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A B S T R A C T

Skin is a biological material which mechanical behavior has large variations depending on the individual and the
location of the specimen in that individual, among other factors. Large differences are also encountered in
measurements between in vivo and in vitro specimens. Then, optimal characterization of the skin for simulation
(for example) of surgical procedures requires that all experiments to characterize the material behavior be
performed on the same specimen and in vivo if possible. Recent experiments on circular discs (Groves et al.,
2013 [16]) permit this characterization using a single specimen as we show in this paper, and may constitute a
good starting point for ulterior characterization in vivo. However, because in these tests deformations are not
homogeneous, the determination of the material behavior is not as direct as with tensile or biaxial tests, so finite
element analysis is needed to propose a procedure to determine the material behavior. In this work we perform
an analysis of the experiments using finite elements obtaining an insight which permits a very simple iterative
procedure to determine the stress-strain behavior of the material and, thereafter, the corresponding What-You-
Prescribe-Is-What-You-Get (WYPiWYG) stored energy densities.

1. Introduction

Skin is the largest organ of the human body, the one with most
contact with the environment and which accounts to about the 15% of
the body weight [15]. Skin is a very complex organ that has three well-
defined and interconnected structural and functional units, namely:
epidermis, dermis and hypodermis (from the external surface to the
inner surface). In all the units of skin tissues there are cells and
extracellular matrix (ECM), mainly collagen, elastin and proteoglycans.
Additionally, other specific structures such as blood vessels, nerves,
and glands are may be present in certain units. From a mechanical
point of view the dermis, and more precisely, the ECM is the
component mostly responsible for the observed mechanical behavior.

Mechanical properties of skin have been measured in vitro follow-
ing diverse techniques, see for example [8,3,37,45,17,34,44,50,51,23].
However, even though freezing specimens for conservation does not
affect mechanical properties [13], the mechanical behavior of skin has
a large variability which strongly depends on the individual and on the
location in the body [15,3,17], as well as in the presence of skin
pathologies [14]. Mechanical properties also change with the length
scale [18], with sex [2], humidity [54,41,18], temperature [41,25,55],
overall health condition [15], environmental damage [35], etc.
Therefore, it is apparent that for obtaining reliable sets of experimental

curves that can be used in the characterization of constitutive models,
experiments should be performed in the same specimen or otherwise in
the same individual in very nearby locations. Averaging or mixing
experimental data from different specimens may result in an unphy-
sical behavior [43] because in fact, the result does not correspond to
that of any real, existing material. To this end, in vivo testing in
preferred. Several techniques have been applied as indentation tests in
[40,39], surface waves in [33], air pressure in [7], suction in [19],
mechanical movement in [12] also added to digital image correlation in
[11], and even in in vivo but boundary-free configurations obtained by
surgery in [6]. Obviously, although more difficult and more expensive,
true biaxial tests are to be preferred in characterizing biological tissues
because it allows for the determination of coupling terms in the stored
energy function. However, because of the complex anisotropic struc-
ture of the skin, all these experiments are difficult to use in developing
finite element simulations to model completely the mechanical re-
sponse of the skin in a general configuration and in a wide range of
possible deformations, which is the purpose if finite element simula-
tions of surgery in organs are to be performed.

The experiments of [16] are of special relevance because, even being
ex vivo, several relatively simple tests are performed on the same
specimen. This is thanks to the circular shape of the specimen which
allows to test the material in a similar way as it is done for tensile tests but
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in different directions. We will see herein that despite being nonhomo-
geneous tests, they can be assimilated to equivalent homogeneous tests,
and furthermore, the tissue outside the gauge section has little influence.
Thus, an extrapolation of the methodology for in vivo testing and then
address patient-related simulations seems to be natural and promising.
However, the hypothesis of homogeneity of the stress field typically
assumed in tensile tests is, in principle, questionable for the tests at hand.
In fact, Groves et al. [16] did not consider a homogeneous stress field and
performed finite element analysis to develop a complex inverse analysis to
determine the parameters of their constitutive model. The use of
optimization algorithms and of inverse analyses using finite element
meshes are frequent in the biomechanics literature, see for example
[5,11,24,52,22] and [1]. In this work we analyze some experiments in Ref.
[16] in order to establish a simple methodology which allows us to
perform accurate predictions on the behavior observed in the experiments
without employing optimization algorithms or material parameters. In
contrast to the work of [16] and accepting the current difficulty in
developing a structure-based model which accurately accounts for the
explained complex multilayer structure of the skin and is still efficient for
finite element simulations, we employ herein the new What-You-
Prescribe-is-What-You-Get (WYPiWYG) methodology [47,27,28], which
has been employed successfully in capturing the behavior of other soft
biological materials, see [27,32] and [31]. The procedure herein intro-
duced is intuitive and uses a nonlinear iterative procedure to determine
the effective length and effective area from which stress-strain curves may
be obtained. These stress-strain curves are captured by the WYPiWYG
procedure. Then, the finite element analysis of the experiments predict the
load-displacement curves with excellent accuracy. To the best of our
knowledge, this type of simple deterministic analysis has not been done in
the literature for obtaining the material behavior in soft tissues from
nonhomogeneous tests, where the use of costly optimizations, giving non-
unique material parameters, is usual.

The rest of the paper is organized as follows. We first briefly review
and comment the experiments of Groves et al. [16] to be analyzed
herein. Then, in order to explain the ideas in a simple context, we
analyze the experimental setting under an isotropic small strains model
and an isotropic Ogden model with parameters typical for skin.
Thereafter we review the WYPiWYG model and introduce an improve-
ment in the computational algorithm. Afterwards, we explain the
iterative process for inverse analysis, perform stress-strain predictions
and obtain the resulting load-displacement curves which are compared
to those obtained experimentally by Groves et al. [16]. Finally we
discuss the approach and make some conclusions.

2. Experiments and parameter-fitting procedure from
Groves et al. [16]

As mentioned, in [16] a new experimental procedure to characterize
soft biological tissues is introduced, and used therein to characterize
human and murine skin. The procedure was based on three different
tensile tests on circular skin specimens. The use of circular specimens
allowed them to conduct the test in the same material, provided that no
damage nor permanent deformation is introduced to the specimen.

Human skin samples were obtained from two different donors.
Murine samples were obtained from eight donors. For the murine
samples equivalent orientations were recorded whilst for human
samples these orientations were not recorded. For each specimen,
three tensile tests were conducted in directions corresponding to 0°,
45°, and 90°with a common reference, which is the centerline of the
back, see Fig. 1. Hence 0o naturally corresponds to a symmetry plane.
The corresponding load-displacement curves for each test were
obtained. An example of this set of curves is shown in Fig. 2. Special
grips were designed in order to hold the skin correctly in the tensile
tests and applying a constant pressure in the jaw faces during the test.
The maximum load in the tests was limited to ensure that no
permanent damage occurred to the samples.

A further study on the mechanical properties of the skin was
conducted by the authors based on the data retrieved from the tests. An
anisotropic structure-based hyperelastic model was chosen to char-
acterize the hyperelastic response of the skin. The material behavior
was modeled using three layers of transversely isotropic hyperelastic
material with a different family of fibers for each layer. For each layer
the strain energy function was written as a function of the classical
invariants, the stretch in the fibers and the jacobian determinant, as

Ψ F I I F λ K J= ( , ) + ( ) +
2

( ln )1 1 2 2
2

(1)

where F I I( , )1 1 2 corresponds to the isotropic matrix modeled by Veronda
and Westmann [49]. The families of fibers were modeled based on the
stretch of the fibers λ as indicated by the contribution F λ( )2 proposed by
Weiss et al [53].

