

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/191558

Tunali, O.; Tugrul Bayrak, A.; Sanchez-Anguix, V.; Aydogan, R. (2021). Multi-objective
evolutionary product bundling: a case study. ACM. 1622-1629.
https://doi.org/10.1145/3449726.3463219

https://doi.org/10.1145/3449726.3463219

ACM

Multi-Objective Evolutionary Product Bundling: A Case Study
Okan Tunalı

Ata Technology Platforms
İstanbul, Turkey
okant@atp.com.tr

Ahmet Tuğrul Bayrak
Ata Technology Platforms

İstanbul, Turkey
tugrulb@atp.com.tr

Víctor Sanchez-Anguix
Universitat Politècnica de València

València, Spain
vicsana1@upv.es

Reyhan Aydoğan
Özyeğin University, Istanbul, Turkey

Delft University of Technology, The Netherlands
reyhan.aydogan@ozyegin.edu.tr

ABSTRACT
Product bundling is a strategy conducted by marketing decision-
makers to combine items or services for targeted sales in today’s
competitive business environment. Targeted sales can be in various
forms, like increasing the likelihood of a purchase, promoting some
products among a specific customer segment, or improving user ex-
perience. In this study, we propose an evolutionary product bundle
generation strategy that is based on the NSGA-II algorithm. The
proposed approach is designed as a multi-objective optimization
procedure where the objectives are designed in terms of desired
bundle feature distributions. The designed genetic algorithm is flex-
ible and allows decision-makers to specify objectives such as price,
season, item similarity and association with bundle size constraints.
In the experiments, we show that the evolutionary approach enables
us to generate Pareto solutions compared to the initial population.

CCS CONCEPTS
•Theory of computation→ Evolutionary algorithms; •Com-
puting methodologies → Genetic algorithms; • Information
systems → Association rules; • Applied computing → Market-
ing;

KEYWORDS
Bundle generation, Evolutionary algorithms, Genetic algorithm,
Multi-objective optimization, Decision support systems

ACM Reference Format:
Okan Tunalı, Ahmet Tuğrul Bayrak, Víctor Sanchez-Anguix, and Reyhan
Aydoğan. 2021. Multi-Objective Evolutionary Product Bundling: A Case
Study. In 2021 Genetic and Evolutionary Computation Conference Companion
(GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3449726.3463219

1 INTRODUCTION
In today’s marketing environment, for the sectors with high com-
petition but low-profit margins, such as fast-food, retail and e-
commerce, it is crucial to provide customer-centric services. Provid-
ing that kind of services is a real challenge for marketing decision-
makers as it covers customer experience, relatedness, quality and
personalization. Targeted and smart marketing decisions increase
the chance to appeal to customers, increase sales and maintain
customer loyalty.

One strategy employed by marketers is product bundling [1].
This strategy consists of offering two or more products, frequently
at a discounted price. The objectives of product bundling are twofold.
Firstly, it increases product visibility by introducing customers to
new or unknown products. Hence, possibly increasing sales. Sec-
ondly, product bundlingmakes it possible to better cater to the tastes
and needs of customers [2]. For this purpose, product bundling is
one of the sector-independent strategies [1]. This strategy consists
of offering two or more products, aiming to increase the product
visibility by introducing new or untried products to customers. It
also enables better catering based on tastes and needs of customers
[2].

However, product bundling is not a trivial task for marketers.
It is time-consuming, as many aspects may be considered when
creating a bundle such as; pricing [3], product association [4], prod-
uct heterogeneity [5], personalization [6], basket size, and so forth.
Given the large catalog offered by many retailers and the vast
amount of products available in some sectors like fast-food, the
tasks of creating optimal product bundles make it cognitively diffi-
cult, or even not feasible, for human decision-makers. Considering
the total number of all possible combinations, the search space
is extremely large, and assessing how well the product bundles
are generated without realizing them (i.e., offering the customers
directly and observing whether or not they like it) is not straight-
forward. Computer-assisted bundle generation and optimization
techniques may prove useful for this task, as they can evaluate far
more options than human decision-makers in less time while also
considering several criteria. The results from these processes may
help marketers in their choices.

