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Abstract

There is an extensive network of electrified railway lines over the world. Most
of them use overhead contact lines or catenaries to provide the trains with
electrical power. Catenaries consist of electrified wires placed over the rail
track, designed to contact the pantograph placed on the roof of the train. The
proper operation of the system is very demanding, especially at high speed,
when the continuity of the contact is compromised.

The most predominant tool for studying and designing the pantograph-catenary
system is the use of numerical simulations. Notably, the Finite Element
Method (FEM) is the most popular technique for modelling and simulating
the dynamic interaction of the pantograph and the catenary. This method
allows modelling catenaries with outstanding fidelity and without any loss of
generality.

After the simulation stage, the pantograph and the catenaries have to be as-
sessed by in-line experimental tests. However, there is an alternative that
can replace those tests with a significant reduction in costs. The alternative
method, called Hardware In the Loop (HIL), allows testing pantographs in the
laboratory with a test rig that emulates the interaction with a virtual catenary.
Different research groups have implemented HIL; however, in every attempt, a
compromise solution has been adopted, demonstrating the challenging nature
of HIL. This Thesis aims to advance in the field of HIL tests, pushing forward
the capabilities of the technique and solving some of the limitations found in
the literature. This Thesis proposes two different kinds of catenary models for
their use in HIL tests.
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The first is an analytical model based on a string of periodic geometric profile
that accounts for the steady state. It reduces the complexity of the catenary
but keeps the main features involved in the dynamic. The model has proven
useful in explaining the fundamental dynamics of the catenary, helping un-
derstand the interference between two pantographs. This analytical model is
suitable for HIL because of its low computational cost. An iterative algorithm
is proposed to use the analytical model in HIL. The fact that the model is
periodic permits a specific strategy to compensate the control loop delay. This
strategy has excellent performance and accuracy, validated by comparing HIL
tests with numerical simulations and getting an agreement. This agreement
will not be possible if the pantograph model of the simulations is inaccurate.
Therefore, the validation is carried out with a weight or mass model in place
of the pantograph to eliminate potential differences. Even though the preci-
sion achieved is good, the analytical catenary model lacks fidelity, which has
motivated the development of a more advanced periodic model.

The second catenary model for HIL tests is the Periodic Finite Element Model
(PFEM), discretised with FEM to avoid further topological and structural sim-
plifications. The model includes the periodicity condition, and the dynamics
are solved by frequency analysis. Furthermore, the catenary non-linearities
are considered in the formulation. An iterative algorithm, similar to the one
used for the HIL tests with the analytical catenary, is used to realise HIL tests
with PFEM catenaries. The previous strategy with a mass model is used to
validate the test, confirming great precision. The results are gratifying due
to the sophistication of the model, the accuracy of the tests and the cancella-
tion of the delay. The tests simulate the response of realistic catenaries with
the simplifying periodicity hypothesis. They are adequate for the dynamic of
equal-span catenary at the central zone of every section, but future efforts have
to be made to get rid of the periodicity condition while keeping the accuracy
of the results.
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Resumen

Existe una extensa red de lineas ferroviarias electrificadas en todo el mundo. La
mayoria de ellas utilizan lineas aéreas de contacto o catenarias para suministrar
electricidad a los trenes. Las catenarias son estructuras de cables ubicadas so-
bre las vias ferroviarias, disenadas para ser contactadas por los pantografos que
se encuentran sobre la parte superior de los trenes. El correcto funcionamiento
del sistema requiere un alto nivel de exigencia, especialmente a alta velocidad,
cuando la continuidad del contacto se ve comprometida.

La herramienta més empleada para el estudio y disefio del sistema pantégrafo-
catenaria es el uso de simulaciones numéricas. En particular, el Método de los
Elementos Finitos (MEF) es la técnica méas extendida para modelar y simular
la interacciéon dindmica del pantégrafo con la catenaria. Este método permite
modelar catenarias con fidelidad y sin pérdida de generalidad.

Después de la etapa de simulacién, el pantégrafo y la catenaria tienen que
ser testados mediante ensayos experimentales en via. Sin embargo, existe una
alternativa que puede reemplazar esos ensayos con una reduccién significativa
de costes. Dicha alternativa, llamada Hardware In the Loop (HIL), permite
testar pantografos en el laboratorio mediante un banco de ensayos que emula
la interaccién con una catenaria virtual. Diferentes grupos de investigacion
han implementado HIL; sin embargo, en todos los intentos se han adoptado
soluciones de compromiso, lo que demuestra el reto que supone la aplicacién de
HIL. Esta Tesis pretende avanzar en el campo de ensayos HIL, impulsando las
capacidades de la técnica y solventando algunas de las limitaciones encontradas



en la literatura. Para ello se proponen dos tipos diferentes de modelos de
catenaria para su uso en ensayos HIL.

El primero es un modelo analitico basado en un cable tensado con perfil ge-
ométrico peridédico que proporciona la solucién estacionaria del sistema. Este
enfoque reduce la complejidad de la catenaria, pero mantiene las principales
caracteristicas que intervienen en la dindmica. El modelo ha demostrado ser
util para explicar el comportamiento fundamental de la catenaria, ayudando
a comprender el fenémeno de interferencia entre dos pantégrafos. Este mo-
delo analitico es adecuado para HIL debido a su bajo coste computacional.
En el presente trabajo se propone un algoritmo iterativo para utilizar el mo-
delo analitico en HIL. El hecho de que el modelo sea periédico permite la
aplicacién de una estrategia especifica para compensar el retraso del lazo de
control. Esta estrategia tiene un excelente rendimiento y precisiéon, validados
al comparar ensayos HIL con simulaciones numéricas y obtener coincidencia
entre los resultados. Esta coincidencia no se podré conseguir si el modelo de
pantografo de la simulaciéon es impreciso. Por lo tanto, la validacién se realiza
con un peso en el lugar del pantégrafo para eliminar las potenciales diferencias
en el modelo. Si bien la precision alcanzada es buena, el modelo analitico de
catenaria carece de fidelidad, lo que ha motivado el desarrollo de un modelo
periédico mas avanzado.

El segundo modelo de catenaria para ensayos HIL es el Modelo Periodico de
Elementos Finitos (MPEF), discretizado con el MEF para evitar adicionales
simplificaciones topologicas y estructurales. En la formulacién se incluye la
condicién de periodicidad y la dindmica se resuelve mediante analisis en fre-
cuencia. Ademas, las no linealidades de la catenaria se consideran en la formu-
lacién. Un algoritmo iterativo, similar al utilizado para los ensayos HIL con
catenaria analitica, es usado para realizar ensayos HIL con catenarias MPEF.
La estrategia anterior de utilizacién de un peso se emplea para validar el sis-
tema de ensayos, resultando tener una gran precisiéon. Los resultados son
gratificantes debido a la sofisticacion del modelo de catenaria, la precision de
los ensayos y la cancelacion del retraso. Los ensayos realizados simulan la res-
puesta de catenarias realistas con la hipdtesis simplificativa de periodicidad.
Son adecuados para la dinamica de catenarias de vanos iguales en la zona
central de cada cantén, sin embargo es necesario seguir realizando esfuerzos
para eliminar la condicién de periodicidad sin comprometer la precisién de los
resultados.
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Resum

Existeix una extensa xarxa de linies ferroviaries electrificades a tot el moén. La
majoria d’elles utilitzen Linies Aéries de Contacte o catenaries per a submin-
istrar electricitat als trens. Les catenaries soén estructures de cables situades
sobre les vies ferroviaries, dissenyades per a ser contactades pels pantografs que
es troben sobre la part superior de la locomotora. El correcte funcionament
del sistema requereix un alt nivell d’exigéncia, especialment a alta velocitat,
quan la continuitat del contacte es veu compromesa.

L’eina majoritaria per a ’estudi i disseny del sistema pantograf-catenaria és
I’as de simulacions numeériques. En particular, el Métode dels Elements Finits
(MEF) és la técnica més usada per a modelar i simular la interacci6 dinamica
del pantograf amb la catenaria. Aquest métode permet modelar catenaries
amb fidelitat i sense pérdua de generalitat.

Després de I'etapa de simulacio, el pantograf i les catenaries han de ser testats
en assajos experimentals en via. No obstant aix0, existeix una alternativa
que pot reemplacgar eixos assajos amb una reduccié significativa de costos.
Aquesta alternativa, anomenada Hardware in the Loop (HIL), permet testar
pantografs en el laboratori amb un banc d’assajos que emula la interaccié amb
una catenaria virtual. Diferents grups d’investigacié6 han implementat HIL;
no obstant aixo, en tots els intents s’han adoptat solucions de compromfs, la
qual cosa demostra el repte que suposa 'aplicacié de HIL. Aquesta Tesi pretén
avangar en el camp dels assajos HIL, impulsant les capacitats de la técnica i
solucionant algunes de les limitacions trobades en la literatura. Aquesta Tesi
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proposa dos tipus diferents de models de catenaria per al seu Us en assajos
HIL.

El primer és un model analitic basat en un cable tens amb perfil geométric
periodic que proporciona la solucié estacionaria del sistema. Aquest model re-
dueix la complexitat de la catenaria, perd manté les principals caracteristiques
que intervenen en la dinamica. El model ha demostrat ser util per a explicar
la dinamica fonamental de la catenaria, ajudant a comprendre el fenomen
d’interferéncia entre dos pantografs. Aquest model analitic és adequat per a
realitzar assajos HIL a causa del seu baix cost computacional. Aquest treball
proposa un algoritme iteratiu per a utilitzar el model analitic en assajos HIL de
pantografs. El fet que el model siga periodic permet I'aplicacié d’una estrateé-
gia especifica per a compensar el retard del llag de control. Aquesta estratégia
té un excel-lent rendiment i precisid, validats en comparar assajos HIL amb
simulacions numeériques i obtenir coincidéncia entre els resultats. Aquesta co-
incidéncia no es podria aconseguir si el model de pantograf de la simulaci6é no
és el correcte. Per tant, la validaci6 es realitza amb una massa en el lloc del
pantograf per a eliminar les potencials diferéncies en el model. Si bé la precisi6
aconseguida és bona, el model analitic de catenaria manca de fidelitat, la qual
cosa ha motivat el desenvolupament d’un model periodic més avangat.

El segon model de catenaria per a assajos HIL és el Model Periodic d’Elements
Finits (MPEF), discretitzat amb el MEF per a evitar simplificacions topologiques
i estructurals addicionals. El model inclou la condici6 de periodicitat i la
dinamica es resol mitjancant analisi en freqiiéncia. A més, les no linealitats
de la catenaria es consideren en la formulacié. Un algoritme iteratiu, similar a
I'utilitzat per als assajos HIL amb catenaria analitica, és usat per a realitzar
assajos HIL amb catenaries MPEF. L’estratégia anterior d’utilitzacié d’una
massa s’empra per a validar el sistema d’assajos, resultant tindre una gran
precisié. Els resultats son gratificants a causa de la sofisticacié del model de
catenaria, la precisié dels assajos i la cancel-lacié del retard. Els assajos real-
itzats simulen la resposta de catenaries realistes amb la hipotesi simplificativa
de periodicitat. Son adequats per a la dinamica de catenaries de vans iguals
en la zona central dels seccionaments, no obstant aix0 és necessari continuar
fent esforcos per a eliminar la condicié de periodicitat sense comprometre la
precisié dels resultats.
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Preface

During the development of this Thesis, a global pandemic struck the world,
significantly impacting transport and public funds. Also, a war has begun,
prompting an energetic crisis. This is said without forgetting all the harm and
pain that the previous facts have certainly caused to the world population in
other more important fields unrelated to this work. Nevertheless, the aim of
this Thesis has remained the same: improving a means of transport, the train,
that has been and will be very beneficial for society.
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Thesis report






Chapter 1

Introduction

1.1 Motivation

Only 30% of railway lines are electrified in the world. And knowing the global
tendency towards decarbonisation, it is not surprising the high market volume
of rail electrification and the fact that it is predicted to increase in the following
years. Although about 60% of world electricity comes from fossil fuels, some
countries have demonstrated to be able to produce more clean electricity, such
as Norway, where just a 0.5% comes from this source. In the case of Spain,
this data reaches a value of about 30%, having reduced by half the figure from
2005 [1].

Electrification is not the only development in the railway sector. The vast
growth of high-speed lines in the last decades has changed the strategic position
of train transportation in many countries, providing citizens with a fast option
that, in many cases, beats air transportation. Since the first Spanish high-speed
line three decades ago, Spain has adopted a strategy of expansion, becoming
the second bigger network in the world with about 3700 km. The economic
investment so far has been 56000 M € and another 73000 M€ to be spent in
order to achieve the final aim of 8740 km [2].

Among all the electrification systems, the Overhead Contact Line (OCL),
broadly called catenary, is the most widely used, especially at high-speed lines
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where almost the entire network is provided with catenaries. Catenaries con-
sist of electrified wires placed over the rail track so that the trains can collect
current. The connection between the catenary and the train is sustained via
a pantograph that tries to keep a sliding contact with the contact wire of
the structure. The OCL system allows great interoperability that is ensured
via the European standard EN-50367 [3]. The system good performance is
critical for the sustainability of high-speed railways and for achieving higher
running speeds. From a mechanical point of view, the best current collec-
tion is achieved when the dynamic interaction between the catenary and the
pantograph provides an uninterrupted contact. The main tool for studying
the pantograph-catenary interaction, in the earliest stages of the design pro-
cess, is the use of numerical simulations. The European standard EN-50318
[4] states the requirements for validating numerical simulations. Later, the
pantograph-catenary system has to be proven in line, and the standard EN-
50317 [5] regulates the measurement system for the experimental tests.

The motivation of this Thesis is to enhance the tools for studying the pantograph-
catenary interaction; with the prospect that these tools will be helpful in im-
proving the installations in the future and in achieving new challenges. Specif-
ically, this work is aimed at nearing the latest technologies and the computa-
tional power to the experimental techniques used in the pantograph-catenary
testing system.

1.2 The pantograph-catenary system

The OCL is a structure mainly composed of wires responsible for providing the
trains with electric current. The design of the catenaries is subjected to the
European Standard EN-50119 [6], which approaches safety, reliability, durabil-
ity and maintenance. In Fig. 1.1, a high-speed catenary is represented where
the main components are tagged. There are diverse catenary configurations,
but essentially they have a similar arrangement.

The contact wire is the ultimate element of the OCL; it keeps contact with the
pantograph and suffers wear. Besides the electrical design, from the mechanical
point of view, the catenaries are designed to have proper dynamic behaviour
and keep the contact wire within defined limits. The dynamic performance
requires the contact wire to be tensioned, ensuring that the wave propagation
speed in the wire is higher than the train speed. The tension also reduces the
convexity of the catenary curve that the contact wire follows due to gravity,
leading to a more uniform configuration. To manage the contact wire height
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profile, the contact wire is supported by spatially-distributed variable-length
droppers, which are attached to an auxiliary wire called messenger wire. To
distribute the wear over the pantograph contact strip, the contact wire must
follow a zig-zag trajectory in-plant layout. The zig-zag or staggering is achieved
with steady arms, which laterally pull the contact wire, while avoiding any risk
of collision with the pantograph. The structure that sustains the previous wires
in the air consists of supports and brackets. Besides holding the steady arms,
the brackets bear the weight of all the wires by the support points at the
messenger wire. Due to the catenary topology, an increase in stiffness occurs
close to the supports; thus, some catenaries mitigate this by including a stitch
wire between the droppers and the messenger wire adjacent to supports.

Messenger wire

Bracket

Figure 1.1: High-speed stitched catenary

The portion of the catenary between two supports is called span, which can
be considered as the elemental cell of which the catenaries are made up. On a
larger scale, the catenary is also split into sections; a section consists of several
consecutive spans which share the same contact and messenger wires. At the
outer supports of the section, there is a compensation system of weights and
pulleys that ensures constant tension in both wires. The different sections of
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the catenary have an overlap zone where the pantograph transitions between
two consecutive sections. The section division facilitates installation and main-
tenance and allows better control of tensions and thermal deformations.

The pantograph is the mechanism responsible for contacting the catenary by
pushing upward and absorbing the vibration of the contact wire that oscillates
very quickly from the pantograph point of view. A DSA-380 pantograph is
shown in Fig. 1.2; it consists of a mechanical linkage, a two-strip head, and an
uplift system. The mechanical linkage is composed of the upper and the lower
arms and allows the pantograph to adapt to the catenary height variations. The
uplift system extends the mechanical linkage and pushes the entire mechanism
against the contact wire. The pantograph head is responsible for following the
height profile of the contact wire and thus is suspended by two pairs of v-shape
springs connected to the upper-arm extreme in order to absorb the vibrations.

Figure 1.2: DSA-380 pantograph

1.3 Numerical simulations

The use of numerical simulations is a widely used tool for evaluating the
pantograph-catenary dynamic performance during design. A multitude of as-
pects can be obtained and analysed from simulations, for example, the steady-
arm uplift is vital for safety, and the contact force between the pantograph and
the catenary is the most relevant magnitude for the current collection quality.

In most cases, the catenary is modelled via the Finite Element Method, whereby
good fidelity and generality are achieved. Commonly, the generation of the
dynamic model of the catenary consists of two separate problems: the static
configuration problem and the dynamic problem. The initial configuration
problem is devoted to solving the static equilibrium, where the large displace-
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ments of the wires imply solving non-linear equations. After solving the initial
configuration, the linearisation of the equations is suitable for the displace-
ment range of the dynamic problem. Nonetheless, other non-linearities of the
catenary, precisely the non-linear behaviour of droppers and contact loss, are
considered in the dynamic problem |7, §].

Diverse options are used to model the pantograph with different degrees of
complexity. Multi-body models include the non-linear behaviour of the me-
chanical linkage, and FEM models additionally consider the deformation of
the bars. However, more simple pantograph models, like lumped parameter
models (Fig. 1.3), are broadly used for their simplicity and acceptable accuracy
in the 0-20 Hz frequency range required in EN-50318 [4].

Figure 1.3: Lumped parameter model of the pantograph

It is necessary to define a contact model to couple the interaction of the pan-
tograph and the catenary dynamic models. Generally, the penalty method is
used to emulate the non-penetrability restriction. The penalty method replaces
the mentioned restriction by penalising the penetration with a constant called
contact stiffness. A high contact stiffness has to be tuned to achieve good
precision while avoiding compromising numerical stability and ill conditioning
of the system.

1.4 Hardware in the loop tests

Numerical simulations compute the interaction between the pantograph and
the catenary virtual models. However, the real equipment has to be proved via
in-line experimental tests, implying a higher investment. Hardware In the Loop
(HIL) allows testing the pantograph in a laboratory while interacting with a
virtual catenary model at a certain velocity. For instance, new pantograph
systems or active control equipment could be tested with HIL. Compared to
numerical simulations, these tests eliminate the uncertainty of the pantograph
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model. Even though the pantograph models can be fitted by experimental ad-
justments, the presence of non-linearities makes the experimental data difficult
to match.

Actuator ;
»Lf Displacement of the contact point
Force " Measured contact force —

—
transducer e L ___\®

Virtual catenary

Figure 1.4: Schematic representation of HIL test

The implementation of HIL implies the interaction between a physical model
and a virtual one; this makes HIL a technological challenge. A schematic
representation of HIL tests of the pantograph-catenary is depicted in Fig. 1.4
with the main elements: the pantograph, the virtual model of the catenary,
the actuator and the force transducer. The virtual catenary is a dynamic
model that produces a displacement response and requires a force excitation
to compute it. Specifically, the displacement of the contact point, which is
the point along the contact wire travelling at the velocity set for the test.
This displacement has to be transferred to the pantograph head through an
actuator, imposing the response of the virtual catenary to the real pantograph.
This causes a force between the pantograph and the actuator that is measured
by a force transducer; the measured force value is used as input force for the
virtual catenary model, where it is applied at the contact point.

There are strict requirements for the proper operation of the whole system.
The virtual model has to be computationally efficient enough to be computed
in real time. Furthermore the mentioned response should be transferred to the
pantograph with immediacy to avoid affecting the dynamic of the catenary.
The implementation of HIL requires the inclusion of compensatory and control
techniques to mitigate the error produced by the transference of the virtual
catenary displacement to the hardware.



1.5 Objectives

1.5 Objectives

This work has been developed for a better understanding of the pantograph-
catenary system and for the practical application of the improvements achieved
in the theoretical field. The main objectives of the Thesis can be summarised
as follows:

e Development of simplified models. The FEM is a well-established
method for the simulations of the pantograph-catenary system with good
accuracy and generality. However, analytical models can be helpful for a
better understanding of the physical phenomena involved in the problem
and for some applications that require a certain degree of simplicity.

e Models for HIL. Hardware in the loop tests entail the availability of nu-
merical models of the catenary. This Thesis aims to define suitable models
for the particular needs of HIL. This part includes: simplifications/adap-
tation of catenary models, algorithms for applying the previous models
in HIL, and computational strategies for increasing the accuracy of the
tests.

e Practical application of HIL. The ultimate aim of this work is to
accomplish HIL tests of a real pantograph effectively. The development
and improvement of a HIL test rig and the troubleshooting tasks are
carried out in this Thesis.

1.6 Thesis layout

Due to the fact that this Thesis includes a compendium of publications, the
document is split into two parts. The first one is an overview of the work
realised and the second one contains the publications that have been produced.

Part I includes this introduction, where the main subjects related to the Thesis
have been presented. Immediately after this chapter, a review of the relevant
publications found in the literature is presented in Chapter 2. In Chapter 3
the contributions of this Thesis are exhibited by summarising the publications
of Part II. To conclude this overview, the discussion of the results, conclusions
and future works are summarised in Chapter 4.

Part II includes four papers produced during the Thesis period. In Paper A, an
analytical model composed of an infinite string and a visco-elastic support is
used to study the behaviour of the catenary and the results are contrasted with
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more accurate numerical simulations. In Paper B, an algorithm is proposed
to perform HIL tests with the catenary model of Paper A. In Paper C, a
formulation is developed to solve the dynamics of infinite periodic structures
modelled by FEM; the formulation is used to model the catenary, and a similar
algorithm to the used in Paper B is proposed to adapt the model for HIL tests.
Utilising the formulation of Paper C, in Paper D, HIL tests with periodic
catenary models are accomplished with proven accuracy.

10



Chapter 2

State of the art

As has been discussed in the previous Chapter, the pantograph-catenary dy-
namic interaction is a problem worth studying due to its extensive use. In this
work the modelling of the system, the simplification of the models and the
experimental technique of HIL are investigated. Therefore in this Chapter a
literature review on those topics is presented.

2.1 Pantograph-catenary modelling

There are different techniques for the mechanical study of OCL as described
in [8]. The alternatives are divided into computational simulations, hardware-
in-the-loop tests and in-line testing. This section features the models found in
the literature for simulations of the pantograph-catenary system.

The finite Element Method is a well-established technique for modelling cate-
naries and is the most frequently used. The benchmark exercise [7] features
ten different software for solving the pantograph-catenary interaction, most of
them based on FEM. The software PACDIN |9, 10|, which participated in that
benchmark exercise, has been developed in the same research group where this
Thesis takes place. PACDIN is a FEM pantograph-catenary simulator based
in Absolute Nodal Coordinate Formulation [11] that has been enhanced for a
high computational performance [12].

11



Chapter 2. State of the art

In recent years, the catenary models have been enriched to incorporate more
features initially not considered. In [13] and [14], the effect of catenary ir-
regularities is considered and proved to affect the pantograph-catenary opera-
tion negatively. Specifically, in [13], the study includes realistic measurements
of installed catenary. The deformation produced by temperature in a three-
dimensional curved catenary is considered in the FEM model of [15]. Another
factor that can affect the operation of the OCL is the crosswind. In [16], a
FEM catenary is enhanced by the addition of stochastic fluctuating wind de-
scribed by empirical spectrum. Also, the aerodynamics of the pantograph can
affect its performance; a numerical simulation of the pantograph is carried out
in [17] to study its dynamic effect, and the results are contrasted in the wind
tunnel. A distinct feature included in the simulations is vehicle-track vibra-
tion. In [18], the pantograph base reproduces the translations and rotations
of the train caused by random rail irregularities. Also, [19] is endowed with
track-induced vibration, and it is concluded that only the low-frequency vibra-
tion will affect the dynamic interaction between the pantograph and catenary.
Nevertheless, the effect of track irregularities has not been demonstrated to
strongly influence the pantograph-catenary interaction.

The pantograph modelling also plays an important role in the system dynamics.
There is a wide variety of pantograph models with different degrees of com-
plexity, but the experimental behaviour of the pantographs is hard to match.
In [20], the dissipative parameters of the pantograph joints are identified to
adjust a pantograph model. In order to tune those parameters, the joints are
tested disassembled, and good agreement between simulation and experiment
results is claimed for the assembled model. In [21], a multi-body pantograph
model with non-ideal joints and flexibility is developed with proper calibra-
tion. Additionally, the performance of the pantograph-catenary interaction is
optimised using a inertance-integrated damping at the pantograph, achieving
a significant improvement.

2.2 Simplified and periodic models of the catenary

FEM models have proved to be very suitable for modelling the catenary; they
provide good accuracy and a limitless capacity for adapting to different cate-
nary topologies. However, simplified models that assume a certain reduction
of the system features can be helpful in some determined applications. In [22],
the catenary is modelled as a single and two-degrees-of-freedom system with
periodically time-varying mass and stiffness to obtain a method of relating the
speed limit of the catenary to the parameters of the catenary. A dynamically
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more complex model is presented in [23], where an infinite string with visco-
elastic support is used to obtain the stationary response of lumped-parameter
moving models coupled to the string.

The dynamic behaviour of the catenary can be characterised by the dynam-
ics of periodic infinite structure when specific hypotheses are satisfied. This
feature can be helpful to simplify the catenary models and is exploited for
HIL test in this work. This periodic approach is used in diverse structures
such as rails or bridges in the literature. The first attempt to solve this prob-
lem was made with analytic models based on a periodically supported infinite
string/beam |24, 25, 26]. In all these references, the domain of the problem
is reduced to the basic cell of the structure, and proper boundary conditions
are set; besides that, some differences are found between them. The model of
[24] considers an infinite periodic Euler-Bernoulli beam subjected to a uniform
moving harmonic pressure field to model the rail. The modal approach is used
in [25] to solve a set of finite repeated substructures, and the limit when the
length tends to infinity is applied for the case of a moving constant load. The
problem is also solved in [26], using the Fourier Transform. The previous solu-
tions do not fit well the topology of the catenary due to the simple geometry.
However, the approach given in [26] is extended in [27], where a two-level in-
finite catenary model, composed of an upper and lower string and equidistant
dampers that connect both strings, is proposed. The wave equation provides
the dynamic behaviour of the string, and a harmonic point load excitation is
employed. Other similar models can also be found in the literature, such as
that in [28], which is composed of several finite strings and is used to study
the wave propagation and reflection phenomena in the catenary. The review of
[29] can be consulted for a broad collection of analytic approaches for different
structures under moving loads.

Another different approach is the so-called two-and-a-half dimensional (2.5D)
finite element models, which allows to model structures with constant cross-
sections. This strategy is found in [30] to model a rail. Fourier Transform
with respect to space and time is performed to solve the problem, which allows
the application of the periodicity condition on the reactions of the supports in
the frequency domain. The same authors presented an improved model in [31]
where the dynamic interaction of multiple wheels with the periodic model is
computed through Fourier series decomposition of the contact force.

The previous periodic models have some topological limitations; a more general
method is the so-called Wave Finite Element Method (WFEM) which provides
more freedom thanks to the FEM discretisation. WFEM allows modelling finite
and infinite periodic structures in the frequency domain [32, 33]. In [34],
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some additional formulation is stated to compute the response of a WFEM
model excited by a moving load. Additionally, this technique allows considering
structures with a different cell in the periodic arrange [33].

2.3 HIL test

The HIL laboratory tests have been used in many fields to evaluate large struc-
tures that can not be held in conventional installations. The accomplishment
of the tests depends on strict requirements, and researchers are making a con-
siderable effort to increase the capabilities of HIL. A review of recent HIL
achievements in diverse fields is collected in [35] and, in this Section, the HIL
state of the art is revised for pantograph-catenary systems.

