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Abstract

In this paper we show that mapping tensors may be constructed to transform

any arbitrary strain measure in any other strain measure. We present the mapping

tensors for many usual strain measures in the Seth-Hill family and also for gen-

eral, user-defined ones. These mapping tensors may also be used to transform their

work-conjugate stress measures. These transformations are merely geometric trans-

formations obtained from the deformation gradient and, hence, are valid regardless

of any constitutive equation employed for the solid. Then, advantage of this fact may

be taken in order to simplify the form of constitutive equations and their numerical

implementation and thereafter, perform the proper geometric mappings to convert

the results –stresses, strains and constitutive tangents– to usually employed measures

and to user-selectable ones for input and output. We herein provide the necessary

transformations. Examples are the transformation of small strains formulations and

algorithms to large deformations using logarithmic strains.
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Hyperelasticity, Plasticity, Viscoelasticity

1. Introduction

Whereas in small strain continuum mechanics there is no debate about which

ones are the stress and strain measures to be used in constitutive equations, at large

strains the options are multiple. Regarding large strains, the Seth-Hill [1][2] family

of strain measures (see also the previous work [3]) are typically used, although some

other deformation measures are being proposed [4]. Different authors have different

preferences over the strain measures. For example, in large strain hyperelasticity

it is typical to use the Cauchy-Green deformation tensor (see for example [5][6][7]),

or alternatively the Green-Lagrange strain tensor. Deformation invariants used in

anisotropic hyperelasticity are almost always defined from the Cauchy-Green defor-

mation tensor [5]. The reason for this choice is that the Cauchy-Green deformation

tensor and the Green-Lagrange strain tensor are directly obtained from the deforma-

tion gradient and the latter from the gradient of the displacements. Hence, they are

naturally included in the Updated Lagrangian and Total Lagrangian formulations

in finite element codes [8][9]. Logarithmic strains are also a good choice not only

for hyperelasticity [10][11][12] and visco-hyperelasticity [13][14][15], but specially for

plasticity [16][17][18][19][20][21][22]. It has been shown that a linear relation be-

tween logarithmic strains and Kirchhoff stresses yield a rather accurate prediction

of the behavior of some metals and polymers [23, 24]. Furthermore, the use of a

quadratic hyperelastic energy function of the logarithmic strains and an exponential

integration allows for simple, yet accurate stress integration algorithms in large strain

elasto-plasticity, where a small strain integration is employed teamed with geometric

pre- and postprocessors [17][21][22]. Logarithmic strains have arguably also a more

intuitive and meaningful interpretation, not only for uniaxial loading but also for
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shear terms [25][26].

However, one of the issues usually not well treated in the literature and, hence,

which yields some misunderstandings is the fact that the choice of one strain mea-

sure over another is essentially a matter of tradition and can be also a matter of

convenience. Furthermore, stresses and strains for user input and output should be

selectable by the user, independently of the material model being employed. One of

the purposes of this paper is to show that any strain measure may be directly related

to any other strain measure and then, the proper work-conjugate stress measure

must be employed, which remarkably transforms using equivalent relations. Fur-

thermore, generalized strain measures, not only the Seth-Hill bundle [1][2], may be

used if they are more convenient for the purpose, for example in order to possibly

establish linear constitutive relations between stresses and strains as, for example

in [16][17][18][19][20][21][22] and in [4] in a more general context. Then, the trans-

formation from any strain measure (for example the deformation gradient or the

Green-Lagrange strain) to the generalized one is simply performed using the proper

mapping tensor which we also introduce. In a similar way, the transformation of

the resulting generalized stress measure to Cauchy or Piola stresses, or the resulting

constitutive tangent, may also be performed using similar mapping tensors. An im-

portant point is that these transformations are valid regardless of the constitutive

equations for the material and of the material symmetries. In fact, we remark that no

constitutive equation will be used throughout the paper except in the examples. In

essence, they can be considered as deformation measures in locally transformed bod-

ies. Invariants for constitutive equations may also be defined using these generalized

strain measures.

In the following section of the paper we depart from the stress power to establish

power conjugacy from scratch. Then we introduce the stress and strain mapping
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tensors for most of the typically used strain and their work-conjugate stress mea-

sures. Finally we introduce generalized strain measures, their work-conjugate stress

measures and the mapping between two arbitrary sets. We further derive the trans-

formations for general constitutive equations from any stress/strain couple to any

other one. We will assume a Cartesian representation to simplify the exposition, but

of course the results are valid regardless the system of representation employed.