The parameters were fitted for each specimen using optimization to
reproduce as close as possible the experimental results. A finite element
model with the material was implemented in order to reproduce the
tests. Few computational details are given about the actual minimiza-
tion procedure followed during the simulations. They report that the
optimization procedure followed the Simplex algorithm connected to
finite element analysis and that the maximum number of iterations
allowed were 1500. The authors report that the optimization procedure
presented great sensibility to the changes in the parameters and that
only a local minimum is obtained, a frequent observation found in
other works employing optimization procedures for determination of
material parameters in soft materials, and that will not be present in
our analysis. The authors include a volumetric term, but the associated
bulk modulus is not given nor included in the optimization procedure,
probably because the material is assumed quasi-incompressible and,
hence the specific value is usually irrelevant for the purpose. The finite
element mesh was made of standard solid elements.

The disc dimensions were assumed constant. The diameter of the
disc was 31 mm and the thicknesses were assumed 1.86mm and
0.265mm for the human and murine skin, respectively. Clamps were
modeled using contact in an area of 15 × 2mm2. Even though the
constitutive model may result in a strongly anisotropic behavior, the
authors used only one quarter of the disc in order to save computa-
tional time in the probably very time consuming optimization proce-
dure. Because in our work the computational times are small, we do not
need to take this simplification and, hence, we have considered the full
disc. However, despite that simplification (justified below by computa-
tional results) Groves et al [16] report excellent fittings for all three
tests in skin from all donors.

3. Comparison of rectangular specimens and circular
specimens

The circular specimens introduced in the tests [16] differ from the
rectangular specimens used to characterize the constitutive behavior in
uniaxial tension of tissues. In uniaxial tests of metals it is typical the
use of specimens with gauge length-to-width ratios of 4, see for
example 4:1 for rectangular specimens in the US ASTM:E8 standard [4]
and in the ISO [20] one. Grip distance-to-width ratios are even larger,
orders of 7:1 are usual [20]. These aspect ratios are required in order to
be able to consider uniaxial test boundary conditions and uniform
deformations in the cross section. An experimental study on the strain
distributions in metals along the gauge length [42] showed that for a
4:1 ratio this distribution was uniform over an 80% of the width in the
central section of the gauge length. However, for the circular specimens
used [16] the gauge section presents a ratio of 1:1, i.e. the ratio of the
distance between clamps (15 mm) to the width of the clamps (15 mm).
Within the small strain regime, one should not expect a uniaxial stress
state in the central cross-section of circular specimens, but in the non-
linear regime the situation may change. Indeed, the particular non-
linear response that skin exhibits gives as a result a transverse behavior
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in the tests which is different from the transverse behavior obtained
within the linear range. This important observation will allow us to
consider lower uniaxial specimen ratios than the ones recommended
in [4,20,42]. Furthermore, it will be seen in the finite element
simulations in discs that the material outside the 1:1 gauge section
has little influence in the observed load-displacement behavior. This
section focuses on the comparison of rectangular specimens with
circular specimens and also on the influence of the stress-strain
response of the skin in both tests through both analytical calculations
and finite element simulations.

3.1. An analogy: the bilinear model

The main difference between a high length-to-width ratio specimen
and a low length-to-width ratio specimen, both subjected to uniaxial
loading, is the transverse response in their respective central cross-
sections. Conventional materials undergo positive transverse contrac-
tion (i.e. negative transverse strains) under simple tension tests and the
same obviously holds for at least some biological tissues, see [46].
Hence, the compression part of the strain energy function being

considered is being assessed even in uniaxial tensile tests. Its con-
sideration becomes extremely important when the corresponding
strain energy density is being determined from experiments and may
explain very important issues frequently encountered in the literature
from lack of uniqueness and lack of convexity of the hyperelastic
models determined from tensile tests, see [26]. From a purely
academical standpoint, we may study the non-linear finite-strain
behavior of biological tissues under uniaxial loadings, in which the
compression branch is present and which may be different to the
tension branch, through a bi-linear small-strain model with different
behavior in tension and compression. For the matter of simplicity in
the exposition, we consider isotropic constitutive laws in the present
analysis, but the conclusions apply to the anisotropic case.

Consider the following distortional strain energy function—ε1, ε2
and ε3 stand for the isochoric principal engineering strains

ε ε ε ω ε ω ε ω ε( , , ) = ( ) + ( ) + ( )1 2 3 1 2 3 (2)

with ω ε( ) being piecewise bi-quadratic—we say that the model is bi-
linear because the stress-strain response is bi-linear, as we see below

⎪

⎪

⎧
⎨
⎩ω ε

μ ε ε
μ ε ε

( ) =
if < 0
if ≥ 0

c

t

2

2
(3)

where we use the subscripts c and t to refer to compression and
tension, respectively.

The (principal) Cauchy stresses that directly derive from the stored
energy of Eq. (2) are—we consider the material as perfectly incom-
pressible

σ ω ε p= ′( ) +1 1 (4)

σ ω ε p= ′( ) +2 2 (5)

σ ω ε p= ′( ) +3 3 (6)

where p is an initially undetermined pressure-like variable to be
determined from the boundary conditions of the specific test under
study (from a mathematical point of view, p is the Lagrange multiplier
associated to the incompressibility constraint ε ε ε+ + = 01 2 3 ). We
consider herein that the face which normal direction is direction 3 is
stress-free, so σ = 03 and the previous in-plane equations reduce to

σ ω ε ω ε= ′( ) − ′( )1 1 3 (7)

σ ω ε ω ε= ′( ) − ′( )2 2 3 (8)

In the present analysis, direction 1 will represent the loading direction,
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Fig. 1. Experiments of Groves et al. [16] on murine skin: orientation and layout of the specimens.
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Fig. 2. Experimental load-displacement curves after [16] (Fig. 5a Anterior). Blue, green,
and red correspond to measurements at 0°, 45° and 90°, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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direction 2 will represent the transverse direction and, as mentioned,
direction 3 will be the normal (through the thickness) direction.

In a rectangular specimen with a high enough gauge aspect ratio
(e.g. 4:1 or higher), it may be considered that the transverse contrac-
tion in the central cross-section is not restricted at all because the
lateral restriction effect caused by the grips is far enough. Hence
reaction stresses σ2 are not present in the central section and the
stress-strain response is effectively uniaxial. For a tensile load in
direction 1 (σ σ= > 0u1 , σ σ= = 02 3 , with subindex u indicating uniaxial
test) we obtain

ω ε ω ε μ ε μ ε0 = ′( ) − ′( ) = 2 − 2c c2 3 2 3 (9)

ε ε ε⇒ = = − /2 < 02 3 1 (10)

and

σ ω ε ω ε μ ε μ ε= ′( ) − ′( ) = 2 +u t c1 3 1 1 (11)

μ μ ε ε= (2 + ) with > 0t c 1 1 (12)

In a specimen with a low aspect ratio – e.g. a square specimen or a
circular specimen with an equivalent rectangular test area with aspect
ratio of 1:1 as that of [16] – the transverse contraction in the central
cross-section is restricted to some extent because the grips are close to
that section and the lateral restriction effect caused by them (and also
by the extra material outside the main testing surface if we consider the
circular specimen) cannot be neglected. Reaction stresses σ > 02
appear in the central section as a consequence and the stress-strain
response is no longer uniaxial. In this analytical study case, we consider
for now the most unfavourable situation in which the transverse
deformation is fully restricted, i.e. ε = 02 . The conclusions raised for
this limit case will be applicable (to a greater extent indeed) to the real
case for which ε ε− /2 < < 01 2 .

For a tensile load in direction 1 in the fully restricted case
(σ σ= > 0fr1 , ε = 02 , σ = 03 with subindices fr indicating fully restricted,
plane strip test) we obtain

ε ε ε= 0 ⇒ = − < 02 3 1 (13)

and

σ ω ε ω ε μ ε μ ε= ′( ) − ′( ) = 2 + 2fr t c1 3 1 1 (14)

μ μ ε ε= (2 + 2 ) with > 0t c 1 1 (15)

We observe that σ σ<u fr for a given ε > 01 . It is straightforward to
obtain that in an actual restricted case the axial stresses σr in direction
1 are such that σ σ σ< <u r fr . Furthermore, in general ε ε≥1 3 .