The early works on pantograph-catenary HIL test rig are found in the installa-
tions of the University of Southwest Jiaotong [36, 37| where the significant size
reduction of the catenary model and truncated modal approach is employed
for the high computational requirement of this real-time application. The test
implementation is carried out by a hydraulic actuator controller with a servo
valve. In the research group of Politecnico di Milano [38], the tests also rely
on a hydraulic system and a moving window strategy is employed to simu-
late a periodic catenary model including three active spans. This model was
enhanced in [39] with the consideration of the non-linear dropper behaviour,
which is crucial for the fidelity of the catenary dynamics. This facility was
tried out in [40] to test the active control system of the pantograph. Another
upgrade was carried out by the same group in [41], where a more complex test
rig allows the contact point to move over the surface of the pantograph strips
to emulate the catenary stagger.

The models used in every HIL installation must be computed in real-time.
Additionally, their response has to be transferred to the physical device with
enough fidelity, and the presence of a delay is a challenge for this aim. In
the literature, this problem is addressed using different ideas. In the Institute
of Engineering Mechanics of China [42], the HIL technique is applied to the
vehicle-bridge interaction, where a Recursive Prediction Optimal (RPO) com-
pensator is utilised for dealing with the delay of HIL. RPO algorithm requires
the transfer function of the actuator system to design an optimum control ar-
chitecture in which an entire order observer provides the state of the system
to feed an LQR controller and a recursive predictor compensator. In the re-
sults provided, the previous strategy outclasses three different methods. One
of them is Polynomial Extrapolation [43] that consists of the extrapolation
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of an n*"-order polynomial function, the method uses current and past target
values to make a prediction that replaces the original target to compensate
the delay. The second one is Inverse Compensation [44], in which the dis-
crete transfer function of the actuator is inverted to counteract the actuator
response, especially the delay. The last one is the Differential Feed-forward
Compensator [45], where the PID controller of the actuator is augmented with
a feed-forward scheme for delay compensation. This method assumes that the
displacement control errors will not change so much in a few future time steps,
in consequence, the feed-forward scheme is enhanced with the inclusion of the
anticipated error.

An interesting approach of the control system is considered in the University of
Bristol [46, 47| for the benefit of HIL tests of the pantograph-catenary system.
This simulation is denominated DSS (Dynamically Substructured System) due
to the proposed architecture of the control system. Most HIL tests are realised
in an open-loop strategy, requiring an ideal transference system and strict
technical specifications. Therefore, DSS suggests an interface that entails a
closed loop, in which the response of the virtual model is compared with the
current status of the actuator, leading to a control action for reducing the dif-
ferences. In the work [46] proposed by the same group, DSS is implemented
with a very elementary catenary model of one degree of freedom and variable
stiffness. Linear Substructuring Control (LSC) is implemented to control the
actuator, and the tests run with a shock absorber replacing the pantograph.
The results are satisfactory for the control field but are still far from a proper
pantograph-catenary characterisation. Thus, this approach is enhanced in [47]
utilising a sliding window approach for the catenary but testing the same sim-
plified pantograph model. The results achieved in [47] show that the accuracy
of HIL of the catenary is still a challenge by comparison with emulated HIL
test. Finally, in [48], the DSS strategy is tested with a real pantograph in the
same installation with a relatively good agreement in the frequency domain.
The work conducted at the University of Wien [49] employs a moving mesh
formulation in combination with absorbing boundary layers; its strategy can
be classified as DSS since it also develops a control algorithm based on the
energy equation to limit the error in the controlled position of the catenary
and avoid the instability produced by delays.
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Chapter 3

Contributions

This Thesis includes a compendium of four articles in Part II, where the con-
tributions that have been published or submitted are presented. This Chap-
ter summarises the four papers and fundamentally discusses the main results
achieved; for further details, the papers can be consulted. Papers A and C are
devoted to developing models of the catenary. In contrast, Papers B and D
include experimental work on Hardware-in-the-loop tests.

3.1 Paper A

This paper develops a new analytical pantograph-catenary model to get a
closed-form expression of the contact force. The catenary is governed by the
telegraph equation and the pantograph by a lumped parameter model. The
proposed model is based on a previous model presented in [23|, here denom-
inated Analytical String Model 1 (ASM1). In [23], a explicit solution of the
telegraph equation is proposed and analysed in different cases. In Paper A,
the governing equation is modified by including a Kelvin-Voigt damping model
to get a dissipative behaviour similar to that incorporated into the FE model.
This leads to a different equation from [23| with higher order, which is solved
in this work. In [23], the contact wire height profile is not included, but it
plays an essential role in the dynamic behaviour of the pantograph-catenary
system |50, 51, 14, 52|. Therefore, in this work, the height profile of a real
catenary contact wire is incorporated into the model.
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The interaction contact force obtained with the analytical model is compared
with a verified FE model solution [9, 10]. To obtain a response as similar as
possible to that of FE models, the stiffness and mass parameters of the ana-
lytical model are properly tuned by following a proposed methodology based
on static equilibrium and wave propagation.

3.1.1 Analytical model of the catenary

The proposed Analytical String Model (ASM2) is composed of an infinite string
prestressed with tension 1" and supported by a continuous visco-elastic layer, as
shown in Fig. 3.1, with k and p being the stiffness and linear density coefficients
per unit of length, respectively.

Figure 3.1: Two pantographs coupled to the ASM2 with initial height zo(z).

The string subjected to a load p(x,t) is governed by the equation:

T
Mo 022

*w 0w — Jw 0 (0w —

+ (op + Bk) i BTE <8x2> + kw = p(z,t) (3.1)
where w = w(z,t) is the vertical displacement of the contact wire and for this
case p(x,t) = Fpe™ §(z — vt) because harmonic moving load is considered
with frequency ) and velocity v. Note that a Kelvin-Voigt damping model
is included in the differential equation, where the damping terms are a linear
combination of the inertial and elastic terms.

The solution to Eq. (3.1) is given by:

1 0o FO efi(lc(zfvt)fﬂt)
t)=— dk 3.2
wiw,?) 21 J_ o A3+ k2 + Tk + 0 (32)
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where:

A=1ipTv

n="T— m?+ipTQ

=i (ap+ Bk) v — 200
o=k+i(ap+ Bk)Q— pQ?

(3.3)

Applying the residue theorem to Eq. (3.2), the string vertical displacement is:

efi(kg(:vat)fﬁt)
L F ; —vt <0
ZOXP:AH(]{?]?—]C?)’ r—ot <
o r#p
'LU((I:,t) o —i(kn(a:—'ut)—Qt) (34)
—iF Z €’ : x—vt >0
Do NI (RS — kD)
r#q

where k:]f)2 are the poles of the integrand of Eq. (3.2) with a positive imaginary

part and k(? are the poles with a negative imaginary part. The analytical
expressions of the poles are found in Paper A.

Additionally, the contact wire initial height profile is included. Then, the total
string height can be written as:

z(x,t) = zo(x) + w(z,t) (3.5)

where zo(z) is the initial height, which depends on the position x.

3.1.2 Frequency response function

Due to the linearity of the system, the problem can be solved first in the fre-
quency domain, after which Fourier Transform can be used to get the solution
of a general problem. The dynamic interaction of two pantographs coupled to
ASM2 is solved by getting first the Frequency Response Functions (FRFs) of
every system independently.

Given two points 1 and 2 over the string, located at a distance L and both
moving at the same speed v (see Fig. 3.2), the FRF of the string H;, is defined
as the ratio between the vertical displacement of 1 and the harmonic force
applied at 2:
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w(vt + L, t)

H15() = Fyeiftt

(3.6)

Replacing the expression (3.4) in Eq. (3.6) and considering the signs of the
poles, the FRF is:

e kL

Bl = 0 R 7 — kD)

(3.7)

Similarly, Hy; can be defined as the ratio between the displacement produced
in 2 and the excitation applied at 1:

4 Q TR
iky L Zelk3L

+
A (RS — k) (kS — KS)

ie

A (RS — B (RS — R

Hy () = (3.8)

When the displacement is measured at the force application point, the direct
FRF is:

—1

H () = Hyn(Q) = 3.9
Y TG .
On the other hand, the FRF of the pantograph model:
1 . —1
H,(Q) = o + [-9°M, +4QC, + Ky ], (3.10)

where M,,, C,, y K,, are the mass, damping and stiffness matrices of the pan-
tograph respectively, and k; the contact stiffness. Additionally, the operator
[ ](1,1) extracts the first row first column element of the matrix which refers to
the upper mass degree of freedom of the pantograph.

——
2 1
F2I Flt
Fy Fy
2! 17
v v

Figure 3.2: Contact forces in the coupled string model with two pantographs.
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The contact forces F; and F, between each pantograph and the string, repre-
sented in Fig. 3.2, are the unknowns of the problem. The linearity of Eq. (3.4)
allows writing the vertical displacement of the points 1 and 2 as the superpo-
sition of the displacement produced by each force acting separately and the
geometric profile z5. The height of points 1 and 2 should be equalled to the
height of the points 1’ y 2" which belong to the pantograph (see Fig. 3.2) to
set the equations for solving the interaction forces. Finally, an expression is
obtained that relates the forces in the frequency domain F; and F, to the
geometric profile of the contact wire Z in the frequency domain:

_Hp<_522:(g)u(m _Hp(sgli(%)ﬂ(m } { ?; }:{ e }zo (3.11)

e’ v

Supposing zo(x) can be expressed as a sum of harmonic functions, the Eq. (3.11)
and the superposition principle allow the computing of the different harmonic
components of the CF.

3.1.3 Parameter setting

The parameters of the analytical model are adjusted to get a static and dy-
namic behaviour similar to the precise FEM catenary model. The damping
parameters, o and [, and the tension 7', are also defined in the FEM model
and do not need to be adjusted. The value of k is tuned to match the static
equilibrium response of both the ASM2 and FE models. Additionally, the value
of i is adjusted to find similar wave propagation behaviour in both ASM2 and
FE models. More details about this setting is found in Paper A.

3.1.4 Pantograph interference

Understanding the multiple pantograph interference is a complex task, [53, 54].
In this work, the ASM2 is used to get an expression for evaluating the optimal
distances between pantographs.

The CF of the trailing pantograph is analysed with respect to the pantograph
separation L. To simplify the analysis, the initial height of the contact wire
zo(x) is considered a pure harmonic function with frequency €. As the trailing
pantograph has a negligible effect on the leading pantograph [55, 53|, it is
assumed here that Hq2(€2) = 0, which implies that the CF of the leading
pantograph is not modified with respect to the single operation scenario. In
addition, the exponential term which includes k§ can be neglected in Ho; ()
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(Eq. (3.8)) due to this wave being strongly damped for velocities lower than

Cc.

The best performance of the trailing pantograph, or the minima of )Fgl, is

found when the displacement created by the leading pantograph at the trail-
ing one is in phase opposition with respect to the geometric profile. For every
frquency €2, there is a group of equidistant optimal values of L that minimise
the amplitude of the trailing pantograph CF:

_ 2mn —arg(C,)

Lot = : ~0,1,2,... 3.12
Qv+ kS " ( )

where C, is a constant that can be consulted in Paper A. This indicates that
by placing the pantographs at one of those distances away, a specific frequency
of the second-pantograph contact force is attenuated by the presence of the
first pantograph.

3.1.5 Numerical results

The ASM2 implies important simplifications compared to the more complex
FE models. The continuous visco-elastic support does not strictly describe
the complex dynamics of the droppers and the messenger wire. Thus, the
analytical model lacks of variable stiffness, wave reflections and non-linearities.
Additionally, the analytical model includes the periodicity hypothesis and only
serves to compute the steady state.

The Contact Force (CF) of the ASM2 is compared with a catenary modelled
by the FEM model. The FE catenary model is defined long enough to get a
quasi-steady response in its central spans. The CF is filtered by a 20 Hz low-
pass filter, following the guidelines in [3]. For the single pantograph operation,
the contact force obtained by ASM2 is compared in Fig. 3.3 (in the frequency
domain) and Fig. 3.4 (in the temporal domain) with that computed by the FE
model for excitation frequencies ranging from 0 to 20 Hz and the pantograph
running at 200, 250, 300 and 350 km/h. There is a reasonable similarity
between the results of both models since the magnitude of the analytical results
is not too far from the FE results. However, significant discrepancies are found
at 350 km/h in the first two harmonics.

The CF standard deviation o is the variable most often used to quantify current
collection quality. The standard deviation o is plotted versus train velocity in
Fig. 3.5. As o depends on the mean CF in the FE model, FEM results are
shown with a mean CF of 70, 80, 90 and 100% of the maximum mean CF
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Figure 3.3: CF in the frequency domain at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and
(d) 350 km/h. O ASM2 XFEM.

allowed by EN-50367 [3]. However, for the ASM2 the mean value of the CF
(Fln) does not have any influence on o; therefore, Fy, is not indicated in the
figure. Despite all the simplifications introduced in the analytical model, it
is able to give a good approximation of o with respect to the more accurate
results obtained from the FE model. Especially the similarity for the maximum
mean contact force allowed by the standard is remarkable. Note that the mean
CF effect is negligible for velocities smaller than 250 km/h for the studied
pantograph-catenary system.

For a double pantograph operation, the standard deviation of the CF of the
trailing pantograph o, is compared with the FEM results in Fig. 3.6 for a wide
range of L at the operating speeds of 200, 250, 300 and 350 km /h. Considering
all the differences between the models, the approximation obtained by the
analytical model has reasonable accuracy for the three first cases. Still, a
bigger standard deviation is predicted with ASM2 as in the single pantograph
operation at 350 km/h.

In Eq. (3.12), it has been stated that every harmonic component of the contact
force of the trailing pantograph is attenuated at specific periodic values of L.
In Fig. 3.6, since zo(x) contains several harmonics, the fluctuating o, behaviour
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Figure 3.4: CF in the time domain at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and (d)
350 km/h. —ASM2 - - FEM for a central span.

ASM2

b FEM: 70% F,
‘== FEM: 80% Fy,
= — — — FEM: 90% Fyy,
o 20} FEM: 100% Fy,

10

200 250 300 350

Figure 3.5: Comparison of the standard deviation of the CF between the ASM2 and the
FE model for different pantograph velocities and different values of the mean CF.

is produced by the contributions of all the CF harmonics, which are minimised

at Lmin(Q) .
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Figure 3.6: SD of the trailing pantograph CF with respect to the distance between pan-
tographs at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and (d) 350 km/h. —— ASM2.
- - FEM.

3.2 Paper B

In Hardware-In-the-Loop (HIL) tests, the catenary model should be as real-
istic as possible but, at the same time, must be solved in real-time, which is
usually achieved by using simplified catenary models instead of more complex
finite element models. In this work, we propose a new method for performing
pantograph HIL tests using the proposed model in Paper A, which considers
the main dynamic features of the catenary and the initial contact wire height
profile.

A catenary with equal-length spans is illustrated in Fig. 3.7. In the central
spans of the catenary section, the pantograph contact force reaches a quasi-
stationary regime characterised by its repetition in every span. In that zone,
the catenary can be considered a periodic catenary. Thus, the contact force
fe(t), the geometric profile zo(¢) and the height of the contact point of the
catenary z.(t) are considered T-periodic functions of period T' = L/v, where
L is the span length and v is the train speed.
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Figure 3.7: Scheme of a catenary section and detail of a single span.

Let us assume that the periodic interaction force is discrete (as in HIL tests)
and known for a whole span, f.(¢,) with n = 0,...,N — 1, in which N =
L/(vAt). This discrete force can be shifted to the frequency domain Fi(wy)
by applying the Discrete Fourier Transform (DFT). Following, the receptance
found in Eq. (3.9) allows getting the displacement of the contact point in the
frequency domain U..(wy):

Ue(wi) = Hyy(wi) Fe(wy) (3.13)

The total height of the contact point is obtained by adding the DFT of the
geometric profile Zy(wy) to the displacement produced by the force:

Zc(wk) = Z()(wk) + Uc(wk) (314)
This holds for:

™

9
—k
W= NNAL

Finally, the Inverse Discrete Fourier Transform (IDFT) is used to return to the
time domain, z.(t,,)

k=0,...,N—1 (3.15)

The static configuration of the catenary zo(x) can be obtained by different
methods. For example, semi-analytical methods are used in [56], or a method
based on a Finite Element (FE) model was proposed in [9]. Here we use
a non-linear FE model [57] to obtain the height of the contact wire zy(z).
The representation of a 65-meter-span geometric profile in the spatial domain,
2o(z), and in the frequency domain, Zy(wy), is found in Fig. 3.8.
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Figure 3.8: Contact wire height profile (a) Space domain (b) Frequency domain

3.2.1 [Iterative algorithm

The height of the contact point in a whole span of the catenary z.(t,) can be
calculated if the periodic contact force is known in advance. In a HIL test, the
force is measured every time step t,, and, in general, it is not periodic. Here we
propose an iterative method to find the steady solution of the problem using
the periodic formulation of the analytic catenary in HIL.

As in HIL tests, the basic premise is that a contact force value is obtained ev-
ery instant, and the model has to provide a displacement value of the contact
point. In this method, the contact force is measured in consecutive instants
that can be grouped in sets of IV values corresponding to one span. Every set b
is considered as a block or span of the catenary and the force values of the set
are named f°(t,). The contact force in the frequency domain is obtained by
the DFT of the contact force of a block. To avoid waiting until the completion
of a span to compute the displacement of the contact point, the contact force of
block b is built with measures of the previous span and the current one. Thus,
at any instant t,, the contact force in the frequency domain is calculated as:

n N—-1
Fcn(wk) — Z ff(tm)e_iwkMAt + Z féy—l(tm)e—iwkmAt (3.16)
m=0

m=n-+1

Finally, the Egs. (3.13) and (3.14) and the IDFT allows obtaining z.(t,) to
be sent to the actuator in a HIL test. In this application of the IDFT, the
frequency content can be reduced to take off the higher involved frequencies in
the test that are not in the range of interest and can cause instabilities.
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Figure 3.9: HIL test rig.

3.2.2 HIL test rig

The main components of the HIL test rig are depicted in Fig. 3.9. The contact
force on each collector strip of the pantograph is measured employing a load
cell. This signal is filtered and conditioned and finally acquired by the National
Instruments® cRio-9040 real-time controller in which the analytical catenary
model runs to provide the contact-point height to be followed by the linear
actuator (LinMot® 70x400U), simulating the catenary movement.

All the tasks are shown schematically in Fig. 3.10. The contact force f. between
the linear actuator and the pantograph is measured, filtered and sampled to
feed the catenary model, which provides the contact point height z. every
At = 1 ms. However, communications between the real-time controller and
the motor servo drive (LinMot® E1400) cannot take place at this rate, so one
value out of every N, values of z. is sent, via Ethernet UDP communication,
to LinMot servo drive. The value received by LinMot 2., is set as the new
reference, and the controller tries to reach this reference by generating a set of
intermediate reference points linearly interpolated from the previous reference
Zold 10 Zeom- The LinMot servo drive uses a PID controller, which works at a
higher rate, to fulfil these intermediate references. The whole loop described
requires a certain time to be accomplished. Compensating the test rig delay
in the HIL tests is crucial because omitting this step could modify the final
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Figure 3.10: Simulation cycle of tasks in HIL test.

response or make it unstable. Due to the fact that the response is always
defined in the domain of a period, an advanced position can be sent to the
actuator to counteract the delay.

3.2.3 FExperimental results

To validate the control system and the operation of the HIL test rig, an exper-
imental validation test was carried out in which the pantograph was replaced
by a mass of 5.29 kg directly attached to the linear actuator, as shown in
Fig. 3.11. The objective is to eliminate the uncertainty of the physical model
tested to match the HIL test with a computational simulation.

Linear actuator

Load cells

Eesss——tmmN-<———— Attached mass

Figure 3.11: Mass attached to the linear actuator for the validation test.

In Fig. 3.12, experimental results of a HIL test with the mass are compared with
the same problem computationally solved. The frequency range considered in
the results is up to 25 Hz. The experimental results are almost identical to the
analytical solution, indicating satisfactory experimental validation.
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——-HIL mass
| —— Analytical solution

Figure 3.12: Comparison of the contact force in the mass HIL test (10 spans overlapped)
at 300 km/h with the analytical solution.
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Figure 3.13: Comparison of the contact force obtained from the pantograph HIL test (10
spans overlapped in black) and the analytical solution with a linear pantograph model (red
curves). Tests performed at 200, 225, 250, 275 and 300 km/h from top to bottom.
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Once the test has been validated, a pantograph is placed in the test rig to be
tested. The contact force up to 25 Hz obtained is shown in Fig. 3.13 with the
pantograph running at 200, 225, 250, 275 and 300 km /h. This contact force is
also compared in Fig. 3.13 with the analytical solution obtained using a linear
lumped-parameter pantograph model showing remarkable similarity between
them.

3.3 Paper C

This work aims to provide an entire framework to realise HIL tests with a
periodic catenary model. This paper has two different tasks; the first one
is devoted to solving the steady-state interaction of constant velocity moving
loads with periodic structures modelled by the FEM. The developed model
is denoted Periodic Finite Element Model (PFEM). The second part presents
a strategy for using PFEM in HIL tests. The global objective is to perform
high-fidelity HIL pantograph tests dealing with the usual control-loop delay in
this type of test.

An infinite periodic railway catenary is shown in Fig. 3.14. As a periodic
structure, the catenary is subdivided into consecutive blocks b of length L,
which are repeated infinitely in the x axis. The pantograph moves at a constant
speed v, and the interaction with the catenary will be indefinitely repeated at
every block if the stationary state is achieved. Therefore, the external contact
force applied to the catenary is a periodic moving load of period T'= L/v.

Let us define the field of displacement in specific direction as u(z,y, z). In this
particular problem, the displacement field is repeated in each block. Thus, the
periodicity condition reads as follows:

u(t,z,y,z) = u(t — T,z + bL,y, z) (3.17)

which allows the description of the response of the entire catenary with one
single block so that the response of the reference block b = 0 will be considered
from now on. This reference block is discretised by the Finite Element Method
(FEM), and the displacements of its N, ; nodal degrees of freedom are denoted
by u(t). The nodes of the FE mesh of the reference block can be divided into
left (L) and right (R) boundary nodes and inner (I) nodes, as shown in Fig. 3.14.
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o Left boundary nodes
® Right boundary nodes

b b1
ry = —rp 'R e Inner nodes
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Figure 3.14: Catenary as a periodic infinite structure and Finite Element discretisation of
block b = 0.

3.3.1 Frequency Response Function

The strategy entails shifting the problem to the frequency domain in which
the periodicity condition is more easily stated.

Displacements of the left boundary nodes uy, must fulfil Eq. (3.17), that is:
up(t) =ur(t+17) (3.18)
Which, after applying the Fourier Transform, becomes:
U (w) = e“TUg(w) (3.19)
being Uy, 1 r(w) the Fourier Transform of uy, 1 r(t), respectively.

The nodal equivalent external force vector F can be divided into left, inner
and right nodal degrees of freedom, namely Fp, F; and Fg, respectively. If
the degrees of freedom of left and right boundary nodes are adequately defined
(mesh compatibility), F;, and Fg are related through the following equation:

Fp = c“TFy (3.20)
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In the reference block, the dynamic equation in the frequency domain is:
Dw)U=F+R

3.21
D(w) =K + iwC — w’M (3:21)

where M is the mass matrix, K is the stiffness matrix and C is the damping
matrix of the substructure contained in a single block. The reaction force
vector R, applied to the left and right boundary nodes R = [Ry, 0, Rg]", is
also unknown.

Considering the periodicity condition again and the action-reaction principle,
the reaction force vector in the left and right boundary Ry, and Ry are related
by:

R = —e“TRpy (3.22)

Operating with Egs. (3.21), (3.22) (3.20) and (3.19), the relation between the
nodal forces and nodal displacement is obtained:

U,

g; :H(w){ f:; } (3.23)

3.3.2 Impulse response

Below, the necessary step to move from the frequency domain to the time do-
main is stated. As the structure is modelled with FEM, Eq. (3.23) cannot be
analytically defined but is computed for a discrete number of frequencies N
with a frequency increment Aw:

w, = kAw k=0,...,Ny—1 (3.24)
In addition, time ¢ is also discretised with a time increment At:

to = nAt (3.25)

In Eq. (3.23), the receptance H(w) relates nodal displacement with nodal
forces. The next step is to create a different operator I(w,x,y) that relates
physical points, specifically, the displacement of point x with the force of point
y. To that end, the FEM shape functions, Ni(x) and Ng(x), are employed:

Hoxy) =N HE) { g o N o b G20
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where the term e TNy (y)" is used to include the excitation produced in
elements out of the reference block but sharing nodes with the reference block.

By applying the Inverse Discrete Fourier Transform to Eq. (3.26), the impulse
response at time step t,, is obtained as:

h(t,,x,y) = Z arRe (I(wg, x,y) "2 Aw (3.27)
k=0

being ap =2 if k #0or a;, = 1 if kK = 0. h(t,,x,y) is the displacement of
point x at time ¢,, when a unitary force is applied at y at ¢, = 0.

The pantograph is virtually moving at a constant speed v and applies a ver-
tical contact force f.(t,) at the contact point, whose displacement is labelled
as u.(t,). There are N, virtual contact points in the domain of the block cor-
responding with the time steps. The impulse response function h(t,,x,y) can
be used to compute the vertical displacement of the contact point produced
by all the values of the contact force:

weltn) = Y Um0 £t2) (3.29)
in which:
H(na ﬁ) = h(tn - tﬁa ch(tn)v wa(tﬁ))At (3'29)

where X, (t,) and y.,, (ts) are the coordinates of the contact point in function
of the time step.

In addition to the displacement due to interaction with the pantograph, the
vertical position of the contact wire depends on the static configuration of the
catenary. If z.,(t,) is the contact wire height at the initial catenary configu-
ration, the total height of the contact point at time step n can be obtained from:

ZC(tn) = ZCW(tn) + UC(tn) (3‘30)
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3.3.3 Hardware In the Loop test methodology with a linear
catenary model

The contact force measured in the test rig is the input of the virtual catenary
model, which must supply the contact point vertical position in real time.

Eq. (3.28) condenses in a N, x N. matrix I(n,n) the steady-state vertical
displacement of the contact point at time ¢, as a function of the stationary
force applied in all contact points of the block at time t; for n =0, ..., N, — 1.

Matrix I(n,n) can be precomputed which makes the proposed model very
suitable for use in HIL testing because few operations are required to obtain
the contact point response. We propose to apply this model in combination
with an algorithm by adapting the iterative procedure proposed in Paper B
to a periodic catenary model scenario. This procedure allows both the virtual
catenary and the physical pantograph to achieve the steady-state regime in a
HIL test.

Defining k as the time step or global iteration of the HIL test. The iterative
method runs the HIL test for consecutive blocks of N, time instants. The time
step is also labelled as m that initialise to 1 at the beginning of every block b.
The contact force is measured at a given iteration k£ (or 7 in the time domain
of every block). At this moment the contact force values measured from ¢,
to ty are available in the current block. To complete the set of N, measures
of contact force required to compute the response of the catenary model, the
contact force values from t7,; to ty, 1 are taken from the previous block b—1.
Thus, by combining Eqgs. (3.30) and (3.28) the contact point height at iteration
k is computed as:

n N.—1

25 (tn) = Zew(tn) + Zﬂ(n,ﬁ) Jo(ta) + Z I(n,n) f* (ta) (3.31)

n=0 n=n+1

Note that the response z.(t,), defined from ¢y to ¢y _1, must be updated for
all t,, every iteration k.

Once the contact wire height is available, only the vertical position of the
contact point for the next time step z¥(t7,1) is sent to the actuator. The
method runs iteratively step by step until the measured contact force in two
consecutive blocks matches with a given tolerance. The delay compensation
strategy is performed by sending the displacement z*(t7,p) to advance the
response D steps, corresponding to the delay.
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3.3.4 Hardware in the loop method with nonlinear catenary model

The consideration of the non-linear behaviour of droppers is detailed in Paper
C. The same idea introduced in [10] but adapted to account for the periodic
nature of the system is applied in this work. The proposed formulation is de-
veloped in two stages. In the first, the response is computed with the linear
model described in Subsection 3.3.3. The second is devoted to applying correc-
tion forces to the slack droppers. The non-linear correction forces are added by
using analogue operators to Eq. (3.29) defined in each dropper. To satisfy the
condition of no compression forces, a system is solved in which the non-linear
forces are the unknowns. This part computational cost is equivalent to solving
a linear system of order equal to the slack droppers at any time step.

