, the internal consistency (equilibrium) requirement
2µintE

d
e1 =

2
3
k (γ) during the elastoplastic response is expressed in incremental form

as 2µint∆Ed
e1|γ̇>0 =

2
3
k′∆γ, where the (Kirchhoff-stress-like) internal hardening is also

linear with respect to the increment of the (logarithmic-strain-like) plastic strain γ,
i.e. k (γ) = k0 + k′γ (with γ0 = 0 and γ̇ ≥ 0). Since for this uniaxial case we have
∆γ = ∆Ed

p1 = ∆Ed
1 |γ̇>0 − ∆Ed

e1|γ̇>0 (just particularize Eq. (42) to the present case

with −Ėe|Ė=0
= Ėp and NT = PS), the consistency requirement gives

∆Ed
e1

∆Ed
1

∣
∣
∣
∣
γ̇>0

=
2
3
k′

2µint +
2
3
k′

(126)

which provides the consistent linearization of the elastoplastic response during plastic
flow in Eq. (123), compare this last equation with Eq. (120).

Interestingly, in Eq. (123) we can distinguish two independent contributions to
the consistent elastoplastic modulus 2µep. The first contribution (second addend in
Eq. (123)), namely 2µint ×

2
3
k′/(2µint +

2
3
k′), vanishes if the presence of plastic flow
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does not change the size of the elastic domain, i.e. if the internal yield stress k is
constant or k′ = 0, hence it is associated to a purely isotropic hardening. The second
contribution (first addend in Eq. (123)), namely the modulus 2µkin of the Hooke
element of the deviatoric counterpart of Figure 1, is the responsible of the hardening
for a constant elastic domain size, i.e. for k′ = 0, hence displacing the center of
the macroscopic elastic domain and being then associated to a purely kinematic
hardening.

In summary, in order to determine the isotropic compressible model parameters
from a uniaxial test in which we can approximate the response as linear in terms of
the stress-strain pair {τ ,E}, we need to calculate the bulk modulus κ, the deviatoric
moduli 2µkin and 2µint, the internal yield stress k0 and the first derivative constant
value k′. We can obtain these parameters from Eqs. (116), (120) and (122)-(126),
where we need to know from the uniaxial test curves three elastic-elastoplastic con-
stants, e.g. Ye, νe and Yep, the measured tensile yield stress τyt and the test-dependent
stress values τur and τyc.

6.2. Orthotropic incompressible material with linear elastoplastic behavior in terms
of T and E

We consider in this section three different experimental curve sets from which
we can determine the model presented in this work specialized to the case of incom-
pressible orthotropic behavior linear in terms of T and E. First of all, we derive all
the relations involved in the model determination procedure from uniaxial testing
under material preferred directions, which we denote as {a1,a2,a3}. Then we will
particularize this procedure to the different cases, depending on the experimental
data available from experimental testing.

We consider the perfect incompressible case, for which the bulk modulus tends
to infinite, i.e. κ → ∞, so the total stored energy may be conceptually written using
a mixed formulation, with p and Ev = 0 being unconnected, as

Ψ (E,Ee; p) = U (Ev; p) +Wkin(E
d) +Wint(E

d
e) (127)

=

(

pEv −
1

2

p2

κ

)

+

3∑

i,j=1

µkin
ij (Ed

ij)
2 +

3∑

i,j=1

µint
ij (Ed

eij)
2 (128)

where µkin
ij and µint

ij are the respective orthotropic deviatoric moduli defined in pre-
ferred axes Xpr = {a1,a2,a3} and p is the pressure-like Lagrange multiplier associ-
ated to the incompressibility constraint Ev = trE = E11 + E22 + E33 = 0, which is
to be determined from the test boundary conditions (i.e. not from Ev).
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From now on we consider uniaxial loading cases about the material preferred
directions, where a total of six axial-type moduli µkin

ii and µint
ii , i = 1, 2, 3, are involved

and have to be determined. The generalized Kirchhoff stresses T (coincident with
the Cauchy stresses σ in this case) are obtained again through Eq. (37) along with
σv = T v = dU(Ev; p)/dE—we use the subscript contraction (ii) → (i), i = 1, 2, 3

T =
∂U(Ev; p)

∂Ev
:
dEv

dE
+

dWkin(E
d)

dEd
:
dEd

dE
+

dWint(E
d
e)

dEd
e

:
dEd

e

dEe
:
∂Ee

∂E

∣
∣
∣
∣
Ẋp=0

(129)

= pI +

(
3∑

i=1

2µkin
i Ed

i ai ⊗ ai

)

: PS +

(
3∑

i=1

2µint
i Ed

ei ai ⊗ ai

)

: PS : IS (130)

= T v + T d
kin + T d

int (131)

where the result of Eq. (110) has been used again.

Consider now the Hill-type yield criterion of Eq. (45) with the stress tensor T
|e
int

being deviatoric by strain energy construction

T
|e
int =

dWint

dEe
=

dWint

dEd
e

:
dEd

e

dEe
=

dWint

dEd
e

: PS (132)

so we may rephrase Eq. (45) as

fT (T
|e
int, k) = T

|e
int : N̄ : T

|e
int −

2
3
k2 = 0 if γ̇ > 0 (133)

where N̄ is a fourth-order “diagonal” tensor (in matrix, Voigt notation in preferred
directions) containing the yielding weights associated to the different “directions”
and such that NT = PS : N̄ : PS. In matrix notation, and only considering the
axial-to-axial components, the tensor N̄ adopts the form

[
N̄
]