2. The stress power and work-conjugacy

Assume we have a body with an original volume 0V and a deformed volume tV ,

surrounded respectively by 0S and tS. A point representing an infinitesimal volume

is denoted in the reference volume by 0x, and in the current volume by

tx = 0x+ tu (1)

where tu are the displacements. The body forces per unit current volume at time t

are b and the surface ones (per unit current surface) are t. Then by equilibrium of

forces
∫

tV

b d tV +

∫

tS

t d tS = 0 (2)

By definition of the Cauchy stress tensor σ —Cauchy’s tetrahedron

t
(
tx,n

)
= σ( tx) · n = n · σ( tx) (3)

where n is the unit vector normal to the plane related to the stress vector t and where

the dot implies an index contraction, i.e. a scalar product in the case of vectors. The
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second identity holds because of equilibrium of angular moments. Then

∫

tV

b d tV +

∫

tS

n · σ d tS = 0 (4)

and by the Generalized Gauss Theorem —see Eq. (5.1.5) of Reference [27]

∫

tV

(b+∇ · σ) d tV = 0 (5)

where ∇ · σ is the divergence of the Cauchy stress tensor respect to the current

coordinates. By the Localization Theorem the well known local equilibrium equation

is obtained —c.f. Eq. (5.3.5) of Reference [27]

∇ · σ + b = 0 (6)

Aside, if v is the velocity field at time t, such that

v = tẋ = tu̇ (7)

the Mechanical Power is

P =

∫

tV

b · v d tV +

∫

tS

t · v d tS (8)

Then using again Eq. (3) and the Generalized Gauss Theorem

P =

∫

tV

b · v d tV +

∫

tS

n · σ · v d tS (9)

=

∫

tV

b · v d tV +

∫

tV

∇ · (σ · v) d tV (10)
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Using for example index notation, the integrand of the second addend is

∇ · (σ · v) =
∂

∂ txi
(σikvk) = σik,ivk + σikvk,i (11)

= (∇ · σ) · v + σ : ∇v (12)

where the double-dot implies a double index contraction and we have used the sym-

metry of σ. Then Eq. (10) results in

P =

∫

tV

σ : ∇v d tV (13)

where Eq. (6) has been used. The deformation gradient is defined by —note that

frequently this tensor is denoted by F but we use the notation of Reference [8]

X =
∂ tx

∂ 0x
(14)

so

∇v =
∂v

∂ tx
=

∂v

∂ 0x
:
∂ 0x

∂ tx
=

∂

∂t

(
∂ tx

∂ 0x

)

:
∂ 0x

∂ tx
= ẊX

−1
(15)

We note that since σ is a symmetric tensor, the integrand in Eq. (13) is

σ : ∇v = σ : sym (∇v) = σ : d (16)

where we defined the spatial deformation rate tensor by

d := sym (∇v) =
1

2

[

ẊX
−1

+X−TẊ
T
]

(17)
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By Euler’s formula —see for example Eq. (4.5.24) of Reference [27]

d tV = J d 0V (18)

where J := detX. Then, the stress power Eq. (13) may be written in the reference

volume as

P =

∫

tV

σ : d d tV =

∫

0V

τ : d d 0V (19)

where τ := Jσ is the spatial Kirchhoff stress tensor.

Now consider the material Green-Lagrange strain tensor

A =
1

2

(
XTX − I

)
(20)

Then, its objective time derivative, performed in the reference configuration, is

Ȧ =
1

2

(

Ẋ
T
X + XTẊ

)

(21)

The (covariant) push-forward to the spatial configuration of the Green-Lagrange

strain tensor is the Almansi strain tensor

a = X−TAX−1 =
1

2

(
I −X−TX−1

)
(22)

and the (covariant) push-forward to the spatial configuration of the Green-Lagrange

strain rate tensor is the deformation rate tensor

X−T ȦX
−1

=
1

2

(

X−TẊ
T
+ ẊX

−1
)

≡ d (23)

which means that d is the Lie derivative along v of the Almansi strain tensor a. In
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index notation these last two Equations can be written as

aij = X−T
ik AklX

−1

lj = X−T
ik X−T

jl Akl and dij = X−T
ik X−T

jl Ȧkl (24)

Here we note that these are merely kinematic relations which existence should be

obvious from physical grounds. This type of relationships has already been used when

establishing the equivalence between updated Lagrangian and total Lagrangian finite

element formulations, see Example 6.23 of Ref. [8].

3. Stress and Strain mapping tensors

According to the preceding kinematic relations, we can define a fourth-order

mapping tensor (a merely geometric tensor completely defined from the deformation

gradient) with components —to shorten this exposition we omit symmetrization

issues

(Ma
A)ijkl = (Md

Ȧ
)ijkl := (X−T ⊙X−T )ijkl := X−T

ik X−T
jl (25)

so

a = M
a
A : A and d = M

d

Ȧ
: Ȧ (26)

Also note that a geometric mapping tensor may be established between Ẋ and d,

i.e.

(Md

Ẋ
)ijkl :=

1

2
(X−T

⊡ I + I ⊙X−T )ijkl :=
1

2
(X−T

il δjk + δikX
−T
jl ) (27)

such that

d = M
d

Ẋ
: Ẋ (28)

and so on.

At this point we notice an important difference between the mapping tensors
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present in Eqs. (26)2 and (28). The mapping tensor M
d

Ȧ
represents a one-to-one

mapping in the sense that if Ȧ is known then d is given by Eq. (26)2 and, vice versa,

if d is known then Ȧ is given through the inverse relation Ȧ = MȦ
d : d, with

M
Ȧ
d = XT ⊙XT = (Md

Ȧ
)−1 (29)

On the contrary, if we know the rate tensor Ẋ, then d is given by Eq. (28), but

the inverse situation is not possible, in general. This is due to the fact that Ẋ is a

two-point tensor that includes information about the spatial rotation through —cf.