3.3.5 Numerical results

In this subsection, the results are displayed; the data of the catenary model
can be found in Section 6 of Paper C. The method proposed in [10] is used
to build the FE model of the block necessary for the PFEM model. The
same method is used to obtain a conventional FEM model of the catenary for
validation purposes. We have made a long enough catenary section to assume
the steady-state regime on its central spans. In this way, transient effects
are negligible due to the notable length of the FEM catenary model and it
is expected to obtain the same solution in both the proposed periodic model
(PFEM) and the finite length FEM model.

The algorithm proposed is tested in a virtual HIL simulation in which a nu-
merical pantograph model is used to replace the real pantograph used in a
true HIL test. The time integration of the pantograph model is carried out in-
dependently of the catenary model through the Hilber-Hughes-Taylor (HHT)
integration method [58|. In this virtual test, the displacement of the catenary
contact point obtained from Eq. (3.31) is imposed on the pantograph model,
and the contact force in the next time step is computed.

In the numerical case analysed in this section, the velocity of the pantograph
is set at 250 km/h, and the virtual HIL simulation runs until there are no
noticeable differences in the computed contact force of two consecutive blocks.
The contact force obtained in successive blocks of the virtual test is depicted in
Fig. 3.15. The non-linear correction forces of droppers can be seen in Fig. 3.16.
It can be observed that, after several blocks, the curves reach an agreement,
and convergence is achieved. To ease convergence of the virtual HIL test,
during the first 20 s of the simulation, the imposed displacement has been
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multiplied by a factor that increases linearly from 0 to 1. This is reflected in
the increasing values in the first blocks of the results.

RO SR\l
200 - . ..o»‘.:é"ﬁ*\\\\- P\l —
. Wtk \\V,,, w} \ »;?3‘,'% i W, e
Z AR Sy
£4100 - NGNS b\ 60
NG '\:“\\"\;\\.’A‘&’ 40
0 j// //: b
) 90
3000 i
2 2000 - e
= 1000 - 40 00
0- 20 b

Figure 3.16: Dropper correction forces evolution.

To validate the results, the converged contact force obtained from the catenary
PFEM is compared in Fig. 3.17 with the contact force of three consecutive cen-
tral blocks computed with a conventional FEM simulation. We have used two
catenary models with different lengths, namely 15 and 30 spans, respectively.
The FEM solutions show minor differences with the contact force obtained
from the PFEM. These differences are even smaller with the 30-span FE cate-
nary model because a more stationary response is achieved on these central
spans. The converged dropper correction forces obtained from the catenary
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Figure 3.17: Comparison of contact force of catenary PFEM (solid line) with those obtained
in three central spans of the section of a FE catenary model with 15 spans (dashed line) and
30 spans (dash-dotted line).

PFEM are also compared with those obtained from the longer FE catenary
model in Fig. 3.18. As seen in both figures, the results provided by the pro-
posed catenary PFEM are validated due to their great similarities with those
obtained from a FEM simulation with a large enough catenary model.
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Figure 3.18: Comparison of dropper correction forces from catenary PFEM (solid lines)
with those obtained in a central span of a FE catenary model with 30 spans (dashed lines).
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3.4 Paper D

This paper adopts the periodic finite element model of the catenary proposed
in Paper C. The model provides high accuracy results as demonstrated in Sec-
tion 3.3, accounts for dropper slackening and presents some advantages for
its practical implementation. Due to the periodic formulation, the steady-
state solution provided by the PFEM is not influenced by boundary-layer ef-
fects. Furthermore, this model is suitable for a delay compensation technique,
demonstrating good performance in virtual tests in Section 3.3.

3.4.1 Iterative algorithm to perform HIL pantograph tests

Here we provide details of the practical implementation of HIL, and addition-
ally, a new variant of the iterative algorithm is proposed to tackle stability
issues that could arise. Finally, the strategy to consider dropper non-linear
behaviour is also introduced.

In Eq. (3.28) the moving load values are related to the contact point displace-
ment. Both discrete variables can be arranged in vectors, f and z, in which
every position refers to a time instant. Due to the existing periodicity, the
time domain includes just the instants that the load takes to travel a span of
the catenary, and it is discretised into N steps which are indicated with n or
n € [1,...,N]. Where n is intended for evaluating the displacement and 7 for
applying the force. Given a complete set of contact force f(n) arranged in
vector f, the contact wire height vector z, which includes the contact points
z(n), can be directly obtained as:

z = zy+ L..f (3.32)

being zg the initial configuration contact point height (initial geometric shape
of the catenary).

With this scheme, the vertical displacement of the contact point z(n) for all
the time steps within the span can be calculated employing the product of the
contact force f and matrix I.. which contains the contribution of every load
value (column index 7) over every displacement value (row index n).

HIL tests are performed following a discrete time scheme. In each global time
step, denoted with index k, every contact point displacement is imposed, and
the contact force is measured. This global time is also organised in blocks of N
samples, corresponding to the length of a period of the problem. Within every
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block b, the time is denoted with index 7 starting from 1 at the beginning
of the block. We denote the measured contact force in a given time step as
f(k) and the vertical position of the actuator in this time step as Z(k), which
depends on the contact force of the previous time steps as will be explained
bellow. When convergence in the test is reached, displacements and forces
are repeated in every block, and they must satisfy Eq. (3.32). The measured

contact force can be also labelled as ?b (m) and the position sent to the actuator
as z°(m) since every global time step k corresponds to a block b and a local
time step within the block 7.

In this work, we discuss two alternatives for the iterative protocol of the HIL
test: step-by-step and span-by-span updating. In the former, in every time
step in which the force is measured, we need to compute the displacement
of the next step. On the contrary, in the span-by-span updating strategy,
the position of the actuator along the whole span b is already defined at the
beginning of it, as a function of the previous spans.

The method used to perform step-by-step HIL tests with the periodic catenary
model is schematically represented in Fig. 3.19. Note that the global time of
the test is represented with the markers on the horizontal line. The different
points of the figure are:

e Point 1: Let us say that the test is at the k global time step (or time
step m within the block b, as represented by the pantograph illustration)
and the pantograph has reached the displacement which was sent in the
previous time step k — 1.

—b
e Point 2: Simultaneously to point 1, the force f (%) is measured.

e Point 3: The measured force is placed in vector £* (which changes every
time step k as denoted by the superscript) in the proper position 7 while
the other elements of this vector remain unaltered.

e Point 4: Eq. (3.32) is applied to compute the response of the periodic
model with ¥, producing a z* vector which replaces the one of the pre-
vious step k£ — 1. In this case, all the components of vector z* change.

e Point 5: The vertical position of the next step m+1 is taken from z* since
this is the position that would be reached in the next step k 4+ 1. At this
point, a more advanced position than 7 + 1 can be extracted from z* to
compensate any possible delay, as detailed below. This compensation is
crucial for the feasibility of HIL tests.
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e Point 6: The displacement is sent to the actuator.

e Point 7: It is time to move to the next step, and the timeline depicted at
the bottom of the figure moves a position to the left so that the panto-
graph can reach the position sent in point 6. Additionally, the indexes of
points 3 and 5 drop down a position to be ready to receive and give the
right values in the next step k + 1.

Periodic FE model

£k 7k L Step leap
;(1)-_.
2 Actuator
— 2(7) F— position
[ o— Z(ﬁ+1 >
W (‘N) — E If delay
T
f'(n) 2(n+1)
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Figure 3.19: Graphical description of the step-by-step HIL test architecture with a PFEM
of the catenary.

A different updating strategy is proposed in Paper D to avoid some convergence
issues. This new strategy follows the four first points of Fig. 3.19 but the
differences arise in point 5. Whereas in the step-by-step strategy, a single
value of vector z* was extracted and it would continue to point 6, in the span-
by-span updating strategy, there is a rack of memory between points 5 and 6.
Only at the time step m = N (at the end of each block) the whole vector z*
is extracted, and its N values are stored in the memory. The stored vector is
called z” and it fulfils z° = z* if k = bN. According to the proposed scheme,
the displacement z°(m) that is sent to the actuator in point 6 is computed from
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the stored vectors z’ of the two previous blocks, combining both with linear
shape functions to avoid lack of continuity at the beginning of a new block.
That is:

2(m) = Ni(m)2"2(R) + No(m)2*(m) ;  me[l,N] (3.33)

in which N; and N, are linear shape functions which go from 1 to 0 and from
0 to 1, respectively. This method can perform better in terms of stability, as
discussed in Paper D.

Unavoidably, there is a consumed time in the test loop that delays the response
of the catenary. Let us consider that D time steps exist from the moment the
contact force is measured in point 2 (Fig. 3.19) until the pantograph reaches
the position computed in point 5. In Fig. 3.19, the representation corresponds
to the unavoidable delay of one step D = 1. An extra delay is considered in
point 6 of the figure with a grey arrow. If the position sent to the actuator takes
the path defined by the grey arrow, it will be placed in a later position on the
timeline because it will take more time steps to be reached by the pantograph.

To compensate a given delay, the position value extracted in point 5 of Fig. 3.19
is the n = m 4+ D as indicated with a grey arrow. This procedure allows
eliminating the error produced by the delay in the dynamic response since at
the end of the test, when convergence is achieved, f* and z* do not change and
the value at time step n =7 4+ D will be a perfect prediction.

Another important aspect to consider is that we can limit the frequency content
of the actuator displacement. As the vector z is periodic, it can be shifted to
the frequency domain by the Discrete Fourier Transform (DFT) and then,
the higher frequencies can be removed before being brought back to the time
domain by the Inverse Discrete Fourier Transform (IDFT).

In this frequency reduction, a number of NV}, frequencies are considered, being
fmaz the higher frequency included. This number plays an important role in
the stability of the HIL test because if f,,q, is higher than the biggest frequency
the gear can control, it will lead to bad performance. The whole process can
be done directly by applying matrix operations to z as explained in Paper D.

Another difference between the numerical algorithm proposed in Section 3.3.3
and this one lies on the use of a relaxation coefficient u. to reduce the sharp
change between the response of successive blocks during the iterative proce-
dure. In point 3 of Fig. 3.19, the measured force replaces the element 7 of £*
in which the measure of the previous block was previously allocated. If the
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relaxation is applied, the current measurement will be relaxed with the old
one. Additionally, to avoid a sudden jump at the beginning of the HIL test,
the height sent to the actuator is scaled by a factor that varies linearly from 0
to 1 step by step, defining an initial ramp.

3.4.2 Dropper slackening

In point 4 of the loop (see Fig. 3.19), Eq. (3.32) is used to compute the response
of the catenary given a contact force, although additional external actions can
also be applied to include the non-linear behaviour of dropper. If matrix I 4
includes the stationary response of the contact point produced by a compressive
force acting on both ends of dropper d, then Eq. (3.32) can be extended to:

Ng

z=12+ L+ Tfy (3.34)

d=1

in which f; is the correction force vector of dropper d and Ny is the total
number of droppers.

The elongation of droppers needs to be computed to calculate the non-linear
actions to be added. Let us define matrices I4. and I;4, which account for
the elongation of droppers produced by the contact force and by the other
droppers correction forces, respectively. The total elongation of dropper d can
be therefore computed as:

Na

ALy =Tpf + ) Taafy (3.35)

d=1

Similarly to z, it is important to limit the frequency content of AL, to facilitate
the method convergence. In this case a different number of harmonics Nyq is
considered in the variable ALj,.

3.4.3 Results of HIL tests

The data of the catenary models and parameters used in this test can be found
in Paper D. The contact force results are filtered to 25 Hz, exceeding the 20 Hz
that, according to the standard [4|, must be considered for validation and
comparison purposes in this kind of simulations. The same validation strategy
as in Subsection 3.2.3 is performed with a mass model to measure the validity
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of the tests. In this occasion, a force value of 160 N is added to the force
measured by the load cells to simulate the situation in which the pantograph
is pushing against the catenary. This is necessary to validate the non-linear
behaviour of the catenary. The validation is shown in Fig. 3.20, where the
contact force measured matches the obtained from the completely simulated
HIL and the slackened droppers correction forces are in very good agreement.

220 HIL test 7
= = = [IL simulated
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Figure 3.20: Comparison between contact forces (top figure) and slackened dropper cor-
rection forces (bottom figure) obtained from experimental HIL tests (solid line) and virtual
HIL simulations (dashed line) with the mass travelling at 300 km/h and a mean pushing
force of 160 N.

Once the test system has been validated, the pantograph DSA 380 is placed to
simulate the interaction with the catenary. In Paper D the results with different
catenaries and velocities are displayed. In this overview, just two tests with
a simple and a stitched catenaries at 300 km/h are shown in Fig. 3.21. The
experimental results are compared in this case with the contact force obtained
from a standard simulation of the pantograph-catenary dynamic interaction.
To perform these simulations, we use the software PACDIN [59] with a linear
lumped mass model.
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Figure 3.21: Comparison between contact forces obtained from experimental HIL tests
(solid line) and conventional simulation of the pantograph-catenary dynamic interaction
(dashed line) with the pantograph running at 300 km/h and interacting with a) the stitched
catenary model and b) the simple catenary model.

In Fig. 3.21, the contact force curves of five consecutive spans of the PACDIN
simulation are overlapped. The agreement of the five curves indicates that
the steady-state regime was achieved. Therefore, this solution is suitable for
comparing the PFEM HIL tests. The other important conclusion is drawn
by the comparison between the HIL tests and the standard simulation. As
the HIL set-up was adequately validated, the discrepancies observed in Fig.
3.21 are mainly due to the inability of the pantograph model used in PACDIN
to accurately reproduce the dynamic behaviour of the real pantograph device
because non-linear features are not considered in the model.
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Chapter 4

Closure

This chapter emphasises some key points that account for the Thesis relevance.
Additionally, there is a Section for proposing the steps on the subject that can
be worth considering in future research.

4.1 Conclusions

The ultimate aim of this work is to implement Hardware-In-the-Loop tests of
the pantograph-catenary system. This experimental technique has proved to be
challenging, but clear improvements have been accomplished. The attainment
of the experimental test has been realised by a new approach, consisting of
a Periodic Finite Element Model (PFEM) of the catenary and an iterative
algorithm. During the research process, different steps have been taken that
have meant an advance towards the final goal:

e The first contribution of this work was the development of an analytical
model of the catenary based on a string of periodic geometric profile. This
model was a proposal to reduce the complexity of the catenary but still
keeping the main features involved in the dynamic. We have compared
the model with a high-fidelity reference model built by FEM to evaluate
the differences and study the origin of those. The model is found to be a
good tool for revealing the elemental behaviour of the catenary. And it
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has proven useful in explaining a complex phenomenon: the interference
between two pantographs.

The analytical model was thought to be suitable for HIL due to its low
computational cost. This model is particularly periodic, which means
that it accounts for the steady state regime of the system. Thus, incorpo-
rating the analytical model in Hardware in the loop requires a mathemat-
ical adaptation by an iterative algorithm. This need has been solved, and
the HIL test has been accomplished thanks to the algorithm ability to
compensate implicit delays in HIL. The accuracy of the HIL facility has
been assessed by looking at the agreement between tests and computa-
tional simulations. The agreement would be arduous if the validation tests
were realised with the pantograph, due to the difficulty in getting an ac-
curate model of the pantograph for the simulations. In order to avoid the
uncertainty of the pantograph dynamics, the validation tests are carried
out with a weight or mass model in the place of the pantograph. Minor
differences are found between the computational simulation and the tests,
implying the validation of the tests. Even though the analytical catenary
model is not good enough to characterise the pantograph-catenary in-
teraction, these tests have demonstrated the ability to simulate periodic
models, compensate the delay and achieve good accuracy. This is a cru-
cial point of the Thesis for the posterior application of HIL tests with
PFEM models.

The HIL tests with the analytic model have motivated the development
of a more realistic periodic model, specifically, a Periodic Finite Element
Model (PFEM). The FEM is chosen for the geometric discretisation of the
catenary to avoid further topological and structural simplifications. The
combination of the periodicity condition and discrete frequency analysis
has served to create the formulation that governs the steady-state regime
of periodic structures subjected to a moving load. The solution has been
precalculated to get real-time computation capacity required by experi-
mental tests. Additionally, the model non-linearities have been considered
and incorporated into the formulation. The solution achieved has been
compared with conventional FEM simulations, and a good agreement is
found when comparing with the solution of equal-span catenary at the
central zone of a section. This is due to the fact that the only additional
simplification of the periodic catenary is the steady state assumption.

Finally, HIL tests with PFEM catenaries are carried out thanks to an
algorithm based on the one used for HIL tests with the analytical model.
The previously stated strategy with a mass model has been used to val-



4.2 Open research lines

idate the test, achieving outstanding precision. These tests simulate the
interaction of real pantographs with virtual periodic catenary models that
include non-linear and accurate dynamics. This is the most significant
achievement of this Thesis due to the sophistication of the model, the
accuracy of the tests and the effectiveness in cancelling the delay.

4.2 Open research lines

After the finalisation of this work, there is still work to be done for the future
HIL tests of the pantograph-catenary interaction. Some of the open lines are
defined as follows:

e As it has been said, the HIL tests developed here have the limitation
of the periodicity assumption. The implementation of HIL tests with
complete FEM models is the current challenge. Even though there are full
FEM models that can be computed in real-time [12|, the existing delay
makes its application unattainable. It is necessary to work on control
techniques and compensation strategies to achieve conventional FEM-
HIL tests without compromising accuracy.

e The success of HIL also relies on the electronic and technical capabilities
of the test rig. Using the latest technology and improving the communi-
cation system will lead to a faster and more precise response. Working in
this aspect will increment the feasibility of HIL tests with conventional
FEM models. Additionally, it will allow increasing the frequency range
of the tests, that in this work is up to 25 Hz.

e One imprecision of HIL is the absence of wind. Pantograph aerodynamics
is often tested in wind tunnels, and these two techniques can be applied
together in order to couple mechanical dynamics with aerodynamics.

e Other aspects can also be included in HIL tests to increase verisimilitude.
The movement of the pantograph due to the rail bank angle and train
vibrations are good candidates to consider. In our installations, includ-
ing lateral movement to simulate the stagger of catenaries is the next
mechanical improvement.
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Abstract

Catenaries are large cable structures which transmit electric current to trains
through sliding contact with a pantograph. The Finite Element Method is widely
used to model this dynamic interaction problem and obtain the contact force be-
tween the pantograph and the catenary. As an alternative, analytical models can
also be used to study catenary dynamics, although they require certain simplifica-
tions of the features considered in numerical models. In this paper, an analytical
model composed of an infinite string and a visco-elastic support is introduced and
enhanced by considering a Kelvin-Voigt damping model and the initial height of
the contact wire. Considering the Finite Element (FE) model as a reference,
the analytical model parameters are properly adjusted through static and wave
propagation analyses to achieve similar behaviour in both the analytical and the
FE models. To check the performance of the proposed model, the steady-state
response of the pantograph-catenary coupled system is calculated and compared
with the results of the FE model. Finally, the analytical model is used to analyse
the interference phenomenon produced during two-pantograph operation.

Keywords

Analytical Catenary model, Pantograph dynamic interaction, Finite element, In-
finite string, Pantograph interference
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1 Introduction

1 Introduction

Overhead contact lines, commonly known as railway catenaries, are currently the
most widely used systems to supply high-speed trains with power through sliding
contact with a moving pantograph. The dynamic behaviour of the pantograph-
catenary interaction is of great interest in the system design as it can affect
the reliability of vehicle operation. For this reason, many catenary models have
been developed [1] and used to analyse the influence of design parameters in the
current collection quality. These simulations are regulated and must be validated
according to specific standards [2].

Finite Element (FE) models are the most frequently used technique to simulate
the problem, as shown in the recent benchmark exercise [3]. For example, in pre-
vious studies [4, 5, 6], FE-based models have been used to analyse the influence
of certain design parameters in the current collection quality, which is usually
quantified by the standard deviation of the interaction contact force (CF). These
studies concluded that higher CF variation is obtained when the operational ve-
locity is close to the contact wire wave velocity, when there is higher stiffness
variation along the span or when the pantograph collector head has greater mass.

As an alternative to FE models, analytical catenary models are also found to
be a useful tool in providing a better understanding of the role played by the
design variables in exchange for adopting certain simplifications. For example,
in [7], the catenary is modelled as a single and two-degrees-of-freedom system
with periodically time-varying mass and stiffness and the relations between the
system parameters and the upper limit of the train speed are stated. In [8] an
analytical model was used to analyse the interference between pantographs when
two pantographs run simultaneously in a vehicle. An optimum distance between
the pantographs is theoretically calculated, based on the phase opposition of the
vertical displacement of the contact wire produced by the trailing pantograph and
the displacement induced by the leading pantograph.

An infinite string with visco-elastic support is used in [9] to obtain the stationary
response of lumped-parameters moving models coupled to the string. More com-
plex infinite string models include periodic discrete elements, such as in [10] or
in [11], in which a two-level infinite catenary model, composed of an upper and
lower string (governed by the one-dimensional wave equation) joined by periodic
supports and dampers, is simulated with a pantograph modelled by a harmonic
point-load. Other similar models can be also found in the literature, such as that
in [12] which is composed of several finite strings and is used to study the wave
propagation and reflection phenomena in the catenary.
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The objective of this paper is to propose a new analytical pantograph-catenary
coupled model to obtain in a closed-form expression the pantograph interaction
contact force. The proposed model is based on a previous model presented in [9].
In this work, the governing equation is modified to include a Kelvin-Voigt damping
model in order to get a dissipative behaviour similar than that incorporated into
the FE model. This modification implies to raise the order of the equation and
the new solution is presented throughout the paper. Furthermore, the geometry
of the contact wire under gravity is considered in the proposed model. The initial
contact wire height profile is one of the main causes of CF variation as some
studies shown [13]. Also, in [14, 15], the authors conclude that the geometric
irregularities of the contact wire have a stronger influence on CF than other
sources of irregularity, especially at high operating velocities as shown in [16].
This influence is also studied in [17, 18], which conclude that the optimal initial
geometry significantly reduces CF variation. The analytical string models of the
catenary found in the literature do not include the initial contact wire height
profile and therefore, its important effect is not reflected in their results.

The interaction contact force obtained with the analytical model is compared
with a verified FE model solution [19, 20]. With the aim to obtain a response
as similar as possible to that of FE models, the stiffness and mass parameters
of the analytical model are properly tuned by following a proposed methodology
based on static and wave propagation considerations. Finally, as an example of
application of the proposed model, a new approach is raised for understanding the
multiple pantograph interference, by proposing a simplified analytical expression
to evaluate the optimal distances between pantographs. This problem was also
studied in [21], which obtained smaller CF variation in the trailing pantograph
by using an auxiliary pantograph, or in [16], which showed reduced performance
when the elapsed time between the pantographs passage matches the natural
catenary frequencies.

The contents of this paper are organised as follows. After this introduction, the
formulation of the reference FE model is described in Section 2. The proposed
analytical model is developed in Section 3 and a procedure to obtain the required
parameter’s values is presented in Section 4. The results obtained by the proposed
model and their validation are given in Section 5, before the concluding remarks
in Section 6.
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2 Reference models

The Finite Element Method (FEM) is the technique most frequently used to model
railway catenaries [3]. These structures are composed of different wires and bars
as can be seen in Fig. 1. In this paper, the catenary FE model [19, 20] validated
according to EN-50318:2018 [2] is taken as the reference for the analytical model.
The material properties and the geometric parameters of the model used are
defined in 6.

Dropper

Stitch wire

Messenger wire

Contact wire Steady arm

Figure 1: FE model of the catenary.

The pantograph is an articulated device on the locomotive roof that keeps in
contact with the catenary. Although there are different options for modelling
pantographs, in this work a lumped parameter model is used for its wide use
and simplicity. The model consists of three masses that move vertically, which
are connected by springs and dampers as shown in Fig. 2 (a). The pantograph
lifting mechanism is replaced by a force applied on the bottom mass. For the
pantograph-catenary interaction, the penalty method is used, which considers a
high stiffness element (k, = 50000 N/m [2]) placed between the contact wire and
the upper mass of the pantograph as depicted in Fig. 2 (b). This element applies
a contact force f. between both models as depicted in Fig. 2 (c).

To obtain the initial geometry of the catenary model, the static equilibrium equa-
tion and certain design constraint equations must be solved simultaneously. The
reader is referred to [19], where this problem is described in detail. Once the
initial configuration of the catenary has been solved, the pantograph-catenary

67



/ Contact wire

L
(c)

(a) (b)

Figure 2: (a) Pantograph model, (b) penalty model and (c) contact force fo > 0.

dynamic interaction problem is solved by following the procedure described in
[20]. This problem can be stated assuming small displacements with respect to
the static equilibrium position, which means it is governed by the linear equation:

Mii + Ci+ Ku = F (1)

where u, u and 1 are the nodal displacements, velocities and accelerations re-
spectively. K and M are the stiffness and mass matrices and a Rayleigh damping
model is used to define the damping matrix C = aM + SK with o = 0.0125 s~}
and 8 = 10* s [3]. F is the vector of external forces applied to the pantograph.
Despite the linear appearance, this is in fact a non-linear problem, since dropper
slackening and contact loss are considered in the model. The Newmark or HHT
[22] schemes can be used for the numeric integration of Eq. (1) combined with an
iterative method to deal with the aforementioned non-linearities.

3 Analytical model of the catenary

Here we propose an analytical catenary model taking as a starting point the
infinite string presented in [9]. The model is enhanced with the introduction of a
Kelvin-Voigt damping model and the consideration of the initial geometry of the
contact wire. The final model proposed is used to obtain the CF produced in the
pantograph-catenary dynamic interaction problem.
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3.1 Initial model

For the sake of clarity, we here summarise the model presented in [9] composed
of an axially loaded infinite string prestressed with a force T' and supported by a
continuous visco-elastic layer, as shown in Fig. 3, with & and ¢ being the stiffness
and damping coefficients per unit of length, respectively. The linear density pu
can also include the influence of the mass of the support.

L L L [ L L /

N
N

S e

F(t) = Fye™*

Figure 3: Initial analytical string model (ASM1) with visco-elastic support under a har-
monic moving load.

The initial analytical string model (ASM1) subjected to a distributed load p(z,t)
is governed by the equation:
0w 0%w ow

where w = w(x,t) is the vertical displacement of the contact wire.

The steady solution of Eq. (2) when the contact wire is loaded by a concentrated
harmonic moving force F(t) = Fye™? (see Fig. 3) with frequency (2, and velocity
v, is given in [9]. In this case, the right-hand side term can be expressed as:

p(z,t) = Foe™™ §(x — vt) (3)

where § is the Dirac function. The solution of this problem is different for v
greater or smaller than the critical velocity v. = \/T/u. However, as the stan-
dard EN50318 [2] limits the train velocity to v < 0.7v., the solution used in this
work is that in which v < v, or equivalently A\ > 0, with A = T' — puv?. In this
case, the expression for the string vertical displacement is:
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,L'Foe—i[k‘?(ﬁ—’ut)—Qt]
A (kS — k)

if z—out>0

w(zx,t) =
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where k$? and k$! are the poles of the system:
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The first expression in Eq. (4) applies to the points behind the excitation point
x — vt > 0, while the second part is defined for the points ahead the excitation

point x — vt < 0.

3.2  Simplifying assumptions in the analytical model

Important simplifications are adopted in ASM1 if compared to the more complex
FE models. These simplifications are also applied to the proposed analytical

string model (ASM2).

e Continuous support. In the FE model, the catenary can be divided into
two parts, namely, the contact wire and its support system composed of
droppers, steady arms and the messenger wire. In the analytical model these
two parts can also be identified, but the latter is simplified by a continuous
visco-elastic support which does not strictly describe the complex dynamics

of the droppers and the messenger wire.
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3 Analytical model of the catenary

o Constant stiffness. Another feature accounted for in the FE model is the
uneven stiffness and mass distribution of the support which holds the con-
tact wire by discrete points (dropper connections), leading to additional
irregularities and wave reflection.

e No propagation in the support system. In the FE model any two different
points of the support are coupled, which allows the perturbations to propa-
gate along the support. In the analytical model the wave propagation only
takes place in the contact wire.

e Linear. FEM models include non-linearities due to contact loss and dropper
slackening which are not considered in the analytical model.

e The contact wire in the ASMI1 is modelled as a string which neglects its
bending stiffness.

e Steady state response. As the catenary is assumed to be a long enough
periodic structure, only the steady-state response is considered by ASMI1.