Xpr

=





6a 0 0
0 6b 0
0 0 6c



 =





1 0 0
0 6b 0
0 0 6c



 (134)

where 6a, 6b and 6c are Hill-like yield weight ratios in the different directions (with
the factor of 6 introduced for convenience). Without loss of generality, we consider
yield weights with respect to the axes 1, i.e. 6a = 1. For von Mises J2−plasticity,
we obtain 6a = 6b = 6c = 1 and we recover an internal isotropic yield function, for
which NT = PS : IS : PS = PS, as in the previous Section. We discuss herein the
case for which both µkin

i > 0, i = 1, 2, 3, and k = k0 remains constant, i.e. the case

37



with kinematical hardening alone.
Consider first the uniaxial test performed about the preferred direction a1 when

the yield point T y1 = σy1 =diag{σy1, 0, 0} is reached after the initial elastic loading,
i.e. Ep = 0 and Ee = E. We can decompose the total yield stress σy1 into its
kinematic-type and internal-type contributions through—cf. Ref. [60]

σy1 = Y e
1 Ey1 = (2µe

1 + µe
2ν

e
12 + µe

3ν
e
13)Ey1 (135)

=
(
2µkin

1 + µkin
2 νe

12 + µkin
3 νe

13

)
Ey1 +

(
2µint

1 + µint
2 νe

12 + µint
3 νe

13

)
Ey1 (136)

= Y kin
1 Ey1 + Y int

1 Ey1 = σkin
y1 + σint

y1 (137)

For further use we define the following internal-to-total flow stress ratios, with i 6=
j 6= k 6= i = {1, 2, 3}

ρi :=
σint
yi

σyi
=

Y int
i

Y e
i

=
2µint

i + µint
j νe

ij + µint
k νe

ik

2µe
i + µe

jν
e
ij + µe

kν
e
ik

=
2µint

i µe
j + 2µint

i µe
k + µint

j µe
k + µint

k µe
j

2µe
1µ

e
2 + 2µe

2µ
e
3 + 2µe

3µ
e
1

(138)
where we have made use of the general relation for the linear hyperelastic orthotropic
model [60]

νe
ij =

µe
k

µe
j + µe

k

(139)

For isotropic behavior ρ = µint/µe = µint/
(
µint + µkin

)
. Considering that both Ed

e =
Ee = Ey1 =diag{1,−νe

12,−νe
13}Ey1 and σint

y1 = Y int
1 Ey1 at the yield point, the axial-

to-axial components of the deviatoric stress tensor T
|e
int of Eq. (132) particularize

to
[

T
|e
int

]

Xpr

=





2
3

−1
3
m1

−1
3
(2−m1)



 σint
y1 =





2
3

−1
3
m1

−1
3
(2−m1)



 ρ1σy1 (140)

where we define the following material constant ratios, with i 6= j 6= k 6= i = {1, 2, 3}

mi :=
2µint

i + 4µint
j νe

ij − 2µint
k νe

ik

2µint
i + µint

j νe
ij + µint

k νe
ik

=
2µint

i µe
j + 2µint

i µe
k + 4µint

j µe
k − 2µint

k µe
j

2µint
i µe

j + 2µint
i µe

k + µint
j µe

k + µint
k µe

j

(141)

For isotropic behavior we obtain a single ratio m = 1 and T
|e
int =diag{2

3
,−1

3
,−1

3
}σint

y
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at the yield point. The yield function of Eq. (133) vanishes when γ̇ > 0

f(T
|e
int, k) = ρ21σ

2
y1





2
3

−1
3
m1

−1
3
(2−m1)





T 



6a 0 0
0 6b 0
0 0 6c









2
3

−1
3
m1

−1
3
(2−m1)



− 2
3
k2 = 0

(142)
which gives an equation relating all the involved deviatoric moduli (through m1 and
ρ1), the yield tensor axial parameters b and c, the reference internal flow stress k and
the measured yield stress σy1 in axis 1, i.e.

4a+m2
1b+ (2−m1)

2 c =
k2

(σint
y1 )

2
=

k2

ρ21σ
2
y1

(143)

The particularization to isotropic behavior yields 6a = 1 = k2/(σint
y )2, i.e. k2 =

(σint
y )2. Since we are not considering isotropic hardening, then k = k0 and (σint

y1 )
2

remains constant whenever γ̇ > 0. As a result, the internal stresses of Eq. (140) also
remain constant during each elastoplastic uniaxial loading process, with σint

y1 > 0 for
tension loading and σint

y1 < 0 for compression loading, and the internal elastic strains

Ee = Ey1 remain constant as well, i.e. Ėe = 0 when γ̇ > 0. Hence Ė|γ̇>0 = Ėp

when plastic flow is taking place, see Figure 1.
It is straightforward to obtain

(2−m2)
2 a+ 4b+m2

2c =
k2

(σint
y2 )

2
=

k2

ρ22σ
2
y2

(144)

m2
3a + (2−m3)

2 b+ 4c =
k2

(σint
y3 )

2
=

k2

ρ23σ
2
y3

(145)

where σy2 and σy3 are the respective uniaxial flow stresses.
Consider now the flow rule of Eq. (42) particularized to the uniaxial case in

direction a1, along with −Ėe|Ė=0
= Ėp, i.e.

[

Ėp

]

Xpr

= γ̇
σint
y1

k





4a+m1b+ (2−m1) c
−2a− 2m1b+ (2−m1) c
−2a +m1b− 2 (2−m1) c



 (146)

Since Ė|γ̇>0 = Ėp, the associated logarithmic-strain-based Poisson ratio νep
12 during
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plastic flow becomes

νep
12 = −

Ė2

Ė1

∣
∣
∣
∣
∣
γ̇>0

=
2a+ 2m1b− (2−m1) c

4a +m1b+ (2−m1) c
=

µep
3

µep
2 + µep

3

(147)

Due to the fact that Ėe = 0 when γ̇ > 0, only the external deviatoric moduli govern
the incremental elastoplastic response in Eq. (130), i.e. µep

1 = µkin
1 , µep

2 = µkin
2 and

µep
3 = µkin

3 , which effectively correspond to a purely kinematic hardening case, as
discussed in the previous Section. Hence we obtain an additional flow compatibility
equation in axis 1 relating the involved deviatoric moduli (through m1) and the yield
tensor axial parameters a, b and c