We now take advantage of the analogy between the non-linear
response of skin and this bi-linear model. The axial stiffness (with
“stiffness” we refer to second derivatives of the strain energy) that these
biological tissues present for large extensions in the test direction (i.e.
positive strains) is usually much higher than the stiffness in the
transverse direction (i.e. negative strains, either restricted or free).
We can elucidate the consequences of that specific behavior just
considering μ μ⪡c t in the foregoing bi-linear analysis. In such a case,
the uniaxial tensile stresses of Eq. (12) are

σ μ μ ε μ ε ε= (2 + ) ≃ 2 with > 0u t c t1 1 1 (16)

and the axial tensile stresses of the fully restricted case of Eq. (15) are

σ μ μ ε μ ε ε= (2 + 2 ) ≃ 2 with > 0fr t c t1 1 1 (17)

Since σ σ σ< <u r fr, we note that the axial tensile stresses σr in an actual
restricted case are also σ μ ε≃ 2r t 1.

Thus, the main conclusion of this section is that, for materials
fulfilling the hypothesis of much larger stiffness in tension than in
compression, the lateral restriction effect does not modify, in practice,
the axial stresses during a non-uniaxial tensile test. Note that in the
general nonlinear case, specially in soft biological tissues presenting the
typical J-shaped stress-strain curve, since ε ε| | > | |1 3 , this will happen at

large strains even if tension and compression branches are symmetric.
Then, we will be able to approximate the axial stresses σr in the central
cross-section of skin circular specimens (with an equivalent rectangular
aspect ratio of 1:1) as if they were uniaxial stresses, i.e. σ σ≃u r. In other
words, we can consider circular specimens as uniaxial specimens. The
additional consideration of an effective reference cross-sectional area,
due to the fact that the specimen is circular and not a perfect square,
will allow us to obtain the strain energy density of the skin following a
very simple, intuitive, engineering-based procedure.

Finally, considering the case μ μ μ= =t c in the previous fictitious bi-
linear model we recover the actual linear deviatoric strain energy
function, for which ω ε με( ) = 2 presents a continuous second derivative
(stiffness) value in the origin, i.e. the reference Lamé parameter μ. In
that case, the uniaxial tensile stresses of Eq. (12) are

σ με= 3u 1 (18)

and the axial tensile stresses of the fully restricted case of Eq. (15) are

σ με= 4fr 1 (19)

so σ σ σ≠ ≠u r fr , which in turn explains why specimens with low aspect
ratio cannot be regarded as uniaxial ones in the small strain (linear)
regime. These observations are also illustrated in the next section,
where we perform finite element analyses of these non-homogeneous
deformation states.

3.2. Finite element analysis: linear and Ogden models

As mentioned, skin has a particular uniaxial behavior at the
continuum level [8,10]. Specifically, three stages can be differentiated.
In the first one, the stiffness is low and is followed by a highly nonlinear
stage where stresses grow rapidly. The response is linear again with the
displacement during the third stage. This characteristic stages can also
be observed in the load displacement curves in Fig. 2. This particular
behavior induces large (exponential-type) variations in the tensile
stresses. This behavior suggests our hypothesis discussed above, i.e.
that the stress (and local stiffness) in the testing direction of a circular
specimen loaded in tension is much higher than the stress (and local
stiffness) in the transverse direction, so the resulting stress state in the
central cross-section of the specimen may be considered almost
uniaxial, similar to the case of metals for ratios greater or equal than
4:1 (where transverse strains evolve freely and transverse reaction
stresses vanish in practice).

To illustrate this observation, finite element simulations have been
conducted in the general-purpose commercial finite element code
ADINA. Rectangular specimens of 1.86 mm thick, 15 mm width and
varying length of 15 mm (1:1 aspect ratio) and 60 mm (4:1 aspect
ratio) were analyzed using a linear elastic and a skin representative
Ogden material. In this analysis, the X direction corresponds to width
(principal direction 2 above), Y to thickness (principal direction 3
above) and Z to length (principal direction 1 above). One of the edges
was clamped as boundary condition (displacements restricted in the
three degrees of freedom) and the load was applied at the other edge
imposing the displacement in the loading direction (Z) and constrain-
ing the remaining displacements. The elements used in all the
simulations in this paper are fully integrated 27-node tri-quadratic
finite elements with mixed u p− formulation and linear pressure to
prevent volumetric mesh locking and reproduce adequately possible
shear deformations. A nearly-incompressible behavior is enforced
through a penalty volumetric stored energy of the form

J K J( ) = ( − 1)1
2

2
(20)

where J is the Jacobian determinant of the deformation gradient and
K = 10 Pa8 is the penalty parameter (i.e. the equivalent bulk modulus),
high enough to guarantee quasi-incompressibility in all the computa-
tional domain, still avoiding numerical conditioning problems. For the
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linear elastic material the parameters we used are E = 1Pa and ν = 0.3
and we imposed an engineering deformation of 1%. The strain energy
density for Ogden's model is given by [38]

( )∑λ λ λ
μ
α

λ λ λ( , , ) = + + − 3
p

N
p

p

α α α
1 2 3

=1
1 2 3

p p p

(21)

where μp and αp (p=1,…,N) are material parameters. For this analysis,
skin was modeled using only N=1, μ = 10 Pa and α = 26 following the
values obtained from experiments in [11]. For the linear elastic
material, a small strain framework was considered while for the
Ogden material large strains up to stretches of λ = 1.67 were studied.
In the linear case, only one level of strain was considered for obvious
reasons, while for the Ogden case the influence of strain level was
evaluated accordingly.

From the simulations, the stress distributions along the width of the
rectangular specimens were extracted for a cross section located in the
middle of the length of the specimen, see Fig. 1. The distributions of
stresses in the loading direction σzz normalized with the maximum
stress are plotted in Fig. 3. For the linear elastic case, results show that
stresses are uniform along the width of the sample for the 4:1 aspect
ratio. However, if the aspect ratio is reduced to 1:1 there is a peak
variation of parabolic aspect for the stresses along the width. The effect
is due to the proximity of the clamps to the central zone, which
introduce a transverse restriction that vanishes for the 4:1 aspect ratio.
Remarkably, for the Ogden model the distributions obtained present a
flat area for the 1:1 case. For increasing strain levels, where the effect of
the nonlinear behavior is higher, this distribution becomes flatter. In
the region close to the edges the difference with the maximum also
becomes smaller as the stretch increases. In the 4:1 aspect ratio, results
are similar to the linear elastic material, where the effect of the larger
length predominates.

Once the flat stress distribution was confirmed for the Ogden
representative material, the uniaxial tension hypothesis is analyzed.
The difference in the order of magnitude between the stress in the
testing direction σzz and the transverse direction σxx is indicated in
Fig. 4. Note that the difference in orders of magnitude is represented
through the logarithm. For most configurations the difference is larger

than 3 orders of magnitude in the central section of the specimen (i.e.
the cross-section at half the distance between grips). The lowest
differences, between 1 and 2 orders of magnitude, appear for the 1:1
linear elastic specimens and for the smallest strain of the 1:1 Ogden
model, where the linear material behavior predominates. An increase
in the strain in Ogden's model implies that there is a higher difference
between the axial (tension) and the transverse (compression) stiffness.
This observation is in line with the stress-strain nonlinear behavior of
skin. When the aspect ratio is increased to 4:1, the difference is even
higher. These results confirm the uniaxial tension in the specimens. As
a consequence, for materials presenting this type of highly nonlinear
tension-compression responses, tests conducted on 1:1 samples can be
suitable for characterizing the stress-strain response directly using an
appropriate equivalent area as defined later in this section (due to the
actual circular shape).

Once the suitability of 1:1 aspect ratio specimens for this type of
tissues has been acknowledged, the analysis is extended to circular
specimens. The main advantage of using circular specimens instead of
rectangular ones is that different directions can be tested in the same
sample to characterize anisotropic behavior. As mentioned, the use of
the same specimen is remarkably important in biological tissues in
general, and skin in particular, given the variability of the properties
along samples.