Eq. (15)

Ẋ = ∇v ·X = d ·X +w ·X (30)

where w is the spatial (antisymmetric) spin tensor

w := skew (∇v) =
1

2

[

ẊX
−1

−X−TẊ
T
]

(31)

It is clear from Eq. (30) that there exist infinite rate tensors Ẋ for a given tensor d,

hence the mapping Md

Ẋ
of Eq. (28) is not invertible, in general. For further use, we

define herein the spinless deformation gradient rate tensor as

χ̇ := d ·X =
1

2

[

Ẋ +X−TẊ
T
X
]

(32)

such that χ̇ ·X−1 = d. Then, the mapping between the modified rate tensor χ̇ and

the deformation rate tensor d becomes invertible, i.e.

χ̇ = I ⊙XT : d = M
χ̇
d : d and d = I ⊙X−T : χ̇ = M

d
χ̇ : χ̇ (33)
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Now consider the following identities

τ : d = τ : X−T ȦX
−1

= X−1τX−T : Ȧ = S : Ȧ (34)

where we identify the Second Piola-Kirchhoff stress tensor S := X−1τX−T . The

following geometric mapping tensor defines the associated (contravariant) pull-back

operation

(MS
τ )ijkl := (X−1 ⊙X−1)ijkl = X−1

ik X
−1

jl (35)

so

S = M
S
τ : τ (36)

Alternatively we can use the transpose

(M̄S
τ )ijkl := (X−T ⊙X−T )ijkl = X−1

ki X
−1

lj = (MS
τ )klij (37)

so

S = τ : M̄S
τ (38)

Also note that

τ : d = τ : (Md

Ȧ
: Ȧ) = (τ : Md

Ȧ
) : Ȧ (39)

so

S = τ : Md

Ȧ
(40)

which provides the relation (compare to Eq. (38))

M̄
S
τ = M

d

Ȧ
(41)

10



that is remarkably the same mapping tensor that transforms strain measures.

In a similar way as before

τ : d = (τ : Md
χ̇) : χ̇ = (τ : I ⊙X−T ) : χ̇ = τX−T : χ̇ = P : χ̇ (42)

where P := τ : Md
χ̇ = τX−T is the First Piola-Kirchhoff stress tensor (transpose of

the so-called Nominal stress tensor) and we interpret the rate tensor χ̇ of Eq. (32)

as its power-conjugate. We note that

τ : ∇v = τ : ẊX
−1

= τX−T : Ẋ = P : Ẋ (43)

hence the rate tensor Ẋ is usually defined in the literature as the power conjugate of

P as well. However, the product P : Ẋ inherently includes the addend P : wX =

τ : w = 0 which gives no stress power.

Consider also the Right Polar Decomposition of the deformation gradient

X = RU (44)

where R is the rotation tensor and U is the material stretch tensor. It is readily

obtained from d = sym(ẊX
−1
) that

d = Rsym(U̇U
−1
)RT := Rd̄RT (45)

where d̄ := RTdR = sym(U̇U
−1
) is the rotated deformation rate tensor. Thus, we

may write the spinless rate tensor χ̇ = d ·X as

χ̇ = Rυ̇ (46)
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where we define the spinless stretch rate tensor as —compare to Eq. (32)

υ̇ :=
1

2

[

U̇ +U−1U̇U
]

(47)

which is a tensor such that υ̇ · U−1 = d̄. In Eq. (46) we recognize the (invertible)

mapping

M
χ̇
υ̇ := R⊙ I ⇒ χ̇ = M

χ̇
υ̇ : υ̇ (48)

Then

P : χ̇ = (P : Mχ̇
υ̇) : υ̇ = (P : R⊙ I) : υ̇ = RTP : υ̇ = β : υ̇ (49)

where we define β := P : Mχ̇
υ̇ = RTP as the Biot stress tensor, which is power-

conjugate of υ̇. Inserting Eq. (47) into Eq. (49) we easily arrive at

β : υ̇ =
1

2

(

β : U̇ + βT : U̇
)

= sym(β) : U̇ (50)

so we interpret the symmetric part of the Biot stress tensor, namely sym(β), as the

power-conjugate of U̇ , which is the usual definition encountered in the literature.

Of course, the identities hold if power-conjugate tensors are consistently rotated

by any rotation tensor, in particular by R

τ : d = RTτR : RTdR = τ̄ : d̄ (51)

where τ̄ := RTτR is the rotated Kirchhoff stress tensor. Then we note that a

mapping tensor that preserves the metric during the transformation and that may

be used for both covariant and contravariant tensors may be also defined in this case

(MR)ijkl := (R⊙R)ijkl = RikRjl (52)
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so d = MR : d̄ and τ = MR : τ̄ . Furthermore, we note that the chain rule may be

properly applied to (invertible) mapping tensors, e.g.