There are numerous studies related to product bundling in the
market. Bai et al. propose a bundle generation network that aims
at creating personal bundles considering both quality and diversity.
The network uses a typical encoder-decoder framework with a
feature-aware softmax to enhance the insufficient representation

https://doi.org/10.1145/3449726.3463219
https://doi.org/10.1145/3449726.3463219

of common softmax [7]. Beladev et al. introduce a bundle genera-
tion method that is based on collaborative filtering (CF) techniques,
similarly used for one of our criteria. The model maximizes the
expected revenue of generated bundles and deals with the associa-
tions between the products in a bundle [2]. Likewise, Agarwal and
Chatterjee use content-based similarity to create bundles [8]. Apart
from that, Birtolo et al. provide a generative system to find the
product bundles that best meet users’ needs and, while, the needs
of the vendor, such as maximizing net income and minimizing dead
stocks [9]. Besides, Pathak et al. try to understand the meaning
of what makes a good bundle. To achieve this, they use a dataset
from the Steam video game distribution platform and generate new
bundles and score them by Bayesian Personalized Ranking (BPR)
[10].

As a different approach, some studies use recency, frequency,
and monetary (RFM) values. Beheshtian-Ardakani et al. develop a
model where the product bundles are determined accordingly for
each market segment by clustering algorithms where the cluster-
ing is executed based on recency, frequency, and monetary (RFM)
values. Besides, the apriori algorithm is applied to detect the associ-
ation rules for product bundles [11]. Similarly, Hung et al. suggest
a method that understands the customer’s buying habits for the
product, chooses an appropriate and matching custom bundling
strategy for the customer, based on the RFM scores [12]. Yang and
Lai use a different data set as online shopping data and use apriori
to find product association [13].

In this article, we present an evolutionary bundle generation
approach applied to the fast-food domain. Since evolutionary al-
gorithms have proved to be successful at providing near-optimal
solutions in problems where finding the optimal solution by exact
methods is computationally expensive and not feasible, especially
on a large search space [14–16].

The proposed approach aims to create new product bundles that
are later evaluated and selected by marketers in their campaigns.
Therefore, our ultimate objective is to create a decision support
tool to help marketers discover novel product bundles satisfying
a flexible list of criteria. Particularly, we propose a pipeline where
the statistics are based on item basket structure, pricing, product
similarity, product association, and sales trend similarity. The sta-
tistics are used as features, and a genetic algorithm is applied to
generate Pareto optimal, new, and unique product bundles in the
fast-food domain.

As required by domain integration, our solution includes in-
tense data processing and feature extraction procedures both for
the targeted fitness function learning module and the individual
selection process of the genetic algorithm. Eventually, we offer an
evolutionary decision support system that provides flexible objec-
tive definition and selection capability. We also compare generated
bundles for different occasions using the NSGA-II algorithm.

The remainder of this article is organized as follows. First, we
give details about the data used in Section 2. Then we describe our
proposed product bundling approach, evaluation criteria, and the
details of the genetic algorithm in Section 3. Afterward, Section
4 explains the experiments we conducted to evaluate our genetic
algorithm approach for product bundling and analyze our find-
ings. Finally, Section 5 concludes our work with future research
directions.

2 DATA
In our study, we use partitions of a sales transactions database
of a worldwide known fast-food chain, which also is our internal
customer. The dataset consists of more than 12.6 million purchase
transactions by 3.9 million unique customer ids where the transac-
tions are composed of various combinations of 270 unique products.

Figure 1: Basket size density and cumulative distribution
function in the transactions of the dataset

As shown in Figure 1, in this domain, purchased items per trans-
action or basket sizes are in relatively small values. The cumulative
distribution function (CDF) of basket sizes in the figure demon-
strates that the customers prefer almost up to 6 items in their
transactions. This distribution is one of the main motivations of
this study since we see a great potential to increase sales by leading
customers to prefer bigger and tailored baskets. Notice that basket
size analysis is valuable to observe customer behavior and beneficial
for strategic decision making. As will be explained in the following
sections, basket sizes constitute decision boundaries searching for
Pareto solutions. For instance, in our domain, the likelihood of a
transaction having around ten items is relatively low. Since it is not
rational to expect a significant change in customer behavior in the
short run, a leading model to generate product bundles at this size
would be impractical. Still, it can be used as a simulation tool by
decision-makers, providing valuable insights.

3 PROPOSED BUNDLING APPROACH
In this section, we describe the feature extraction, fitness func-
tion learning procedure, and genetic algorithm integration that we
designed for this problem. Initially, we explain the chromosome
representation, population, and how to calculate fitness. Then we
describe an adaptation of crossover and mutation for the product
bundling approach.

3.1 Chromosome representation
In our problem, we have a set of available products denoted by
P={𝑝1, 𝑝2, .., 𝑝𝑚 } where 𝑚 corresponds the number of products
in our inventory. A bundle 𝐵𝑖 = {𝑝1, .., 𝑝𝑛} is a unbounded bag of

Figure 2: Two product bundles represented as bags. The first
bundle contains two items of product 1, and one item of
product 3, 5, and 10. The second bundle contains one item
of products 1, 2, 3 and 5

products 𝑝𝑖 ∈ P, and B is the set of all possible bundles in the
domain.