A finite element model of the disc was created in ADINA. The
diameter of the disc is 31 mm and its thickness is 0.265mm. The loads
and boundary conditions imposed are indicated in Fig. 5. A displace-
ment load was imposed in the volume under the clamps. This differs
from the model by Groves et al. where contact was introduced, but this
difference is not relevant for conclusions raised in this work.

Similar results to those of the rectangular specimens are analyzed.
The stress distribution in the direction of testing (global axis Z) in the
mid plane (global XY plane, see Fig. 5) of the circular specimen is
plotted in Fig. 6 for varying displacement between clamps u. The
results indicate that the stress curves are flat in the central section of
the specimen. In this case, despite the aspect ratio of the gauge zone
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Fig. 3. Stress distributions in the uniaxial tests for the rectangular specimens for
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Fig. 4. Order of magnitude of the ratio in the stress distributions in the load direction
and the transverse direction in the uniaxial tests for the rectangular specimens for
different aspect ratios, materials and levels of strain.
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being 1:1, the nonlinear material behavior results in a flat distribution
as in the cases of 4:1 for linear elastic materials. From the simulation it
was verified that the stretch in the central element of the specimens
presents good agreement with the strain calculated using the relative
displacement of the clamps and the distance between the edges of the
clamps (15 mm). The corresponding stress distribution for the disc is
represented in Fig. 7. It is clearly seen in the figure that the load path is
concentrated in the central square region of the specimen and that the
lateral restriction is small.

The stress distributions for the disc shown in Figs. 6 and 7 suggest
the definition of an effective area for the tensile test. The purpose of the
definition of this area is to relate directly the loads and the stresses in
the model. For a rectangular sample with aspect ratio equal or larger to

4:1 it can be observed that the stresses in the cross sectional area are
constant. However, in the disc the lateral boundaries of the ideal
rectangular loading path (gauge section) are not free, but constrained
by the behavior of the surrounding material. Nonetheless, the effect of
the nonlinearity of the material described with the rectangular samples
is also present.

Using the calculated stress distributions in the mid plane of the
circular specimen, the effective area is defined as the rectangular cross-
sectional area that a uniformly stressed uniaxial specimen with the
stress in the mid plane would have to result in the same reaction, i.e.
integral of the nominal stress distribution over the undeformed central
cross-section. This area Aeff is expressed as

∫A
P

PdA F
P

= 1 =eff
uni A uni (22)

where P is the nominal (first Piola–Kirchhoff) axial stress distribution
in the direction of the test (Z-direction), Puni is the nominal stress in
the center of the specimen (taken as the stress of the equivalent
uniaxial specimen), A is the disc cross-sectional area in the reference
configuration and F is the applied load. Since the stretch λ in the
loading direction is uniform in the central (loaded) region of the mid
plane XY, we can alternatively compute the reference effective area in
terms of the distribution of axial Cauchy stresses σ Pλ= within the mid
plane

∫A
σ

σdA≃ 1
eff

uni A (23)

The calculated effective widths w A h= /eff eff , where h = 0.256mm is the
thickness of the sample, for the Ogden material model are plotted as
dashed lines for the different loads (displacement between clamps) in
Fig. 6. Remarkably, the results shown in Fig. 6 demonstrate that, in
practice, the equivalent cross-sectional area is almost constant regard-
less of the load level in this case. This observation is very important
because it means that the concept of effective area gives a unique value
valid at all stress levels and it may be considered as a geometric
characteristic of the specimen. Furthermore, the stress distributions
given in Fig. 6 indicate that the most relevant part in the behavior is the
zone of the specimen within the gauge section, an observation which is
relevant for in vivo testing.

4. WYPiWYG transversely isotropic hyperelasticity

As mentioned in the Introduction Section, the approach developed by
[16] is relatively frequent in biological tissues and relies on a parametric
fitting of the hyperelastic model following optimization algorithms and
using an inverse iterative procedure with finite element analyses. We
describe herein an alternative procedure that uses a phenomenological
hyperelastic model based on the What-You-Prescribe-is-What-You-Get
philosophy. As a main difference with classical models, WYPiWYG
hyperelasticity models do not follow any optimization procedure in order
to determine the model parameters from experimental data fittings. In
fact, WYPiWYG models do not have explicit material parameters. Instead,
solution points of the strain energy function decomposition being
proposed are exactly calculated (i.e. to any required precision) from
experimental data points and then interpolated using cubic splines. As a
result, the spline-based representation of the strain energy density
function exactly reproduces the experimental data points being initially
prescribed. The incompressible isotropic model [47] was generalized for
transverse isotropy [27] and orthotropy [28], and for compressible
isotropic materials as well [9]. An interesting feature of these models is
that they need the same number of curves to determine the energy
function as the number of independent constants needed to define the
associated infinitesimal model. For example, one complete uniaxial curve
(containing two tension-compression independent branches) is required
for the incompressible isotropic material, three curves (containing five
independent branches) for the transversely isotropic model and six curves

Fig. 5. Finite element model of the skin disc used in ADINA. Loads, boundary conditions
and global axes orientation.

Fig. 6. Cauchy stress distribution over the undeformed central section width for the
circular specimen samples using an Ogden material model for varying displacement
between clamps u. Distance between vertical dashed lines represent the effective
reference width of the disc weff for axial loading, i.e. the width of a rectangular uniaxial
specimen with the same thickness h that would give equivalence of applied loads during
tensile loading. We note that w ≈ 16.5mm > 15mm = weff clamp due to the presence of the

extra surrounding material in the circular specimen.
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(containing 9 independent branches) for the orthotropic one.
The experiments described in Section 2 provide three load-dis-

placement tensile curves which can be reproduced using the transver-
sely isotropic model. Since we are interested in the in-plane behavior,
we consider the deviation from isotropy, and there is a symmetry at 0o

(centerline of the back), the transversely isotropic model seems a
reasonable assumption, and in any case a good approximation. If we
had additional tests, the orthotropic model could be equally used,
maintaining the same accuracy. We will describe in Section 5 below
how to obtain the stress-strain curves, required as input data for the
model determination, using: the actual load-displacement curves from
the experiments, finite element calculations and the uniaxial response
hypothesis discussed above. Previously, in this section we enhance the
WYPiWYG procedure presented originally in [27] and also explain how
to determine the strain energy shear term using stress-strain data from
a uniaxial tensile test performed about a direction at 45°with respect to
the anisotropic axis.

4.1. Transversely isotropic model description

WYPiWYG transversely isotropic incompressible hyperelasticity is
formulated in terms of the components of the isochoric logarithmic
strain tensor E in a preference frame X a a a= { , , }pr 1 2 3 , where a3 is the
anisotropic direction and a1 and a2, that define the isotropic plane, are
in-plane principal directions in the sense that the in-plane shear strain
component E a E a= · · = 012 1 2 vanishes. The deviatoric strain energy
function is

( )ω E ω E ω E ω EE a( , ) = ( ) + ( ) + ( ) + 23 11 11 11 22 33 33 13 13
# (24)

where E a E a= · ·33 3 3 is the invariant in the preferred direction, E11 and
E22 are the in-plane principal logarithmic strains (invariants also), and
the invariant E13

# , accounting for the out-of-plane shearing, reads—note
that E E=13

#
13 for the pure shear and simple shear cases discussed in

[27], given that E = 023 in both cases

E E E= +13
#

13
2

23
2

(25)

It is readily shown that E13
# can be computed in any preferred reference

frame X a a a′ = { ′, ′ , }pr 1 2 3 being coaxial with the anisotropic direction, i.e.

E E E= +13
#

13′
2

23′
2 , hence resulting into a truly frame invariant quantity.

Additionally, the axial strains are constrained by the incompressibility
condition E E E+ + = 011 22 33 .