Despite these simplifications, the analytical model includes the basic features of
the catenary and leads to analytical expressions which provide explicit information
on how the design parameters influence the solution and can reveal mechanisms
that are not obvious in the response of FEM.

3.3 Consideration of a Kelvin-Voigt damping model

In the catenary FE model, a proportional Rayleigh damping model is used in
which the damping matrix is a linear combination of the mass and stiffness ma-
trices (C = aM + SK). In this section, an extension of the previous analytical
model is proposed with a damping model similar to that of the FE model. Fol-
lowing the procedure presented in [23], a Kelvin-Voigt damping model is included
in the differential equation Eq. (2) by writing the damping coefficients as a linear
combination of the inertial and elastic terms:
0%w 0w -\ Jw o (0%*w -

Wom ~ Tw + (au + 5/<:) o ﬁTa (81:2) kw = p(x,t) (7)
Note that in ASM1 the term T9%w/dz? is lacking its corresponding proportional
damping term in the differential equation, which means the damping model in
ASM1 is not comparable to the one in the FEM model.

This proposed analytical string model (hereinafter called ASM2) has an addi-
tional term and has become a third order equation. In the case of a moving
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external force of frequency , the improper integral used to compute w(z,t) has
a third order polynomial denominator instead of the second order polynomial in
the ASM1 [9]:

1 00 Fy e—i(k(x—vt)—ﬂt)

t) = — dk 8
w(@,?) 27 J oo A3 + k2 + Tk + 0 (8)

where:
A=1ipTv
n="T— m?+iBTN
T=i (a,u + ﬁl%) v — 2uvQ (9)

027@—#75(@114—515)9—;192

In this case the system has three poles k{!, kS and k§ whose analytical expres-
sions are:

R — Ui \S/EQ S
=

3N 3\S 392\

o n 1 i3\ v2Q 1 W3\ S
=y <‘z+2> S <_2_2> ) (10)
m__n_<f_h@>%@+<f h@>‘9
3 3\ 2 2 ] 3\S 2 2 ] 3¥2\

where:

S = Q/R+ VA4Q3 + R?
Q = 3\t —1? (11)
R = =21 + O\t — 27)\%0

Applying the residue theorem to Eq. (8), the string vertical displacement is:

e*i(k?(vat)fﬂt)
L F{ ; —vt <0
OOy, T L
N TF#p
U](I‘,t) o —i(kQ(x—vt)—ﬂt> (12)

Ry S t>0

— 4 ; r—v
P NI (K - k2
r#q

72



3 Analytical model of the catenary

where kf} are the poles with a positive imaginary part and k(? are the poles with
a negative imaginary part. As in the ASMI, the solution is divided into two
expressions which correspond to the displacements of the string section behind
and ahead of the load application point, respectively. Each part of the solution
consists of a sum of exponential terms which represent damped waves. In ASM2
there are three terms (or waves) included in the solution corresponding to the
three poles. The poles with a positive imaginary part are contained in the first
part of the solution, where x — vt < 0, while the poles with a negative imaginary
part are used in the expression valid for x — vt > 0.

In the simpler ASM1 model, the sign of the imaginary part of the two poles
depends on the velocity v. If v < v, there is one pole with a negative imaginary
part and one pole with a positive imaginary part, which corresponds to a backward
and a forward wave, respectively. On the other hand, if v > v, both poles have
positive imaginary parts and the two waves propagate backwards, the section
ahead of the applied force remaining unaltered. In the ASM2 it is difficult to find
a mathematical criterion to define the sign of the imaginary part of the poles.
However, numerical tests reveal that the imaginary parts of the poles do not vary
their signs in the range of interest of €2 and wv, if the values of the parameters
T, k and p are those obtained in Section 4. Specifically, only one pole k! has
a negative imaginary part, while the other two poles k¥ and kg} remain with a
positive imaginary part.

To highlight this feature, in Fig. 4 the imaginary part of the poles of ASM2
is plotted versus the velocity v for the excitation frequency 2 = 10 Hz. It is
important to note that this behaviour is analogous for all the frequencies studied
and although the imaginary part of the poles is very close to zero for some values
of v, it does not actually reach that value in any case. In ASM2 there is no critical
speed at which the signs of the poles change, however, the solution is similar to
that of ASM1. For speeds below v, of ASM1 (~146 m/s with the parameter
used in this paper) the imaginary part of k! is very large and its associated wave
is strongly damped. Thus, the only noticeable waves are those related to the
poles k? and k:g, as in ASM1. The same explanation is applicable for speeds
greater than v, in which the absolute value of the imaginary part of k§! is large
enough and for that reason has a negligible influence. In this case, kS!, k! are
the dominant poles and there are two noticeable backward waves, as in ASM1.
Despite these similarities, the damping is different in the two analytical models
and the influence of the additional pole in ASM2 is considerable for velocities
close to v. and also for points close to the load point.
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Figure 4: Imaginary part of the poles of the ASM2 respect to v for Q = 10 Hz.

3.4 Model with contact wire initial geometry and pantograph
coupling

The force of gravity produces an uneven initial height of the contact wire, which
is properly considered in the FE model. In this section, a realistic contact wire
initial height profile is included in ASM2. For this, the total string height can be
written as:

z(x,t) = zo(x) + w(z,t) (13)

where zp(x) is the initial height, which depends on the position = and, w(x,t)
satisfies Eq. (7) thanks to the linearity of the problem.

As catenaries can generally be assumed as periodic structures composed of a
succession of equal spans, the height of the contact wire is a periodic function that
can be broken down into a sum of harmonic functions by means of the Fourier
transform. Due to the linearity of the system, the problem can be solved first by
considering a harmonic height zo(x), after which the superposition principle can
be applied to get the solution with a general contact wire height in a further step.

The main objective is to solve the dynamic interaction of two pantographs cou-
pled to ASM2, which now incorporates an initial harmonic height zo(x). The
pantographs move at the same speed v and are separated by a distance L, as seen
in Fig. 5.

74



3 Analytical model of the catenary

L LSS

|

Figure 5: Two pantographs coupled to the ASM2 with initial height zo(x).

The methodology followed in [9] consists of using the dynamic stiffness matrices
to solve the coupled interaction between the string and the pantograph models.
In this paper the same methodology is considered to solve the problem, but nev-
ertheless, the receptance functions are used and only one degree of freedom is
included per pantograph, which corresponds to the vertical displacement of the
point in contact with the string. The problem is thus reduced in size without
affecting the accuracy of the results. Furthermore, this simplification allows to
obtain an analytical expression of the solution.

In order to apply the described procedure, it is first necessary to obtain the Fre-
quency Response Function (FRF). Given two points 1 and 2 on the string, located
at a distance L and both moving at the same speed v (see Fig. 6), the FRF of
the string His is defined as the ratio between the vertical displacement of 1 and
the harmonic force applied at 2:

w(vt + L, t)

Hi2(Q) = Foeift

(14)
Replacing the expression (12) in Eq. (14) and considering the signs of the imagi-
nary parts of the poles discussed previously (Sec. 3.3), the FRF is:

. kS
—je ik L

A (kY = £S) (R = K5

Hi(Q) = (15)

Similarly, Ho; can be defined as the ratio between the displacement produced in
2 and the excitation applied at 1:

T Q 21,92
Z'ezk2 L Z'ezk:3 L

Hi(Q) = +
Y Ak —RP) (RS = R5) A (R — k) (RS — KY)

(16)
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When the displacement is measured at the force application point, the direct FRF
is:
—i
Hi1 () = Hy2 () = (17)
A (RS = E3) (RS — K3)

It is also necessary to calculate the FRF of the pantograph model, which includes
a penalty stiffness k;, on the upper mass (see Fig. 2). The pantograph FRF is
thus defined as the ratio between the displacement of the upper point (1’ or 2’ in
Fig. 6) and the harmonic force applied at the same point:

1
Hy(Q) = kn + [_QQMP +i0C; + Kp ]

—1

o (15)

where M, C,, y K, are the mass, damping and stiffness matrices of the panto-
graph respectively, and the operator | ](1 1) extracts the first row and first column
element of the matrix which refers to the upper mass degree of freedom.
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Figure 6: Contact forces in the coupled string model with two pantographs.

The contact forces F; and F, between each pantograph and the string, repre-
sented in Fig. 6, are the unknowns of the problem. The linearity of Eq. (7) allows
writing the vertical displacement of the points 1 and 2 as the superposition of the
displacement produced by each force acting separately. The height of points 1 and
2 are thus the sum of the initial height of the contact wire and the displacement
produced by the contact forces according to the scheme in Fig. 6. This is:

21(t) = z01(t) + Hi () Fi(t) + Hi2(Q) Fa(1)

2o(t) = 209(t) + Hoy (Q)F1 (1) + Hon () Fa(t) (19)

where zg1(t) = zo(vt + L) and 2p2(t) = 2¢(vt). In turn, the height of the points
1’ y 2’ which belong to the pantograph model are:
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210(t) = —Ho(Q)Fy (1)
2or(t) = —Hy () F (1) (20)

Since the initial height is considered a harmonic function of frequency €2, it is
possible to write them as:

1eiQt

ol = e (21)

=7z
202(t) = Zo2

in which, there is a phase shift between the phasors Zp; and Zpo

Zo1 = Zozei% (22)

due to the distance between the points. This phasor notation can also be used
for the CFs:
Fl(t) = FleiQt

Fg(t) — Fgemt (23)

Since the points 1 and 2 match with the points 1’ and 2’, the left hand side terms
of Egs. (19) and (20) can be equated to obtain the following system of equations:

e e e [} {2) e

which can be arranged in matrix notation:

H(Q) F = 7 (25)

As stated above, in the static equilibrium configuration, the catenary contact wire
adopts a periodic height zo(x) whose period is equal to the span length L,. The
periodic function zp(x) can be represented by the Fourier series:

Zo(x) =Zy+ Z Zn Gik"w (26)

n=1
where Zy is the mean value of the function, Z,, are the complex Fourier coeffi-
cients and the wavenumber is:

2mn
k, =
L,

for neN (27)

By solving Eq. 25, the contact force of two pantographs coupled to ASM2 are
obtained for the case of an initial harmonic height. Since that system is linear,
the more general case in which zy(z) is a periodic function can also be solved by
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applying Eq. (26) and the superposition principle:
F(t)=Fu+ Y H () 7o, ! (28)
n=1

where Fy, is the vector with the mean CF of every pantograph, the excitation
frequency is:

Q, = kv (29)

and Zg ,, groups the complex Fourier coefficients of the contact wire initial height,
which considers the phase shift between the pantographs:

7 i92nL
zO,n = { neZ ’ } (30)

4 Parameter setting

This section is devoted to determining the ASM2 parameters required to achieve
similar behaviour to the reference FE model. These include string tension T,
support stiffness k and linear density p. The o and 8 damping parameters are
the same as those considered in the FE model just like the tension T" which can
be taken directly from the FE model. This mechanical tension is given by the
value of the axial pretension of the contact wire, which is 31500 N in this work.

4.1 Setting visco-elastic support stiffness

The value of k is tuned by comparing the static equilibrium response in both the
ASM2 and FE models. Given a vertical force applied at a certain point on the
contact wire, the vertical stiffness k, is defined as the ratio between the applied
force and the vertical displacement at the application point. This parameter is
constant at any point in ASM2. However, as the FE model is not homogeneous
and k, varies according to the position in the span, as shown in Fig. 7, its mean
value k, peM = 2538.7 N/m is adopted as a representative value.

Vertical stiffness k, can be calculated in ASM2 by using the direct FRF defined
in Eq. (17), assuming v = 0 and Q = 0:

k, = H' 0-0 = 2Vk T (31)

v=
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Thus, if k, is enforced to match k, rrm:

- K ppu
k=2 32
AT (32)

which leads to a visco-elastic support stiffness k = 51.15 N/m?.

2800
2600¢
2400¢
2200¢

k, [N/m)]

Figure 7: Vertical stiffness k, of the contact wire of the FE model in a span.

In order to check the static solution with the adjusted k, the FE model and ASM?2
are compared in Fig. 8, in which the vertical displacement of the contact wire is
adimensionalised with respect to its value at the load application point. Two
curves are shown for the FE model, in which the load is applied in the middle
of the span and in the steady arm. There is clearly good agreement between the
response of both models, especially when the force is applied on the steady arm.

—— ASM2
0.8} — — — FEM middle 1

0 50 100 150

Figure 8: Adimensionalised displacement of the contact wire in FE model and ASM2 pro-
duced by a static force.
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4.2 Setting string linear density

It is not enough to consider only the mass of the catenary contact wire to obtain
the string linear density p but, the mass of the other parts of the catenary must
also be taken into account. A wave propagation analysis is performed to adjust
the value of u so that similar behaviour is found in both ASM2 and FE models.

To this end, the response of the contact wire is computed in both models for a
harmonic force with v = 0. As the load has no forward velocity there are only two
poles, k! and £, in ASM2 and the displacement of the contact wire (backward
side) is given by:

@1 ie—z‘(kglx—m) (33
w(z,t) = —F——o+
1 (kg — k)
where n = T + 8T and the poles are:
k? — Ps _ Z ds
VT + 32102 T+ 27O
p B (34)
]{752 _ —Ps 1 qs
VT + 521702 VT + B2T02

in which, ¢s and ps are those defined in Eq. (6), but now the coefficients A and
B result:

A:—%—B(au+5l§:)92+uﬁ2

_ _ (35)
B= (Oé/J n Bk) O — BEQ + Bu?
Eq. (33) represents a damped wave whose wavelength is:
27
Yo = (36)
2R

k‘gR being the real part of k5!. This wavelength \q is very sensitive to ju, as can
be seen in Fig. 9, in which \q is plotted for different values of the excitation
frequency and u. Aq is therefore a suitable magnitude to adjust linear density .

Regarding the reference FE model, the steady-state response is obtained when
the contact wire is loaded by a fixed harmonic external force. The wavelength
produced at the contact wire Aq..,, can be computed by applying the Discrete
Fourier Transform (DFT) in the spatial domain. As a pure harmonic wave cannot
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be guaranteed due to the complexity of the FE model, the DFT is applied with
a window of variable size in order to get the most dominant wavelength.

30¢
.g. 20 L
c
’<

101

0 L
10 20 30 40
Q [Hz]

Figure 9: Wavelength Ao of ASM2 with v = 0.

The values of g, are obtained for excitation frequencies ranging from 10 to
40 Hz. Lower frequencies lead to very a large wavelength and the upper limit is
high enough, considering the low-pass cutoff frequency of 20 Hz defined in the
standard [24] for the CF. Finally, the parameter p is obtained by a least squares
fitting of Aq (Eq. (36)) to the results of the FE model \q,,,. This fitting gives
a value of p = 1.4735 kg/m. The good agreement between the FE model ant the
fitted ASM2 wavelengths can be seen in Fig. 10.

151 ——— ASM2
~- - - FEM
£ 10}
G
/<
5-

O L L L L L
10 15 20 25 30 35 40
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Figure 10: Wavelength Aq produced by a harmonic force in both ASM2 and the FE model.

81



Paper A

Two additional ranges of ) are considered to ensure that the value of 1 obtained
does not depend on the choice of this range. The p obtained after the fitting are
compared in Table 1 for the three ranges of 2. Given the small difference between
the obtained values, the fitting can be considered valid.

Table 1: Fitted values of u for different ranges of €.

Q[Hz] | 5-20 10-20 10-40
p [kg/m] | 1.4652 1.4790  1.4735

5 Numerical results

In this section, ASM2 and FE model are used to obtain and compare the contact
force (CF) and its standard deviation (o) produced in the pantograph-catenary
dynamic interaction, considering one (single operation) and two pantographs
(double operation). The FE catenary model is defined long enough to get a
quasi-steady response in its central spans.

The mean value of the CF, F,, is controlled by the external force applied to the
pantograph mechanism. According to the standard [24], this magnitude must
fulfil the following limitation:

F < 0.00970% 4 70 (37)

where v is the velocity of the pantograph expressed in km/h. In the ASM2 the
CF is obtained as a sum of independent harmonic terms, so the mean value of
the CF (F,,) does not influence either the harmonics F(£2,,) or o. On the other
hand, in the FE model a higher value of Fy, leads to a higher CF variation due
to the uneven distribution of mass and stiffness along the contact wire. In the
simulations carried out in the following examples, the maximum value of Fy,
according to Eq. (37) is used, since this is the case with the most CF variation.
The CF is filtered by a 20 Hz low-pass filter, following the guidelines in [24].
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5.1 Initial geometry of the catenary

The FE model of the catenary used in this paper is composed of periodic 65 m
long spans with 7 droppers. The FEM static solution is used to determine the
height of the contact wire under the force of gravity (shown in Fig. 11), which is
used to calculate the CF in the analytical model. Fig. 12 represents the spatial
frequency content of the contact wire height, which allows us to express zp(x) as
a sum of harmonic functions. In this case, the 7*" and 8" harmonics depicted
in Fig. 12 are the most important and are directly related to the dropper-pass
frequency. On the other hand, the frequency component related to the span-
length (1% harmonic) has low contribution because pre-sag, installation errors
and irregularities produced by long-term service are not taken into account.

5.302}

~5.300

£ 5'298\/\‘/W\/\/\/\—/
S 5.296¢ 1
5.294} 1
529265 20 30 40 0 60

Figure 11: Catenary contact wire height profile along a span.
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Figure 12: Discrete Fourier Transform of the catenary contact wire height.
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5.2 Single pantograph operation

In this case, Eq. (24) can be particularised for only a single pantograph, assuming
FQ = OZ

— [Hy(Q) + Hi () F, = Z, (38)

whose solution is:

In this expression, the dynamic stiffness Kp(Q) is defined as:

— 40
T H AR — KD (RE — K (40)

and Z, are the Fourier terms of the initial contact wire height represented in
Fig. 12.
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Figure 13: CF in the frequency domain at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and
(d) 350 km/h. © ASM2 X FEM.
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The frequency content of the CF |Fn(Q)| obtained by ASM2 is compared in
Fig. 13 with that computed by the FE model for excitation frequencies ranging
from 0 to 20 Hz and the pantograph running at 200, 250, 300 and 350 km/h. The
results of the FE model are obtained from a central span, where the solution is
quasi-steady and thus, the contact force can be considered periodic. Note that
the number of harmonics included in the considered frequency range is lower for
high speeds due to the relation given in Eq. (29). There is a reasonable similarity
between the results of both models since the magnitude of the analytical results
is not too far from the FE results. However, great discrepancies are found at
350 km/h in the first two harmonics. They are caused probably by the high F,
imposed according to Eq. (37), since the higher the F},, the higher the influence of
the stiffness variation in the FE model, which is dominated by the first harmonics.

The 20 Hz low-pass filtered CF is represented in the time domain in Fig. 14.
Again, although the curves do not fit perfectly, a general similarity between ASM2
and the FEM curves can be appreciated. The discrepancies found at 350 km/h
are also present in this temporal representation.

— 160
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~ 140
100

Z 250
—~ 200
~ 150
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0 20 40 60 0 20 40 60

[
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Figure 14: CF in the time domain at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and (d)
950 km/h. —ASM2 - - FEM.
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The CF standard deviation o is the variable most often used to quantify current
collection quality. ¢ can be computed from the CF defined in the frequency do-
main as:

Nao

o= %Z B (41)

where Nyg is the number of harmonics whose frequency 2, is lower than 20 Hz.
The standard deviation o is plotted versus train velocity in Fig. 15. As o depends
on the mean CF in the FE model, FEM results are shown with a mean CF of 70,
80, 90 and 100% of the maximum mean CF allowed by Eq. (37). However, for
the ASM2 the mean value of the CF (Fy,) does not have any influence on o and
therefore, F, is not indicated in the figure. Despite all the simplifications intro-
duced in the analytical model, it is able to give a good approximation of ¢ with
respect to the more accurate results obtained from the FE model. Especially,
the similarity for the maximum mean contact force allowed by the standard is
remarkable. Note that the mean CF effect is negligible for velocities smaller than
250 km/h for the studied pantograph-catenary system. In conclusion, the stan-
dard deviation calculated with the analytical model shows that the irregularities
in contact wire height have a strong influence on the CF fluctuations.

ASM2

sl FEM: 70% Fy

‘‘‘‘‘ FEM: 80% F},,

= — — = FEM: 90% Fy,
o 20 1 100% Fi 1
10} ]

200 250 300 350
v [km/h]

Figure 15: Comparison of the standard deviation of the CF between the ASM2 and the FE
model for different pantograph velocities and different values of the mean CF.
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5.3 Pantograph interference

In double pantograph operation, each pantograph affects the dynamic interaction
of the other. However, the interference of the leading pantograph on the trailing
pantograph is much greater than in the opposite case. In this section, the CF of
the trailing pantograph is analysed with respect to the pantographs separation L.
To simplify the analysis, the initial height of the contact wire zo(z) is considered
as a pure harmonic function with frequency 2.

The CF of both pantographs is obtained by solving Eq. (24). For certain L,
the amplitude of the trailing pantograph CF is minimum when the displacement
produced by the leading pantograph reaches the trailing pantograph in phase
opposition to the given contact wire height. To explain this phenomenon, an ap-
proximate analytical solution is proposed to obtain the values of L which produce
minimum oscillations in the trailing pantograph CF.

As the trailing pantograph has a negligible effect on the leading pantograph [8, 21],
it is assumed here that H12(Q2) = 0, which implies that the CF of the leading pan-
tograph is not modified with respect to the single operation scenario. With this
assumption, the solution of Eq. (24) is:

. N iL(Q/v+ks) iL(Q/v+kS)
= 1 o 2 42
27 TH, + Hyp(Q) (1-Cue Che ) (42)
where:
7
(Hp + Hu1 () A (kS — k$) (K — KS})
7

(Hp + Hip () A (B — k) (k5 — K5)

Cy =

(43)

Cp, =

With these expressions is still complex to analytically find out the values of L in
which the amplitude of F5 is minimum. Thus, two additional simplifications are
introduced:

« The exponential term which includes k! can be neglected due to this wave
is strongly damped for velocities lower than v. (see Fig. 4).

« Due to the damping of the remaining exponential term which includes kS
is very small, a non-damped wave can be assumed so that k% =0.

With these hypotheses, the minima of ’Fg‘ are found when:
arg (Cae"L(Q/”kgR)) =27n ; n=20,1,2,.. (44)
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For every €2 there is a group of equidistant optimal values of L:
2mn — arg(Cl,)

Lmin =
Qv+ k$k

(45)

For ASM2, the exact value of ]Fg| (see Eq. (25)) and the approximation given
in Eq. (42), which assumes negligible interference on the leading pantograph,
are compared in Fig. 16 for Q = 10 Hz and v = 300 km/h. The similarity
between the two curves is greater for higher L and for L close to Ly, since
the hypothesis assumed is more accurate (minor influence of the trailing on the
leading pantograph), while the minima of both curves are close to the values given
by Eq. (45).

Aprox. .

60 -

— — — Exact

72| [N]

Figure 16: Variation of approzimate and exact analytical CF amplitude of the trailing pan-
tograph with harmonic contact wire initial height of Q = 10 Hz, versus pantograph separation
L, at v = 300 km/h. The Lumin values given by Eq. (45) are represented by vertical dash-
dotted lines.

The optimal behaviour of the trailing pantograph is produced by its synchro-
nisation with the wave generated by the leading pantograph. To explain this
mechanism the CF phase of the leading pantograph in single operation F is
taken as a reference. This force generates a wave whose vertical displacement at
point 1 (see Fig. 6), considering only the part due to kS is:

W = H2Fy (46)
where:
i
A (RS — k) (kS — KS)

H = (47)
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The phase of this displacement is ¢, = arg(H?). This wave has a phase of
Oy = arg(Hff) and a wavelength k$k. At point 2 it generates a displacement
with phase @.,, = @uw, + ki L due to the distance L between points 1 and 2. This
displacement produces an interference force Fb; on the trailing pantograph whose
phase is @p,, = pu, + arg(Kp), according to Eq (39).

On the other hand, the CF of the trailing pantograph Fb, if considered in single
operation, has a different phase with respect to the leading pantograph CF due
to the delay between them, so that ¢r, = —QL/v. Thus, the CF of the trailing
pantograph has minimum amplitude when its force in single operation is in phase
opposition with the interference force, i.e. ¢, — ¢r, = 7™+ 27n, which is equiv-
alent to Eq. (44). After replacing terms it reads:

QL
arg(HY?) + arg(Kp) + kL L + - =t 2tn; n=0,1,2,.. (48)

To conclude this analysis, all the phases of the magnitudes involved are sum-
marised in Table 2.

Table 2: Summary of the different phases of the magnitudes involved in the pantograph
interference.

| ¢
Pantograph/point ‘ 1 ‘ 2
QL
CF in single operation 0
v
Wave produced by pant. 1 | arg(H.?) arg(Hy?) + ki L
Interference force S arg(HY?) 4 kS L + arg(Kp)

5.4 Double pantograph operation

To verify the accuracy of ASM2 in double pantograph operation, the standard
deviation of the CF of the trailing pantograph oy is compared with the FEM
results in Fig. 17 for a wide range of L at the operating speeds of 200, 250, 300
and 350 km/h. In this case, since zp(x) contains several harmonics (see Fig. 12)
the fluctuating oo behaviour versus changes in L is produced by the contributions
of all the CF harmonics, which fluctuate every Lp;,(€2). Considering all the
differences between the models, the approximation obtained by the analytical
model has reasonable accuracy, especially at 300 km/h. Note that oy obtained
from the FE model is higher than the analytical values when v increases, due
probably to the effect of the greater mean CF imposed, according to Eq. (37). In
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fact, a higher value of o9 at 350 km/h in the FEM model was already given in
the analysis performed with single operation (Fig. 15).
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Figure 17: SD of the trailing pantograph CF with respect to the distance between pantographs
at (a) 200 km/h, (b) 250 km/h, (c) 300 km/h and (d) 350 km/h. — ASM2. - - FEM.

6 Conclusions

The CF variation obtained in the FE simulations of the pantograph-catenary dy-
namic interaction is due to the combination of several sources of irregularities (ge-
ometric variation of the contact wire, uneven stiffness and mass distribution, etc.)
with complex phenomena (wave propagation and reflection, complex dynamic re-
sponse of the model, among others). This complexity makes these simulations
computationally intensive and it is difficult to infer direct relations between the
model input and output variables.
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6 Conclusions

In this paper the enhanced analytical model ASM2 composed of an axially loaded
infinite string with a visco-elastic support was based on that proposed in [9].
ASM2 includes a Kelvin-Voigt damping model, considers the initial height of
the contact wire and uses the penalty method to model the contact between the
pantograph and the contact wire. With this model, an analytic expression of the
steady-state interaction force was obtained.

Different strategies were followed to fit the ASM2 parameters in order to obtain
similar behaviour to the more complex FE model. The stiffness of the support
was fitted by considering a static problem, while the proper linear density of the
string was obtained by considering the wavelength generated in the contact wire
by harmonic excitation.

The CF standard deviation o was computed with the fitted ASM2 for a wide range
of operational speeds (Fig. 15). The results obtained reveal that the initial contact
wire height profile is one of the main factors that contribute to CF variation and
therefore to the current collection quality. The uneven distribution of the vertical
stiffness along the span is another important contribution to the CF variation,
which becomes more important at high mean CF values. Since this feature is not
considered in the analytical model, it can explain the greater ¢ obtained by the
FE for the high velocities at which a greater mean CF is imposed.