We define bundles as lists, the elements of which do not have to
be unique. The decision to represent bundles as lists, but not sets,
allows us to generate them with repeating items, which is required
to meet domain requirements. For example, a fast-food menu or
purchase transaction can include multiple and identical burgers.
Following that, even the bundles are defined in unbounded size, and
practically they are constrained by decision-makers and domain
knowledge such as the diminishing demand versus basket size in
Figure 1.

Figure 2 describes an example of how two product bundles are
represented as bags. On the one hand, the first bag contains two
items of product 1 and one item of product 3, 5, and 10. On the
other hand, the second bundle includes one item of products 1,
2, 3, and 5. This representation matches the domain’s needs (i.e.,
unbounded size, item repetition, irrelevant order) while offering a
fast and efficient in-memory representation.

In our case, chromosomes correspond to product bundles where
each item is a gene. To make it clear, we may list the representation
properties as follows:

(1) Gene represents a single product
(2) Choromosome represents a product bundle
(3) Population represents a set of product bundles
(4) Chromosomes may be in various sizes and include genes

with identical values

Following that, we explain the fitness of a chromosome followed
by genetic modification operators.

3.2 Fitness definition
Considering multi-objective optimization procedure, the outcome
of our evolutionary generation algorithm is expected to consist of
Pareto solutions. Then, marketing decision-makers will be able to
prioritize and select among solutions, i.e., item bundles, based on
their business focus. To aim that goal, we propose four kinds of
criteria to be utilized for guiding the generation of product bun-
dles. Particularly, the price criterion, the association criterion, the

content-based similarity criterion, the context-based similarity cri-
terion. The first criteria evaluate the structure of a bundle according
to its economical value, the second one is based on market basket
analysis, and the last two criteria evaluate the content and con-
text of a bundle attending to mechanisms inspired by well-known
recommendation techniques [17].

In the following sections, we elaborately explain the fitness func-
tion definitions. Note that each function can be added to the opti-
mization process multiple times. For example, the price criterion
may focus on sales transactions occured in the summer and pur-
chases of a target customer group. In that case, there would be
two fitness functions based on price criterion that lead the search
towards the target season’s pattern and customers’ purchasing
pattern.

3.2.1 Basket Statistics. As mentioned earlier, item baskets are
represented by related statistics to be used for fitness function
learning. In other words, we calculate basket features, i.e., statistics,
to be used in learning and evaluation of generated individuals
during evolution.

• Price Statistics: Item price composition is one of the strongest
characteristics indicators of an item basket. So, this feature is
simply about the price distribution of items in a basket, which
is represented as the price mean and standard deviation of
the basket. The vector [𝜇𝑏𝑝𝑟 , 𝜎𝑏𝑝𝑟] denotes a single basket’s
price statistics.
• Associative Statistics: Item association is a non-personalized
metric that establishes the basket relationship between two
pairs of products according to co-occurrence in past transac-
tions [18]. Therefore, item association is typically employed
to identify items that are frequently bought together, and
it aims to increase cross-selling. In our case, we use lift as
the item association metric, which has a range from zero
to infinity, and higher values mean stronger association. To
utilize this metric, we calculate the pair-wise lift value mean
and standard deviation of the basket. The vector [𝜇𝑏𝑎𝑠𝑜 , 𝜎𝑏𝑎𝑠𝑜]
denotes a single basket’s association statistics.
• Content Similarity Statistics: In our domain, we define con-
tent as the family or categorical membership of products,
such as burgers or beverages. As a distinctive measure, we
also calculate item similarities based on their name resem-
blance by the longest common string. Finally, we apply bag-
ging to these similarity models and produce an element-wise
cosine similarity matrix. It should be noted that family mem-
bership has a much higher weight for similarity, and the
name is used to push variations of the same products closer.
Similar to the association case, we calculate the pair-wise
similarity of items and calculate the mean and standard de-
viation of similarities. The vector [𝜇𝑏

𝑓 𝑠𝑖𝑚
, 𝜎𝑏

𝑓 𝑠𝑖𝑚
] denotes a

single basket’s content similarity statistics.
• Context Similarity Statistics: Purchase date or seasonality
for products is another critical descriptive feature as we
may have seasonal products (e.g., ice-creams, hot soups,
etc.). As a contextual information, we aggregate weekly
sales of the products such that for each product 𝑝𝑟𝑖 in the
database we characterized a 𝑘 dimensional vector 𝑝𝑖 =<

𝑠𝑤𝑖,1, 𝑠𝑤𝑖,2, . . . , 𝑠𝑤𝑖,𝑘 >, where 𝑠𝑤𝑖, 𝑗 indicates the total num-
ber of sales of product 𝑖 during the 𝑗-th week of the year.
During processing, apply differencing used in time series
analysis on a weekly basis which is used as feature vectors
for similarity estimation. As in content similarity, we cal-
culate the pair-wise context cosine similarity of items and
calculate the mean and standard deviation of similarities.
The vector [𝜇𝑏

𝑡𝑠𝑖𝑚
, 𝜎𝑏

𝑡𝑠𝑖𝑚
] denotes a single basket’s context

similarity statistics.