The generalized Kirchhoff stress tensor T, work-conjugate of the
material logarithmic strain tensor, see [30], is —p is an initially
undetermined pressure-like Lagrange multiplier to be determined from
boundary conditions

pT E a
E

= ∂ ( , )
∂

+3
(26)

( ) ( )∑ ∑ω E ω E
E
E

pa a a a a a= ′ ( ) ⊗ + ′ ⊗ + ⊗ +
i

ii ii i i
j

j
j j

=1

3

=1

2

13 13
# 3

13
# 3 3

(27)

where we have used that

dE
d

i j
E

a a= ⊗ , , = 1, 2, 3ij
i j (28)

with the symbol ⊗ representing the usual dyadic product, and that

E
E

E
E

j
∂
∂

= , = 1, 2
j

j13
#

3

3

13
# (29)

and we have already taken into consideration the corresponding
symmetries (formally, and only for differentiation purposes, note that

ω E ω E ω E2 ( ) = ( ) + ( )13 13
#

13 13
#

13 31
# with E E E E= + ≡31

#
31
2

32
2

13
# ).

As previously mentioned, three complete curves in different direc-
tions (with five independent branches) are sufficient to determine the
contributions ω11, ω33 and ω13 (note that ω13 is defined for E ≥ 013

#

only). Assuming that the stress-strain behavior can be obtained from
the load-displacement curves, the contributions are determined.

As usual in transversely isotropic material models, we will consider
that the preferred direction a3 represents the stiffer direction. For the
data shown in Fig. 2, this direction corresponds to the test at 0°. The
test at 90°is then performed about an isotropic direction in the model.
Using these two tests the contributions ω11 and ω33 can be determined.
The remaining contribution ω13 is determined using the data from the
test at 45°.

STRESS-ZZ

0.4200
0.3900
0.3600
0.3300
0.3000
0.2700
0.2400
0.2100
0.1800
0.1500
0.1200
0.0900
0.0600
0.0300
0.0000

XY

Z

vector plot

VECTOR PLOT OF PRINCIPAL STRESSES

Fig. 7. Left: Typical σzz stress distribution (in MPa) for the disc using Ogden's model. Right: close-up of the zone near the grips, showing the principal stress vectors. Note that the stress
state can be considered uniaxial in most of relevant zone of the specimen.
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4.2. Determination of ω E′ ( )11 11 and ω E′ ( )33 33 from σ E( )11
(1)

11 and σ E( )33
(3)

33
The following algorithmic iterative procedure exactly solves (from a

numerical viewpoint) Equations (63)–(65) of Ref. [27], which are the
governing equations of two uniaxial tests, one in the isotropic direction
a1 (hence the superscript (1) in σ E( )11

(1)
11 ) and the other one in the

anisotropic direction a3 (hence the superscript (3) in σ E( )33
(3)

33 ). Note
that, since the loading path is along preferred directions in both tests
and the material is considered purely incompressible during the strain
energy determination procedure, the generalized Kirchhoff stress
tensor T in Eq. (27) is coincident to both the Kirchhoff stress tensor
τ and the Cauchy stress tensor σ J τ= −1 [30], where J=1 is the volume
ratio (i.e. J trEln = = 0). The Lagrange multiplier p in Eq. (27) is
immediately obtained from the traction-free boundary conditions in
the transverse directions in the respective tests. We rephrase herein the
governing equations for the reader convenience—since the test direc-
tions are principal directions we use just one index ii i( ) → ( ) for strain
and stress components

σ E dω E
dE

dω E
dE

( ) = ( ) − ( )

E E
1
(1)

1
11 1

1

11 2

2 ( )2
(1)

1 (30)

dω E
dE

dω E
dE

( ) = ( )

E E E E

11 2

2 ( )

33 3

3 ( )2
(1)

1 3
(1)

1 (31)

and

σ E dω E
dE

dω E
dE

( ) = ( ) − ( )

E
3
(3)

3
33 3

3

11 1

1 − /23 (32)

where E E( )2
(1)

1 (or E E( )3
(1)

1 ) represents the transverse strains in axis 2 (or
axis 3) during the test about the axis 1. Note that E E E+ + = 01 2

(1)
3
(1) by

incompressibility. For the same reason, during the test about the
anisotropic axis, we obtain E E E E E( ) = ( ) = − /21

(3)
3 2

(3)
3 3 , see Eq. (32).

The difference between the present procedure and the procedure
detailed in Table 3 of Ref. [27] is that we do not need to assume the
shape of the transverse-to-axial strain relation (by Poisson's effect in
test 1) E E( )2

(1)
1 . This is possible thanks to the additional use of a

continuous spline interpolation of that transverse strain function,
which was considered linear in Ref. [27]. Once a solution has been
obtained, the model exactly replicates (i.e. to machine precision if
desired) the in-axial behavior of the transversely isotropic material
about its preferred directions. The following algorithm is equivalent to
the improvement presented for the orthotropic case in [32].

1. Spline-based smooth continuous functions σ E( )1
(1)

1 and σ E( )3
(3)

3 are
obtained from the interpolation of the tension-compression experi-
mental data points (experimental noise should be previously re-
moved from data). These spline-based functions, say f x( )i , have to
satisfy the requirements f (0) = 0i . The slopes at the origin of these
curves are, respectively Y1 and Y3 (Young's moduli).

2. Take the linearized relation for transverse strains in the isotropic
plane as E E ν E( ) = −2

(1)
1 12 1, associated to the corresponding infinite-

simal behavior, just to initialize the iterative procedure (iteration
k=0). The initial Poisson ratio ν12 is given from the linear theory as
in [21]

ν ν ν Y
Y

Y
Y

= 1 − = 1 − = 1 −
212 13 31

1

3

1

3 (33)

where

Y
dσ E

dE
Y

dσ E
dE

=
( )

and =
( )

E E
1

1
(1)

1

1 =0
3

3
(3)

3

3 =01 3 (34)

3. Compute the initial (k=0) spline-based functions ω E′ ( )11 1 and ω E′ ( )33 3
associated to the initial transverse distribution E E( )2

(1)
1 solving

numerically Eqs. (30)–(32), i.e. following steps 3 and 4 in Table 3
of Ref. [27].

4. Update the first derivative function of E E( )2
(1)

1 at iteration k + 1
through

dE E
dE

ω E E
ω E E ω E E

( )
= −

″( ( ))
″( ( )) + ″( ( ))k k

2
(1)

1

1 +1

3 3
(1)

1

1 2
(1)

1 3 3
(1)

1 (35)

which is obtained after differentiating Eq. (31) and considering the
incompressibility constraint E E E E E+ ( ) + ( ) = 01 2

(1)
1 3

(1)
1 . Remarkably,

Eq. (35) is the non-linear counterpart of the small strain Poisson's
ratio ν12 expressed in terms of the deviatoric moduli μ μ≡2 1 and μ3
—cf. the general orthotropic Relation (140) in Ref. [29].

5. Build the piecewise cubic spline E dE E dE( , ( )/ )k1 2
(1)

1 1 +1. Note that for
this function, say g x( ), the requirement g (0) = 0 does not have to be
enforced.

6. Integrate the first-derivative functions of step 5 and then build the
updated spline E E( )2

(1)
1 at iteration k + 1. At this step, consider the

(integration) requirement E (0) = 02
(1) .

7. Compute the updated spline-based functions ω E′ ( )11 1 and ω E′ ( )33 3
solving numerically Eqs. (30)–(32), i.e. following steps 3 and 4 in
Table 3 of Ref. [27].

8. Quantify the associated relative error for the transverse strains
E E( )2

(1)
1 between iterations k and k + 1. Exit if error tolerance≤ .

Take k k← + 1 and go to step 4 if error tolerance> .

In contrast to most hyperelasticity model determination procedures,
we remark that we do not perform a least-squares optimization of our
model to fit the experimental data. We apply an iterative non-linear
solution method that finds the terms ω E′ ( )11 1 and ω E′ ( )33 3 that exactly
replicate the prescribed experimental data. Furthermore, this algorithm
removes any need to prescribe initial values for the iterative procedure;
the required values to initialize the procedure are contained in the
experimental data of Step 1. This self-contained algorithm is capable of
converging to machine precision tolerances (tolerance = 10−14) although
the predictions were observed, in practice, undistinguishable for
tolerance = 10−3, which is a tolerance we typically enforce.