2
(
µkin
2 − µkin

3

)
a+

(
2µkin

2 + µkin
3

)
m1b−

(
µkin
2 + 2µkin

3

)
(2−m1) c = 0 (148)

This compatibility equation is automatically fulfilled in the isotropic case, so it has
not been considered in the foregoing Section. Indeed, Eq. (146) specialized to
isotropy simplifies to

[

Ėp

]

=
σint
y

k





γ̇
−γ̇/2
−γ̇/2



 ⇒ |∆Ep1| = ∆γ (149)

The homologous equation to Eq. (148) associated to the uniaxial test about axis
2 reads—the axis−3 equation is then linearly dependent

−
(
µkin
3 + 2µkin

1

)
(2−m2) a + 2

(
µkin
3 − µkin

1

)
b+

(
2µkin

3 + µkin
1

)
m2c = 0 (150)

(
2µkin

1 + µkin
2

)
m3a−

(
µkin
1 + 2µkin

2

)
(2−m3) b+ 2

(
µkin
1 − µkin

2

)
c = 0 (151)

Since we have taken a = 1/6, Eqs. (148) and (150) determine the values of b and c
present in the tensor N̄ if all the axial deviatoric moduli (external and internal) are
known.

The three Eqs. (143)-(145) along with the two flow rule compatibility constraint
Eqs. (148) and (150) define the number of experimental data needed to characterize
the elastoplastic orthotropic model under axial loadings about material preferred
directions. We discuss next two possible cases, among many others.

6.2.1. Case (a): One yield stress and both elastic and elastoplastic moduli are known

Assume that we know the three elastic Young moduli Y e
1 , Y

e
2 and Y e

3 (or equiva-
lently two Young moduli Y e

1 and Y e
2 and the Poisson ratio νe

12), the three elastoplastic
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moduli Y ep
1 , Y ep

2 and Y ep
3 (or Y ep

1 , Y ep
2 and νep

12) and also the uniaxial yield stress σy1

in direction a1. Then, from the relations (consider also Eq. (139) and its homologous
for elastoplastic behavior) —consider i 6= j 6= k 6= i = {1, 2, 3}

Y e
i = 2µe

i + µe
jν

e
ij + µe

kν
e
ik =

2µe
1µ

e
2 + 2µe

2µ
e
3 + 2µe

3µ
e
1

µe
j + µe

k

(152)

Y ep
i = 2µep

i + µep
j νep

ij + µep
k νep

ik =
2µep

1 µep
2 + 2µep

2 µep
3 + 2µep

3 µep
1

µep
j + µep

k

(153)

we can obtain the three elastic deviatoric moduli µe
i and the three elastoplastic

deviatoric moduli µep
i in any case. We refer to Ref. [66] for admissible values of

the respective (whether elastic or elastoplastic) macroscopic moduli Y #
i . Since µe

i =
µkin
i + µint

i and µep
i = µkin

i , we have the six axial moduli µkin
i and µint

i present in
the stresses of Eq. (130). Then we know the three ratios ρi and the three ratios
mi defined in Eqs. (138) and (141), respectively, and we can solve the two flow
rule compatibility Equations (148) and (150) in order to obtain the yielding tensor
weights b and c in Eq. (134).

Finally, in order to completely define our model in material preferred directions,
we need the internal yield stress parameter k, which can be directly obtained from
Eq. (143) using the measured yield stress σy1.

6.2.2. Case (b): One elastoplastic modulus and both elastic moduli and yield stresses
are known

Assume that, from the uniaxial testing response over preferred directions of an
incompressible orthotropic material, we know the three elastic Young moduli Y e

1 , Y
e
2

and Y e
3 (or Y e

1 , Y
e
2 and νe

12), the three uniaxial yield stresses σy1, σy2 and σy3 and
also the elastoplastic modulus Y ep

1 . Unlike the preceding case (a), we can obtain the
three elastic deviatoric moduli µe

i

(
= µkin

i + µint
i

)
but we can obtain neither the three

elastoplastic deviatoric moduli µep
i

(
= µkin

i

)
nor the ratios ρi and mi.

In this case, we have to solve the complete system of five nonlinear equations
detailed above, i.e. Eqs. (143), (144), (145), (148) and (150), along with Eq. (153)
for i = 1 with the modulus Y ep

1 being known. From these six equations, with ρi
and mi defined in Eqs. (138) and (141) and taking µint

i = µe
i − µkin

i , we can obtain
the involved unknowns of the elastoplastic model under consideration, namely the
internal yield function parameter k, the yield tensor weights b and c and the deviatoric
moduli µkin

1 , µkin
2 and µkin

3 . Finally, the remaining three internal deviatoric moduli
are calculated by means of µint

i = µe
i − µkin

i .
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7. Examples

We firstly perform in this section some examples in order to verify that the deter-
mination procedures for the internal (“microscopic”) parameters detailed just above
for our model are consistent with the observed (“macroscopic”) responses obtained
from homogeneous uniaxial simulations. Once this is verified for both isotropic and
orthotropic materials, the capabilities of the present computational formulation are
shown through additional non-homogeneous finite element simulations.

7.1. Isotropic compressible material with linear elastoplastic behavior in terms of τ̄
and E

We have explained in Section 6.1 how we can characterize an isotropic compress-
ible material which shows an elastoplastic response that may be considered linear in
terms of the work-conjugate pair of rotated Kirchhoff stresses and logarithmic strains
as a first approximation [67][68]. In this case the model parameters to be determined
are, on one hand, the bulk modulus κ and the deviatoric moduli 2µkin and 2µint

(needed to define the total stored energy of Eq. (106)) and, on the other hand, the
(initial) internal yield stress k0 and the first derivative constant value k′ (needed to
define the evolution of the internal yield parameter k = k0 + k′γ). We have shown
above that these model parameters can be obtained from a loading-unloading uniax-
ial test in which we measure the Young modulus Ye and the Poisson ratio νe during
the initial elastic loading, the tensile yield stress τyt, the elastoplastic modulus Yep

and the maximum stress value (unloading reference) τur during the plastic loading
and, finally, the compressive yield stress τyc upon the elastic unloading.