3.2.2 Fitness Function Learning. In this section, we briefly ex-
plain the usage of basket statistics to learn data distribution or
the patterns to be used as fitness functions that will play a role in
evolution’s selection step.

Reminding that our eventual target is to generate unique item
baskets that show characteristic patterns provided by marketing
decision-makers. For this purpose, we use a method to learn pur-
chasing behaviors in terms of item basket features. As a result, given
a set of item baskets, we first extract features or statistics in the pre-
vious section and use them for training multidimensional Gaussian
mixture models [19, 20]. This approach is quite flexible, expandable,
and sector-independent since the models learn from statistics but
not directly from items. Finally, depending on the case scenario, we
can pre-process and extract statistics from past transactions and
train Gaussians. The reason behind using Gaussians is that because
they can be used as complex clustering methods, learning multiple
data centers with different covariance of distribution. Equations 1,
2, 3, 4 represents that given the Gaussian mixture models, we learn
the fitness from target basket statistics to produce the likelihood of
any item basket to come from that distribution.

𝑓𝑝𝑟 (𝐵) = L(𝐵 |𝜇𝑝𝑟 , 𝜎𝑝𝑟) (1)

𝑓𝑎𝑠𝑜 (𝐵) = L(𝐵 |𝜇𝑎𝑠𝑜 , 𝜎𝑎𝑠𝑜) (2)

𝑓𝑓 𝑠𝑖𝑚 (𝐵) = L(𝐵 |𝜇𝑓 𝑠𝑖𝑚, 𝜎𝑓 𝑠𝑖𝑚) (3)

𝑓𝑡𝑠𝑖𝑚 (𝐵) = L(𝐵 |𝜇𝑡𝑠𝑖𝑚, 𝜎𝑡𝑠𝑖𝑚) (4)

3.3 Crossover
The crossover operator is designed to provide meaningful opera-
tions between bundles. In this case, the crossover operator mixes
genetic material between parents by performing swap operations
of the product. The crossover operator takes two parent bundles
𝑏𝑖 and 𝑏 𝑗 and generates combinations of item swappings. Each
swapping generates precisely two children, and a crossover is only
eligible if target items are different. This filter eliminates ineffective
operations.

Figure 3 shows an example crossover candidate generation with
eligibility filter. Notice that the first items, burgers, of parents, are
identical, so that swap operation is skipped. In the row of Children
1, we see the swap of a burger of the left parent with chips of the
right parent. Here, we see the example of a duplicate item case.
The rest of the candidate children are the eligible combinations of

Figure 3: Sample crossover operation outcomes

item swaps. Given those candidate children, the crossover operator
randomly picks a pair and passes them to the mutation operator.
Note that the crossover operator does not test whether the child
bundles already exist in the population. The reason for this is that
there may be no swapping possibilities to generate a new child. So,
this control is left to the mutation operator to ensure.

3.4 Mutation
In our setup, the mutation operator has a strong effect on the evo-
lution process. As noted in the previous section, children generated
by the crossover operator are passed for mutation. The mutation
operator is ensured to change and generate a unique bundle. When
a bundle is selected for mutation, the mutation operator randomly
selects one of three possible actions: add a product to the bundle,
remove an item from the bundle, and modify the bundle by swap-
ping an item from the bundle with any different product in the
database. In the following subsections, we explain how each of the
mutation operators is carried out in detail. Then, we provide the
pseudo-algorithm for the mutation operator.

3.4.1 Mutation type I: Add item to bundle. This mutation action
aims to increase the size of the bundle by including a new item.
When adding new items to the bundle, there are as many options as
items in the product database. Here, a new item does not necessarily
mean a non-existing item since we let item repetition. On the other
hand, unlike crossover, the item added must generate a unique
child to the population. This operation is not also eligible if the

Figure 4: Sample mutation operations

child’s item count exceeds the pre-defined maximum bundle size
constraint.