A more complicated scenario arises when two pantographs interact simultaneously
with the catenary, since the interference between them is a complex phenomenon
which depends on wave propagation. Despite this complexity, with the proposed
analytical model the string response can be separated into harmonic terms lead-
ing to obtain a simple formula for the optimal distance between the pantographs
that gives the lowest trailing pantograph CF amplitude for every harmonic. Thus,
the physical mechanism by which the interference occurs has been explained from
ASM2. Furthermore, in a more realistic scenario, good approximations of the
trailing pantograph o are obtained by ASM2 for different distance between pan-
tographs.

In order to improve the model and obtain a response closer to that from the
FE model, future research could be focused on including a time-varying vertical
stiffness which will lead to higher complexity in the differential equation and
its solution. Furthermore, due to its simplicity and the low computational cost
required to obtain the catenary response, the proposed analytical model could be
used in future works to perform parametric analyses and even Hardware In the
Loop (HIL) tests.
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Appendix A

Catenary and pantograph data

The values of the input parameters which define the catenary and pantograph
models used in this paper are listed here. The catenary model is composed of 30
spans 65 m long. The spacing between the 7 droppers along the span is defined

in Table A.1, where SA denotes the steady arm.

Table A.1: Dropper spacing along the span.

Droppers SA-1 1-2 23 34 45 56 6-7 7-SA

d(m) 6 9.48 87 832 832 87 948 6

The mechanical and the geometric properties of the different wires of the catenary
are given in Table A.2.

Table A.2: Mechanical and geometric properties of the catenary elements.

p(kg/m®) E(MPa) A(mm?) I(mm?*) T (N)

Messenger wire 9114 1.1-101 94.8 1237.2 15750
Contact wire 9160 1.1-1011 150 2170 31500
Droppers 9114 1.1-10 10 0 3500 (“Y”)
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The Rayleigh coefficients of the damping model are o = 0.0125 s~! and 3 =
0.0001 s and the constants of the HHT integration method are ay,, = —0.05,
Buur = 0.2756, v = 0.55 and At = 0.001 s.

The values of the lumped parameters of the pantograph model can be seen in
Table A.3. The stiffness used in the penalty method is ky, = 50000 N/m.

Table A.3: Parameters of the pantograph model.

d.of. m(kg) ¢(Ns/m) k(N/m)
1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80
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Abstract

Pantograph hardware-in-the-loop (HIL) testing is an experimental method in
which a physical pantograph is excited by an actuator which reproduces the
movement of a virtual catenary. This paper proposes a new method that uses
analytical catenary models for HIL tests. The approach is based on an iterative
scheme until achieving a steady-state regime. Some of the method’s advantages
include its ability to consider the delay in the control and communication system
and its applicability to a wide range of analytical catenary models. The proposed
algorithm was validated both numerically and experimentally. The experimental
results obtained in the HIL pantograph tests were compared with those obtained
from pure numerical simulations using a linear pantograph model and showed
good accuracy with pantograph running at different speeds.

Keywords

Hardware-In-the-Loop, Analytical catenary model, Steady-state response, Panto-
graph
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1 Introduction

1 Introduction

High-speed locomotives collect current through the sliding contact between the
pantograph and the railway catenary, which is composed of overlapping inde-
pendent sections of about 1 km in length (see Fig. 1). Each section contains a
messenger wire and droppers that hold the contact wire, which interacts with
the collector strips on the pantograph, at the appropriate height. Messenger and
contact wires are supported by brackets and posts at regular intervals, called

spans.

Dropper
Support — Messenger wire

lv l\ Steady arm

Contact wire

S

Figure 1: Scheme of a catenary section and detail of a single span.

The contact force produced in the pantograph-catenary dynamic interaction plays
an important role in assessing the quality of the power supply. This contact force
reaches a steady-state regime in the central spans of each catenary section, where
the catenary can be assumed a periodic structure with repetitive spans. Both
numerical and experimental methods are now widely used to assess the contact
force. Several computer programs are able to simulate the pantograph-catenary
dynamic interaction [1], which is especially useful in the early stages of the design
process. In-line tests are also made with instrumented pantographs to measure
experimentally the pantograph interaction force. These tests are required for
the validation of a given pantograph-catenary couple; in Europe for example the
requirements are provided by the EN 50317 standard [2].

To reduce the number of costly in-line tests, pantograph Hardware-In-the-Loop
(HIL) lab tests have arisen as an appealing cheaper alternative, in which the
catenary is replaced by an actuator that interacts with a real pantograph. The
actuator movements simulate the position of the catenary contact point, which
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depends on the catenary’s dynamic behaviour and the measured interaction force.
The catenary model should be as realistic as possible but at the same time must
be solved in real-time, which is usually managed by the use of simplified catenary
models instead of more complex finite element models with direct time integration.

The first works that proposed a pantograph HIL test rig were [3, 4] using a finite
length catenary model based on a truncated modal approach to study the in-
fluence of different parameters on the pantograph-catenary dynamic interaction.
Another HIL set-up for pantograph dynamics evaluation was proposed in [5], in
which a hydraulic actuator reproduces the vertical movement of a very simple
catenary model composed of three spans. This model was upgraded in [6] with
the consideration of the non-linear dropper behaviour and in [7] by incorporating
lateral movement in the test rig to simulate the catenary stagger. In [8], a linear
model of the catenary with 3D Euler-Bernoulli beams is used in combination with
a moving coordinates formulation and absorbing boundary layers at both ends of
the catenary model. All the catenary models used in the above mentioned refer-
ences are finite length models which need the use of specific boundary conditions
to perform HIL tests.

In this work we propose a new method of performing pantograph HIL tests using
analytical catenary models. In general terms, these analytical models provide
the steady-state solution at the central spans of a catenary section with different
degrees of approximation. One of the simplest models is found in [9], in which
the catenary is modelled as a single and two-degrees-of-freedom system with pe-
riodically time-varying mass and stiffness. A more complex model was presented
in [10], in which an infinite string with visco-elastic support is used to obtain the
stationary response of lumped-parameter moving models coupled to the string.
The even more complex infinite string models include periodic discrete elements,
such as in [11] or [12], in which a two-level infinite catenary model, composed of
an upper and lower string joined by periodic supports and dampers, is simulated
along with a pantograph modelled by a harmonic point-load. Similar models can
also be found in the literature, such as that proposed in [13], which is composed
of several finite strings and is used to study the catenary wave propagation and
reflection phenomena. Of the wide variety of analytical catenary models, we here
use that proposed in [14], which considers the main catenary dynamic features
and the initial contact wire height profile.

The paper is organised as follows. After this introduction, the analytical cate-
nary model chosen for this work is briefly described in Section 2. The algorithm
proposed to perform steady-state HIL tests is presented and validated in Sec-
tion 3. Section 4 describes the test rig components and the control system. An
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experimental validation of the setup and some HIL tests results are provided in
Section 5, while the concluding remarks are given in Section 6.

2 Analytical catenary model

In this paper we present the results obtained with a particular analytical catenary
model, but it should be noted that the proposed method can also be applied to
other analytical models, as long as they provide the response of the catenary
contact point under a harmonic load moving at a constant velocity.

2.1 Dynamic behaviour

The model chosen for this work is an improved version of the one proposed by Roy
et al. [10], which is based on the response of a viscoelastically supported infinite
string excited by a moving load with uniform speed. This model is schematically
depicted in Fig. 2 and was analysed in [14], in which a good agreement was
obtained with the steady-state results of Finite Element simulations. For the
sake of completeness, here we summarise the main features of the model. It is
composed of an axially loaded infinite string, with linear density p and initial
traction T', supported by a continuous visco-elastic layer of stiffness k per unit
of length. A Kelvin-Voigt damping model of coefficients o and 5 considers the
energy dissipation similarly to Finite Element models.

EICICICITITIS

—

ft)

Figure 2: Analytical string model with visco-elastic support under a moving load.

The string model subjected to a general load p(z,t) is governed by the following
equation:

Ou 0% 82
“aTg_ o 2+(a,u+ﬁk) - BT 5, (a 2>+ku— p(z,1) (1)

where u = u(z,t) is the vertical displacement of the string.
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As depicted in Fig. 2, for a concentrated load moving at constant speed V', the
right-hand side term of Eq. (1) can be expressed as:

p(z,t) = f(t) 0(x — V1) (2)
where 6 denotes the Dirac function.

If the load is a harmonic function of frequency w, f(t) = Fpe™?, the closed solu-
tion of Eq. (1) for any point x and time ¢, u(x,t), is obtained using the method
proposed in [10, 14]. The steady-state response of the contact point of an ideally
infinite catenary under harmonic excitation can thus be written as:

—iFoeth

A (k1 (w) = ka(w)) (k1 (w) — ks(w))

in which £y, k2, k3 and A depend on the excitation frequency (w) and other model
parameters (T, V, u, k, a, ) as defined in 6.

uc(t) = u(Vt,t) =

3)

This response can be characterised by the Frequency Response Function (FRF)
H,, which is defined as the ratio between the vertical displacement and the har-
monic force applied at the contact point:

uc(t) —i

HS(W) = Fyeiwt - A (kl(w) — k:g(w)) (kl(w) - ]4}3(&))) (4)

2.2 Contact wire geometry

The contact wire height profile plays an important role in the dynamic behaviour
of the pantograph-catenary system [15, 16, 17, 18]. The static configuration of
the catenary that results from the stringing process can be obtained by different
methods. For example, semi-analytical methods are used in [19] or a method
based on a Finite Element (FE) model was proposed in [20]. Here we use a non-
linear FE model [21] to obtain the height of the contact wire zp(x) in a reference
catenary span of length L (see Fig. 3 and Fig. 1).
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Figure 3: Catenary contact wire height profile along a span.

2.3 Contact point height calculation

Thanks to the linearity of the analytical model (Eq. (1)), we can obtain the con-
tact wire height z.(¢) that sees the pantograph moving at speed V as the sum of
the static position and the displacement due to the moving interaction load:

ze(t) = 20(Vt) + uc(t) ()
where zo(Vt) is computed in the moving contact point.

We assume that the same span is infinitely repeated, so that zg is considered
L-periodic of period T = L/V. The contact force from the steady-state response
of the pantograph-catenary interaction will therefore be repeated every span, i.e.
f(t) in Eq. (2) will be a time periodic function of period T', as will also the
displacement of the contact wire u.(t). As a consequence, the steady position of
the catenary z.(t) is also a periodic function.

In a HIL test the contact force is measured at a constant rate fs = 1/At, At being
the time increment. Let us assume that the stationary interaction force is known
for a whole span, f.(t,) = f.(nAt) forn =0,...,N —1, in which N = L/(VAt).
This N-periodic discrete force can be shifted to the frequency domain by applying
the Discrete Fourier Transform (DFT):

N-1
Fo(wr) = Y felty) e rnt (6)
n=0
in which the discrete frequencies are:
2w
=k—— k=0,...,N—-1 7
Wi NAt ) ’ ( )
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The steady-state response of the catenary is directly obtained in the frequency
domain with the FRF (Eq. (4)) as:

Uc(wr) = Hs(wr) Fe(wy) (8)

Applying Eq. (5) in the frequency domain, the total contact point height can be
computed:

Ze(wr) = Zo(wi) + Ue(wi) 9)

in which

N .

Z (VnAt) e~ iwsnat (10)
Finally, the Inverse Discrete Fourier Transform (IDFT) is used to return to the

time domain. Given that f.(¢,) is a real sequence and H(w) exhibits Hermitian
symmetry, we can write:

eltn) = [ Zel) +2 3 Re (Zlin) m2) (11)
k=1

3 Steady-state HIL test method

The previous section showed how to compute the steady-state height of the con-
tact point in a whole span of the catenary if the stationary contact force is known
in advance. Here we propose a method of achieving the steady state (force and
displacement) if the virtual catenary model interacts with a physical pantograph
and the contact force is measured every time step t,.

Fig. 4 shows a scheme of the proposed HIL test strategy. The catenary contact
point is replaced by a linear actuator that imposes the height of the contact wire
zc(tn) computed by the analytical catenary model in every time step (Eq. (11)).
The aim of the test is to simulate the interaction of the pantograph travelling
at constant velocity V with the virtual catenary model, which is composed of an
infinite sequence of equal spans of length L.

The idea behind the proposed method is to obtain iteratively the response of
the contact point in the current virtual span b using the force measured in the
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b—2 b—1 b

Figure 4: Scheme of HIL test. From left to right, actuator with pantograph and the measured
contact force in three successive virtual spans.

previous one b — 1 by means of the equations given in Section 2.3, in which the
external force was assumed to be known. We define here the following variables:

o fb(tn), 22(t,): Contact force measured in the current virtual span at time
t, =nAt, forn=0,..., N — 1, and height of the contact point imposed.

o f271(t,): Contact force measured in the previous virtual span, with t,
referring to the relative time in that span. Note that ¢,, is rebooted at the
beginning of every virtual span.

e F’1(wg): DFT of the contact force in the previous virtual span.

3.1 Full virtual span iteration

We first define a more intuitive algorithm to better understand the final method
proposed. The contact wire height of the current virtual span 2%(t,) is predicted
by the measurements of the contact force in the previous one f*~1(t,), following
the method described in Section 2.3. The algorithm is initialised assuming null
force f2(t,,) on the initial virtual span, so that the predicted height of the contact
point z!(t,) matches the static height of the contact wire zo(t,,) (Fig. 3). The
linear actuator will prescribe this contact point height in the next virtual span
and a new contact force will be measured. The test runs until the contact force

measured is equal (with an admissible error) in two consecutive spans.
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3.2 Single step iteration

The previous strategy can be implemented more efficiently if the measured contact
force is updated every time step in the current virtual span instead of every whole
span. As shown in Section 3.3, with this strategy the convergence is achieved very
quickly after the pantograph interacts with a few virtual spans.

To obtain the contact wire height in a given time step t,, of the current virtual
span, we make a calculation block of N contact force values composed of the
force already measured in the current virtual span f°(t,,) for m = 0,...,n, and
the force measured in the previous virtual span f°~1(t,,) for time steps m =
n+1,..., N —1. The missing contact force values needed to complete the current
virtual span are fulfilled with those of the previous one.

The DFT of the contact force F*(wy) of the calculation block of time step ¢,, can
be obtained from Eq. (6) as:

n N—-1
Frw) = 30 fotw)e ™A 4 37 (g mAt (1)
m=0 m=n-+1

Eq. (12) can be rewritten in incremental form as:
F'(we) = F N wr) + AF (wr) k=0,...,N—1 (13)

in which F"~! contains the frequency content of the contact force computed in
the previous time step ¢,,—1 and the increment term AF"(wy) is computed from:

AFM(wg) = a (fﬁ(tn) - fi’*l(tn)) eTtwkmAL (0 .. N—1 (14)

The stabilisation parameter « € [0, 1] is introduced here to ensure convergence in
exchange for increasing the time in which the steady state is reached.

The displacement of the contact point U (wy) caused by the force obtained from
Eq. (13) is obtained by applying Eq. (8). The frequency content of the contact
point height Z7(wy) is then directly computed by Eq. (9). Finally, the contact
wire height at time t,,, which will be imposed by the linear actuator, is transformed
to the time domain according to Eq. (11).

Remark. The proposed method has the advantages of low computational cost and
low memory requirements, which make it suitable for HIL tests. The formulation
includes the entire frequency content (harmonics k = 0,...,N —1). Given that
pantograph-catenary dynamics can be computed using frequencies from 0 to Wiz,
the computational cost of the method can be further reduced by computing the
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solution for the range of frequencies k = 0,..., Newt — 1, in which Ney < N is
the index associated with the mazimum frequency:

NAt
Ncut = Wmax
27

3.3 Numerical validation

Before moving to the real HIL tests, a computational reproduction of a HIL test
was performed to demonstrate the the proposed method’s theoretical validity, in
which the measured force was replaced by the reaction force obtained from the
time integration of a linear lumped-parameter pantograph model with the contact
point height imposed on the pantograph collector. The parameters used to define
the analytic catenary model shown in Table 1 were taken from [14], in which they
were appropriately tuned according to a realistic FEM catenary model.

Table 1: Parameters of the analytical catenary model.

L(m) T(N) pkeg/m) kN/m?) a(@™') B(s)
65 31500  1.4735 5115 0.0125 10~*

This computational test was first used to show the effect of the stabilisation
parameter o on the solution. Fig. 5 shows the contact force obtained for three
different values of « along seven virtual spans with a pantograph travelling speed
of V"= 250 km/h. It can be seen that the higher the o the faster the convergence
to the steady state. However, as an excessively high value for this parameter
could produce instabilities in a real HIL test, a balance must be experimentally
achieved between convergence speed and stability.

Since the method was verified as converging, it was important to check whether it
converged to the correct solution, for which the result of this computational HIL
test was compared to that of the direct method briefly introduced in Section 2
and fully available in [14]. Fig. 6 shows the contact force in a full span. Note
that the converged solution of the proposed algorithm perfectly matches that
obtained from the direct method, which corroborates the validity of the proposed
algorithm.
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Figure 5: Contact force in the computational HIL test with different values of the stabilisa-
tion parameter o along seven virtual spans at 250 km/h. Virtual spans are shown by vertical
dashed lines.
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Figure 6: Comparison of contact force obtained from the proposed algorithm and from the
direct method presented in [14] for a pantograph running at 250 km/h.

4 HIL test rig

The main components of the HIL test rig are depicted in Fig. 7. The con-
tact force on each collector strip of the pantograph is measured by means of
a load cell. This signal is filtered and conditioned and finally acquired by the Na-
tional Instruments® cRio-9040 real-time controller in which the analytical cate-
nary model runs to provide the contact point height that fulfils the linear actuator
(LinMot® 70x400U) to simulate the catenary movement.
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Figure 7: HIL test rig.

The contact point height is set as a reference for the servo drive LinMot® E1400,
which drives the linear actuator, via Ethernet UDP communication. This servo
includes a PID closed loop control of the motor position which is configured
to reach the desired position using an acceleration and velocity-limited motion
profile.

All these cycle tasks are shown schematically in Fig. 8. The contact force F,
between the linear actuator and the pantograph is measured, filtered and sampled
to feed the catenary model which provides the contact point height z. every
At = 1 ms. However, communications between the real time controller and the
motor servo drive cannot take place at this rate, so that one value of every Neom
values of z. is sent to LinMot servo drive. For the tests described here Neom = 8
was used to ensure communications without any data loss. The value received
by LinMot z¢om is set as the new reference and the controller tries to reach this
reference by generating a set of intermediate reference points, at a rate of 0.3125
ms, linearly interpolated from z.om, and the previous reference z,q. The LinMot
servo drive uses a PID controller, which works at a higher rate, to fulfil these
intermediate references.
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Figure 8: Simulation cycle of tasks in HIL test.

It is important to emphasise that the whole loop described in Fig. 8 requires a
certain time to be accomplished. We can define the overall delay of the test rig,
0 = NsAt, as the time spent from when the force is measured until the computed
contact point height is reached by the linear actuator. This value calculated both
theoretically and experimentally gave a result of approximately 19 ms. Account-
ing for the test rig delay in the HIL tests is crucially important because omitting
this step could modify the final response or even make it unstable.

One of the advantages of using analytical catenary models is the ease of dealing
with the delay in the test rig. The height of the contact point can be obtained in
any time step, so that if the test rig delay is known, the response of the catenary
model can be obtained Ng time steps in advance, meaning that the actuator
reaches this position at the proper time.

For this end, the missing force values needed to complete the current virtual span
b are assumed to be equal to the previous virtual span b — 1. For example, if we
have measured the contact force at time ¢,, and we want to obtain the contact
point height at ¢,, for m > n, the force values between t,y1 and t,,, fo(t7 ),
are chosen as f2~!( m1). As the test converges to the steady state, with this
strategy the contact force will tend to be repetitive from one span to the next
and the error of this assumption will thus tend to disappear.

The contact point height calculated from Eq. (11) only needs to be modified with
the advanced time required:
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N—-1

Ze(wo) + 2 Z Re (Zc(wk)ei“’“(”JrN“)At) (15)
k=1

_ 1
Zc(tn) = N

5 Experimental results

This section contains some experimental results obtained from the HIL test rig.
The experimental validation of the control system and the overall performance
of the test rig was first obtained by means of a benchmark test in which the
pantograph was replaced by a mass. The results of the HIL tests with a real
pantograph were then shown and compared with the analytical solution obtained
from simulations with a linear pantograph model.

5.1 Ezxperimental validation

In order to validate the control system and the proper operation of the HIL test
rig, an experimental validation test was carried out in which the pantograph was
replaced by a mass of 5.29 kg directly attached to the linear actuator, as shown
in Fig. 9. This simple system can be modelled very accurately to obtain the
analytical solution of its interaction with the catenary model.

Linear actuator

Load cells

W<—— Attached mass

Figure 9: Mass attached to the linear actuator for the validation test.

This analytical solution is depicted in Fig. 10 when the mass is virtually moving
at 300 km/h along with the contact force obtained from the HIL test rig. The
experimental results include the contact force measured in the 10 last virtual
spans to verify that the steady state has been achieved using the stabilisation
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parameter o = 0.1. The contact force measured is filtered at 30 Hz with an
analogical low-pass filter and the catenary response is computed with the first 20
harmonics (Ngyu: = 20) including frequencies up to 25 Hz. Finally, the contact
forces shown in Fig. 10 are low-pass filtered to 25 Hz with a digital filter.

— — - HIL mass

| —— Analytical solution

01 02 03 04 05 06 07
t[s]

Figure 10: Comparison of the contact force in the mass HIL test (10 spans overlapped) at
300 km/h with the analytical solution.

As shown in Fig. 10, the experimental results are almost identical to the analytical
solution, indicating a completely satisfactory experimental validation. Note that
in this case the contact force has negative values because the attached mass pulls
the load cells down, unlike the pantograph, which pushes them up.

5.2 Pantograph HIL tests

This section gives the results and an analysis of the pantograph HIL simulation
with the same conditions to those used in the validation HIL test of Section 5.1.
The contact force obtained for the last 10 virtual spans is shown in Fig. 11 with the
pantograph running at 200, 225, 250, 275 and 300 km/h and with the stabilisation
parameter o between 0.05 and 0.1. The number of harmonics N,; included in
the response varies from 30 (200 km/h) to 20 (300 km/h) to ensure that the
frequency content of the response reaches up to 25 Hz.
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Figure 11: Comparison of the contact force obtained from the pantograph HIL test (10
spans overlapped in black) and the analytical solution with a linear pantograph model (red
curves). Tests performed at 200, 225, 250, 275 and 300 km/h from top to bottom.

The repeatability of these 10 curves of every tests verifies that the tests have con-
verged to the steady-state solution. This contact force is also compared in Fig. 11
with the analytical solution obtained when using a linear lumped-parameter pan-
tograph model showing the great similarity between them.

Some additional tests have been executed at different pantograph velocities and
the standard deviation o of the contact force is plotted in Fig. 12. Again, the
experimental tests show a good agreement with the analytical solution obtained
by using a linear pantograph model.
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Figure 12: Comparison of the standard deviation of the contact force obtained from pan-
tograph HIL tests (black circles) and the analytical solution with a linear pantograph model
(red curve).

6 Conclusions

This paper defines a HIL test rig in which a physical pantograph interacts with
a linear actuator that emulates the catenary dynamic behaviour, together with
an algorithm to perform HIL pantograph tests with analytic catenary models
to obtain the steady-state pantograph-catenary dynamic interaction. Although a
very simple string catenary model was used in this work to illustrate the proposed
method, it is important to note that this strategy is applicable to a wide range of
analytical catenary models provided that the Frequency Response Function can
be obtained under a harmonic load travelling at constant speed. With this type of
analytical catenary models there is no need to avoid boundary effects and delays
in measurement and signal transmission are easily dealt with.

Furthermore, the use of a simple analytical model in HIL pantograph tests can
be a useful tool to check the validity of a given pantograph model or to compare
the performance of different pantographs. In this work we proved the validity of a
fitted linear model of the pantograph. However, if high fidelity is required, more
realistic analytical models can be used with the proposed method.

A benchmark HIL test was performed in which the pantograph was replaced by
a mass directly attached to the linear actuator to validate the whole performance
of the test rig and the control system. The results obtained in this reference test
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were then compared with the analytical response of the mass interacting with
the analytical catenary model. The delay produced since the contact force is
measured until the linear actuator achieves the specified height was considered in
this experimental validation.

We also provide the results of the HIL tests on a physical pantograph, which
show a good convergence to the steady-state solution. In general, there is good
agreement between the contact force obtained from these tests and the analytical
results when using a linear pantograph model.
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Appendix A

String catenary model solution

The string catenary model used in this work was presented in [14]. This model is
governed by Eq. (1) whose solution provides the following vertical displacement
of the string;:

- Z e—i(kp(w)(x—\/t)—wt)

; .

L IT (kple) = s ()’
r#p

u(z,t) = e~ i(kg(w)(@=Vt)—wt) (A1)
r—Vt>0

~ LT () — @)
r#q

z—Vt<0

in which kj,(w) are the poles with a positive imaginary part and kq(w) are the
poles with a negative imaginary part. They are:
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being
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Abstract

In this paper, we propose a general approach to compute the dynamic response of
periodic infinite structures subjected to a moving load. The method only consid-
ers one repetitive block of the structure which is modelled by the Finite Element
Method. The problem is first shifted to the frequency domain where the period-
icity condition is easily applied and then the temporal response is obtained. An
infinite periodic catenary system has been chosen to illustrate the proposed for-
mulation. The linear formulation is extended to include the non-linear behaviour
of droppers. The efficiency and accuracy of the catenary model obtained make
it very suitable for use in Hardware in the Loop (HIL) pantograph tests. We
propose to combine this catenary model with an iterative strategy to achieve the
steady-state response of the coupled system and its performance is analysed in a
virtual HIL simulation.

Keywords

Non-linear periodic structures, Moving load, Pantograph-catenary interaction,
Hardware-in-the-loop, Finite Element Method
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1 Introduction

1 Introduction

1.1 Background

In the last decades, the expansion of electric railway systems has brought an im-
portant increase in the number of investigations focused on pantograph-catenary
dynamic interaction. The proper sliding contact between both systems is crucial
to achieve higher velocities, reduce the wear of the sliding interfaces and ensure a
stable and safe operation. The pantograph is a mechanism that is mounted on the
roof of the locomotive, which keeps contact with the contact wire of the catenary
by pushing it up. This interaction has been studied by means of different tech-
niques as it is described in [1]. Essentially, the three main options are numerical
simulations, hardware-in-the-loop (HIL) tests or hybrid simulations and in-line
testing.

Numerical simulations are widely used being the Finite Element Method (FEM)
the most chosen approach. A deep analysis of the results of a pantograph-catenary
interaction benchmark can be found in [2] and the references therein, which in-
cluded the participation of 10 international research groups. Hybrid simulations
or HIL tests are in the midway between numerical simulations and in-line test-
ing. They consist on splitting the whole system into two substructures, being one
of them replaced by a numerical model while the other is physically present in
the simulation. The interaction between both systems, namely the virtual and
the physical, is carried out by an interface made up by sensors and actuators.
An insightful review of hybrid simulations applied to different systems can be
found in [3]. This approach has also been applied successfully to the pantograph-
catenary system [4]. In this case, the pantograph is the physical substructure
and the catenary is replaced by a numerical model playing the role of the virtual
system.

1.2 Problem of interest

The implementation of HIL pantograph tests involves certain issues and chal-
lenges. The catenary model must be solved in real time while keeping a high
accuracy and there is usually a control-loop delay between the contact force mea-
surement time and the imposition to the pantograph collector of the displacement
computed from the catenary model. In order to solve these issues, some authors
proposed different degrees of simplification in the catenary model used that com-
promise the accuracy of the results obtained. This work is aimed at setting an
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entire framework that allows HIL testing with a high accuracy in the catenary
model.

As depicted in Fig. 1, a catenary section is composed of a succession of spans. In
its central region they use to be equal, which leads to a repetitive structure that
presents a steady-state response when interacting with the pantograph. We choose
the FEM to model the catenary and we assume the hypothesis of periodicity that
is representative of the most part of the catenary. Furthermore, to achieve realistic
results, the non-linear behaviour of droppers must be considered, which is also a
challenge dealt with in this work.

However, if we consider a steady-state response it can present some disadvantages
such as the inability to consider uneven spans, realistic contact wire irregularities
and overlaps between consecutive sections. The influence of these phenomena was
studied in [5, 6], concluding that their effect is not the most significant on the
overall catenary dynamic response.