Assume that we have measured the following experimental values from a loading-
unloading uniaxial test over a soft isotropic compressible material, see Eqs. (100)-
(102) and Figure 2

Ye = 24MPa , νe = 0.2 , Yep = 24/5 = 4.8MPa (154)

τyt = 12MPa , τur = 15MPa , τyc = −12MPa (155)

The associated elastoplastic Poisson ratio, as defined in Eq. (101), is obtained from
Eq. (117) and takes the value νep = 0.44. The corresponding bulk modulus in Eq.
(106) is obtained from Eq. (116), taking the value

κ =
Ye

3 (1− 2νe)
=

Yep

3 (1− 2νep)
= 40/3 = 13.33MPa (156)

The direct evaluation of Eqs. (124) and (125) gives the deviatoric strain increments
∆Ed

1 |γ̇>0 = 0.6 and ∆Ed
e1|γ̇>0 = 0.05. Then, we can obtain both deviatoric modulus
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2µkin and 2µint solving Eqs. (120) and (123), which yields

2µkin = 20/11 = 1.818MPa , 2µint = 200/11 = 18.18MPa (157)

Once these values are known, the direct evaluation of Eqs. (122) and (126) gives
finally the remaining parameters

k0 = 120/11 = 10.91MPa , k′ = 300/121 = 2.479MPa (158)

We have used the model parameters presented in Eqs. (156)-(158) to define the
material model in our in-house Finite Element code Dulcinea, where the general algo-
rithmic formulation of Section 5 has been implemented. The internal yield criterion
is the von Mises criterion, with the yield function given in Eq. (45) along with

T
|e
int : NT : T

|e
int = T

|e
int : N̄ : T

|e
int = T

|e
int : I

S : T
|e
int = T

|e
int : T

|e
int = ||T

|e
int||

2 = ||τ
|e
int||

2

We have then simulated a displacement-driven loading-unloading uniaxial test over
that material in order to verify that the measured macroscopic moduli and stresses
used to define the model are recovered, i.e. those given in Eqs. (154)-(155), hence
proving the consistency of both the model determination procedure and the model
formulation. Since the deformation is homogeneous at each loading step and the
elastoplastic behavior, with νep = 0.44, may be regarded as slightly compressible, we
have used only one standard Brick element of 8 nodes, i.e. a mixed formulation is
not required in this case. We finally note that all the deformations involved in this
example (dilatation one and deviatoric elastic and plastic ones) become large and
that the finite element global computations are materially (in terms of S and A)
and geometrically nonlinear, as we show below.

We show the results of the computation in Figure 3. In Figure 3.a it can be
observed that the modulus of every elastic response is Ye = 24MPa, that the mod-
ulus of every elastoplastic response is Yep = 4.8MPa and that the (first) yield point
effectively occurs at τyt = 12MPa. We have applied a first (displacement) load in
the test direction such that E∗ = 1.125 (i.e. Eur = τyt/Ye+(τur − τyt) /Yep). Consis-
tently with this extension load, we can see that the maximum stress during the first
elastoplastic loading, namely τur = 15MPa, is retrieved, which moreover provokes
the prescribed increment of the macroscopic elastic domain, i.e. an increment such
that τyc = −12MPa upon the first elastic unloading. Note that the initial macro-
scopic yield surface size is given by ς0 := τyt = 12MPa, whereas the increased elastic
domain size after the first plastic loading becomes ς1 =

1
2
(τur−τyc) = 13.5MPa. This

macroscopic (observed, apparent) increment is associated to an upscaled size of the
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internal von Mises surface, which is computed from ς1 through the macro-to-micro
conversion factor—cf. Eq. (122)

k1 = ς1 ×
2µint

2µkin + 2µint

= 12.27MPa (159)

which is also consistent with the one obtained from the linear internal isotropic
hardening law

kyc = k0 + k′∆γ = k0 + k′∆Ed
p1|γ̇>0 = k0 + k′

(
∆Ed

1 −∆Ed
e1

)

γ̇>0
= 12.27MPa (160)

After the first plastic loading is completed, the new center of the elastic domain for
the uniaxial test is located at c1 = 1

2
(τur + τyc) = 1.5MPa, i.e. the hardening is

originated by a combination of isotropic (through k′) and kinematic (through 2µkin)
effects, recall Section 6.1.

It can be seen in Figure 3.b that the independent, “experimentally” observed
Poisson ratio under elastic loading, namely νe = 0.2, is also reproduced during every
elastic response. Furthermore, the dependent, analytically computed Poisson ratio
under plastic loading of Eq. (117), namely νep = 0.44, is consistently reproduced by
the simulation during every elastoplastic loading. Note that we have not introduced
these values explicitly in the finite element material model.

In Figure 4 we represent the uniaxial response curve in terms of (rotated) Cauchy
stresses (work-conjugate stresses, per current volume unit, of logarithmic strains for
isotropic solids) in order to notice the non-linearity involved in the problem. Note
that the high differences between Kirchhoff and Cauchy stress values (ordinates) are
due to the volume ratio at each deformation state, i.e. τ1 = Jσ1, which indicates
that very large volume changes are taking place in the uniaxial test. The rates
of convergence for residual force and energy during a standard elastoplastic step
are asymptotically quadratic, see Table 1. Similar ratios are obtained for the local
Newton iterations.