4.3. Determination of ω ′13 from a tensile uniaxial test at 45°
In Ref. [27] we explained how the first derivative function

ω E ω E′ ( ) ≡ ′ ( )13 13
#

13 13 can be determined from two different shear tests,
namely a pure shear test (Section 3.2.1 in [27]) and a simple shear test
(Section 3.2.2 of the same Reference). We explain herein the procedure
to determine the stored energy shear term from stress-strain data
obtained from a uniaxial test performed at 45° with respect to the
anisotropic direction a3. The shear term ω E′ ( )13 13

# presents only one
(positive) branch, so only the tension branch of this uniaxial test is
needed; recall that both tension and compression branches of σ E( )11

(1)
11

and σ E( )33
(3)

33 are required for the determination of ω E′ ( )11 11 and ω E′ ( )33 33
[26].

We denote the test reference frame as X e e e= { , , }1 2 3 and the preferred
material axes as X a a a= { , , }pr 1 2 3 . We consider a e≡2 2 and that the
anisotropic direction a3 is counter-clockwise oriented at 45° with respect
to e3, as shown in Fig. 8. In the case herein considered, the uniaxial test is
performed about direction e1. We assume a uniform deformation state over
the differential element of Fig. 8. The faces with normals e2 and e3 are
ideally traction-free, so we will impose the boundary conditions
σ σ[ ] = [ ] = 0X X22 33 where by [·]X we mean that we used the system of
representation X.

We prevent herein any shear deformations in the test frame (this
will be assessed below) so that no angular distortion is present in the
element under study. Hence, directions e e e{ , , }1 2 3 are coincident with
the (Lagrangian and Eulerian) principal strain directions. The loga-
rithmic strain tensor E expressed in the system of reference X reads—
we represent only components in the plane e e{ , }1 3

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

E E
E E

E
E

λ
λ

E[ ] = = 0
0 = ln 0

0 lnX
X

11 13

13 33

1

3

1

3 (36)
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where λ1 and λ3 are the principal stretches in directions e1 and e3,
respectively. We assume perfect incompressibility, so the volume ratio
is J λ λ λ= = 11 2 3 and the remaining principal strain (not shown in the
matrix operations for brevity) is E λ E E= ln = − −2 2 1 3. The in-plane
components of the tensor E in Xpr are —note that E[ ] = 0X23 pr so

E E E= = [ ] > 0X13
#

13 13 pr

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

E E
E E

E E E E
E E E EE[ ] = = 1

2
+ −
− +X

X

11 13

13 33

1 3 1 3

1 3 1 3
pr

pr (37)

where we note that E E[ ] = [ ]X X33 11pr pr.
The preferred in-plane components of the generalized Kirchhoff

stress tensor T of Eq. (27) are

a3a1
e1

e3

Fig. 8. Test axes X e e= { , }1 3 and preferred material axes X a a= { , }pr 1 3 for the uniaxial

tensile test at 45°. The loading direction is e1.

Fig. 9. Iterative procedure, departing from the experimental data of Groves et al. [16], to obtain the final stress-strain curves and the corresponding stored energy function terms. In
practice, only one iteration was needed.
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⎡
⎣⎢

⎤
⎦⎥

T T
T TT[ ] =X

X

11 13

13 33
pr

pr (38)

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ω E p ω E
ω E ω E p

d
d

p
E

I=
′ ( ) + ′ ( )

′ ( ) ′ ( ) +
= +

X X

11 11 13 13

13 13 33 33
pr pr (39)

where we note that T T[ ] > [ ]X X33 11pr pr , in general. We can determine p
from the stress boundary condition σ T= 0 =22 22, which gives

ω E p ω E p0 = ′ ( ) + = ′ ( ) +11 22 11 2 (40)

p ω E E⟹ = − ′ (− − )11 1 3 (41)

where we have used the fact that E E E E[ ] = = − −X22 2 1 3pr . Hence, using
Eqs. (39)–(41), the in-plane components of T in preferred material
directions, expressed in terms of the principal strains E1 and E3, are

⎛
⎝⎜

⎞
⎠⎟T ω E E ω E E[ ] = ′ +

2
− ′ (− − )X11 11

1 3
11 1 3pr

(42)

⎛
⎝⎜

⎞
⎠⎟T ω E E ω E E[ ] = ′ +

2
− ′ (− − )X33 33

1 3
11 1 3pr

(43)

⎛
⎝⎜

⎞
⎠⎟T ω E E[ ] = ′ −

2X13 13
1 3

pr
(44)

Once the expression of the tensor T is known in the preferred
material axes Xpr, it has to be represented in the test axes X in order to
be able to apply the remaining loading and boundary conditions, i.e.

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

T T T T T
T T T T T

T[ ] = 1
2

[ ] + 2[ ] + [ ] [ ] − [ ]
[ ] − [ ] [ ] − 2[ ] + [ ]X

X X X X X

X X X X X

11 13 33 33 11

33 11 11 13 33

pr pr pr pr pr

pr pr pr pr pr

(45)

We observe that a shear stress component T T T[ ] = ([ ] − [ ] ) > 0X Xpr Xpr13
1
2 33 11

is present in the test axes as a reaction to the imposed angular
distortion restriction. We assume that this reaction stress is carried
by the grips in rectangular specimens (and also by the extra material
for the case of circular specimens). We will confirm this assumption in
the finite element analysis below. In case this condition were not
holding, a further (more complex) iterative procedure would need to be
established. The specific value of T[ ]X13 is not needed in the following
lines. We also note that T and E are not coaxial (compare Eqs. (36) and
(45)), so e e{ , }1 3 are not principal stress directions, in general. This lack
of coaxiality can be interpreted as a Cosserat-alike moment which tends
to produce local rotations, see [29] in the context of viscoelasticity and
[36] in the context of plasticity.

Finally, the diagonal components of T, expressed in the Lagrangian
strain basis X, are coincident with the diagonal components of the
rotated Kirchhoff stress tensor τ , expressed in the same basis, see [30].
In this case, the Lagrangian and Eulerian strain basis are coincident,
and J=1, so τ τ σ σJ= = = , whereupon the axial (diagonal) compo-
nents of the Cauchy stress tensor in the test axes are

σ T T T T[ ] = [ ] = 1
2

([ ] + 2[ ] + [ ] )X X X X X11 11 11 13 33pr pr pr (46)

σ T T T T[ ] = [ ] = 1
2

([ ] − 2[ ] + [ ] )X X X X X33 33 11 13 33pr pr pr (47)

Fig. 10. Experimentally-derived uniaxial stress-strain curves for tests at 0°, 45° and 90°
in the initial case [0]. Stresses are obtained from measured loads using Aeff

[0] and strains

are obtained from measured displacements using Leff
[0]. Uniaxial compression stress-strain

data at 0° and 90° are both assumed to be matrix-dominated and made equal to minus
the tensile stress-strain data at 90°. Predictions for the three tests from the computed
strain energy function (not shown at this initial stage) are also shown.

0 1 2 3 4 5 6 7
u [mm]

0

0.5

1

1.5

2

2.5

F[0
]  [N
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Simulation 90º
Experimental 0º
Simulation 0º
Experimental 45º
Simulation 45º

Fig. 11. Experimental and computed load-displacement curves at 0°, 45° and 90° in the
initial case [0]. Finite element simulations are performed using the strain energy function

associated to Aeff
[0] and Leff

[0].