The procedure to implement a HIL test with a periodic catenary model includes
two clearly differentiated parts. The first stage consists on creating a periodic
catenary FEM model which reproduces the steady-state regime subject to a con-
stant velocity moving load. In the formulation proposed in this work, only one
span is discretised by the FEM and periodic boundary conditions are applied on
the ends of the model to avoid modelling the entire catenary. The second stage
is focused on defining a methodology to use the proposed periodic model, which
represents the steady-state response of the catenary, in a HIL pantograph test,
which unavoidably presents control-loop delays and an initial transient regime.

Messenger wire Dropper Support

Contact wire Steady arm

Figure 1: Main components of a railway catenary.
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1.3 Literature review

In this subsection we present a literature review of the problem addressed in this
work, distinguishing the works related to periodic models subjected to moving
loads and the works that deal with HIL pantograph tests.

A broad overview of the dynamic response of structures under moving loads can be
found in [7], in which the solution of different moving-load problems are discussed
from an analytical point of view. The study of this type of problems has gained
interest in the analysis of the steady-state response of systems such as rails, over-
head contact lines or bridges. This problem has been traditionally addressed with
analytic models based on a periodically supported infinite string/beam [8, 9, 10].
These approaches have in common the consideration of a periodic solution which
allows considering only a repetitive block of the model between two consecutive
supports. Specifically, an infinite periodic Euler-Bernoulli beam subjected to a
uniform moving harmonic pressure field is used in [8] to simulate the dynamic
behaviour of the rail. The differential equation is solved in the domain defined
between two supports to which appropriate boundary periodicity conditions are
applied. A similar model is proposed in [9], in which a modal representation
results in a system of uncoupled differential equations. The limit of the solution
of such a system when the number of blocks tends to infinity is computed for
a moving constant load. The same problem is also solved in [10], applying the
Fourier Transform to shift to the frequency domain where the periodicity condi-
tion is more easily formulated. The solution in the frequency domain is moved
back to the time domain by the Inverse Fourier Transform.

The main limitation to the previous solutions is the simplicity of the model used,
with which it is not possible to model more complex structures. To this end,
some solutions are proposed in the literature. An extension of the approach
given in [10] is presented in [11] to solve a catenary model that includes two
interconnected strings. Two-and-a-half dimensional (2.5D) Finite Element models
appear as an alternative to solve infinite periodic structures with constant cross
section. This strategy is applied in [12], to model a rail. Fourier Transform with
respect to space and time is performed to solve the problem which allows the
application of the periodicity condition on the reactions of the supports in the
frequency domain. The same authors presented an improved model in [13] where
the dynamic interaction of multiple wheels with the periodic model is computed
by means of Fourier series decomposition of the contact force.

A more general method is the so-called Wave Finite Element Method (WFEM)
that is not only used to model infinite periodic structures, but also can be applied
to finite periodic structures [14, 15]. WFEM is used in [16] to obtain the frequency
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response function of a periodic infinite structure which is used to compute the
response of the system excited by a moving load. WFEM also allows to consider
structures with transition zones [15].

Regarding the HIL tests applied to the pantograph-catenary interaction, it can
be found in the literature several solutions that include different degrees of sim-
plification to carry out the tests. The first works that presented a pantograph
HIL test rig were [17, 18]. They used a finite length linear catenary model based
on a truncated modal approach. Another HIL set-up was proposed in [19] with
a simple catenary model composed of three spans and a sliding window strategy.
This model was upgraded in [20] with the consideration of dropper slackening
and in [21], with the incorporation of lateral movement to the test rig to simulate
the catenary stagger. A linear catenary model is used in [22] for HIL tests using
3D Euler-Bernoulli beams discretised with finite differences based on a moving
coordinate formulation in combination with an absorbing boundary layer to at-
tenuate outgoing waves. Other appealing catenary model intended to perform
HIL pantograph tests was proposed in [23]. It is based on a modal truncation
of a full FE model, which would allow to consider non-periodic features such as
overlaps or installations errors. However, the practical use of this model in HIL
tests is challenging due to the presence of control-loop delays that can make the
test unstable.

1.4 Scope and contributions of this study

This paper is aimed at: i) solving the steady-state interaction of constant velocity
moving loads with periodic structures modelled by the FEM and ii) proposing an
strategy to use that solution to perform HIL tests. The global objective is to define
a complete framework to perform high fidelity HIL pantograph tests dealing with
the usual control-loop delay that appears in this type of tests.

The Periodic Finite Element Model (PFEM) of the catenary proposed accom-
plishes the first aim of this work and overcomes some of the limitations of other
models found in the literature. The PFEM allows modelling more complex struc-
tures than the analytical models [8, 9, 10, 10], multi-strings models [10, 11] and
2.5D FEM models [12, 13]. Furthermore, it is a general method that can be
applied to any periodic structure modelled by the FEM. WFEM [14, 15] can pro-
vide a similar solution by means of the method proposed in [16], however, when
WFEM is applied to slender structures with long spatial period such as a railway
catenary, some numerical problems arise making its solution not usable in prac-
tise. Additionally, control-loop delays can be easily handled with the catenary
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PFEM unlike with full FE catenary models, in which the response of the catenary
in future steps is not known in advance.

The final proposed model results very suitable for its application in HIL tests
and provides more accurate results than other catenary models used for this
purpose. In [17, 18], the accuracy of the model is limited due to either the
severe modal truncation considered or the small length of the system modelled
to fulfil both memory requirements and real-time performance. Sliding window
methods [19, 20, 21] also focus on the steady-state response but the boundary
conditions imposed lead to not negligible errors. Even in [22], in which boundary
layers are used to avoid undesirable effects on the ends of the model, the fidelity
of the results is compromised. The model proposed in this paper avoids these
boundary effects by considering periodic boundary conditions that lead to the
proper steady-state response. Additionally, it has the potential to compensate
the control-loop delay that appears in HIL tests. Unlike most models found in
the literature, other important contribution of this work relies on considering the
non-linear behaviour of droppers, which are not able to hold compressive forces.
This feature is essential to obtain high-fidelity results in HIL pantograph tests.

The second aim of this work is accomplished by adapting the iterative proce-
dure proposed in [24] to the scenario of a periodic catenary model. This proce-
dure allows both the virtual catenary and the physical pantograph to achieve the
steady-state regime in a HIL test.

1.5 Organisation of the paper

The paper is structured as follows. The case of study of this work is described
in Section 2. In Section 3, the impulse response of the catenary FE model with
periodicity conditions is computed by solving the problem in the frequency do-
main. This impulse response is used in Section 4 combined with an iterative
procedure to perform HIL pantograph tests. The model is enhanced in Section 5
to include the non-linear behaviour of droppers and some numerical results to
verify the computational costs and the accuracy of the proposed model are pre-
sented in Section 6. A discussion and the main concluding remarks are given in
Section 7. Finally, a demonstrative example that facilitates the reproduction of
some numerical results is included in 7.
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2 Description of the case study

The formulation developed in this paper is general in the sense that it can be
applied to any periodic structure as long as it can be modelled by the FEM.
However, as the final goal of this study is to perform HIL pantograph tests, the
proposed formulation is applied to a railway catenary model along the paper.

As depicted in Fig. 1, a catenary is mainly composed of a contact wire, which
interacts with the pantograph and is held by the messenger wire through vertical
cables called droppers. The wiring is supported at regular intervals defining a span
between two consecutive supports. The parameters that define the catenary and
the pantograph models which are used to obtain the results presented in Section 6
can be found in [2]. Additionally, the pantograph-catenary dynamic interaction
is solved according to the method proposed in [25] when full FE simulations are
required for comparison and validation purposes.

To obtain the PFEM proposed in this work it is only necessary to obtain the FE
model of the repeated block of the structure, in this case one span of the cate-
nary, to apply the formulation described in the following sections. The resulting
catenary PFEM is suitable to perform HIL pantograph tests in which the contact
force applied to the pantograph collectors is measured and the displacement of
the contact point obtained from the catenary PFEM is imposed by means of an
actuator. In this work, all the HIL environment is treated by means of simula-
tions, leaving for future work the application to real HIL tests. To this end, the
physical substructure (i.e. the pantograph) is also simulated with a numerical
model to evaluate the capabilities of the proposed method.

3 Impulse response of the catenary

In this section, we present a general method to obtain the impulse response of an
infinite periodic structure subject to a periodic load moving at constant speed.
To illustrate the method, a railway catenary has been chosen as shown in Fig. 2.
As a periodic structure, the catenary is subdivided into consecutive blocks b of
length L, which are repeated infinitely in the longitudinal direction e;. A 2D
catenary is depicted in Fig. 2 in which each periodic block b is a single span. In
the case of a 3D catenary, the repetitive block would consist of two spans, due
to the stagger arrangement of the catenary wires. It is important to note that,
as opposed to applying moving window strategies, the accuracy of the proposed
method is not further improved by including more spans into the repetitive block.
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Figure 2: Catenary as a periodic infinite structure and Finite Element discretization of
block b = 0.

The pantograph moves at a constant speed V and the interaction with the cate-
nary will be indefinitely repeated at every block if one considers that the sta-
tionary state is achieved. Therefore, the external contact force applied to the
catenary is a periodic moving load of period T'= L/V.

Under the hypothesis of periodic interaction, any force applied in a given block b
is actually applied sequentially in every block b € [—o0, oo] at the same instant
with respect to that in which the pantograph started to interact with each block.
It is possible to calculate the impulse response produced by a sequence of unit
impulses f°(y,,t), which are periodically applied in each block b (only once per
block) at points y, and at time ¢ = bT, as depicted in Fig. 2.

The sequence of unit impulses that defines the impulse response can be defined as:
Poypt) =0t —bT)  b=—c0,...,00 (1)

in which ¢ is the Dirac function and they are applied to every block b at the global
coordinate y, =y + bLe;.
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Given a point y in the reference block b = 0, the sequence of infinite unit impulses
f*(y,t) produces the catenary displacement u(t, x,y) at point x. In this case, this
is the unit impulse response h(t,x,y) under periodic conditions. Note that the
coordinates of the excitation point are denoted by vector y = [y1, %2, y3] " whereas,
the coordinates of the point at which the response is measured are referred to as
X = [r1,22,23]". Both the impulse excitation f* and catenary displacement u
can be defined in an arbitrary direction, which are not explicitly indicated for
simplification in the notation.

The stationary response of the catenary u, will be repeated in each block. Thus,
for a given point x, the periodicity condition reads as:

u(t,x,y) =u(t —bT,x+ bLey,y) (2)

which allows the description of the response of the entire catenary with that of a
single block, so that the response of the reference block b = 0 will be considered
herein after. If this reference block is discretised by the Finite Element Method
(FEM), the displacements of its Ng,s nodal degrees of freedom are denoted by
u’(t,y) or u(t,y) in which superscript 0 is deleted for simplicity in the notation.
The nodes of the FE mesh of the reference block can be divided into left (L) and
right (R) boundary nodes and inner (I) nodes as shown in Fig. 2.

3.1 Frequency Response Function

The impulse response of the above described infinite periodic system will be ob-
tained by considering only the reference block [8, 9, 10] and imposing the pe-
riodicity condition defined in Eq. (2). Some authors have solved this problem
by applying the Floquet decomposition [26]. However, we followed the strategy
proposed in [10, 11], which is based on the movement of the problem to the fre-
quency domain in which the periodicity condition is more easily stated. Thus,
we first need to find the Frequency Response Function (FRF) that relates the
displacement of point x to a harmonic unit force of frequency w applied at point

y.

Without loss of generality, in this work, the displacements of inner and right
boundary nodes, uy(t) and ug(t) respectively, are chosen as the unknowns of the
problem. Displacements of the left boundary nodes ur, must fulfil Eq. (2), that is:

ug(t) = ur(t +7) (3)
which after applying the Fourier Transform, it becomes:

Up(w) = e“TUg(w) (4)
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being Uy, 1 r(w) the Fourier Transform of ur, 1 r (), respectively.

The nodal equivalent external force vector F can be divided into left, inner and
right nodal degrees of freedom, namely Fpr,, F; and Fg, respectively. If the de-
grees of freedom of left and right boundary nodes are properly defined (mesh
compatibility), Fy, and Fr are related through the following equation:

Fp =¢“"Fg (5)

The FRF of the system can be found by solving the following problem for every
frequency:

DwWU=F+R

e )
(w) =K+ iwC —w™

where M is the mass matrix, K the stiffness matrix and C the damping matrix
of the substructure contained in a single block. The reaction force vector R, ap-
plied to the left and right boundary nodes R = [Ry,, 0, Rg]", is also unknown.
Eq. (6) can be rearranged in left boundary, inner and right boundary degrees of

freedom:
UL FL RL
U; = F; + 0 (7)
UR FR RR

Considering again the periodicity condition and the action reaction principle, the
reaction force vector in the left and right boundary Ry, and Ry are related by:

RL = —einRR (8)

D, D Dir
D, D Dmr
Dgri Dgrr Dgrr

Introducing Egs. (4) and (5) to Eq. (7):

Dr1 Dig +e“TDyp, U e“TFg Ry,
{ Ur }: LR G T ©)
R Fr Rr

D;  Dig +€“TDyy,
and then using Eq. (8), the unknowns can be rearranged to the left-hand side:

Dgr; Dgg + ¢“TDgy,
DLI DLR“l‘eiWTDLL ei“’TI UI 0 ei“’TI F
Ug ,=|1 0O {FI } (10)
Rg 0 I R

Dy Dir + GWTDIL 0
Dg; Dggr +¢“"Dg;, -1
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in which I denotes for the identity matrix. Problem (10) can be solved as:
U; . F
Ur :H(w){ ! } (11)
Fr
Rr

A [ Di; Dig +e“TDyy, 71 ]1 [ 0 71 ]

where:

H(w) = Dip Dig + 61:“)TD1L 0 I 0
Dgri Dgr + €1wTDRL —1I 0 I

(12)

Eq. (11) can be rewritten in terms of the displacements of the block as:
UL
{ U } ) { o | (13)
Fr
Ur

eiwI:I:IR(UJ)
Hw) = | Hiw) (14)
Hg (w)

with

in which Hy(w) and Hg(w) are the two first rows of H(w).

3.2 Impulse response

Eq. (13) relates nodal displacements with nodal forces of the entire block by
means of the FRF H(w). However, we are interested in the displacement of
point x produced by a unit harmonic force F,, applied at point y in the reference
block. The FEM operator N(x) = [NL,(x), Ny(x), Ng(x)] is the 1 x Ngof matrix,
composed of nodal shape functions that transforms nodal displacements into point
displacements in a given direction and can also be used to transform point forces
to nodal equivalent forces.

With this operator, the nodal equivalent forces relative to the unit force F;, can

be written as:
{ gfI{ }:{ Nr(y)" ljle(yi)wTTNL(y)T } (15)

in which the term e=*7TNy,(y) " considers the nodal forces at the right boundary
of the reference block (b = 0) that would appear if the unit force was applied on
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4 Hardware In the Loop test methodology with a linear catenary model

the next block (b = 1). Note that this contribution is only active if the unit force
is applied on an element of the reference block that has some node on the left
boundary.

With the use of the operator N(x) applied to the right-hand side of Eq. (13) and
including Eq. (15), it is possible to compute the harmonic displacement of point
x when a unit harmonic force acts at y:

o) =N me) { g o VO b e

As the structure is modelled with FEM, Eq. (16) cannot be analytically defined
but is computed for a discrete number of frequencies Ny with a frequency incre-
ment Aw:

wr = kAw k=0,...,Nt—1 (17)
In addition, time ¢ is also discretised with a time increment At:
t, = nAt (18)

Thus, applying the Inverse Discrete Fourier Transform to Eq. (16), the impulse
response at time step ¢, is obtained as:
Ny—1
h(tn,x,y) = Z arpRe (I(wk,x,y) ei“k"At) Aw (19)
k=0
being ap, =2 if k#0orap =1if k=0.

It is important to remark that there is no relation between Aw and the period
T. In practise, Aw has to be chosen little enough to obtain an accurate time
response and Nt is limited by At to avoid aliasing effects.

4 Hardware In the Loop test methodology with a linear
catenary model

The concept of Hardware In the Loop (HIL) tests applied to railway pantographs
consists of hybrid simulations with a virtual catenary model and a physical pan-
tograph (see Fig. 3). In these tests, the catenary is replaced by an actuator that
interacts with a real pantograph and simulates the vertical movement of the cate-
nary contact point. The contact force measured in the test rig is the input of the
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virtual catenary model which must supply the contact point vertical position in
real time.

Virtual Ze

Controller
catenary X

v

7'y

Measured f.

IS

E:
<

=

7

Figure 3: Scheme of a HIL pantograph test.

Eq. (19) condenses the linear behaviour of the periodic catenary under a moving
periodic load, so that non-linear effects such as dropper slackening are not con-
sidered in this section. Thus, the general response can be obtained with the load
applied at the contact wire of a single block.

The pantograph is virtually moving at a constant speed V and applies a vertical
excitation over the contact wire of the catenary model. At is chosen so that the
contact wire of a periodic block of length L is divided in V. virtual contact points
Yew(tn) with n=0,..., N, — 1.

Figure 4: Pantograph interaction with the periodic catenary.
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4 Hardware In the Loop test methodology with a linear catenary model

If the contact force f.(t,) applied to a virtual contact point y.(t,) is assumed
to be known, Eq. (19) can be particularised to compute the vertical displacement
u(t,,x) of a given point x, by applying the superposition principle as the sum of
the contribution of each force applied on the block:

N.-1
ultn,x) = Y hltn = ta, X, Yew(ta)) fe(ta) At (20)
A=0

Note that 72 denotes the time instant at which the force is applied and n, the
instant at which the displacement is evaluated. It should also be noted that the
origin of time in the impulse response function (Eq. (19)) corresponds to the
instant at which the impulse is applied. However, in Eq. (20), ¢,, = 0 which is the
time step at which the force is applied at the beginning of the block. This is the
reason why the impulse function is evaluated at ¢, — t5.

For the pantograph interaction, we are interested in the displacement of the con-
tact point uc(t,) = u(tn,Xcw(tn)). Therefore, Eq. (20) can be evaluated at this
point as:

N.—1
Uc(tn) = u(tn, Xew(tn)) = Z I(n,n) fo(ta) (21)
A=0
in which:
I(n,n) = h(tn — ta, Xew(tn)s Yew (t2)) AL (22)

In addition to the displacement due to interaction with the pantograph, the ver-
tical position of the contact wire depends on the static configuration of the cate-
nary. If z.w(t,) is the contact wire height at the initial catenary configuration,
the global height of the contact point at time step n can be obtained, as shown
in Fig. 4, from:

Zc(tn) = ch(tn) + uc(tn) (23)

Eq. (21) condenses in a N. x N, matrix I(n,7) the steady-state vertical displace-
ment of the contact point at time ¢,, as a function of the stationary force applied
in all contact points of the block at time t; for 7 =0, ..., N, — 1. It is important
to note that when the force is measured and applied at a given time step n € 7,
the response for all the time steps n is affected.

Matrix I(n,7n) can be precomputed making the proposed model very suitable for
use in HIL testing because few operations are required to obtain the contact point
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response. We propose to apply this model in combination with an algorithm in
which the measured contact force is iteratively updated until the steady-state
response is achieved.

Defining k as the global counter of each step or iteration of the HIL test, at the
beginning of the test (k = 0), a set of N, (the number of contact points in a
block) null values of the contact force are considered, so that z.(t,) = zew(tn)-
At a given iteration k, the contact force is measured at time step 7 relative to
the beginning of the current block 6. In this step, only the contact force values
measured from ty to t5 are available in the current block. To complete the set of
N. measures of contact force required to compute the response of the catenary
model, the contact force values from 541 to ty _;1 are taken from the previous
block b — 1. Thus, by combining Eqgs. (23) and (21) the contact point height in
iteration k is computed as:

7 Ne—1
26 (tn) = zow(tn) + YU, 2) f2(ta) + D Tn,d) 271 () (24)
7=0 A=n+1
Note that the response z.(t,), defined from tg to tx,_1, must be updated for all
t, every iteration k.

é Current block : Previous block 1

k-1 n|l0]1]2]|3([4]5 c o [Ne-1

.

k allol1 2345 ««+ [Nl

' ' '
Current force value n

Figure 5: Modification of the set of N force values by replacing f2="(t) by fE(tn) at two
consecutive iterations.

Eq. (24) can be rewritten based on the difference of the measured contact force
of the current block and that of the same instant of the previous block. That is:

2E(tn) = 267" () + Tn,0) (F2(ta) = £27 () (25)

This strategy is schematically illustrated at Fig. 5.
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5 Hardware in the loop method with nonlinear catenary model

Once the contact wire height is available, only the vertical position of the contact
point for the next time step 2¥(t;41) is sent to the actuator. The method runs
iteratively step by step until the measured contact force in two consecutive blocks
matches with a given tolerance.

The methodology explained so far is exemplified in 7 by means of a very simple
academic model that allows the numerical results to be better understood and
reproduced.

5 Hardware in the loop method with nonlinear catenary
model

The HIL procedure explained in Section 4 is now extended to include the non-
linear behaviour of droppers. We use the same idea introduced in [25] but adapted
to account for the periodic nature of the system. The proposed formulation is
developed in two stages. In the first, the response is computed with assumption to
the linear model described in Section 4. The second is devoted to apply correction
forces to the slackened droppers.

5.1 Dropper correction forces

The static equilibrium problem in a catenary system is a non-linear problem gov-
erned by large displacements. However, the dynamic behaviour can be linearised
around the static equilibrium position in which each dropper d has a tension
value fgo and a stiffness k4 in the dropper direction. Droppers are cables that
cannot exert compression forces. However, these compression forces are consid-
ered in the linear catenary model in which the tension of dropper d is computed as
f = kaALg (dashed line in Fig. 6(a)). To satisfy the condition of no compression
forces, the internal force of a dropper must be greater than -f4o (continuous line
in Fig. 6(a)). Thus, a correction force fy must be applied to correct the linear
behaviour as shown in Fig. 6(a). This consists of two compression forces applied
at both ends of the dropper y, ;,s and y 4 4., as depicted in Fig. 6(b).
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/
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Figure 6: (a) Non-linear behaviour of droppers. (b) Correction forces fa applied on dropper
d.

5.2 Unitary operators

In this subsection, we attempt to explain the influence which a periodic sequence
of unitary impulses applied on contact points and dropper ends has on the dis-
placement of these points.

We first define the dropper elongation AL, as:
ALg = u(Xdsup) — u(Xd,inf) (26)

I(n,7) in Eq. (21) can be redefined as I¢(n,7) in which the subscript ¢ denotes
that the excitation is produced by the contact force and the superscript ¢ indi-
cates that the response is evaluated at the contact point. With this notation,
the displacement of the contact point produced by the contact force defined in
Eq. (21) is now renamed:

Ne—1
ue(tn) = Y T(n, ) fe(ta) (27)
h=0
Superscript 1 is used to point out the fact that this displacement is considered the

linear part of the total response.

Dropper elongation due to the contact force is:
N.—1

ALh(tn) = 3 T, 0) folta) (28)

n=0
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5 Hardware in the loop method with nonlinear catenary model

in which:

]Ig(n,ﬁ) = [A(tn — ti, Xd sup, Yew(tr)) — B(tn — ths Xd,infs Yo (ta))] At (29)

To include the influence of dropper correction forces in the catenary response,
we first assume that the dropper correction force f4(t,) of dropper d at t, is
known. It is important to remark that the correction of the infinite droppers of
the catenary model at all time steps should be considered because they affect
the response on the contact point at time step n. In practise however, dropper
correction will not be considered in time instants at which the pantograph is far
enough from the reference block because it is highly improbable that a dropper
slackens and in such a case, its influence on the pantograph interaction has been
proven to be negligible. Thus, dropper correction is active only at time instants
from t_,, tot,,

The displacement produced on the contact point due to dropper correction forces
is called the non-linear part of the response (denoted by superscript nl) and is
defined as:

Nd ey
W)= > T9n,a) fa(ta) (30)
d=1 ﬁzf’l’bb
in which Ny is the number of droppers of the reference block and

IG(n,n) = [h(tn - tmeW(tn))Yd,inf) — h(tn — tﬁvXCW(tn>de,sup)] At (31)

Dropper d elongation caused by the correction forces applied to dropper d are
computed from:

ALY =3 3D T ) ) (32)
d=1n=-np

being
Hfi(na ﬁ) = [h(tn - tfu Xd,sup>s Y,j,inf) - h(tn - tﬁ7 Xd,sup>s yisup)} At

- [h(tn — b, Xd,ints Y g ing) — P(tn — tﬁ>xd,inf,ycj’sup)} At (33)

The total response can be obtained by adding the linear (1) and non-linear (nl)
contributions defined above.
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5.3 HIL with dropper correction forces

The same procedure as that defined in Section 4 is used here but now, dropper
correction forces are added to the system. It is important to highlight that dropper
correction forces can be applied at instants before and after the time instants at
which the pantograph stays within the domain of the block (¢; for 4 =0, ..., N, —

1).

At a given iteration k, the first step consists of updating the response due to the
contact force measured at ¢5 as in Eq. (25):

ugH(tn) = ut ™ (ba) + L0, 7) (F2(t0) = £27(t0)) (34)

In this case, it is also necessary to update the elongation of droppers due to this
contact force:

AL (ta) = AL§ (tn) + T(n,n) (£ (ta) = £ (t0)) (35)

The second stage consists of modifying the response according to the effect of
dropper correction forces. Note that the dropper corrections forces fy(ts) are

applied at time instants t; for 1 = —np, ..., n, (a bigger interval than [0, N, — 1]).
Thus, at every iteration k, f; must be calculated in several instants in order
to include all the instants from —ny to n,. For example, if —n, = —N. and

nay = 2N. — 1, which means that dropper correction is active since the pantograph
gets into the previous block (b = —1) until the pantograph gets off the next block
(b=1), fq must be computed and applied at three instants of time, namely ¢z,
tﬁ_Nc and tﬁ-ﬁ-NC .

The effect of dropper correction forces modifies the linear response defined in
Egs. (34) and (35) so that:

Wt = () + Y0 Y ) (F) — 7)) (30)

d=1n=nq

Na
AL(t) = ALY () + Y S Thn,n) (f5(0) = £270 ) (37)
d=1"M=na
in which nq4 considers all the instants included into [—ny, n,] that are spaced N,
steps from the current measuring time 7. For the choice of —ny, and n, indicated
above, nq = [n,n — N, + N¢]. This is equivalent to applying this correction to
the droppers of the previous and next blocks at the current instant ;.
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6 Numerical results

At this point, the dropper correction forces fcll’ (tn,) are the only magnitudes left
to calculate to know the response at iteration k. First, we must find out the
droppers to which the correction must be applied. To this end, the dropper state
@’j defines the slackening state of dropper d, being equal to 0 if the dropper is
tensed and 1 if it is slackened. At time 74, it reads:

0 if kg ALY (ta,) > —fao
0% (tny) = e, = 38
altna) { 1 if kg ALY (tn,) < —fao (38)
in which AL5¥(t5,) is obtained from Eq. (35).
As shown in Fig. 6(a), the dropper correction force can be written as:
filtna) = Of(tay) (—fao — kaA L (tn,)) (39)

According to Eq. (37), the previous equation becomes:

filta,) = Of(tn,) ( — Jao — ka (ALZk(tndH

iZ@mm@mwme>m>

d=1 "=n4q

This is a system of Ng x Nj, linear equations that allows to calculate the dropper
correction forces f4(tn,). Note that Ny, is the number of time steps included
in nq and the system is in practice reduced since some of the equations become
f(li)(tﬁ +) = 0 because dropper correction is not active in dropper d at some instants
considered in nq.

The final response at iteration k, including dropper correction, is calculated with
Egs. (36) and (37). Dropper state can change once the correction is applied but
it is not necessary to recalculate it. If the convergence is achieved after several
blocks, the difference between the response in two consecutive blocks tends to
zero and the stationary dropper state is achieved.