S = τ : Md

Ȧ
= P : Mχ̇

d : Md

Ȧ
= P : Mχ̇

Ȧ
(53)

where

M
χ̇

Ȧ
= I ⊙XT : X−T ⊙X−T = X−T ⊙ I (54)

so S = P : X−T ⊙ I = X−1P .

4. Generalized stress and strain measures

In general, we can define a Generalized Material Strain Measure E∗ as a function

of the Stretch tensor U

E∗ = f∗ (U) (55)

Of course a basic requirement for a strain measure to be valid is that there exist a

one-to-one tensorial relation (not necessarily component-to-component) between U

and E∗ [25]. Examples are the Green-Lagrange strain tensor A =1

2
(U 2 − I), the

Biot strain tensor (U − I) and the material logarithmic strains E = lnU . Several

requirements need to be fulfilled for general strain and stress measures so the trans-

formation is uniquely defined and is valid for the complete range of deformations; we

refer to the work of Curnier and Zysset [4] for further details. We consider herein

isotropic transformations of the stretch tensor. Hence, the spectral decomposition of

the Stretch tensor is

U =
3∑

i=1

λi ni ⊗ ni (56)
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where λi are the principal stretches and ni are the principal strain directions in the

reference configuration. Then

U̇ =

3∑

i=1

λ̇i ni ⊗ ni +

3∑

i=1

λi
dni

dt
⊗ ni +

3∑

i=1

λi ni ⊗
dni

dt
(57)

but since ni is a unit vector, its derivative may be written as (see Reference [8],

Section 6.2.2, for an alternative derivation)

dni

dt
= Ω · ni (58)

where

Ω =

3∑

i=1

3∑

j=1

Ωij ni ⊗ nj =

3∑

i=1

∑

j 6=i

Ωij ni ⊗ nj (59)

is the spin of the material principal directions (a skew-symmetric tensor) projected

in that basis, so

dni

dt
= Ω · ni =

(
3∑

j=1

∑

k 6=j

Ωjk nj ⊗ nk

)

· ni (60)

=

3∑

j=1

∑

k 6=j

Ωjknjδki =

3∑

j=1

∑

i 6=j

Ωjinj (61)

Then Eq. (57) can be written as

U̇ =

3∑

i=1

λ̇i ni ⊗ ni +

3∑

i=1

∑

j 6=i

λiΩji nj ⊗ ni +

3∑

i=1

∑

j 6=i

λi ni ⊗ Ωjinj (62)

=
3∑

i=1

λ̇i ni ⊗ ni +
3∑

i=1

∑

j 6=i

(λj − λi) Ωij ni ⊗ nj (63)
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where the antisymmetry property Ωij = −Ωji has been used. The spectral decom-

position of the Generalized Strain Measure is of the form

E∗ =

3∑

i=1

f ∗(λi) ni ⊗ ni (64)

so following similar algebra, the rate of that measure is

Ė
∗
=

3∑

i=1

df ∗(λi)

dλi
λ̇i ni ⊗ ni +

3∑

i=1

∑

j 6=i

[f ∗(λj)− f ∗(λi)] Ωij ni ⊗ nj (65)

By inspection of the previous expressions we can establish a geometric mapping

tensor such that

Ė
∗
= M

Ė∗

U̇
: U̇ (66)

which is given in the principal deformation basis as —we use d(◦)/d(∗) to denote

total differentiation of a single-variable tensor-valued function (◦) with respect to its

tensor-valued argument (∗)

M
Ė∗

U̇
≡
dE∗(U)

dU
=

3∑

i=1

df ∗(λi)

dλi
M i ⊗M i +

3∑

i=1

∑

j 6=i

f ∗(λj)− f ∗(λi)

λj − λi
MS

ij ⊗MS
ij (67)

where we use the (full-symmetric) basis tensors

MS
ij =

1

2
(ni ⊗ nj + nj ⊗ ni) (68)

M i = MS
ii = ni ⊗ ni (no sum on i) (69)
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Moreover, if E† is another general strain measure

E† =
3∑

i=1

f †(λi) ni ⊗ ni (70)

a similar mapping tensor may be established between both general strain measures

such that

Ė
∗
= M

Ė∗

Ė† : Ė
†

(71)

M
Ė∗

Ė† ≡
dE∗

dE†
=

3∑

i=1

df ∗(λi)/dλi
df †(λi)/dλi

M i ⊗M i

+
3∑

i=1

∑

j 6=i

f ∗(λj)− f ∗(λi)

f †(λj)− f †(λi)
MS

ij ⊗MS
ij (72)

which existence should be obvious from physical grounds since the state of deforma-

tion of the medium is unique and we required a one-to-one relation between them

and the stretch tensor.