Fig. 12. Distributions of axial stresses in loading direction (global axis Z) over the
undeformed central section width (global axis X) for the three tensile tests at 0°, 45° and
90° in the initial case [0]. The undeformed effective widths w ≈ 16.5mmeff

[0] of the

respective equivalent ideal uniaxial specimens that give the same force resultants are
illustrated (distance between respective vertical lines). Maximum load (last step) is
considered for each test.
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From experimental measurements we know the curve σ[ ]X11 as a
function of E E λ[ ] ≡ = lnX11 1 1, which we represent as σ E( )45° 1 . We also
know the boundary condition σ[ ] = 0X33 . Then, adding Eqs. (46) and
(47), and substracting Eq. (47) from Eq. (46), we arrive respectively at
the following non-linear equations

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟σ E ω E E ω E E ω E E( ) = ′ +

2
+ ′ +

2
− 2 ′ (− − )45° 1 11

1 3
33

1 3
11 1 3

(48)

⎛
⎝⎜

⎞
⎠⎟σ E ω E E( ) = 2 ′ −

245° 1 13
1 3

(49)

where we have already substituted Eqs. (42)–(44). Note that E E= [ ]X1 11
(known) and E E= [ ]X3 33 (unknown) are principal strains and
σ σ≔[ ]X45° 11 (known for a given E1 from the experiment). Then Eq.
(48) is a non-linear equation from which we can obtain the transverse
strain E < 03 for each input value E > 01 . Note that we need the spline-
based functions ω E′ ( )11 11 and ω E′ ( )33 33 , computed as described in the
previous subsection. Once E1 and E E( )3 1 are known, Eq. (49) gives the
associated value of ω E′ ( )13 13

# , with E E E= ( − )13
# 1

2 1 3 .

The procedure to obtain the spline-based function ω E′ ( )13 13
# is

summarized as follows—we use the tilde decoration for experimental
data points and associated values

Fig. 13. Top (a): Experimentally-derived and predicted uniaxial stress-strain curves for tests at 0°, 45° and 90° at stage [1]. Experimental stresses are obtained from measured loads

using Aeff
[1] and experimental strains are obtained from measured displacements using Leff

[1]. Uniaxial compression stress-strain data at 0° and 90° are both assumed to be matrix-

dominated and made equal to minus the tensile stress-strain data at 90° (not shown). Center (b): Computed WYPiWYG strain energy terms from experimental distributions. Bottom (c):
Non-linear transverse strains (by Poisson's effect) in material direction 2 during the uniaxial test in material direction 1 (i.e. uniaxial test at 90°) computed as a part of the iterative
procedure of Section 4.
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Fig. 14. Experimental and computed load-displacement curves at 0°, 45° and 90° at
stage [1]. Finite element simulations are performed using the strain energy function

associated to Aeff
[1] and Leff

[1], see Fig. 13b.
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45° 1

In order to gain efficiency in finite element calculations whenever the
spline-based model is addressed, the piecewise spline function ω E′ ( )13 13

#

should be re-built using uniform intervals before storing its coefficients
in memory.

5. Stress-strain and load-displacement predictions through
FEM experiments

As we have just explained, the WYPiWYG transversely isotropic
hyperelastic model requires three stress-strain curves in order to be
completely defined. However, the experimental data described in
Section 2 are load-displacement curves. In this section the relation-
ships between the load-displacement curves and the required stress-
strain ones are examined. The relationship is based on the concept of
an effective area and effective length (basic concepts borrowed from
Strength of Materials), both resulting from the fact that the tested
specimens are not ideal uniaxial specimens. Finite element simulations
of the circular specimens were used to identify both magnitudes. Then,
equivalent uniaxial stress-strain curves are predicted based on physical
reasoning and the values are refined using an additional simulation.
Finally, we reproduce the load-displacement curves obtained experi-
mentally, which is the main purpose of the procedure. Interestingly, the
non-linear load-displacement behavior allows for the prediction of the
stress-strain response just attending to the uniaxial response assump-
tion previously discussed. This simplifying hypothesis has been proved
to be valid, as we show next.

The characterization of circular specimen tests for isotropic materi-
als was described in Section 3. The next step is to extend the hypothesis
to the transversely isotropic behavior. The three tests by Groves et al. at
0°, 45°, and 90° will be referred to as longitudinal direction, diagonal
direction and transverse direction, respectively.

5.1. Methodology and results

Based on the results obtained using the Ogden model for the loads
on the disc, the objective is to identify equivalent areas and equivalent
lengths for the skin specimen under study which allows us to replicate
the load displacement responses obtained by [16]. This identification
was achieved through finite element simulations of the circular speci-
men. The same finite element model from Section 3 is used in order to
obtain the skin strain energy density using the WYPiWYG transversely
isotropic model described in Section 4.

The procedure that we have conducted consists of the following
steps, see Fig. 9. First, for iteration [0], an initial reference cross-

Fig. 15. Distributions of axial stresses in loading direction (global axis Z) over the
undeformed central section width (global axis X) for the three tensile tests at 0°, 45° and
90° at stage [1]. The undeformed effective widths w ≈ 16.5mmeff

[1] of the respective

equivalent ideal uniaxial specimens that give the same force resultants are illustrated
(distance between respective vertical lines). Maximum load (last step) is considered for
each test.
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Fig. 16. Deformed configuration of the disc and Cauchy stress field σzz for the tensile
test at 90° (i.e. about material direction 1) under maximum load (u = 6.93mmz ).
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Fig. 17. Deformed configuration of the disc and Cauchy stress field σzz for the tensile
test at 0° (i.e. about material direction 3) under maximum load (u = 3.21mmz ).
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sectional area A w h= × = 15 × 0.265mmeff eff
[0] [0] 2 was assumed for the

three tensile tests considering the clamps width (15 mm) and the
thickness of the sample (0.256mm). This area permits to estimate the
assumed uniaxial first Piola-Kirchhoff (nominal) stresses from the
respective measured loads F (ordinates in Fig. 2) just as P F A= / eff

[0] [0].

Additionally, an initial reference length L = 15mmeff
[0] was assumed for

the three tensile tests considering the distance between clamps. This
length permits to estimate the assumed uniaxial stretches from the
respective measured displacements u (abscissae in Fig. 2) just as
λ L u L= ( + )/eff eff

[0] [0] [0]. The resulting assumed uniaxial Cauchy stresses
and logarithmic strains for the initial case are obtained for the
respective tensile test by means of σ P λ=[0] [0] [0] and E λ= ln[0] [0]. This
way, after smoothing these data in order to remove experimental noise,
we obtain the three uniaxial stress-strain curves needed as input data
for the procedures described in Section 4, i.e. σ E( )1

(1)
1 (transversely

isotropic direction at 90°), σ E( )3
(3)

3 (longitudinal direction at 0°) and
σ E( )45° 1 (diagonal direction at 45°). The strain energy first-derivative
functions ω E′ ( )11 11 , ω E′ ( )33 33 and ω E′ ( )13 13

# are then determined as
explained in the previous section. We show in Fig. 10 the three uniaxial
stress-strain distributions with their corresponding smoothed contin-
uous curves. In this figure we can see the compression responses that
we have assumed for the uniaxial curves about preferred directions, i.e.
at 0° and 90° (no assumption is needed at 45°). We also show some
stress-strain points predicted from the strain energy being computed
(which is not shown at this initial stage). As expected in WYPiWYG
hyperelasticity procedures, we can observe in this figure the perfect
(exact, in practice) agreement between the gotten predictions and the
prescribed stress-strain data. However, note that this fact is inherent to
WYPiWYG procedures, but it does not mean that the strain energy
function obtained at this initial stage is the sought solution that yields
the actual load-displacement curve in the real non-homogeneous test.
If the next simulations do not reproduce the load-displacement curves,
it will mean that the initial selected values of Aeff and/or Leff (from

which the prescribed stress-strain data have been obtained) are not
accurate to represent such nonhomogeneous problem, so additional
iterations will be needed in order to obtain more appropriate values for
those geometrical parameters.