Finally, just as representative examples of the cases with isotropic hardening only,
kinematical hardening only and no hardening, we represent in Figures 5, 6 and 7 the
uniaxial response curves of the respective (modified) material model when we enforce
k′ > 0 and 2µkin = 0, k′ = 0 and 2µkin > 0 or k′ = 0 and 2µkin = 0 respectively, leav-
ing the remaining model parameters unchanged in each case. Different macroscopic
elastic and plastic responses are obtained accordingly. We can observe that in the
case with k′ > 0 and 2µkin = 0, Figure 5, the center of the elastic domain in the space
of {τ, E} always remains at the origin of stresses and that the size ς of the elastic do-
main is increased after each elastoplastic loading, i.e. an isolated isotropic hardening
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effect. On the other side, in the case with k′ = 0 and 2µkin > 0, Figure 6, the center
of the elastic domain evolves in parallel to the incremental elastoplastic stresses, i.e.
both with slope 2µkin in the space of {τ, E}, and the elastic domain preserves its
size ς = ς0 after each elastoplastic loading. The stress-strain and transverse-to-axial
strains cycles are closed, i.e. an isolated kinematical hardening (Bauschinger) ef-
fect is taking place. Finally, for the case with both k′ = 0 and 2µkin = 0, Figure
7, a perfect plasticity response is obtained in terms of both Kirchhoff and Cauchy
stresses. Note that in this last case, i.e. Figure 7, νep = 0.5 because Yep = 0, recall
Eq. (117), so ∆J |γ̇>0 = 0, i.e. J remains constant during each plastic loading, and
∆σ1|γ̇>0 =

1
J
∆τ1|γ̇>0 = 0.

7.2. Orthotropic incompressible material with linear elastoplastic behavior in terms
of T and E

In this example we obtain the material model parameters from an experimental
data set as the one addressed in Section 6.2.2. Then we perform three different uni-
axial test finite element simulations along the three preferred directions in order to
show that the numerical results obtained from the computations are in correspon-
dence with the prescribed data. We will see that the simulations also reproduce
all the remaining theoretical (elastoplastic) moduli and (elastic and elastoplastic)
Poisson’ ratios introduced above.

Assume that we have measured the following “experimental” values from uniaxial
testing about the preferred directions Xpr = {a1,a2,a3} of an orthotropic (soft)
material with a linear response in terms of T and E under finite strains

Y e
1 = 18.86MPa , Y e

2 = 13.2MPa , Y e
3 = 10.15MPa (161)

σy1 = 4.889MPa , σy2 = 4.334MPa , σy3 = 3.933MPa (162)

and
Y ep
1 = 7.333MPa (163)

where Y e
i , σyi and Y ep

i stand for the elastic Young modulus, the yield stress and
the elastoplastic modulus corresponding to the i-axis test, respectively. From Eqs.
(152), with Y e

1 , Y
e
2 and Y e

3 being known, we first obtain

µe
1 = 8MPa , µe

2 = 5MPa , µe
3 = 2MPa (164)

Then, from Eq. (153) with Y ep
1 = 7.333MPa and µep

i = µkin
i (i.e. an isolated

kinematical hardening case), along with Eqs. (143), (144), (145), (148) and (150),
with ρi and mi defined in Eqs. (138) and (141) and considering µint

i = µe
i − µkin

i ,
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we obtain—in order to solve this system of nonlinear equations and take numerical
advantage of its symmetries, it is convenient to define the modified yield tensor
components â = a/k2, b̂ = b/k2, ĉ = c/k2 and then undo this change of variables
just considering that 6a = 1

µkin
1 = 3MPa , µkin

2 = 2MPa , µkin
3 = 1MPa (165)

6b = 2.324 , 6c = 3.647 (166)

and
k = k0 = 3.850MPa (167)

Finally, the three relations µint
i = µe

i − µkin
i yield

µint
1 = 5MPa , µint

2 = 3MPa , µint
3 = 1MPa (168)

The (axial type) deviatoric moduli given in Eqs. (165) and (168), the (axial type)
components of the yield tensor N̄ given in Eq. (166) and the internal flow stress
parameter given in Eq. (167) define the material model in orthotropy preferred di-
rections. We have used these numerical values in order to define our computational
model. Then, we have separately performed three uniaxial test finite element cal-
culations in the respective preferred axes with the main aim of verifying that the
primary experimental data of Eqs. (161)-(163) are reproduced by the simulations.
This way we verify the consistency of the material model determination procedure
explained in Section 6.2 with the finite element algorithmic formulation presented in
this work. We have used in these simulations a single u/p mixed finite element brick
Q1/P0 (or 8/1) because the deformation is homogeneous all over the element. As
in the previous isotropic case example, we have used the volumetric strain energy
function U (J) = 1

2
κ (ln J)2, but in this case it is employed just as a penalty function

to enforce quasi-incompressibility during the computations, with the bulk modulus
taken as κ = 104MPa (i.e. U (J) replaces the theoretical volumetric function present
in Eq. (128) for the matter of computational convenience).

In Figure 8 we represent the uniaxial stress-strain and transverse-to-axial strains
response curves obtained from the computations, which in the three cases (i = 1, 2, 3)
have been driven up to a maximum logarithmic strain of Ei = 1 (i.e. maximum ex-
tension) and a minimum logarithmic strain of Ei = −1 (i.e. maximum compression).
We can observe in the stress-strain solution curves that the three preferred elastic
Young moduli Y e

i , the three tensile yield stresses σyi and the single preferred elasto-
plastic modulus Y ep

1 are in perfect agreement with the prescribed “experimental”
values of Eqs. (161)-(163), which have been used to determine the material model
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parameters of Eqs. (165)-(168). Additionally, we can observe that the two other
elastoplastic moduli Y ep

2 and Y ep
3 that the simulations predict are in perfect cor-

respondence with the analytical ones obtained from Eq. (153), i.e. in both cases
(response curves and analytical relations) we obtain

Y ep
2 = 5.5MPa and Y ep

3 = 4.4MPa (169)