We can in general write

S : Ȧ = (S : MȦ

Ė∗) : Ė
∗
= T ∗ : Ė

∗
(73)

where we have defined the Generalized Stress Measure by the following purely geo-

metric relation

T ∗ := S : MȦ

Ė∗ = S :
dA

dE∗ (74)

For example, for the particular case of the material Logarithmic Strain tensor E we

can write

T := S : MȦ

Ė
= S :

dA

dE
(75)
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with

M
Ȧ

Ė
≡
dA

dE
=

3∑

i=1

λ2iM i ⊗M i +

3∑

i=1

∑

j 6=i

λ2j − λ2i
2(lnλj − lnλi)

MS
ij ⊗MS

ij (76)

relating the Second Piola-Kirchhoff stress tensor S (work conjugate of A) to the

Generalized Kirchhoff stress tensor T (work conjugate of E). Hence

τ : d = τ̄ : d̄ = S : Ȧ = T : Ė (77)

To understand why we call the tensor T Generalized Kirchhoff stress tensor, we

show now the relation between this stress tensor and the rotated Kirchhoff stress

tensor τ̄ . Note that

d̄ = RTdR = U−1ȦU
−1

= (U−1 ⊙U−1) : Ȧ = M
d̄

Ȧ
: Ȧ (78)

so

τ̄ : d̄ = τ̄ : Md̄

Ȧ
: Ȧ (79)

= τ̄ : (Md̄

Ȧ
: MȦ

Ė
) : Ė (80)

= τ̄ : Md̄

Ė
: Ė (81)

= T : Ė (82)

and we obtain the desired relationship

T = τ̄ : Md̄

Ė
(83)
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where the geometric mapping tensor Md̄

Ė
is

M
d̄

Ė
= M

d̄

Ȧ
: MȦ

Ė
(84)

The tensor Md̄

Ȧ
= U−1 ⊙U−1 projected in principal Lagrangian axes is

U−1 ⊙U−1 =

3∑

i=1

3∑

j=1

U−1
ii U

−1
jj ni ⊗ nj ⊗ ni ⊗ nj (85)

=

3∑

i=1

3∑

j=1

λ−1
i λ−1

j ni ⊗ nj ⊗ ni ⊗ nj (86)

which is clearly a fourth-order “diagonal” (in matrix notation) tensor. Thus, using

this last result and Equation (76), Equation (84) can be rewritten as

M
d̄

Ė
=

3∑

i=1

M i ⊗M i +

3∑

i=1

∑

j 6=i

λ2j − λ2i
2λiλj(lnλj − lnλi)

MS
ij ⊗MS

ij (87)

Projecting now T and τ̄ in the material principal strain directions and using Equa-

tion (83) and the previous expression for Md̄

Ė
, we get

T =

3∑

i=1

3∑

j=1

Tij ni ⊗ nj (88)

τ̄ =
3∑

i=1

3∑

j=1

τ̄ij ni ⊗ nj (89)
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with components

Tij = τ̄ij if i = j (90)

Tij =
λ2j − λ2i

2λiλj(lnλj − lnλi)
τ̄ij if i 6= j (91)

which somewhat explain the choice of the name Generalized Kirchhoff stress tensor

for the tensor T , since the diagonal components of T and τ̄ coincide when they are

represented in the basis of principal stretches. Moreover, in the case of two principal

stretches being equal, the next result holds

lim
λi→λj

λ2j − λ2i
2λiλj(lnλj − lnλi)

= 1 (92)

In the special case of the stretches being λ1 = λ2 = λ3, then (Md̄

Ė
)ijkl = (IS)ijkl =

1

2
(δikδjl + δilδjk) and T = τ̄ in this particular state of deformation. We also note

that Eq. (91) is readily obtained from Eq. (6.61) of Reference [8] using Eq. (82).

In fact, some of the previous results are given in Section 6.2.2 of that Reference, but

using a different presentation style.

Until now we have mainly worked with material measures made function of the

material stretch tensor U . However we note that we can also apply the same pro-

cedures to spatial measures, where the strain measures are function of the spatial

stretch tensor V obtained from the Left Polar Decomposition Theorem of the defor-

mation gradient

e∗ = f∗ (V ) (93)

In this case, similar expressions may be simply obtained with the substitution of the

directions of the principal stretches in the reference configuration by the spatial ones
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(rotated by R).

Interestingly, the two-point mapping tensors that relate material measures to

spatial ones may also be interpreted as partial gradients of one of the strain tensor

with respect to the other one. For example, consider the Almansi strain tensor of Eq.

(22) as a function of the Green–Lagrange strain tensor and the deformation gradient

tensor, i.e.

a(A,X) = X−TAX−1 (94)

Taking time derivatives and identifying terms we arrive at —we use ∂(•)/∂(∗) to

denote partial differentiation of a two-variable tensor-valued function (•) with respect

to the tensor-valued argument (∗)

ȧ = ȧ|
Ẋ=0

+ ȧ|
Ȧ=0

(95)

=
∂a (A,X)

∂A
: Ȧ+

∂a (A,X)

∂X
: Ẋ (96)

= X−T ⊙X−T : Ȧ−
(
X−T ⊙ a+ a⊡X−T

)
: Ẋ (97)

where we readily recognize the mapping tensor of Eq. (25)

∂a (A,X)

∂A
=

∂a

∂A

∣
∣
∣
∣
Ẋ=0

= X−T ⊙X−T ≡ M
d

Ȧ
(98)