3.4.2 Mutation type II: Remove item from bundle. Similarly, this
mutation aims to decrease the size of the bundle. In this case, there
are as many removal options as items in the bundle, as one can
remove any item in the bundle. Similar to the previous case, item
removal is not eligible if a child is not unique in population or
its size is below the preset minimum basket size. This option lets
decision-makers force the model to generate unique item baskets
with a minimum size constraint.

3.4.3 Mutation type III: Modify item. The other type of mutation
aims to introduce new products in the bundle to be mutated by
swapping one of the products in the bundle with a different product
taken from the item pool. Considering that each item has an equal
chance of mutation in three different ways, it would be infeasible
to produce each possibility, especially for large-item pools. Hence,
given a bundle to be mutated, the mutation operation samples up
to𝑚𝑎𝑥𝑚𝑢𝑡 eligible mutations. Among those candidate children, the
operator makes a random choice. Like other mutation types, the
generated child must be a new member of the population.

3.5 Selection and Genetic Scheme
In this study, we integrate and adapt our fast-food domain business
problem to a well-studied evolutionary algorithm NSGA-II. As the
algorithm is known for its elitist and non-dominated sorting selec-
tion mechanism, we left its functionality unchanged. However, the
objective integration module requires further explanation.

The algorithm below demonstrates fitness estimation for any list
of bundles. In our setting, this method is used to prepare population
individuals for the selection process. The algorithm starts with an
iteration of a list of items in Line 1. In Line 2, the statistics generator
processes a target item bundle and the outcome vector assigned
to the bundle. Next, statistics of the target bundle are rescaled in
Line 3 by the data scaler, which is used to z-normalize training
statistics. This step is essential to get proper outcomes from trained
models. Then, we iterate each fitness function to calculate the
corresponding objective given by statistics. Line 9 can be evaluated
as the core process of this study. Here, we pass features of baskets
to the corresponding trained density estimators, Gaussian Mixtures,
and receive likelihood signals in differentmagnitudes and directions.
A strong positive signal implies a high likelihood that the target
bundle features resemble ones in the train set of the given estimator.
In our case, we assume higher likelihood means greater fitness. As
a result, we aim to find Pareto bundles by defining dominance as
having a greater likelihood for the given objective.

Data: 𝐵 : List of item bundles (individuals), 𝐷𝑆 : Data scaler
calculated from training data, 𝐹 : Fitness functions to
estimate bundle likelihood, 𝐵𝑆𝐺 : Bundle statistics
generator function, 𝑏.𝑠𝑡𝑎𝑡𝑠 : vector of statistics of
bundle 𝑏, 𝑏.𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 : Likelihood value for bundle 𝑏
given its statistics to Gaussians

Result: 𝐵 : Individuals having calculated objectives
1 foreach 𝑏 ∈ 𝐵 do
2 𝑏.𝑠𝑡𝑎𝑡𝑠 ← 𝐵𝑆𝐺 (𝑏);
3 𝑏.𝑠𝑐𝑎𝑙𝑒𝑑_𝑠𝑡𝑎𝑡𝑠 ← 𝐷𝑆 (𝑏.𝑠𝑡𝑎𝑡𝑠);
55 foreach 𝐹𝑖 ∈ 𝐹 do
77 𝑓 ← 𝐹𝑖 ;
99 𝑏.𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠𝑖 ← 𝑓 (𝑏.𝑠𝑐𝑎𝑙𝑒𝑑_𝑠𝑡𝑎𝑡𝑠𝑖);

10 end
11 end

Algorithm 1: Bundle objective calculation procedure

In the Algorithm 2, child generation steps are demonstrated.
As you might see, we follow a well-known flow. Initially, in Line
1 we initialize an empty children set to be filled with generated
children. Line 3 and Line 6 shows parent selection by tournament
with NSGA-II algorithm’s default settings, ensuring parents are
not the same individuals. In Line 8, we apply crossover to selected
parents as elaborately explained in the Section 3.3. Next, we pass
the crossover product children to mutation operator in Line 10.
Note that, as explained in Section 3.4, mutation operation generates
a unique child, and to do so, the operator gets the population and
the existing children set that includes generated individuals up to
that moment. Finally, in Line 14 we pass generated children and
the fitness functions to calculate individual objectives as shown in
Algorithm 1.