The computed elastic and elastoplastic (logarithmic-type) Poisson ratios νij = −Ej/Ei,
which can be measured in the transverse-to-axial strains response curves, are also
coincident to the respective analytical ones, which can be obtained from Eq. (139)
and its elastoplastic homologous one. In both cases, the Poisson ratios obtained
are—in this case they are almost coincident for each test

νe
12 = 0.286 =

2

7
, νe

23 = 0.8 =
4

5
, ν31 = 0.385 =

5

13
(170)

νep
12 = 0.333 =

1

3
, νep

23 = 0.75 =
3

4
, νep

31 = 0.4 =
2

5
(171)

Finally, note that all the solution curves (both stress-strain and transverse-to-
axial strains) in Figure 8 are closed cycles, which is a direct consequence of having
considered a constant (internal) yield stress parameter k = k0. In particular, the
size of the macroscopic elastic domain is preserved in each stress-strain curve and
is equal to ςi = 2σyi. In other words, the hardening response is purely kinematical
(as prescribed) and governed by the external deviatoric moduli given in Eq. (165),
cf. Eq. (153) with µep

i = µkin
i . The additional consideration of an internal isotropic

hardening law k (γ), with k′ (γ) > 0, would give an internal Hill yield surface (i.e. a

six-dimensional ellipsoid in terms of the components of T
|e
int, cf. Eq. (45)) with all

its “axes” increasing proportionally to k/k0, which would correspond with a mixed
hardening formulation for the fully orthotropic elastoplastic material under study. A
combined hardening effect of this type will be discussed in the last example below
including also both elastic and plastic non-homogeneous finite strains.

7.3. Necking of a steel circular bar

In this example we show that the general computational elastoplasticity for-
mulation presented above in terms of finite elastic logarithmic strains and their
work-conjugate generalized Kirchhoff stresses in full Lagrangian symmetric space
description give the same results than other classical formulations under isotropic
elasto-plasticity conditions. We analyze the necking of a metallic circular bar, which
undergoes finite plastic strains combined with moderate elastic strains.
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We use a Voce-type non-linear isotropic hardening function [69]

k = k0 + H̄Ep + (k∞ − k0)
(
1− e−δEp

)
(172)

where here Ep is the effective logarithmic plastic strain, H̄ is the linear hardening
modulus, k0 is the reference yield stress and k∞ and δ are saturation law material
parameters. For our model, we recognize Ep ≡ γ in the previous law, recall Eq.
(149). The isotropic elastic material parameters are Ye = 206.9 GPa and νe = 0.29,
from which we obtain—note that µkin = 0 because only isotropic hardening is being
considered

2µe = 2µint =
Ye

1 + νe
= 160.4 GPa and κ =

Ye

3 (1− 2νe)
= 164.2 GPa (173)

The isotropic plastic parameters are

k0 = 0.45 GPa , H̄ = 0.12924 GPa , k∞ = 0.715 GPa and δ = 16.93 (174)

We use the von Mises yield criterion, i.e. we take N̄ = I in Eq. (133).
The bar is stretched along its major axis by prescribing a displacement of 7mm

at each end to give a total final displacement of 14mm, see Figure 9. Only an
eighth of the total three-dimensional mesh is considered by symmetry conditions. In
order to prevent mesh locking during plastic flow, fully integrated (3× 3× 3 Gauss
integration) 27/4, u/p mixed finite elements are used. A standard Newton–Raphson
scheme, without line searches, is employed for the incremental solution obtained by
our in-house finite element code Dulcinea.

In Figure 9 we also show the deformed mesh and the distribution of equivalent
logarithmic plastic strain (i.e. the consistency parameter γ) for the maximum dis-
placement being applied. The non-homogeneous solution obtained using the present
formulation is almost indistinguishable from the solution obtained by Caminero et
al. in Ref. [45], which was obtained using the same mesh and the same finite element
code. In Ref. [45] the non-homogeneous solution was compared with the response
given by the Eterovic–Bathe isotropic model [21], giving also the same results.

In Figure 10 we show the load–deflection results obtained from the simulation
using our model, which are in agreement with the results obtained from other com-
putational elastoplasticity models in the literature, namely Refs. [38], [71], [72], [73],
[45].
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7.4. Extension of a soft rectangular plate with a hole

We perform in this example finite element elastoplasticity computations with the
following noteworthy characteristics: both elastic and plastic non-homogeneous fi-
nite strains are present, orthotropic elastoplastic behavior is considered and combined
isotropic-kinematic hardening effects are included. These are, in fact, the most com-
plete simulations that may be carried out with the present anisotropic finite strain
elastoplasticity model which, in turn, show its excellent computational performance.

We show in Figure 11 the undeformed mesh used for the simulations. In this
case, bidimensional fully integrated (3 × 3 Gauss integration) 9/3, u/p mixed finite
elements are used. The plate is stretched in x−direction up to a total elongation
of l = 38.4mm, which corresponds to an average deformation of 20%. We assume
perfectly lubricated grips at both ends and plane strain condition.

In the first set of simulations addressed in this example we consider a nearly-
incompressible elastoplastic response including only kinematic hardening effects. We
have used the following model parameters for the deviatoric energy functions of Eq.
(128) and the Hill yield tensor of Eq. (133)

µint
1 = 8MPa , µint

2 = 5MPa , µint
3 = 2MPa , µint

4 = 4MPa (175)

µkin
1 = 3MPa , µkin

2 = 2MPa , µkin
3 = 1MPa , µkin

4 = 1.5MPa (176)

and
k = k0 = 4.4MPa , N̄22 = 2.125 , N̄33 = 3.25 , N̄44 = 1 (177)

where we have used Voigt index contractions (11) → (1), (22) → (2), (33) → (3) and
(12) → (4). The penalty-type volumetric strain energy employed in this case is