This last interpretation means that two-point mappings (e.g. Md

Ȧ
) between pairs of

objective strain rates (e.g. Eq. (26)2) or between the associated power-conjugate

stress measures (e.g. Eq. (40)) are performed with the involved configurations

remaining fixed. Taking advantage of this concept, we may also interpret the Lie

derivative of a spatial measure as its time derivative with the current configuration
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being frozen, i.e. —recall Eq. (23)

ȧ|
Ẋ=0

=
∂a

∂A

∣
∣
∣
∣
Ẋ=0

: Ȧ = X−T ⊙X−T : Ȧ = X−T ȦX−1 ≡ d (99)

Consider now the two-variable function A(a,X) = XTaX. Following analogous

steps and invoking mechanical power equivalences we arrive at

τ = S :
∂A

∂a

∣
∣
∣
∣
Ẋ=0

= S :
∂A (a,X)

∂a
≡ S : MȦ

d (100)

Consider now that the material is hyperelastic. Then the second Piola–Kirchhoff

stress tensor S directly derives from a strain energy function per unit reference vol-

ume Ψ(A). Then, Eq. (100) let us interpret the Kirchhoff stress tensor as the partial

gradient of Ψ with respect to the spatial tensor a when its referential configuration

(i.e. the spatial configuration) is frozen. That is, the application of the chain rule of

differentiation yields —note the abuse of notation Ψ(A) = Ψ(A(a,X)) = Ψ(a,X)

τ =
dΨ (A)

dA
:
∂A (a,X)

∂a
=
∂Ψ (a,X)

∂a
≡
∂Ψ

∂a

∣
∣
∣
∣
Ẋ=0

(101)

Remarkably, unlike the traditional definition of the Kirchhoff stress tensor as the

push-forward operation τ = X(dΨ/dA)XT , this last expression gives a direct, easy-

to-interpret, definition of τ in terms of variations of Ψ.

The understanding of the independent variables from which another variable de-

pends on becomes greatly relevant for constitutive theories based on internal vari-

ables. Then, similar partial gradient operations to those introduced just above may

be defined between different configurations (reference, intermediate, current or what-

ever). The interested reader is referred to Refs. [14] and [15] to see the application
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of this mathematical, physically-based framework to large strain viscoelasticity.

At this point, we want to emphasize that until Eq. (101) no hypothesis has been

assumed in order to obtain all the previous results, so they are valid for any consti-

tutive equation. In particular, we want to note that the Generalized Kirchhoff stress

tensor T is work conjugate of the material Logarithmic Strain tensor E regardless

of the constitutive model being assumed for the material. That is, those tensors

are work-conjugate even for the most general anisotropic case. Now, if we assume

isotropic behavior, obviously all stress and strain material tensors commute and, as

a direct result in Eq. (91), Tij = τ̄ij = 0 for i 6= j. Hence, for isotropic constitutive

behavior, T = τ̄ (another reason for the choice of the name for T ) and T can be also

regarded to be power-conjugate of d̄.

In a general constitutive equation, the mapping tensors may be employed to

transform the constitutive tangent moduli relating strain increments and stress in-

crements. Assume just as an example that we have derived the constitutive tangent

C∗ for a generalized strain measure E∗ and its work conjugate stress measure T ∗

such that (note that time derivatives are objective for Lagrangian measures)

Ṫ
∗
=
dT ∗

dE∗ : Ė
∗
= C

∗ : Ė
∗

(102)

As usual in finite element codes, assume that we actually need the constitutive

tangent tensor C associated to Green-Lagrange strainsA and Second-Piola Kirchhoff

stresses S. Then

Ė
∗
=
dE∗

dA
: Ȧ = M

Ė∗

Ȧ
: Ȧ (103)

Ṫ
∗
=
dT ∗

dS
: Ṡ = M

Ṫ ∗

Ṡ
: Ṡ (104)
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Combining the previous equations we arrive to

Ṡ =

[(

M
Ṫ ∗

Ṡ

)−1

: C∗ : MĖ∗

Ȧ

]

: Ȧ (105)

=
[

M
Ṡ

Ṫ ∗ : C
∗ : MĖ∗

Ȧ

]

: Ȧ = C : Ȧ (106)

where the required tangent moduli are given in brackets. The explicit expression for

MĖ∗

Ȧ
is readily obtained from Eq. (72). Hence, only MṠ

Ṫ ∗
remains to be determined

in order to obtain C in terms of the (known) tangent moduli C∗. From Eq. (74)2,

the mapping tensor MṠ

Ṫ ∗ = dS/dT ∗ is obtained as

dS

dT ∗ =
dE∗

dA
: IS + T ∗ :

d2E∗

dAdA
:
dA

dE∗ :
dE∗

dT ∗ (107)

= M
Ė∗

Ȧ
+ T ∗ : LĖ∗

Ȧ
: (MĖ∗

Ȧ
)−1 : (C∗)−1 (108)

where we have used the major symmetry of dE∗/dA and we have defined LĖ∗

Ȧ
:=

d2E∗/dAdA as the sixth-order geometric tensor relating the rate of dE∗/dA and

the rate of A. Therefore

C = M
Ṡ

Ṫ ∗ : C
∗ : MĖ∗

Ȧ
(109)

= M
Ė∗

Ȧ
: C∗ : MĖ∗

Ȧ
+ T ∗ : LĖ∗

Ȧ
(110)

and both geometrical mapping tensors MĖ∗

Ȧ
= dE∗/dA and LĖ∗

Ȧ
= d2E∗/dAdA are

required in order to formally map the tangent moduli associated to one strain measure

to the tangent moduli associated to the other strain measure. However, in practice,

computing the fourth-order tensor T ∗ : LĖ∗

Ȧ
is computationally more efficient than

computing the sixth-order tensor LĖ∗

Ȧ
and then perform the two-index contraction.