4 EXPERIMENTS
Before explaining the experimental setup and results, we exemplify
the following case scenario and evaluate the results. We want to
generate product bundles that are more likely to be sold in summer
and purchased by customers who order during lunch breaks. Our

Data: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 : A set of item bundles, 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡 :
NSGA-II’s selection by tournament, 𝐹 : Fitness
functions to estimate bundle likelihood

Result: 𝐵 : Individuals having calculated objectives
1 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← ∅;
2 while 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑠𝑖𝑧𝑒 < 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.𝑠𝑖𝑧𝑒 do
3 𝑝𝑎𝑟𝑒𝑛𝑡1← 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
4 𝑝𝑎𝑟𝑒𝑛𝑡2← 𝑝𝑎𝑟𝑒𝑛𝑡1;
5 while 𝑝𝑎𝑟𝑒𝑛𝑡1 = 𝑝𝑎𝑟𝑒𝑛𝑡2 do
6 𝑝𝑎𝑟𝑒𝑛𝑡2← 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
7 end
8 𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑝𝑎𝑟𝑒𝑛𝑡1, 𝑝𝑎𝑟𝑒𝑛𝑡2);
9 foreach 𝑐ℎ𝑖𝑙𝑑 ∈ (𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2) do
10 𝑐ℎ𝑖𝑙𝑑 ←𝑚𝑢𝑡𝑎𝑡𝑒 (𝑐ℎ𝑖𝑙𝑑, (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∪ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛));
11 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ 𝑐ℎ𝑖𝑙𝑑);
12 end
13 end
14 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝐹);

Algorithm 2: Child generation scheme

first step is to query the database to get transactions occurred in
summer and transactions between 12:00 and 14:00. As it might be
noticed, we have two subsets of the dataset that might contain
common transactions. Next, for each subset and its transactions,
we calculate basket statistics as explained in the previous sections.
Please note that the decision-maker may choose to leave any of the
statistics out, such that the only statistics of interest for lunch break
group may be the basket price distribution. Following that, for each
of the selected statistics, we train a Gaussian mixture. In this case,
there would be four Gaussians to represent summer transactions
𝑓𝑝𝑟 (𝐵𝑠), 𝑓𝑎𝑠𝑜 (𝐵𝑠), 𝑓𝑓 𝑠𝑖𝑚 (𝐵𝑠), 𝑓𝑡𝑠𝑖𝑚 (𝐵𝑠) where 𝐵𝑠 represents bas-
kets in summer dataset. In addition, lunch break group would have
𝑓𝑝𝑟 (𝐵𝑙𝑏) where 𝐵𝑙𝑏 represents basket in lunch break dataset. Even-
tually, for this scenario, we train five independent fitness functions
that output a likelihood value for any given itemset created during
the evolution.

4.1 Experimental setup
Algorithm 3 shows our experimental setup. In this setup,𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

is the list of (64, 128) individuals limit for the population.𝑁𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

are the number of samples to get from queried transactions which,
in our case, it is the list of (1 million, 2 million) samples. 𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

is the list of instance numbers to repeat, and we picked in size of
10. Then we query the dataset based on the target quarter of the
year. In Line 6 we get a sample from the database query result
that have target transactions as explained in the previous section,
and then, they are used to train Gaussian Mixtures in Line 7. Next,
we prepare the evolution model by passing sampled transactions,
fitness models, and the number of individuals constraint for the
population in Line 8. Then, to track the progress, we save the initial
population in Line 9. Finally, we set 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 to repeat this setup
ten times and log the results for each run.

Data: 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 : Number of individuals in population,
𝑁𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 : Number of samples from queried
transaction subset, 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 : 3 monthly quarters of
the year.

1 foreach 𝑛𝑖𝑛𝑑𝑣 ∈ 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 do
2 foreach 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 ∈ 𝑁𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 do
3 foreach 𝑖𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∈ 𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 do
4 foreach 𝑖𝑞 ∈ 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑠 do
5 𝑡𝑟 ← 𝑞𝑢𝑒𝑟𝑦_𝑑𝑏 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑖𝑞);
6 𝑡𝑟𝑠 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑡𝑟, 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒);
7 𝐹 ← 𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙𝑠 (𝑡𝑟𝑠);
8 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 ←𝑚𝑜𝑑𝑒𝑙 (𝑡𝑟𝑠 , 𝐹 , 𝑛𝑖𝑛𝑑𝑣);
9 𝑃𝑖𝑛𝑖𝑡 ← 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 .𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;

10 foreach 𝑟 ∈ 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 do
11 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 .𝑟𝑢𝑛();
12 𝑙𝑜𝑔();
13 end
14 end
15 end
16 end
17 end

Algorithm 3: Experimental setup

4.2 Evaluation
To estimate the success of multi-objective optimization, we use
Lebesgue measure or S-metric differences compared to the initial
population. According to this metric, each individual fitness vector
is treated as a d-dimensional point to create a hyperspace. Here,
S-metric produces a smaller value if the hyperspace is closer to the
given reference point.