U (J) = κ(1 + J(ln J − 1)) (178)

with κ = 104MPa.
We show the deformed meshes for maximum load and the consistency parame-

ter band plots (i.e. accumulated plastic logarithmic deformation) for four different
orientations of the preferred material axes in Figure 12, with the angle α defining
the orientation of the preferred material axis 1 with respect to the horizontal axis
x, see Figure 11. The angular distortion experienced by the plate is consistent with
the expected response in all the cases, as explained in Ref. [49], Appendix 3. We
can observe that a necking effect is being initiated in the central passing area, which
is more pronounced for the cases with orientations α = 0o and α = 15o. These
plastic strains are accompanied by elastic strains of the same order of magnitude in
that zone. Indeed, the total displacement load has been applied incrementally in
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16 steps in all the cases (0.4mm /step) and the first 4 to 5 steps (depending on the
case) have resulted purely hyperelastic. Remarkably, very similar (excellent) rates
of convergence for residual force and energy have been attained during hyperelastic
steps (4 iterations) and elastoplastic steps (5 iterations), see Table 2.

In the second set of simulations performed in this example we add an isotropic
hardening effect to the material model defined above. We consider the following
isotropic hardening linear in γ

k = k0 + H̄γ (179)

with k0 = 4.4MPa and also H̄ = 4.4MPa (i.e. k is doubled for γ = 1). The re-
sults obtained in this mixed hardening cases are shown in Figure 13 for the different
material axes orientations, where we can observe that the accumulated plastic defor-
mation is reduced by half with respect to the respective maximum values in Figure 12.
Necking effects have been reduced in all the cases. Accordingly, the elastic strains
(and associated stresses) are higher in these cases as well. Again, asymptotically
quadratic rates of convergence have been attained during the elastoplastic loading
in very few steps, see Table 3, which proves the high computational efficiency of the
fully symmetric finite element formulation for multiplicative anisotropic elastoplas-
ticity presented in this work.

These orthotropic non-homogeneous finite element models have been computed
using one processor of a 2011 Windows-PC with our in-house finite element code
Dulcinea running as a 32-bit fortran90 Pentium application. Under these conditions,
each computational simulation addressed in this example needed about 10 minutes
(elapsed time) in average. The inclusion of the isotropic hardening effect in the second
set of simulations did not increase the simulation time significantly with respect to
the first set of simulations.

8. Conclusions

In this paper we present a novel computational framework for anisotropic elasto-
plasticity suitable for finite element implementation. The formulation is valid for
multiplicative elastoplasticity employing large strain, fully nonlinear anisotropic hy-
perelasticity. The formulation is motivated from a one-dimensional rheological model
and accommodates the phenomenological effects of isotropic, kinematic or combined
hardening.

The most relevant contribution of the new nonlinear algorithmic framework,
which uses the multiplicative decomposition, is that it does not explicitly employ
plastic strains or plastic metric measures. Instead, an elastic correction is used which
results in an additive six-dimensional update from a backward-Euler rule parallel to
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that of the infinitesimal setting, without explicitly employing exponential mappings.
Furthermore, the Mandel stress tensor plays no role in the present formulation and
we do not need to establish any assumption in the plastic spin to integrate the sym-
metric flow. If desired, an evolution equation for the plastic spin may be established
in a completely uncoupled procedure.

In the numerical examples we show that some previously proposed formulations
may be recovered as particular cases and that the numerical efficiency of the al-
gorithm is excellent, obtaining convergence rates close to those of the hyperelastic
model.

For simplicity, in these examples we have used stored energies which are quadratic
in logarithmic strains. However, the general formulation is not restricted to linearity
in those strains and can also immediately accommodate nonlinear hardening effects.
Although the present formulation can properly simulate the Bauschinger effect, our
hardening formulation does not have an explicit backstress. Therefore, the imple-
mentation of the Armstrong and Frederick rule and the comparison of the resulting
multiaxial behavior remains a matter for further research.
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Figure 1: Rheological model motivating the elastoplasticity model with combined isotropic and
kinematic non-linear hardening.
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Figure 2: Representative stress-strain and transverse-to-axial strains responses obtained from a
uniaxial loading-unloading test over an elastoplastic isotropic material linear in terms of τ and E.
Case with combined isotropic and kinematic hardening, i.e. with k′ > 0 and 2µkin > 0.
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Figure 3: Uniaxial loading-unloading test. Case with combined isotropic and kinematic hardening,
i.e. with k′ > 0 and 2µkin > 0. Left (a): Axial Kirchhoff stresses τ1(E1). Right (b): Transverse
strains E2(E1).
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Box 2: Implicit stress integration algorithm.

Given t
0Xp,

t+∆t
0X and t

0γ:

1. Trial elastic logarithmic strains trEe =
1
2
ln(trXT

e · trXe) with
trXe =

t+∆t
0X · t

0X
−1
p

2. Associated trial stresses in the fixed intermediate configuration trT
|e
int :=

dΨint (Ee)

dEe

∣
∣
∣
∣
tr

3. In the case trfT = trT
|e
int : NT : trT

|e
int −

2
3
trk2 > 0, perform plastic correction:

Solve iteratively







t+∆tρe =
t+∆t

0Ee +
t+∆t

0γ − t
0γ

2
3
t+∆tk

NT : t+∆tT
|e
int −

trEe = 0

t+∆tfT = t+∆tT
|e
int : NT : t+∆tT

|e
int −

2
3
t+∆tk2 = 0







with t+∆tk = k
(
t+∆t

0γ
)
and initial values t+∆t

0E
(0)
e = trEe and

t+∆t
0γ

(0) = tγ.