6 Numerical results

In this section, the algorithm proposed is tested in a virtual HIL simulation in
which a numerical pantograph model is used to replace the real pantograph used
in a standard HIL test. The time integration of the pantograph model is carried
out independently of the catenary model by means of the Hilber-Hughes-Taylor
(HHT) integration method [27]. In this virtual test, the displacement of the
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catenary contact point obtained from Eq. (36) is imposed on the pantograph
model and the contact force in the next time step is computed. Unlike in a real
HIL test in which this force would be measured by load cells, in the simulated
test, a penalty stiffness is used [2].

To validate the method, the results obtained in the virtual HIL test are compared
with a FEM conventional simulation. It is noteworthy to mention that the virtual
HIL test assumes an infinite periodic catenary while the size of conventional FEM
model is limited by the number of degrees of freedom. However, we have made a
long enough catenary section so that the steady-state regime can be assumed on
its central spans. In this way, transient effects are negligible due to the notable
length of the FEM catenary model and it is expected to obtain the same solution
in both the proposed periodic model (PFEM), and the finite length FEM model.

Specifically, in this example, we chose the catenary model used in the benchmark
exercise [2] with spans (or blocks) of 55 m in length having 9 droppers and 55 mm
of pre-sag in the contact wire each of them. A Rayleigh damping model is used
with C = K + YM, being 8 = 107% s and v = 1.25- 1072 s~!. For the
pantograph, a lumped mass model with 3 vertical degrees of freedom is used
whose parameters are provided in Table 1. The penalty stiffness used in the
contact model is k;, = 50000 N/m according to [2].

Table 1: Parameters of the pantograph model.

d.of. m(kg) ¢(Ns/m) k(N/m)
1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80

In the PFEM, the catenary impulse responses have to be computed for a discrete
number of frequencies (see Eq. (17)). We have found that Aw = 0.025 rad/s with a
maximum frequency wy,q, = 750 rad/s are accurate enough values. Note that the
frequency resolution Aw must be small enough to guarantee a large period 27 /Aw
of the functions to which the DFT is applied. In turn, the maximum frequency
involved in the IDFT must be high enough to provide a fine time discretisation
of the nodal forces. The time resolution is chosen to At = 1 ms, a value which
is smaller than 7 /wyq. to avoid aliasing effects. This value is also used for time
integration of the pantograph model, although in this case, a smaller value could
be used.
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In the numerical case analysed in this section, the velocity of the pantograph is
set at 250 km/h and the virtual HIL simulation runs until there is not noticeable
differences in the computed contact force of two consecutive blocks. To ease
convergence of the virtual HIL test, during the first 20 s of the simulation, the
displacement of the catenary contact point that is imposed on the pantograph
model is scaled by a factor that increases linearly from 0 to 1. This is reflected in
the increasing values in the first blocks of the results shown in this example (see
Fig. 7 and Fig. 8).

"y ,\.,7"v. o
s‘\\. W

2 \

\
/ \ -";‘:’:’;“ \n %
200 "\\%‘f‘" i .
5100 ) 4 \\“ 7 60
= 40
0> 20 b

Figure 8: Dropper correction forces evolution.

The contact force obtained in successive blocks of the virtual test is depicted in
Fig. 7 in which only one in three curves are shown for a better visualisation of
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Figure 9: Comparison of contact force of catenary PFEM (solid line) with those obtained
in three central spans of the section of a FE catenary model with 15 spans (dashed line) and
30 spans (dash-dotted line).

the figure. The non-linear correction forces of droppers 2 to 8 (Eq. (39)) can be
seen in Fig. 8 from left to right and again one in three curves are displayed. Note
that the first and last droppers do not present any correction force since they do
not slacken due to their greater initial tensile force caused by the pre-sag of the
contact wire. The two black dashed lines show the times in which the pantograph
is placed inside the reference block from ¢t = 0 to ¢t = 0.792 s. However, dropper
correction forces are also computed outside this period but they are null in this
example. Specifically, the period in which dropper correction is active covers two
blocks, from step —ny = 80 to n, = 1504.

As seen in both figures, convergence is properly achieved, although it is important
to mention that some convergence issues can arise if the periodic structure is very
low damped. Thus, a certain amount of damping is required to guarantee the
convergence of the proposed approach.

In order to validate the results, the converged contact force obtained from the
catenary PFEM is compared in Fig. 9 with the contact force of three consecutive
central blocks computed with a conventional FEM simulation. We have used
two catenary models with different length, namely 15 and 30 spans respectively.
The FEM solutions show minor differences with the contact force obtained from
the PFEM. These differences are even smaller with the 30-spans FE catenary
model because a more stationary response is achieved on these central spans. The
converged dropper correction forces obtained from the catenary PFEM are also
compared with those obtained from the longest FE catenary model in Fig. 10. As
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6 Numerical results

can be seen in both figures, the results provided by the proposed catenary PFEM
are validated according to their great similarities with those obtained from a FEM
simulation with a large enough catenary model.
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Figure 10: Comparison of dropper correction forces from catenary PFEM (solid lines) with
those obtained in a central span of a FE catenary model with 30 spans (dashed lines).

Regarding the computational cost required to obtain the PFEM solution, a dis-
tinction must be made between the off-line and on-line stages. The former takes
a relatively long computation time which mainly includes the FRF of the catenary
periodic block and the unitary impulse response functions. Specifically, for the
example previously analysed, it takes approximately 30 minutes in a conventional
computer.

The on-line stage covers the computations that must fulfil real-time performance
to perform HIL tests. For a given time-step t,,, the measured contact force is taken
as input and the contact point height must be given before the next contact force
is measured. The operations involved are described in Table 2.

For the numerical example previously analysed in which At = 1 ms, N, = 792,
Np, =2, Ng =9 and N,q ranges from 0 to Ny. With these values, that can be
taken as usual, the operations involved in each time step need about 0.15 ms to be
performed, which confirms the real-time capability of the proposed formulation
and its potential use for HIL pantograph tests.
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Table 2: Operations performed in a given time step in the on-line stage.

Equation Description Operations

Contact point dis-
Eq. (34) placement due to [ INex1 +Afe [ Inoxt
contact force.

Droppers elongation

Eq. (35) due to contact force. [ INen o Naxt + Afe - [ INen, -Nax1
Eq. (38) Dropper state. kq-[ ]NC.Nﬁd.Ndm < —fao d=1,...Nyg
Slackened  droppers _1
Eq. (40) correction force. [ NN [ INeaxa
Contact point dis-
lacement due to
Eq. (36) Elackened droppers [ INox1+ [ INoxN.g - Afa
correction force.
Droppers elongation
due to slackened
Eq. (37) [ INe Ny Naxt + [ N Nay - NaxNoa - A fa

droppers  correction
force.

7 Conclusions

In this paper, we present a whole framework to perform HIL pantograph tests
achieving the steady state of the pantograph-catenary dynamic interaction. The
contribution of this paper is twofold: on the one hand we proposed the formu-
lation to build an infinite periodic structure model, discretised by the FEM and
subjected to a moving load travelling at constant velocity. The PFEM formulation
is directly built from the common FE matrices that define the repetitive block of
the system, so that it is valid for any generic periodic structure. The proposed
formulation has been applied to compute the impulse response of a railway cate-
nary PFEM to be subsequently used in HIL pantograph tests. On the other hand,
an iterative strategy to achieve the steady state when the the catenary PFEM is
used in HIL pantograph tests is proposed and numerically validated, even with
the extension of the method in which the non-linear behaviour of droppers is also
considered.

The main conclusions that can be drawn from this work are:
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7 Conclusions

e From the FE model of a given infinite periodic structure repetitive block
and applying periodic boundary conditions, it has been verified, by means of
standard simulations with a very long FE catenary model, that the proposed
catenary PFEM provides the precise steady-state response under a constant
velocity moving load.

e The catenary PFEM requires very low computational cost which allows its
implementation in HIL tests, in which real-time performance is mandatory.
Even when the non-linear behaviour of droppers is included into the algo-
rithm, it is still able to be solved in real time.

e Although it is unavoidable to manage a delay produced in the communica-
tion and execution of the control loop of the actuator, the proposed formu-
lation has the advantage of being able of easily compensate this delay since
the response for a later time is available at the current time step.

e The proposed framework to perform HIL tests with the catenary PFEM
only focuses on the steady-state response and therefore, other particularities
of the pantograph-catenary interaction such as contact wire irregularities,
uneven spans or overlaps can not be addressed.

Future work will lead to the implementation of the proposed method in a HIL
test rig, in which the stability of the method needs to be checked in the presence
of experimental issues such as noise, delays, limited measuring accuracy, vibra-
tions and so on. Additionally, the catenary PFEM can be extended to consider
the interaction with two pantographs offering the opportunity of studying the
interference phenomenon between pantographs.
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Appendix A

Demonstrative example

In order to illustrate the method and facilitate the reproducibility of the numerical
results, a HIL simulation is described in this appendix by using a linear small-size
FE model. The procedure described in the paper is thoroughly followed and some
numerical results are provided at each step.

Figure A.1: Academic periodic FE model.

The infinite periodic model chosen is composed of a tensioned string periodically
supported as shown in Fig. A.1. The repeated block consists of a piece of string
modelled with two elements (3 nodes) and a spring-damper system on the right
end. A given element of the string has two nodes and two degrees of freedom, the
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vertical displacement of each node. The dynamic equation of an element e with
tension T, linear density p and length L. is:

mii® + ku® = F°¢ (A1)

in which the mass and stiffness matrices and the vector of degrees of freedom are:

_pLe[2 170 T 1 =11 e | w
mete [T e [ AT e[l a

The FE model of the whole block is obtained by assembling the two string ele-
ments and the spring-damper system, which results in:

ple  pLe
6 00 0
M = ”Ze ohle e | o_ | g g o]; (A.3)
0 ub,  ul. 00 c
6 3
r _r
L L.
ol ISR A A P o (A1)
- Le L Le ) - 2 )
0 r T k w
"L, L.

The numerical values of the parameters that define the model are shown in
Table A.1. The time and frequency discretization is made with At = 5 ms
and Aw = 27/(NAt) rad/s, being N = 10000 and the number of harmonics
Ny = 5969, which leads to a maximum frequency of ~ 750 rad/s.

Table A.1: Parameters of the academic model.

T(N)  plkg/m) Le(m) Kk(N/m) ¢(Ns/m) wv(m/s)
22000 1.3 0.75 300 10 50

The dynamic stiffness matrix D(wy) can be computed with Eq. (6) and, by using
Egs. (12) and (14), the Frequency Response Function H(wy) is obtained consid-
ering that node 1 is the left node, node 2 is the inner node and node 3 is the
right node. For each frequency wy, H(wg) is a matrix with two columns related
to the excitation on the inner and the right nodes and three rows that match to
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the displacement of each of the three nodes. For example, the matrix H(wy) for
the frequency index k& = 3000 (60 Hz) is:

—0.111340.08451 0.0161 —0.0532 i
H(wir—3000) = 107* | 0.0549 — 0.0074 i —0.1113 + 0.0845 i
—0.1147 - 0.07971  0.0555 — 0.0012 i

Additionally, the norm of the different elements in H(wy,) are depicted in Fig. A.2,
in which [Hyo(wg)| = |Hsz(wg)| and [Hyp(wg)| = [Hao(wk)| = |Hsi(wg)| due to
the properties of the receptance and the periodic boundary conditions.

—— Hy;
T —  H3;
E _
—10%L 4
1078 L 1

0 100 200 300 400 500 600 700
wlrad/s]

Figure A.2: Norm of the receptance H(w).

The velocity of the moving load used in this example is v = 50 m/s. According
to this value, the length of the block and At, there are N, = 6 different discrete
contact points along the block as depicted in Fig. A.1. The dynamic behaviour of
the PFEM with a moving load is collected in the operator I(n,n). This operator
is obtained with the evaluation of the discrete impulse function defined in Eq. (19)
for all the combinations of n € [1, N.] and i € [1, N.] as stated in Eq. (22). As the
continuous operator I(w, X, y) appears in the discrete impulse function (Eq. (19)),
it also must be evaluated for all combinations of n and 7 considering that the
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observation point x is related to n and the excitation point y is related to 7.
Thus, I(w,n,n) = I(w,Xy,y;) is computed for every frequency wy, with 6 points
of excitation and 6 points of observation, by means of Eq. (16).

To compute I(w,n, ), the shape functions are arranged in a matrix that relates
the forces of discrete points 72 (rows) to the three degrees of freedom (columns):

1 0 0
0.6667 0.3333 0
0.3333 0.6667 0

0 1 0

0 0.6667 0.3333

0 0.3333 0.6667

N =

The operator I(w,n,f) is organised in a matrix I, referring the rows to n and the
columns to 7. For example, the values of this operator for the frequency defined
by k = 3000 are:

Re(I(wik=3000)) =
0.0555 —0.0001 —0.0557 —0.1113 —-0.0688 —0.0264 T
—0.0012 -0.0195 —-0.0377 —0.0559 —0.0461 —0.0362
—0.0580 —0.0388 —0.0197 —0.0005 —0.0233 —0.0461
—0.1147 —0.0582 —0.0016 0.0549 —0.0005 —0.0559
—0.0704 —-0.0475 —-0.0246 —-0.0016 -0.0197 -0.0377
| —0.0261 —-0.0368 —0.0475 —0.0582 —0.0388 —0.0195 |

1074

Im (I(wr=3000)) =

0.0116  —0.2738 —0.5593 —0.8448 —0.3860 0.0728
0.2736 0.0028 —0.2679 —0.5387 —0.3348 —0.1310
0.5355 0.2795 0.0235 —0.2325 —0.2837 —0.3348
0.7975 0.5562 0.3149 0.0736  —0.2325 —0.5387
0.3568 0.3429 0.3289 0.3149 0.0235 —0.2679
—0.0838 0.1295 0.3429 0.5562 0.2795 0.0028

1072

To show more information of this operator, the elements of the first column are
plotted in Fig. A.3 for every frequency. In this case, |I51| = |I31] and |Ig1| = |I21]
due to the periodicity condition and the symmetry of the model.
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Figure A.3: Harmonic response of discrete points of the block when the excitation is applied

on point number 1.

Finally, with Eq. (19) and Eq. (22), I(n,7) can be computed from I(w,n,

this case, it results in:

I=10"*

[ 0.3804
0.4853
0.4676
0.3758
0.4126

| 0.3934

0.3934
0.3735
0.4439
0.4750
0.4200
0.3913

0.4126
0.3778
0.3676
0.4902
0.4437
0.4200

0.3758
0.4197
0.3934
0.3627
0.4902
0.4750

0.4676
0.4216
0.4029
0.3934
0.3676
0.4439

0.4853 7
0.4319
0.4216
0.4197
0.3778

0.3735

7). In

Once the former operator is obtained, a simulation of a HIL test can be carried out.
To simplify the process, the model in contact (which replaces the real pantograph)
is a single spring as shown in Fig. A.1. This spring applies a vertical force f. on
the contact point, which is proportional to the difference between the contact
point height z. and a reference value zp, so that f. = k,(z. —
we use a spring with stiffness k£, = 10000 N/m and zg = 5 mm.

20)- In this example
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Given a contact force f., Eq. (25) provides the contact point height. In the first
step of the simulation, the displacement of the contact point is initialised to 0
and the contact force is therefore f.(1) = k,zo = 50 N. By multiplying the first
column of I(n,7) by this force, we obtain:

zt =1072-[1.9022 2.4265 2.3380 1.8791 2.0630 1.9668] m

for all n € [1,6]. In the next step, the displacement of the contact point is z!(2) =
2.4265 - 1072 m and the contact force is f.(2) = k. (20 — 2.4265 - 1073) = 25.7351
N. This value is used to multiply the second column of I(n,7) and the result is
added to z! to compute 22, from which the third value 22(3) = 3.4803 - 1073 can
be obtained for the next step.

In the 7-th step, the block number 2 starts and hereinafter, instead of using the
force value f.(7), we use the increment respect to the force on the former block,
fe(7) — fe(1), to multiply the first column of I(n, 7). Following this procedure,
the contact force obtained is shown in Fig. A.4. The contact force is finally re-
peated in every block as seen in the figure since the steady-state regime has been
achieved. This periodic contact force is:

fe=1[14.1319 14.2372 14.4190 14.1001 14.2078 14.4236] N

50 F ' ' ' ]

Figure A.4: Contact force in a simulated HIL test with the academic model.

170



PAPER D

Hardware-In-the-Loop simulations of
a railway pantograph with a finite el-
ement periodic catenary model

J. Gil, M. Tur, S. Gregori, A. Correcher, A.M. Pedrosa and F. J. Fuen-

mayor

Submitted to Vehicle System Dynamics






Abstract

In this work, the pantograph-catenary dynamic interaction problem is addressed
by Hardware-In-the-Loop (HIL) tests. This technique emulates the dynamic in-
teraction between a numerical model (the catenary) and a physical device (the
pantograph). The real-time simulation requires a computationally efficient nu-
merical model and a time and accurate transference of the response to the pan-
tograph. To this end, a Periodic Finite Element Model (PFEM) of the catenary
is considered in this work for two main reasons. First, the low computation time
required to solve it, makes it suitable for performing real-time simulations. Sec-
ond, its ability for compensating the delay produced by the transference of the
numerical model response.

The PFEM of the catenary used in this work considers the non-linear behaviour
of dropper slackening, leading to high-accuracy HIL test results, which have been
validated up to a frequency of 25 Hz.

Keywords

Hardware-In-the-Loop, Hybrid Simulation, Pantograph, Control, Periodic Cate-
nary
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1 Introduction

1 Introduction

The current research on railway engineering, is now involved in multiple problems,
one of which is the pantograph-catenary dynamic interaction problem. It is an es-
tablished fact that, although there is still room for improvement, the performance
of the pantograph-catenary couple limits the rolling stock speed. This is due to
the apparent dynamic complexity of the system and the gap between the models
and reality that hinders any attempt at improvement. This gap refers to the
difficulty of reproducing experimental measurements by numerical simulations.

One of the solutions proposed to reduce the gap is the so-called Hardware-in-
the-Loop (HIL) tests, also known as hybrid simulations (HS). These tests are
used in multiple fields [1] and researchers have made great efforts to expand HIL
boundaries. In the pantograph-catenary field, HIL tests consist of a pantograph
loaded by an actuator that simulates the catenary response obtained from nu-
merical simulations and can be considered midway between in-line experimental
tests and pure numerical simulations.

Even though the use of HIL simulations is an appealing approach to avoid ex-
pensive in-line tests, their implementation presents certain challenges. HIL tests
require very efficient models, advanced equipment and demanding electronic per-
formance. One of the main requirements of HIL pantograph tests is thus a low
computational cost of the catenary model as it needs to be integrated at a rate
of 2 ms or less, which is high, considering the many degrees of freedom requiered
of a catenary model to obtain accurate results. Another essential requirement is
a short control loop delay to prevent an unstable response. To solve these two
big problems, different efficient catenary models and techniques to mitigate the
effect of the delay can be found in the literature.

The modal-truncated approach is used in [2, 3] to reduce the size of simplified
catenary models as regards the computational cost. The same approach is also
used in [4] but applied to a non-linear finite element catenary model. Another
alternative is the sliding window method, which was first used in [5] with a simple
catenary model composed of three spans. This model was upgraded in [6] by the
inclusion of non-linear dropper slackening behaviour. In [7] a catenary model
based on a moving mesh formulation in combination with absorbing boundary
layers was used to perform catenary time integration in real-time. All these
finite-length catenary models lead to a stationary response that is affected by the
boundary conditions assumed.

Although the previously described catenary models can be computed in real-
time, their response has to be faithfully transferred to the physical device, and
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the presence of a delay prevents this. Some solutions have been proposed to
address the negative effects of delays. In [8], the HIL technique is applied to
the vehicle-bridge interaction and the work aims to compensate the HIL delay
by using a recursive prediction optimal (RPO) compensator. This method has
been shown to have better performance than other strategies such as polynomial
extrapolation [9], inverse compensation [10] or differential feedforward [11]. The
interaction between a real pantograph and a virtual catenary is dealt with in [12,
13]. This type of simulation is called a Dynamically Substructured System (DSS)
as the interaction is conducted in a different way to that used in HIL. According
to the authors, the HIL or HS labels are used when the interaction between
the virtual and psysical substructure follows an open-loop strategy. In the HIL
strategy, transferring the response of the virtual to the physical model therefore
has to be ideal, implying rigorous requirements. On the other hand, DSS provides
an interaction between the models by means of a closed loop in which the response
of the virtual model is compared to the current status of the physical device and a
control action is included. In [12], the control system is developed via Linear Sub-
structuring Control (LSC) to perform DSS by a very elementary catenary model
with one degree of freedom and variable stiffness. Experimental results can be
achieved by replacing the pantograph with a shock absorber, which is good for
the control field but is still far from accurate in representing the pantograph-
catenary dynamic interaction. This approach was continued in [13] by applying
a sliding window approach to model the catenary, but the test was performed
with the same simplified pantograph model. The results obtained were compared
with simulations but were seen to be significantly inaccurate. In [14], the DSS
strategy was then tested with a real pantograph and the accuracy of the results
was challenged. According to this terminology, the work conducted in [7] could
be described as DSS, since they also developed a control algorithm based on the
energy equation to limit the error in the controlled position of the catenary to
avoid the instability produced by delays.

In the present work we adopted the periodic finite element model of the catenary
proposed in [15]. This model provides highly accurate results, as demonstrated
in [15], accounts for dropper slackening and has certain advantages for its practi-
cal implementation. Due to the infinite periodicity foundation, the steady-state
solution provided by the PFEM is not influenced by the boundary-layer effects.
The model is also suitable for a total delay compensation technique, which has
shown good performance in virtual tests [15]. Our main aim was thus to de-
scribe the most important factors to be taken into account in performing HIL
pantograph tests with the above-cited catenary PFEM. We also describe in de-
tail the iterative algorithm used to achieve the steady-state regime and practical
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2 HIL test-rig

measures to prevent test instability. The HIL test results were validated by a
proposed method that can quantify the overall HIL-induced error.

The remainder of this paper is organised as follows: Section 2 gives a description
of the test rig used in the HIL tests. Section 3 describes the two strategies used
to perform HIL tests with the PFEM. Section 4 performs a stability parametric
analysis of the two strategies proposed. Section 5 validates the HIL setup and
presents some of the results of different catenaries and train speeds, while Section 6
sums up our main conclusions.

2 HIL test-rig

The test rig used for the real-time interaction of virtual catenaries and real pan-
tographs is shown in Fig. 1. Its main elements are as follows:

W3 LinMot
o servo drive

1
!
i

Catenary
calculation PC

Linear
actuator

CompactRIO
controller

\ j
B
! <8/ \C Strai
Load cells FB/ o oUan
2 amplifier

Figure 1: Test-rig components and information flow.

o Actuator: A linear magnetic motor (LINMOT PS10-70x240U) with a max-
imum velocity of 5.4 m/s and a maximum force of 1650 N.

e Actuator Controller: The E1450 motor drive controller receives posi-
tion references by UDP communication via a LinUDP bespoke protocol.
The controller generates intermediate sub-references using one of the sev-
eral sub-reference generation modes. The selected working mode is a linear
interpolation (ramp) between reference points to avoid generating parasite
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frequencies and discrete steps that lead to instability. A closed-loop PID
control strategy is used to follow all the sub-references generated. Since
communications with the driver are non-deterministic, the sub-references
are executed by a hardware trigger signal generated by the Real-Time Com-
puter to guarantee periodic execution of the control commands.

o Real-Time Computer: A real-time CompactRio (CRI0-9040) device from
National Instruments™ forms the system’s brain, which carries out the main
tasks. It includes a Dual Core 1.30 GHz processor, 2GB RAM, Ethernet
communications, and several IO modules. The RT computer acquires the
measured force. It also executes the main and control loops. The main loop
has a rate of 2 ms in which it adquires the force value, sends the value to
the computer and receives its response. The motor control loop has a rate
of 10 ms in which it acquires the last displacement value of the main loop
and sends it to the Actuator Controller.

e PC: This solves the virtual catenary PFEM implemented in Matlab™. As it
is essential to have a flexible code to test different settings of the catenary in
different experiments, this code runs on an Intel®Core™ i9, 3.6GHz, eight
cores and 64Gb RAM PC high-speed processor.

e Force measuring: Two load cells measure the force of the pantograph on
the actuator. These signals are conditioned by two AC Strain amplifiers
(AS1201) that increase the signal levels and include a configurable filtering
stage (10Hz, 30Hz, 100Hz, 300Hz, or no filter).

e Pantograph: The pantograph selected for this research is a DSA®380.03.

The test rig materialises the vertical displacement of the catenary contact point
when a force is applied. The process carried out, since this force is measured
until the actuator achieves the response given by the catenary model, follows the
itinerary defined in Fig. 2. The time that this process takes has a great influence
on the accuracy of the response. The process starts when the force is measured,
then passes through a filter and the signal is converted into a digital value by the
AD converter. The force value is picked by the RT computer at the beginning
of the RT main loop. The following step in this main loop is to send the force
to the PC, which after solving one time step of the catenary dynamics, answers
with the displacement value of the catenary that is waiting to be sent at the
beginning of the control loop. As the value is received by the motor driver that
controls the actuator, the driver imposes intermediate values following a ramp
between the former and the current references. The ramp finishes on receiving a
new reference.
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3 Iterative algorithm of the HIL pantograph tests

The different parts that account for the total delay can be identified by following
the above-described path. The acquisition keeps getting values very quickly until
the Main Loop of the RT computer picks one (negligible delay). 2 ms are spent
until the iteration of the Main Loop is finished and the value enters the Control
Loop. The force value is sent to the actuator controller, taking approximately
4 ms, and at this point a ramp of 10 ms (the time necessary to get the next
reference) starts. The total delay is thus 16 ms.

Traflsducer L| Filter AD N Waiting
signal Converter RT clock

___________________________ l o]

RT computer

Sending Receiving N Waiting
f to PC > from PC ["|Ctrl. clock

PC
Calculation

Start ramp End ramp
from z old [™] at z

Force communication delay Calculation delay Actuator delay
- - -— P

Figure 2: [tinerary of the whole loop of the test rig

3 Iterative algorithm of the HIL pantograph tests

The catenary model used for the pantograph-catenary HIL test consists of a peri-
odic catenary modelled by the finite element method, which considers non-linear
dropper slackening behaviour. This model reproduces the steady-state dynamic
solution of the catenary under the action of a load moving at constant speed,
which is representative of the central catenary spans of the pantograph-catenary
interaction.

The method used aims to find the steady-state solution of the pantograph-catenary
coupled system by means of the HIL rationale, in which the physical device (pan-
tograph) and the virtual model (catenary) of both systems are coupled (the pan-
tograph is governed by transient dynamics and the virtual model satisfies the
steady-state equilibrium). To reach this stationary regime it is necessary to use
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an iterative procedure to traverse the inevitable transient period. Both the cate-
nary model and the iterative strategy used to guide the HIL test were proposed
n [15].

In this section, the linear version of the catenary model and the iterative algorithm
are first briefly described, emphasising the main differences required to implement
them in a test environment. A new variant of the iterative algorithm is also
proposed to tackle the stability issues that arise in practical implementations, and
the strategy used to consider dropper non-linear behaviour is also introduced.

3.1 HIL tests with a linear PFEM of the catenary

This section briefly introduces the key ideas of the framework proposed in [15],
although for further information the reader is referred to [15], which provides the
steady-state response of an infinite periodic catenary subjected to a moving load
for a discrete-time environment. The solution relates the periodic moving load
vector f with the vertical position z due to the application of this load vector,
as depicted in Fig. 3. Due to the existing periodicity, the time domain includes
only the time taken by the load to travel across one span of the catenary and is
discretised into N steps, so that the time step n,n € [1,..., N], n being the time
step of a given displacement and 7 the time step of the load-application point.
Given a complete set of contact forces f(n) arranged in vector f, the contact wire
height z vector, which includes the contact points z(n), can be directly obtained
as:

zZ = ZO + Iccf (]‘)

zg being the initial configuration contact point height (initial geometric catenary
shape).

z(n)
z [JTTTTITTTTTTITTITITITIT]

Yuuadll

Illlllll AU AU n, € [1, N]

n

N N
f(®)

Figure 3: Input f, and output z, of the PFEM of the catenary.
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3 Iterative algorithm of the HIL pantograph tests

With this scheme, the vertical displacement of the contact point u(n), for all the
time steps within the span, can be calculated by means of the product of the
contact force f and matrix I.. which contains the contribution of every load value
(column index 7)) to every displacement value (row index n).