In order to keep the order of the objective values the same and
scale them to a measurable range, we applied the sigmoid activa-
tion function known from machine learning applications. Sigmoid
function, 𝜎 (𝑥) = 1

1+𝑒−𝑥 maps the data between (0,1) and keeps the
ordering same which makes it a good fit. Given that, we pickled
our reference point as the upper boundary of the sigmoid, which is
1 for each dimension.

In Table 1 and Table 2 we see results for S-metric differences.
The first table shows a smaller population and fewer generations,
and the second table has two folds population size and a larger
number of generations.

Both of the tables show us that our solution always improves
population in a way that, eventually, we end up with unique item
bundles close to the Pareto frontier compared to the initial popula-
tion, as shown by the consistent negative mean value for S-metric
differences.

Since we have four objectives in our experiments, hyperspace
visualization requires a dimension reduction procedure. For this
purpose, we used the elaborate study on visualization of Pareto
front approximations [21], which formulates 4D to 3D dimension
mapping properly. The mapping in 5 shows that the first two di-
mensions are calculated into a single value given the angle 𝜑 . In
our case, we selected 𝜑 as 45◦ to stay aligned with that study.

𝑆𝑒𝑣𝑜𝑙𝑣𝑒 – 𝑆𝑖𝑛𝑖𝑡

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 (million) 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 count 𝜇 𝜎

1 1 100 -0.254 0.102
1 2 100 -0.169 0.072
1 3 100 -0.197 0.07
1 4 100 -0.212 0.069
2 1 100 -0.205 0.085
2 2 100 -0.179 0.064
2 3 100 -0.226 0.084
2 4 100 -0.207 0.08

Table 1: S-Metric difference statistics for the number of in-
dividuals is 64 and number of generations is 100

𝑆𝑒𝑣𝑜𝑙𝑣𝑒 – 𝑆𝑖𝑛𝑖𝑡

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 (million) 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 count 𝜇 𝜎

1 1 100 -0.294 0.066
1 2 100 -0.276 0.063
1 3 100 -0.289 0.06
1 4 100 -0.317 0.053
2 1 100 -0.327 0.101
2 2 100 -0.247 0.05
2 3 100 -0.286 0.077
2 4 100 -0.297 0.063

Table 2: S-Metric difference statistics for number of individ-
uals is 128 and number of generations is 200

(𝑓1, 𝑓2, 𝑓3, 𝑓4) → (𝑓1 cos𝜑 + 𝑓2 sin𝜑, 𝑓3, 𝑓4) (5)

Figure 5 and 6 show the 4D to 3D approximated hyperspaces.
The experiment numbers stand for quarters, i.e., experiment 1 is a
sample run that uses data from the first quarter of the year, having
𝑁𝑠𝑎𝑚𝑝𝑙𝑒 value of 2 million. Note that each sub-figure represents
a single evolution, and as shown in the legend, initial population
objective value distribution is represented by orange-colored points
and evolved population in blue. Please notice that figures do not
only show the points on the Pareto frontier but all individuals of
the population. Considering the reference point, i.e. red star, in
each sub-figure, evolved populations form closer hyperspaces and
Pareto surfaces as shown by S-metric results in Table 1 and 2.

5 CONCLUSION
In today’s marketing environment, competition is fierce. This is
especially true in markets having a huge variety of products with a
wide range of prices for every budget. To stand out of that compe-
tition, smart product bundling is an assertive candidate strategy. In
this study, we propose an evolutionary product bundle generation
approach for that situation. We define and adapt our business prob-
lem as a multi-objective optimization procedure; then integrate it
into the NSGA-II algorithm. Eventually, we build up an evolution-
ary engine that generates on-demand product bundles. The engine
is capable of operating with any transactional datasets with item

Figure 5: Population objective hyperspace approximations
from experiments in Table 1

Figure 6: Population objective hyperspace approximations
from experiments in Table 2

definitions and time information. Yet, we selected fast-food domain
as a case study and showed that our engine can generate unique,
targeted, and Pareto efficient item bundles despite the huge solu-
tion space. So, with our application, decision-makers can generate
and also simulate the outcomes based on business requirements
or for any kind of the desired scenario. Finally, we showed that

evolution ends up with individuals with significantly higher fitness
values. In future work, we aim to extend the engine in a way that
lets marketers generate bundles considering the trade-off between
personalization, novelty, and utility by applying selective elitism to
crossover and mutation operators.

REFERENCES
[1] Vithala R Rao, Gary J Russell, Hemant Bhargava, Alan Cooke, Tim Derdenger,

Hwang Kim, Nanda Kumar, Irwin Levin, Yu Ma, Nitin Mehta, et al. Emerging
trends in product bundling: Investigating consumer choice and firm behavior.
Customer Needs and Solutions, 5(1):107–120, 2018.