4. Stresses in fixed intermediate configuration t+∆tT
|tr
int ≃

t+∆tT
|e
int =

dΨint (Ee)

dEe

∣
∣
∣
∣
t+∆t

5. Map t+∆tT
|tr
int to second Piola–Kirchhoff stresses t+∆tS

|tr
int =

t+∆tT
|tr
int :

d trEe

d trAe

6. Pull back t+∆tS
|tr
int to reference configuration t+∆tSint =

t
0X

−1
p · t+∆tS

|tr
int ·

t
0X

−T
p

7. During iterative phase, compute the elasto-plastic tangent t+∆tCep, see Table 3

8. During convergence phase, update t+∆t
0Xe =

trRe · exp
(
t+∆t

0Ee

)

Note: These equations imply t+∆twp = 0 as an additional (uncoupled) evolution equation.
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Box 3: Consistent elasto-plastic tangent moduli

Given t+∆t
0Ee and

t+∆t
0γ:

1. Hyperelastic tangent tensor in updated configuration t+∆tA
|e
int =

dT
|e
int (Ee)

dEe

∣
∣
∣
∣
∣
t+∆t

2. Consistent logarithmic elastoplastic moduli in trial configuration (plastic correction)

t+∆tA
|tr
ep =

d t+∆tT
|tr
int

d trEe
= t+∆tD−

(
t+∆tD : t+∆t∇φT

)
⊗
(
t+∆tD : t+∆t∇φT

)

t+∆t∇φT : t+∆tD : t+∆t∇φT + 4
3

k2k′

3−2Γk′

with t+∆tD := t+∆tA
|e
int :

t+∆tK−1 and t+∆tK :=
∂ t+∆tρe

∂ t+∆t
0Ee

(from local iterations)

3. Map t+∆tA
|tr
ep =

d t+∆tT
|tr
int

d trEe
to quadratic measures t+∆tC

|tr
ep =

d t+∆tS
|tr
int

d trAe
(Ref. [60])

4. Pull back t+∆tC
|tr
ep to ref. conf. t+∆tCep =

t
0X

−1
p ⊙ t

0X
−1
p : t+∆tC

|tr
ep : t

0X
−T
p ⊙ t

0X
−T
p

Table 1: Asymptotic quadratic convergence: Unbalanced force and energy during a typical elasto-
plastic step using a global Newton–Raphson scheme

Iteration Force Energy

1 1.000E+00 1.000E+00
2 1.239E– 02 1.499E– 04
3 1.849E– 06 3.336E– 12
4 1.100E– 12 2.440E– 24
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Figure 4: Uniaxial loading-unloading test. Case with combined isotropic and kinematic hardening,
i.e. with k′ > 0 and 2µkin > 0. Axial Cauchy stresses σ1(E1).
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Figure 5: Uniaxial loading-unloading test. Case with isotropic hardening only, i.e. with k′ > 0 and
2µkin = 0. Left (a): Axial Kirchhoff stresses τ1(E1). Right (b): Transverse strains E2(E1).
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Figure 6: Uniaxial loading-unloading test. Case with kinematic hardening only, i.e. with k′ = 0
and 2µkin > 0. Left (a): Axial Kirchhoff stresses τ1(E1). Right (b): Transverse strains E2(E1).
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Figure 7: Uniaxial loading-unloading test. Perfect plasticity case (no hardening), i.e. with k′ = 0
and 2µkin = 0. Left (a): Axial Kirchhoff stresses τ1(E1). Right (b): Transverse strains E2(E1).
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Figure 8: Uniaxial loading-unloading tests over orthotropy preferred directions. We represent by

σ
(i)
i the uniaxial Cauchy stress component i in the test performed in axis (i) and by E

(i)
j the

transverse logarithmic strain component j in the test performed in axis (i). Case with kinematic
hardening only, i.e. with k′ = 0 and 2µkin

i > 0, i = 1, 2, 3.
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Figure 9: Circular bar. Left: Finite element undeformed three-dimensional mesh being consid-
ered (eighth of the complete geometry). Isotropic elastoplasticity conditions. Bar total length =
53.34mm; Bar radius = 6.4135mm. Right: Deformed configuration and distribution of γ for a total
length increment of 14mm. Unaveraged results at nodes.

65



0 1 2 3 4 5 6 7

u [mm]

0

10

20

30

40

50

60

70

80
F

 [
k
N

]

Eidel Gruttmann&

Simó & Armero

Klinkel

Norris et al.

Caminero et al.

This work

Figure 10: Necking of a circular bar. Different simulation results and experimental data. Load-
displacement curve: applied force F [kN] versus applied displacement u [mm].

Figure 11: Plate with a circular hole. Finite element undeformed bidimensional mesh under a plane
strain condition. Length = 32mm; Height = 16mm; Hole Diameter = 8mm. The angle α defines
the orientation of the preferred material axis 1 (i.e. direction a1) with respect to the horizontal
axis x.
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Figure 12: Case with kinematic hardening. Deformed configurations and distributions of γ for
α = 0o, α = 15o, α = 30o and α = 45o. Unaveraged results at nodes.
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Figure 13: Case with combined isotropic-kinematic hardening. Deformed configurations and distri-
butions of γ for α = 0o, α = 15o, α = 30o and α = 45o. Unaveraged results at nodes.
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Table 2: Cases with kinematic hardening only (Figure 12). Residual force and energy during typical
hyperelastic and elastoplastic steps.

Step/Iteration Force Energy

4/1 1.000E+00 1.000E+00
4/2 1.753E– 03 3.929E– 06
4/3 1.584E– 06 1.597E– 12
4/4 3.613E– 12 2.237E– 25

15/1 1.000E+00 1.000E+00
15/2 1.326E– 02 1.822E– 04
15/3 1.218E– 03 2.409E– 07
15/4 4.342E– 06 2.507E– 12
15/5 1.355E– 11 2.196E– 22

Table 3: Cases with combined kinematic and isotropic hardening (Figure 13). Residual force and
energy during a typical elastoplastic step.

Step/Iteration Force Energy

15/1 1.000E+00 1.000E+00
15/2 2.620E– 03 1.822E– 05
15/3 1.219E– 03 2.409E– 06
15/4 1.806E– 05 2.507E– 10
15/5 6.958E– 09 2.196E– 18
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