Following similar lines as above, i.e. by inspection of the spectral decompositions
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of the rate of dE∗/dA and the rate of A (see Ref. [12] for the particular case of

logarithmic stress and strain measures), the explicit expression for T ∗ : LĖ∗

Ȧ
with

minor and major symmetries is found to be

T ∗ :
d2E∗

dAdA
=

3∑

i=1

F (λi) T
∗
ii M i ⊗M i (111)

+

3∑

i=1

∑

j 6=i

G (λi, λj)T
∗
ii M

S
ij ⊗MS

ij (112)

+

3∑

i=1

∑

j 6=i

G (λi, λj)T
∗
ij

(
M i ⊗MS

ij +MS
ij ⊗M i

)
(113)

+

3∑

i=1

∑

j 6=i

∑

j 6=k 6=i

1

2
H (λi, λj, λk)T

∗
ik

(
MS

ij ⊗MS
jk +MS

jk ⊗MS
ij

)
(114)

where

F (λi) = −
2

λ4i
(115)

G (λi, λj) =
8 (f ∗(λj)− f ∗(λi))− 4Λij/λ

2
i

Λ2
ij

(116)

H (λi, λj, λk) = 8
−Λjkf

∗(λi)− Λkif
∗(λj)− Λijf

∗(λk)

ΛijΛjkΛki

(117)

with Λij = λ2j − λ2i . Note that H (λi, λj, λk) = H (λj, λi, λk) = H (λi, λk, λj) =

H (λk, λj, λi) but that G (λi, λj) 6= G (λj, λi). Furthermore, when two or three prin-

cipal stretches converge to the same value we obtain

H (λi, λj , λk → λi) = G (λi, λj) (118)

H (λi, λj → λi, λk → λi) = G (λi, λj → λi) = F (λi) (119)
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and so forth.

5. Example

In this example we see how work-conjugate stress and strain measures may be

employed to naturally extend the small strains plasticity theory to large strains.

As usually done, we decompose the total small strains rate tensor into elastic and

plastic parts ε̇ = ε̇e + ε̇p so the stress power per unit volume is

P = σ : ε̇e + σ : ε̇p (120)

We can interpret the strain rate split as

ε̇e (ε̇, ε̇p) = ε̇− ε̇p = ε̇e|ε̇p
=0

+ ε̇e|ε̇=0
(121)

where the first addend is the elastic predictor rate and the last addend is the plastic

corrector rate. By subscript ε̇p = 0 we generically imply that no plastic flow is

taking place when performing the derivative and by subscript ε̇ = 0 we imply that

the system is mechanically isolated. This last contribution may be divided into two

parts accounting for microstructural elastic strain rates and microstructural plastic

dissipation

ε̇p ≡ − ε̇e|ε̇=0
= ε̇pe + ε̇pd = − ε̇e|ε̇=0,conservative

− ε̇e|ε̇=0,dissipative
(122)

Then, the internal power may be enlarged with two terms which cancel out each
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other

P = σ : ε̇e + σ : ε̇p = σ : ε̇e + σ : ε̇p + spe : ε̇pe + spd : ε̇pd
︸ ︷︷ ︸

= 0

(123)

where spe and spd are stress-like internal variables. The free energy is written as

ψ = Ψ (εe) +H (εpe). Then the dissipation equation takes the form

D = P − ψ̇ =

(

σ −
dΨ

dεe

)

: ε̇e + σ : ε̇p +

(

spe −
dH

dεpe

)

: ε̇pe + spd : ε̇pd ≥ 0 (124)

Following the Coleman-Noll procedure, since the equality holds for purely elastic

responses σ = dΨ/dεe. During plastic flow there is an additional part of the internal

energy which is not dissipated taking (these are proportional to the backstresses)

spe =
dH

dεpe
≡ β, (125)

The plastic dissipation is now

Dp = σ : ε̇p + spd : ε̇pd

= σ : ε̇p − spe : ε̇pe ≥ 0 (126)

If one considers, by convention, the typical form of the yield function fy (σ − β, κ)

where κ is a material parameter, then we can establish the Lagrangian

L = σ : ε̇p − β : ε̇pe − ṫfy (127)
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so ∇L = 0 implies

ε̇p = − ε̇e|ε̇=0
= ṫ ∂fy/∂σ (128)