At this point the material model is completely defined and the
simulations can be performed. We have employed a user material
subroutine in the general-purpose finite element program ADINA in
order to compute the stresses and tangent moduli from a given
deformation gradient at each integration point and iteration during
the nonlinear computations. We show in Fig. 11 the load-displacement
curves obtained from the respective finite element simulations over the
disc. We can see that the predictions separate from the experimental
curves at this initial stage. In Fig. 12 we show the distribution about the
central section width of axial stresses in the loading direction for each
case under maximum load. We observe that the stress distributions in
the central region of the specimen are fairly flat and resemble those of
typical uniaxial tests, which reinforce the underlying hypothesis of
equivalent uniaxial responses over the three directions (i.e. lateral
restriction effects are negligible in all cases, recall the simplified
analysis of Section 3.1).

We can obtain some feedback from Fig. 12 in order to modify both
the initial effective area and length for each case. First, we observe that
the computed stresses in the flat areas are σ ≈ 0.57MPa0° ,
σ ≈ 0.67MPa45° and σ ≈ 0.79MPa90° . However, the stresses for maximum
load shown in Fig. 10 are σ ≈ 0.53MPamax

0° , σ ≈ 0.61MPamax
45° and

σ ≈ 0.64MPamax
90° . These differences between computed stresses and
prescribed stresses mean that the axial strains in the central regions
of the respective disc simulations have been higher, so the effective
length must be modified accordingly at each test in order to prescribe
more accurate axial strains, see [48] in the context of arteries. Through
the intersections of the computed values σ0°, σ45° and σ90° and the
respective curves in Fig. 10, we obtain the following effective lengths
for each test
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Fig. 18. Deformed configuration of the disc and Cauchy stress field σzz for the tensile test at 45° (i.e. about direction e1 in Fig. 8) under maximum load (u = 5.82mmz ).
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L L L L L L= 0.99 × , = 0.99 × , = 0.965 ×eff eff eff eff eff eff
[1]

0°
[0] [1]

45°
[0] [1]

90°
[0]

(50)

which will be used to define the prescribed stretches λ L u L= ( + )/eff eff
[1] [1] [1]

(i.e. the x–axis of the stress-strain curve) for the next strain energy
determination procedure. Note that we are assuming for now the
equality between the stretch and that of the uniaxial ideal experiment,
an assumption that follows from the findings in Ref. [48]; subsequently
the effective length will be corrected during the iterative procedure. On
the other hand, we also represent in Fig. 12 the effective uniaxial width
for each case, i.e. the width that gives equivalence of axial force
between the computed non-uniform distribution and an assumed
uniform distribution over the effective width for each case, see Eq.
(22). The effective widths result very similar in value for the three
cases, so we take the same value for the reference effective cross-
sectional areas over the three directions and, of course, for all
deformation values—note that we preserve the value of the sample
thickness at iteration [1], i.e. A w h= ×eff eff

[1] [1]

A A A A= = = 1.1 ×eff eff eff eff
[1]

0°
[1]

45°
[1]

90°
[0]

(51)

which will be used to define the prescribed nominal stresses
P F A= / eff

[1] [1] for the next strain energy determination procedure.
We show in Fig. 13a the resulting uniaxial stress-strain distribu-

tions computed using the new values Leff
[1] and Aeff

[1] for each test. The
corresponding strain energy function terms obtained upon the applica-
tion of the procedures explained in Section 4 are shown in Fig. 13b.
Again, exact predictions from the (new) strain energy function being
calculated are obtained, see Fig. 13a, which are possible due to the
consideration of a nonlinear transverse-to-axial strain relation E E( )2

(1)
1

being computed as a part of the procedure, as we explained in Section
4, see Fig. 13c. Interestingly, in this last figure we can see that the
transverse deformation for tensile loading in the test at 90° is nearly
isotropic, i.e. E E E( > 0) ≃ −2

(1)
1

1
2 1, which is a consequence of the fact

that we have assumed that fibers (oriented about material direction 3,
within the transverse plane during the test at 90°) do not work in
compression. In other words, we have prescribed matrix-dominated
responses during compressive behavior, see Figs. 13a and b. On the
contrary, the transverse deformation for compressive loading in the
test at 90° is no longer isotropic, i.e. E E E( < 0) ≠ −2

(1)
1

1
2 1 because the

fibers (within the transverse plane during the test at 90°) would be in
extension in this case and increase the stiffness about material
direction 3, see Figs. 13a and b. Clearly, WYPiWYG procedures allows
us both to prescribe stress-strain data and to interpret results using
engineering judgement.

The material model at this new iteration [1] is completely defined
and the same simulations over the disc can be performed again. We
show in Fig. 14 the new load-displacement curves obtained from the
respective finite element simulations. We can see that an excellent
agreement with the experimental curves is achieved in this case. Note
that the agreement is slightly weaker for 90o (the softer direction)
which explanation comes once again from Section 3.1. Thereby, we can
consider the strain energy function terms shown in Fig. 13b as the
solution of the problem.

In Fig. 15 we show the axial stress distributions in the central section
for each case under maximum load, from which we can obtain some
feedback again. First, we can verify that the resulting stresses in the flat
areas are almost coincident with the respective stresses for maximum
load shown in Fig. 13a, so the respective maximum axial strains are
correctly captured. Furthermore, the effective widths are again very
similar to each other and they practicaly preserve their values with
respect to the previous iteration. The reader can compare the effective
widths shown in Figs. 6, 12 and 15 to verify that no relevant difference is
appreciated. We conclude from these observations that a new iteration
for both the effective lengths and the effective cross-sectional areas over
the three directions is not needed, so we can take the values given in Eqs.
(50) and (51) as the solution values for this skin disc specimen.

Finally, we show in Figs. 16, 17 and 18 the deformed configurations
and axial stress fields under maximum load for the three simulations
being performed. Remarkably, the loaded areas resemble those of the
respective uniaxial tests over square (1:1) specimens due to the fact
that the lateral restriction is very small at these deformation levels for
skin, specially at 0° and 45°. As expected beforehand, the displacement
field for the test at 45° is not symmetric, which justifies our use of the
whole disc in the finite element model instead of performing the
symmetries simplification in [16]. In the amplification of the border of
the loading path shown in Fig. 18, it can be seen that there is a relevant
(nonsymmetric) shear deformation due to the lack of coaxiality of the
stress and strain tensor, an effect already commented above. However,
once inside the loading path, it is also clearly seen that this shear
deformation vanishes almost completely, an effect that is amplified by
the 1:1 aspect ratio. This observation validates our original assumption
that no relevant shear deformation was present in the loading zone in
this test, and no iterations to correct this assumption are needed.
Moreover, since the important loaded part of the specimen is main-
taining a symmetric deformation, the observation also allows one to
consider the symmetrized model of [16] as an excellent economical
option for the purpose of determining the material parameters.
Furthermore, in this case the part outside the loading path can also
be neglected for additional computational savings and, remarkably, the
little influence of the material outside the gauge zone in the overall
behavior of the specimen shows a pathway for simple in vivo testing.

6. Conclusions

Soft biological tissues are complex composite multilayered speci-
mens. Even the adequate determination of the stored energy for the
purpose of performing finite element analysis in order to predict the
behavior of the tissue in general loading conditions is extremely
difficult. It is frequent the use of optimization algorithms and inverse
analysis to obtain material parameters, which as extensively reported
in the literature, result in a non-unique material behavior.

Given the natural variability of the mechanical behavior of skin, the
experimental layout of Groves et al. [16] is of special interest because it
allows to test the material behavior of the composite in several
directions as to permit the characterization of a transversely isotropic
material. We have analyzed the experiments through finite element
simulations and obtained some relevant conclusions on the behavior of
these tissues which we used to determine the WYPiWYG stored energy
functions of the material. Even though the WYPiWYG approach is
purely phenomenological, it is efficient for finite element simulations
and it accurately predicts the behavior observed in the experiments of
Groves et al. [16]. The proposed solution consists in the following
steps: (1) assume homogeneous deformation and compute the corre-
sponding stress-strain curves, (2) compute the WYPiWYG stored
energies, (3) perform finite element nonhomogeneous simulations to
compute effective lengths and cross-sections, (4) recompute the stress-
strain curves with those effective values and (5) determine the final
WYPiWYG stored energies to be used in any finite element simulation.
In this case, no further iterations have been needed.
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