The proposed model can give a response, provided the periodic contact force
is known. This assumption does not apply to HIL tests, in which the force is
measured and is not periodic (at least at the beginning of the test). The strategy
of accomplishing HIL tests with a catenary PFEM was proposed in [15]. Roughly
speaking, the goal is to measure the contact force along a span, compute the
catenary response and impose this vertical position with a periodic assumption,
even if the contact force is not periodic, assuming that an iterative process will
reach the steady state.

HIL tests are performed following a discrete time scheme. In each global time
step, denoted by index k, every contact point displacement is imposed and its
contact force is measured. This global time is also organised in blocks of N
samples in the form of the length of a period in the problem. The time is denoted
in every block b by index n, starting from 1 at the beginning of the block. The
measured contact force in a given time step is denoted as f(k) and the vertical
position of the actuator in this time step as z(k), which depends on the contact
force of the previous time steps, as will be explained below. When the test reaches
convergence, displacement and forces are repeated in every block and must satisfy
Eq. (1). The measured contact force can also be referred to as f°(n) and the
position sent to the actuator as z°(7), since every global time step k represents a
a local time step 7 in block b.

Two alternatives are proposed in this paper for the iterative protocol of the HIL
test, i.e. step-by-step and span-by-span updating. In the former we need to
compute the displacement of the next step in every time step in which the force is
measured, while the span-by-span updating strategy initially defines the position
of the actuator along the whole span.

3.2 Step-by-step updating

The first version of the algorithm presented to perform HIL tests with the periodic
catenary model is called step-by-step updating. The procedure is depicted in
Fig. 4 through different elements. The physical pantograph is represented at the
bottom. The horizontal bar moves toward the left and represents the time with
the markers on the horizontal line, which can be grouped in blocks. The upper
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part describes the mathematical procedure to compute the displacement using
the measured force at every instant.

Periodic FE model

£k o <<' =1 Step leap
—1 /) z2(1) —
—: S Actuator
— F(7) 2(n) |— position
E f(+1) 2(-+1) —
v : ﬂ S B If delay
—r@v) Z2(N) f— &
L TR ¢
fo(n) 2 (n+1)

I
& ;

n
b—1 b b+1
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Figure 4: Graphical description of the step-by-step HIL test architecture with a PFEM of
the catenary.

The different points of Fig. 4 are detailed as follows:

e Point 1: Let us say that the test is in the k global time step (or time
step n within the block b, as represented in the bar over the pantograph
illustration) and the pantograph has reached the displacement sent from
the previous time step k — 1.

o Point 2: The force f°(72) is measured simultaneously to Point 1.

e Point 3: The measured force is placed in vector ¥ (which changes every
time step k, as denoted by the superscript) in the right position 7 while the
other elements of this vector remain unaltered.

184



3 Iterative algorithm of the HIL pantograph tests

e Point 4: Eq. (1) is applied to compute the response of the periodic model
with f k, producing the z* vector which replaces the one in the previous step
k — 1. Note that in this case, all the components in vector z* change.

« Point 5: The vertical position of the next step 7 + 1 is taken from z* since

this is the position that would be reached in the next step k& 4+ 1. At this
point, a more advanced position to 7 4+ 1 can be extracted from z* in order
to compensate for any possible delay.

e Point 6: The displacement is sent to the actuator.

e Point 7: It is time to move to the next step and the timeline depicted at the
bottom of the figure moves one position to the left, so that the pantograph
can reach the position sent from point 6. The indexes of Points 3 and 5 drop
down a position to be ready to receive and give the right values in the next
step k + 1.

In Point 4, the PFEM’s response is computed according to Eq. (1), but as ex-
plained in [15], a mathematically equivalent formulation can be used to reduce
the computation time. Then, z* can be equivalently obtained by considering the
force increment in every time step:

2 = 2"+ L () (f (1) — 771 (7)) (2)

due to the fact that only one element of vector f* is changed in every time step.

3.3 Span-by-span updating

A different updating strategy is here proposed to circumvent some convergence
issues. This new strategy follows the four first points listed in Section 3.2 and
shown in Fig. 4, but the differences arise in Point 5. Whereas a single value of
vector zF was extracted in the step-by-step strategy and it would continue its way
to Point 6, in the span-by-span updating strategy there is a memory rack between
Points 5 and 6. Only at the time step 7 = N (at the end of each block) the whole
vector z”* is extracted and its N values are stored in the memory. The stored
vector is called z® and it fulfils z° = 2z* if k = bN. According to the proposed
scheme, the displacement z°(7) sent to the actuator in Point 6 is computed from
the stored vectors z° of the two previous blocks, combining both with linear shape
functions to avoid lack of continuity at the beginning of a new block, i.e.:

2°(n) = Ny (n)2°2(n) + No(n)z"~Y(n) ; @ € [1,N] (3)
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in which N7 and Ny are linear shape functions which go from 1 to 0 and from 0
to 1, respectively. This method has a different performance in terms of stability,
which will be discussed in Section 4.

3.4 Delay compensation

As mentioned in Section 2, there is a consumed time in the test loop (see Fig.
2) that delays the response of the catenary. A delay of D time steps exists from
the moment at which the contact force is measured in Point 2 (Fig. 4) until
the pantograph reaches the position computed in Point 5. Fig. 4, represents the
unavoidable delay of one step D = 1, but an extra delay is also considered in
Point 6 of the figure by a grey arrow. If the position sent to the actuator takes
the path defined by the grey arrow, it will be placed in a later position on the
timeline because it will need more time steps to be achieved by the pantograph.

Note that this delay does not affect the rate of the loop, the pantograph will reach
the sent position later but it does not prevent the next time step from starting.
One of the main advantages of the catenary PFEM is that this delay can be
easily allowed for because the contact wire height z* includes the displacement
values at all times n in the span. To compensate for a given delay, the position
value extracted in Point 5 in Fig. 4 is thus the n = n + D indicated by the grey
arrow. This procedure eliminates the error produced by the delay in the dynamic
response, since at the end of the test, when convergence is achieved, f * and z* do
not change and the value at time step n = n + D will be a perfect prediction.

3.5 Frequency content reduction

Another important aspect to consider is that we can limit the frequency content
of the actuator displacement. As vector z is periodic, it can be shifted to the
frequency domain by the discrete Fourier transform (DFT) and then the higher
frequencies can be removed before being brought back to the time domain by the
inverse discrete Fourier transform (IDFT).

A number of Ny, frequencies (the zeroth harmonic included) are considered in
this frequency reduction, f,,.. being the highest frequency included. This num-
ber plays an important role in the stability of the HIL test because if f,,qz i
higher than the biggest frequency that the gear can control it will lead to defi-
cient performance. The whole process can be done directly by applying matrix
operations to z. Let us define the DFT matrix operator as:
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 zemigT m=[0,1,....,N, —1]7
W=ex for n=101,.,N—1T (4)
With the same approach, the IDFT matrix can be obtained as:
]. uss
V= N62N nm ' A (5)

A being an NV}, x N}, diagonal matrix with a 1 in the first element of the diago-
nal and a 2 in the other components, to duplicate the value of columns 2 to Ny,
of matrix V due to considering the unilateral representation of the DFT. These
two operations defined in Egs. (4) and (5) can be combined in a single matrix, i.e.:

W = Re(VW) (6)

Thus, to filter vector z, Eq.(1) is multiplied by W:

Z =W [zo + L.f] (7)

This filtering operation can be precomputed by applying the operator W to I
and zg so that Eq. (1) is rewritten as:

Z =70+ L.f (8)

3.6 Relaxation coefficient and initial ramp

Another difference between the numerical algorithm proposed in [15] and that
used to perform HIL tests relies on a relaxation coefficient . to reduce the sharp
change between the response of successive blocks during the iterative procedure.
In Point 3 in Fig. 4, the measured force replaces the element 7 of £*, in which
the measure of the previous block was previously allocated. If the relaxation is
applied, the current measurement will be relaxed with the old one, resulting in:

fAR) =T THR) 4 pe(F(R) T (R)) 9)

which will be allocated finally in the void. This relaxation can be included in Eq.

(2)
2" = 2"t pclec (@) (f°(R) = (R)) (10)

This coefficient is used to ensure convergence of the test and plays an important
role in the stability of the iterative method, as explained in Section 4.

187



Paper D

To avoid a sudden jump at the beginning of the HIL test, the height sent to the
actuator is scaled by a factor that varies linearly from O to 1 step by step, thus
defining an initial ramp that lasts IV, steps.

3.7 Considering dropper slackening

In Point 4 of the loop (see Fig. 4), Eq. (1) is used to compute the response of the
catenary, given a contact force, although additional external actions can also be
applied. Non-linear dropper slackening behaviour is essential to perform accurate
simulations and can be considered by adding external correction forces, which
depend on the elongation of the droppers, as explained in [15]. If matrix I.g
includes the stationary response of the contact point produced by a compressive
force acting on both ends of dropper d, then Eq. (1) can be extended to:

Na

Z = Z +Iccf+Zchfd (11)
d=1

in which f; is the correction force vector of dropper d, Ng is the total number
of droppers. Note that I.; rows indicate the time step of the contact point
displacement and its columns are related to the time step of the dropper force
application.

So far, the response of the catenary has been evaluated at the contact point only,
but hereinafter the dropper elongation also needs to be computed. Let us define
matrices I4. and I44, which account for the dropper elongation produced by the
contact force and the other droppers’ correction forces, respectively. The total
elongation of dropper d can therefore be computed as:

Ng

AL =Tgf + > Laafq (12)
d=1

As in z, it is important to limit the frequency content of AL, in order to ease
the convergence of the method. To this end, the terms involved in Eq. (12) are
pre-multiplied by the matrix W, which is built like W (see Section 3.5), but
considering in this case a different number of harmonics Npgq.

In the same way that f* is treated in Point 4 of the HIL loop, vector fz is
modified in each time step n by replacing the corresponding elements with the
dropper forces computed in that step. As described in Section 3.6, relaxation can
also be applied to f% with a coefficient pg (See [15] for further information).
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4 Stability parametric analysis

This section describes the stability of the proposed method, which depends on
several factors: the catenary model, the pantograph, the frequencies included
in the catenary response, the stiffness of the contact, the relaxation coefficient
and the delay. For the sake of simplicity, stability is studied in a computational
environment, replacing the real pantograph by a numerical model and using the
penalty method as the contact model and performing a numerical time integration
in what we call a virtual HIL test.

To study the stability it is necessary to express the problem as a linear iterative
process in which the variables or state vector in any iteration can be written as a
linear operation applied to the previous state. In the specific problem of a virtual
HIL test, the iterative formulation has a certain complexity because the concept
of iteration refers to an entire block iteration instead of a time-step iteration,
so that every iteration includes the application of another iterative method to
numerically integrate the dynamic response of the pantograph model.

The state vector of block b, X, considers the necessary variables to compute the
state vector of the next block, such as the displacement /force of the contact point
in every time step, among others. This section mainly defines the iterative linear
operation to analyse the stability of the method by means of the spectral radius,
which can be written as:

Xt = AX"+ B (13)

in which all the vectors and matrices depend on the HIL strategy followed (their
definitions can be found in 6). Once the matrices in Eq. (13) are obtained, the
virtual HIL test can be conducted by applying this linear operation iteratively,
and the stability of the iterative procedure can be determined by the spectral
radius of matrix A.

Parametric studies are performed for the span-by-span and step-by-step approaches
to analyse the stability of the proposed HIL strategy, including the influences of

the number of harmonics considered in the catenary response Ny, (related to the

higher frequency fia.), and the contact stiffness k.. We use a specific stitched

catenary model (defined in Section 5) and a one-degree-of-freedom pantograph

model, also considering the delay in our actual test rig. The pantograph model

has a mass of 6.6 kg, a stiffness of 7000 N/m and a damping of 10 Ns/m and

similar behaviour to the pantograph used in real HIL tests. The frequency of the

loop is At = 2 ms and the delay is D = 8.
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The spectral radius obtained by the span-by-span updating strategy is shown in
Fig. 5 (a) for different f,,q, and k.. Values bigger than 1, that indicate unstable
behaviour, are hidden in white. At every point on the map, the value of the relax-
ation coefficient p., which minimises the spectral radius, is chosen and plotted in
Fig. 5 (b). The same information is shown in Fig. 6 for the step-by-step updating
strategy. The solid red curve highlights the natural frequency of the pantograph
model, including contact stiffness. The span-by-span approach results can be seen
to be more stable, and the pantograph’s natural frequency is a barrier to stabil-
ity. Higher contact stiffness can therefore improve stability and it is required to
reduce the number of frequencies involved in the response of the catenary model
below the natural frequency related to the pantograph contact degree of freedom.
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Figure 5: Stability analysis of the span-by-span updating scheme with delay D = 8.
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Figure 6: Stability analysis of the step-by-step updating scheme with delay D = 8.
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Unlike the span-by-span method, the delay plays a fundamental role in stability
in the step-by-step strategy. Fig. 7 shows a similar representation but with a
contact stiffness k. = 6 - 10> N/m and including the delay as a parameter. The
figure shows a repetitive pattern of the delay, which makes possible including an
additional delay to achieve a stable zone.
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Figure 7: Stability analysis of the step-by-step updating scheme with contact stiffness k. =
6-10° N/m.

5 HIL tests results

This section is devoted to the practical implementation of the HIL test and a
discussion of the results. A stitched catenary [16] and a simple catenary [17]
are modelled by PFEM for the numerical model, since they are the two most
representative catenary types. A single span of each catenary model is depicted
in Fig. 8. The time step used in all the examples studied is At = 2 ms and the
span-by-span updating strategy was selected for stability reasons, as concluded
in Section 4. Each HIL test is performed for 120 s, the initial ramp being active
in the first 40 s, so that N, = 20000. The relaxation coefficients are p. = 0.1
and uqg = 1. The number of harmonics included in z and AL, Ny and Npg
respectively, are tuned to include the maximum frequency content that provides
stable tests. All the results of the experimental HIL tests shown were obtained
as the average of 10 spans in which the steady-state response was achieved.

Additional tests are performed to validate the accuracy of the results before the
HIL tests on the pantograph.
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a) Stitched catenary b) Simple catenary

L=65m L=55m

Figure 8: a) Stitched and b) simple catenary spans for the PFEM catenary models.

5.1 HIL test validation with an attached mass

To validate the results obtained from the HIL tests, we use the same strategy as
that proposed in [18], which consists of attaching an aluminium mass directly to
the load cells to take on the role of a hardware device replacing the pantograph.
A photo of the assembly described with the attached mass is provided in Fig 9.
The whole HIL test can be accurately simulated by computer for this scenario,
which avoids the uncertainties of using a mathematical pantograph model. The
results of these full HIL simulations can serve as a validation reference for the
whole HIL setup (measurement, communication, computation time, delay, etc.).
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Figure 9: Aluminium mass acting as hardware substructure for validation purposes.

The contact force between the mass and the virtual catenary obtained from the
HIL test and the simulated HIL are compared in Fig. 10. The forces represented
are the mean of the ten last £* when the steady state is achieved. In this example,
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the simulated speed is v = 250 km/h (Fig. 10a) and v = 300 km/h (Fig. 10b)
and the interaction takes place with the stitched catenary (see Fig. 8a). We used
Ny, = 25 for 250 km/h and Ny, = 21 for 300 km/h to consider frequencies up to
25 Hz in both cases. A delay of D = 8 time steps (16 ms) was used to anticipate
the reference position. The good agreement between both the experimental and
simulated contact forces indicates that the HIL test rig is properly calibrated to
provide accurate results.
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Figure 10: Comparison of contact forces obtained from experimental HIL tests (solid line)
and virtual HIL (dashed line) with the mass travelling at a) 250 km/h and b) 300 km/h.

In the previous example any dropper could slacken, so that only the linear re-
sponse of the catenary PFEM was active. To also validate the HIL test setup
with nonlinear catenary behaviour, the HIL test with the mass virtually moving
at 300 km/h was repeated, but now we added numerically 160 N to the force
measured by the load cells. The resulting force was that applied to the virtual
catenary. As can be seen in Fig. 11, not only does the contact force measured
agree with that obtained from the pure simulated HIL, but the slackened dropper
correction forces are also in very good agreement.
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Figure 11: Comparison of contact forces (top figure) and slackened dropper correction forces
(bottom figure) obtained from experimental HIL tests (solid line) and virtual HIL simulations
(dashed line) with the mass travelling at 300 km/h and a mean pushing force of 160 N.

5.2 HIL tests with the pantograph DSA-380

This section gives the results of the HIL tests with the real pantograph DSA-380
interacting with a virtual periodic catenary. As previously mentioned, we use
a PFEM of both the stitched and the simple catenaries shown in Fig. 8. The
experimental results are compared in this case with the contact force obtained
from a standard simulation of the pantograph-catenary dynamic interaction. We
use PACDIN software [19] to perform these simulations, which participated in the
benchmark exercise [17]. The catenary model simulated in PACDIN has repetitive
spans and is long enough to guarantee a stationary response in its central spans
to obtain comparable results. The contact force on 5 consecutive central spans is
selected to make the comparisons, while the pantograph is simulated by a linear
lumped mass model.
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5 HIL tests results

The pantograph-catenary contact force obtained from the HIL tests and PACDIN
are compared in Figs. 12 and 13 with the pantograph running at 250 and 300 km /h,
respectively, for both the simple and stitched catenaries. Although the HIL tests
performed include the number of harmonics shown in Table 1, the contact force
used in the comparisons is filtered to 25 Hz. This frequency exceeds the 20 Hz
that must be considered for validation and comparison purposes in this type of
simulations according to the standard [20]. The mean value of the contact force
given in Table 1 is related to the train speed required to meet the criterion given
in standard [21].

a) Stitched catenary model
T T

T
160 ——HIL test
i — _ _PACDIN

— 140

[N

120

100 : : :
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L [m]
b) Simple catenary model
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Z. 140

S
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100
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Figure 12: Comparison of contact forces obtained from experimental HIL tests (solid line)
and conventional simulation with PACDIN of the pantograph-catenary dynamic interaction
(dashed line) with the pantograph running at 250 km/h and interacting with a) the stitched
catenary model and b) the simple catenary model.

Figs. 12 and 13 show that the contact forces computed on PACDIN for 5 con-
secutive spans overlap each other, indicating that the steady-state regime was
achieved and this solution is suitable to be compared with the PFEM of the cate-
naries used in the HIL tests. The other important conclusion drawn from these
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results is the notable similarity between the HIL tests and the standard simula-
tion. As the HIL set-up was properly validated in Section 5.1, the discrepancies
that can be seen in Figs. 12 and 13 are mainly due to the inability of the pan-
tograph model used in PACDIN to accurately reproduce the dynamic behaviour
of the real pantograph device because non-linear features such as dry friction or
joint clearances are not accounted for in the model.

a) Stitched catenary model
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T
——HIL test
— — —PACDIN]| |
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b) Simple catenary model
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f [m]
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Figure 13: Comparison of contact forces obtained from experimental HIL tests (solid line)
and conventional simulation of the pantograph-catenary dynamic interaction (dashed line)
with the pantograph running at 300 km/h and interacting with a) the stitched catenary model
and b) the simple catenary model.

Table 1: Number of harmonics considered in HIL tests and mean value of contact force.

Stitched Simple
v [km/h] Ny Nua N, Npg Mean force [N]

250 31 107 25 90 130
300 27 90 22 40 157

Qo
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5 HIL tests results

5.3 HIL tests with optimised catenaries

HIL tests can also be applied to validate the dynamic behaviour of a given cate-
nary model designed or tested only by numerical simulations. TeGreg20180Optim
the authors proposed an optimisation of the catenary geometry to obtain the
minimum standard deviation of the contact force and therefore to improve the
current collection quality when the train travels at 300 km/h. However, the opti-
misation procedure was fully based on numerical simulations in which a lumped
mass model of the pantograph was used. To remove the limitations of this simple
pantograph model and validate the optimised catenary designs when interacting
with a real pantograph, we perform HIL tests in this study using the catenary
PFEMs derived from the optimised geometry obtained in [16]. The contact wire
height at dropper connection points was optimised in the optimised catenary 1
(OC1) and dropper spacing was optimised in optimised catenary 2 (OC2) while
keeping the symmetry of the span in both cases. These two optimised geometries
can be seen in Fig. 14, in which the vertical scale of OC1 was tuned for a better
appreciation of the contact wire height variation along the span.

a) Optimised catenary 1 b) Optimised catenary 2

L

Figure 14: PFEM models of optimised stitched catenaries at 300 km/h with a) optimal
contact wire height and b) optimal dropper spacing.

The pantograph-catenary contact force obtained in the HIL tests is plotted in
Fig. 15 for both optimised catenaries and is compared with the results of numerical
simulations performed with PACDIN, the software used to optimise the catenary
geometry [16]. The inputs shown in Table 1 for v = 300 km/h are also applied in
these HIL tests. The main conclusion of this section is drawn from analysing the
results given in Table 2, in which the main statistical parameters of the contact
force are compared in the nominal and optimised catenaries. The latter can be
seen to greatly reduce the maximum value and considerably increase the minimum
contact force. Furthermore, the contact force standard deviation, which is used
as a current collection quality indicator, is 11.24 % and 21.87 % lower for OC1
and OC2 than that obtained from the nominal catenary. These catenary designs
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therefore still behave better than the nominal design when interacting with a real
pantograph, which is a further step towards the final implementation of these
optimised overhead contact lines.

a) Optimised catenary 1
T
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— HIL test
200 |- ——PACDIN
180
=160
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0 10 20 30 40 50 60

L [m]
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Figure 15: Comparison of contact forces obtained from experimental HIL tests (solid line)
and conventional simulation of the pantograph-catenary dynamic interaction (dashed line)
with the pantograph running at 300 km/h and interacting with a) the optimised catenary
model 1 and b) the optimised catenary model 2.

Table 2: Contact force statistical parameters obtained from HIL tests with the nominal and
optimised stitched catenaries.

o(f) IN] max(f) [N]  min(f) [N]

Nominal 19.3 261.9 78.0
Optimised 1 17.13 208.2 110.0
Optimised 2 15.08 196.1 124.9
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6 Conclusions

The present work addressed the implementation of HIL pantograph tests with the
use of a periodic finite element catenary model proposed in [15], although it is
limited to the steady-state interaction regime, it incorporates non-linear dropper
slackening behaviour and has some important advantages in performing stable
HIL tests, such as the ease of tackling delays and limiting the frequency content
of the response. Regarding the stability of the iterative scheme used to carry out
the HIL tests, a span-by-span updating strategy was proposed and shown to be
independent of delay and thus the most robust in practice.

The accuracy of the HIL setup was first validated by a mass block interacting
with the virtual catenary with good agreement of the simulation and experimen-
tal results. The results of some HIL pantograph tests interacting with different
catenaries and travelling at different speeds were then compared with the results
of conventional dynamic simulations. The few discrepancies obtained in these
comparisons can be attributed to the inability of the linear pantograph model
used in the conventional simulations to reproduce the real dynamic pantograph
behaviour.

Briefly, the results of the HIL pantograph tests described here offer:

e Accurate spatial discretisation of the catenary by means of the Finite Ele-

ment Method.

¢ No boundary effects due to the periodicity condition applied.

e Ideal compensation for the delay.

e Incorporation of dropper slackening behaviour.
However, the proposed approach is limited to the steady-state regime and to
considering certain particularities of actual catenaries in HIL tests, factors such

as overlapping sections, local irregularities or curved paths are still a matter for
further investigation.
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Appendix A

Formulation for stability
analysis

This appendix calculates the terms of Eq. (13) to carry out a virtual HIL sim-
ulation in a linear iterative process. The virtual HIL simulation is performed
completely in a computational environment in which the pantograph is also sim-
ulated. As mentioned in Section 4, this is necessarily an intricate formulation as
all the steps carried out for the time integration of a whole span have to be con-
sidered in the matrices of Eq. (13). The formulation changes for the two different
approaches, the span-by-span and the step-by-step updating strategies.

1 Span-by-span state formulation

For the sake of simplicity and without any loss of generality, let us define the pan-
tograph model as a single degree of freedom model, whose vertical displacement
is defined as 32 (for a given span or block b and the time step 7 within this block)
and arranged in vector y?. The state variables chosen for a block b are:

Xb — [Zb72 bel y?\f—l y?v—l]T (Al)

which includes the z° values of the two previous spans and the displacement and
velocity of the pantograph model in the last time step /N of the span b — 1. The
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state variables for the next span can be computed according to Eq. (13) as:
Xt = AX" + B (A.2)

To build the matrices A and B it is necessary to assemble all the linear operations
that happen in the block b. The vertical position z°(72) or 22 of the contact point
which will be imposed throughout the block b can be computed from the state
vector with Eq. (3). The displacement y® of the pantograph model, excited by
z2 can be obtained using a discrete-time integration scheme. For example, if the

Newmark method is chosen, it can be expressed as:

A

. b . 1b
{y] _A[y} +Bz  +C 2 (A.3)
Y 1n Y Jlaa

If this iterative scheme is applied recursively from the first time step of the span
until a given step n, it results in:

. qb - Lab-1 oA

AN ANn—j A Ay —

[g}_:A [zﬂ +>°A (Bz§_1+0z§.) (A.4)
n N j=1

By rearranging Eq. (A.4), y® can be obtained from the linear relation with the
state vector:

B”:[gﬂxb (A.5)

= b
The measured contact force (f°(n) arranged in the vector f ) comes from the
penalty method equation and again, a linear relation can be established:

£ = k(y* — 2") = RX" (A.6)

As described in the span-by-span updating strategy (see Section 3.3), in point 5

of Fig. 4, the vector z° is fully defined when 7 = N, time step in which £F = fb.
Thus, according to Eq. (1):

72’ =z + ICCf'b (A.7)

Additionally, as the force has not been included in the state vector, the relaxation
coefficient can be applied here equivalently:

2’ = je(zo + Iccfb) + (1 — pe)zb ™t = SX° + piezg (A.8)
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2 Step-by-step state formulation

The state vector of the next span can be built as:
XU =0 2" gl oy = [ SXP - pemg QuInX QN X"]T (A9)
in which |y refers to the N row.

So far, the delay has not been considered but its unavoidable existence in a real
HIL test affects its stability. The formulation can then be modified to consider a
delay of D time steps in the imposed displacement z°(n), affecting Eq. (3):

D) = N1 (m)z=3(m) + No(m)z=2(m) if n<D (A.10)
Ni(n—D)2*"2(n—D) + Na(n—D)z*"Y(n—D) if n> D

being m = N+ —D and therefore, at least the last D values of z~3 should be

included in the state. As the delay in the HIL test is known, the compensation

can be applied by defining z° as:

2" =[2(N-D+1) 2(N=D+2) ... 2(N) z(1) 2(2) ... 2(N—-D)]" (A.11)

2 Step-by-step state formulation

The stability of the HIL iterative procedure depends on the updating strategy
followed. In this section, we describe the procedure to obtain the iterative linear
operation that applies between consecutive spans for the step-by-step approach.
In this case, the state variables vector includes the displacement imposed in the
last step of the previous block, the relaxed force of the previous block and the
velocity and displacement of the pantograph model in the last step of the previous
block, respectively. That is:

e zb—1 e _
X =1t f U i (A.12)

Now the displacement z° of the contact point imposed comes from Eq. (1), taken
by considering that the vector f* is made up of values of the contact force from
both the previous and the current block:

2’ =29+ TF + UT ' =20+ TF + VX (A.13)
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in which T = pJI..W and U = I.. — T with:

00 0
100
W=1110 (A.14)

Eq. (A.4) provides the pantograph model displacement y® produced by z’ and
this equation can be written as:

y? =Yz + ZX° (A.15)

Egs. (A.6), (A.13) and (A.15) form a linear system whose unknowns are fb, z°

and y®. Once solved, the state variables of the next span can be built as:
A (A.16)

=b =b —b—
in which "f" = pf +(1—pc)'f LA delay of D time steps and its compensation
can be added to the formulation as in the span-by-span updating strategy.
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