ε̇pe = −ṫ ∂fy/∂β = ṫ ∂fy/∂σ (129)

i.e. ε̇pe = ε̇p, which emerges as a result of the usually adopted convention for

fy (σ − β, κ). The associated hardening rule results into

ṡpe =
d2H

dεpedεpe
: ε̇pe = 2

3
Hṫ ∂fy/∂σ (130)

where H is the usual uniaxial kinematic hardening modulus. Note that

Dp = (σ − β) : ε̇p = − (σ − β) : ε̇e|ε̇=0
≥ 0 (131)

In References [25][26] we have shown that logarithmic strains may be interpreted

as the integral of engineering strains through a fictitious path. Furthermore, Anand

[23, 24] has shown that engineering constants for small strains may be applied to

large logarithmic strains to obtain a good prediction of the material behavior up to

moderate large strains. Hence, the choice of logarithmic strain measures is some-

how justified for finite elastoplasticity modelling. From the Lee decomposition, we

readily obtain the dependences —cf. Ref. [14] for the analogous case of the Sidoroff

decomposition

Ee = Ee(E,Xp) (132)

Hence, taking the total logarithmic strain tensor E and the plastic part of the defor-

mation gradient Xp as the independent variables of the problem at hand, the time
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derivative of the elastic logarithmic strain tensor Ee yields

Ė
e
= Ė

e
∣
∣
∣
Ẋ

p
=0

+ Ė
e
∣
∣
∣
Ė=0

= trĖ
e
− Ė

p
(133)

which is to be compared to Eq. (121). The tensor trĖ
e
is the rate of elastic strains

when plastic flow is frozen (i.e. the rate of the trial elastic strains) and Ė
p
is the

rate of the plastic correction. Then, using the work-conjugate stress measures, we

can write

L = T : Ė
p
−B : Ė

pe
− ṫf̄y (134)

where f̄y (T −B, κ̄) is the yield function. It can be seen that a parallel frame to that

of small strains is recovered. We here note that Eq. (133) does not imply the use of

a plastic metric because it is evaluated in rate form. For example, the (incremental)

integration of Eq. (133) using a backward-Euler scheme becomes

t+∆t
tE

e ≡ t+∆t
0E

e − t
0E

e = trEe − t
0E

e −∆t
∂f̄y
∂T

∣
∣
∣
∣
t+∆t

(135)

which is the typical update expression used in the integration algorithms for large

strains computational plasticity, see form example [17] and [21] and in finite vis-

coelasticity [13][14][15]. However, we note that Expression (135) is employed here as

a consequence of Eq. (133) whereas in the mentioned references for elastoplasticity

it is employed as a consequence of an algorithmic approximation of the integration

of the plastic deformation gradient using the exponential mapping (see [16])

t+∆t
0X

p = exp
(
∆t t+∆tLp

)
t
0X

p (136)
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so

t+∆t
0X

e = t+∆t
0X

t+∆t
0X

p−1 = t+∆t
0X

t
0X

p−1 exp
(
−∆t t+∆tLp

)
(137)

Upon the usual assumption of vanishing plastic spin and the assumption for the flow

rule

Dp = ṫ
∂f̄y
∂T

⇒ exp
(
−∆t t+∆tDp

)
≃ I −∆t t+∆tDp (138)

and the definitions

Ee = 1

2
log (Ce) = 1

2
ln
(
XeTXe

)
(139)

trEe = 1

2
log
(
trCe

)
= 1

2
ln
(
trXeT trXe

)
(140)

the plastic correction results into Eq. (135), see [16][17][21]. We note also that

although T is not coincident with the symmetric part of the Mandel stress tensor,

the difference may be neglected for practical purposes [21]. Similar frameworks using

plastic metrics can be found in [19] and [20].

Then, the development of a large strains algorithm which keeps the structure

of the small strains parent algorithm becomes a simple task. Furthermore, the al-

gorithmic tangent can also be computed using the general Eq. (110) employing

logarithmic strains and generalized Kirchhoff stresses as the (∗) stress and strain

measures. This expression is simpler than that given in [21] and does not employ

any further approximation.

Other similar examples may be found in Refs. [14] and [15] for the case of

anisotropic finite non-linear viscoelasticity based on logarithmic stress and strain

measures.
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6. Conclusions

The purpose of this paper is to remark that a mapping tensor may be constructed

to transform any arbitrary strain measure in any other strain measure. We present

the mapping tensors for many usual strain measures and also for general ones. These

same mapping tensors may also be used to transform the work-conjugate stress mea-

sures and the corresponding constitutive tensors. An important point is that the

transformations are valid regardless of any constitutive equation employed for the

solid. Then, as a result the choice of the particular stress and strain measures may

be considered simply a matter of convenience. Advantage of this fact may be taken

in order to simplify the form of constitutive equations and their numerical implemen-

tation and thereafter, perform the proper geometric mappings to convert the results

to usually employed measures. In fact, this procedure has already been applied in

the past to large-strain anisotropic computational elasto-plasticity using logarithmic

stress and strain measures and recently to anisotropic computational finite strain

viscoelasticity. Stress, strain and moduli transformations may also be used to select

the input and output measures at the user convenience in a finite element program,

where the deformation gradient is readily available to perform such operations.
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