[2] Moran Beladev, Lior Rokach, and Bracha Shapira. Recommender systems for
product bundling. Knowledge-Based Systems, 111:193 – 206, 2016. ISSN 0950-7051.
doi: https://doi.org/10.1016/j.knosys.2016.08.013.

[3] Xiaogang Lin, Yong-Wu Zhou, Wei Xie, Yuanguang Zhong, and Bin Cao. Pricing
and product-bundling strategies for e-commerce platforms with competition.
European Journal of Operational Research, 283(3):1026–1039, 2020.

[4] Anthony Karageorgos and Elli Rapti. Dynamic generation of personalized product
bundles in enterprise networks. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems", pages 208–217. Springer, 2013.

[5] Mehdi Sheikhzadeh and Ehsan Elahi. Product bundling: Impacts of product het-
erogeneity and risk considerations. International Journal of Production Economics,
144(1):209–222, 2013.

[6] Tzyy-Ching Yang and Hsiangchu Lai. Comparison of product bundling strate-
gies on different online shopping behaviors. Electronic Commerce Research and
Applications, 5(4):295–304, 2006.

[7] Jinze Bai, Chang Zhou, Junshuai Song, Xiaoru Qu, Weiting An, Zhao Li, and
Jun Gao. Personalized bundle list recommendation. In The World Wide Web
Conference, WWW ’19, page 60–71, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313568.

[8] Agarwal Manoj K. and Chatterjee Subimal. Complexity, uniqueness, and simi-
larity in between-bundle choice. Journal of Product & Brand Management, 12(6):
358–376, Jan 2003. doi: 10.1108/10610420310498795.

[9] C. Birtolo, D. De Chiara, S. Losito, P. Ritrovato, and M. Veniero. Searching optimal
product bundles by means of ga-based engine and market basket analysis. In
2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pages
448–453, 2013. doi: 10.1109/IFSA-NAFIPS.2013.6608442.

[10] Apurva Pathak, Kshitiz Gupta, and Julian McAuley. Generating and personalizing
bundle recommendations on <i>steam</i>. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’17, page 1073–1076, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450350228. doi: 10.1145/3077136.3080724.

[11] Arash Beheshtian-Ardakani, M. Fathian, and Mohammad Reza Gholamian. A
novel model for product bundling and direct marketing in e-commerce based on
market segmentation. Decision Science Letters, 7:39–54, 2018.

[12] Shao-Shin Hung, Li-Hua Li, Rong-Wang Hsu, and Pei-Jung Tsai. The personalized
recommendation with bundling strategy based on product consuming period.
CIS’09, page 461–469, Stevens Point, Wisconsin, USA, 2009. World Scientific and
Engineering Academy and Society (WSEAS). ISBN 9789604740710.

[13] Tzyy-Ching Yang and Hsiangchu Lai. Comparison of product bundling strate-
gies on different online shopping behaviors. Electronic Commerce Research and
Applications, 5(4):295–304, 2006. ISSN 1567-4223. doi: https://doi.org/10.1016/j.
elerap.2006.04.006.

[14] Rafael de Paula Garcia, Beatriz Souza Leite Pires de Lima, Afonso Celso de Cas-
tro Lemonge, and Breno Pinheiro Jacob. A rank-based constraint handling tech-
nique for engineering design optimization problems solved by genetic algorithms.
Computers & Structures, 187:77–87, 2017.

[15] Mitsuo Gen, Wenqiang Zhang, Lin Lin, and YoungSu Yun. Recent advances in
hybrid evolutionary algorithms for multiobjective manufacturing scheduling.
Computers & Industrial Engineering, 112:616–633, 2017.

[16] Victor Sanchez-Anguix, Rithin Chalumuri, Reyhan Aydoğan, and Vicente Julian.
A near pareto optimal approach to student–supervisor allocation with two sided
preferences and workload balance. Applied Soft Computing, 76:1–15, 2019.

[17] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35. Springer,
2011.

[18] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining asso-
ciation rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215,
pages 487–499. Citeseer, 1994.

[19] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
[20] Hagai Attias. A variational bayesian framework for graphical models. Advances

in neural information processing systems, 12(1-2):209–215, 2000.
[21] Tea Tušar and Bogdan Filipič. Visualizing 4d approximation sets of multiobjective

optimizers with prosections. GECCO ’11, page 737–744, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450305570. doi: 10.1145/
2001576.2001677. URL https://doi.org/10.1145/2001576.2001677.

https://doi.org/10.1145/2001576.2001677

