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Abstract A number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t) +
Atβ y(t) = 0. In this paper, we improve the results recently established for a randomized reformulation of this model that includes
a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of
the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approxima-
tions from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of
approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density
under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings.

1 Introduction

The homogeneous linear second-order differential equation

y′′(t) + f (t)y(t) = 0, (1.1)

plays a key role in a number of problems mainly appearing in Physics and Engineering. It describes simple harmonic motion or
free undamped motion of a spring of mass m and constant k > 0. In this case, one obtains the simplest formulation of (1.1), where
f (t) is the spring constant, f (t) = � 2 := k

m (� is called the circular frequency of the spring) [1]. On the other hand, there are
real-world situations where it is more realistic to assume that the spring constant changes over time. For example, if the spring/mass
system is in motion for a long period, the spring will weaken due to wear and tear; if the temperature of the environment is rapidly
decreasing, this will affect the spring material. In these two scenarios, that fall within the so called aging spring theory, possible
choices for f (t) are k

m e−at , α > 0 and k
m t , respectively [2, p. 197]. This latter choice, in a more general form, f (t) = At , leads to

the so-called Airy’s differential equation,

y′′(t) + Aty(t) = 0, (1.2)

that is encountered in the study of radiowave propagation (diffraction of radio waves around the surface of the Earth) and in physical
optics (the diffraction of the light) [3, p. 89]. The differential equation (1.1) also appears in theory of elasticity to model the problem
of determining when a uniform vertical column will buckle under its own weight. In this context, the independent variable t is
better denoted by x representing the deflection with respect to the stable (vertical) position and f (x) = gρ

E I x , where g denotes the
gravitational acceleration, E is the Young’s modulus of the material of the column, I is its cross-sectional moment of inertia, and ρ

is the linear density of the column [4]. Many other applications of model (1.2) can be found in [5].
On the one hand, over the last decades classical ordinary differential equations, as (1.1), have been reformulated in terms of

generalized or fractional derivatives aimed at better modelling complex phenomena such as acoustic attenuations in Acoustics
[6], anomalous diffusion processes in complex media in Fluids [7] or memory effects in materials (viscoelasticity, aging, etc.) in
Structural Mechanics [8]. On the other hand, when ordinary or fractional differential equations are applied to real-world problems,
one requires setting their parameters (initial/boundary conditions, forcing term and/or coefficients) using the available information,
which is usually collected from measurements and metadata that often contain epistemic and/or aleatoric uncertainties coming from
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measurement errors and/or lack of knowledge, respectively. This simple approach leads to consider fractional differential equations
with uncertainties. One can delineate two main different forms of this type of equations depending on the way that uncertainty
is considered in the equation, namely, Stochastic Fractional Differential Equations (SFDEs) and Random Fractional Differential
Equations (RFDEs). In the former case, uncertainties are driven by one (o more) prefixed types of stochastic processes such as
the fractional Brownian motion [9, Ch. 6] and/or the fractional Lèvy process [10]. In the framework of RFDEs, uncertainties are
directly assigned to every parameter of the equation via specific probability distributions that must be previously chosen so that they
properly represent the physical meaning of the corresponding model parameter and the solution captures the uncertainties in the
model response [11].

In this paper, we are concerned in studying a generalization of (1.2), that takes into account the previous considerations, namely,
a fractional derivative and a full randomization of model parameters. Additionally, a power-law generalized coefficient is also
included. Specifically, in this contribution we deal with the following Random Fractional Initial Value Problem (RFIVP){

(C Dα
0 Y )(t) − B tβY (t) = 0, t > 0, n = −�−α�, n − 1 ≤ α ≤ n,

Y ( j)(0) = A j , j = 0, . . . , n − 1,
(1.3)

where �·� stands for the floor function, (C Dα
0 Y )(t) denotes the Caputo derivative of order α > 0, interpreted in the random

mean square sense [12], of the stochastic process Y (t). The initial conditions A0, A1, . . . , An−1 and the coefficient B are assumed
random variables belonging to the space L2(�), where (�,F�,P) is a complete probability space, and whose elements are real
random variables with finite absolute second-order moment, i.e., L2(�) = {X : � −→ R such that E[|X |2]) < ∞} (here E[·]
denotes the expectation operator). It can be shown that (L2(�)|,< ·, · >L2(�)) is a Hilbert space being < X, Y >L2(�)= E[|XY |],
X, Y ∈ L2(�) (so ||X ||2 = (E[|X |2])1/2 < ∞) [13, Ch. 4].

To study the RFIVP (1.3), from a probabilistic standpoint, entails computing its solution but also determining the main statistical
information of the solution, Y (t), which is a stochastic process. It includes the computation of the first moments of Y (t), such as
the mean and the variance functions, but also its fidis (finite dimensional distributions), particularly the so-called first probability
density function (1-PDF) [13].

Under the following hypotheses:

H1: A0, A1, . . . , An−1 and B are (mutually) independent random variables,
H2: There exist positive constants η, H and p, such that

||Bm ||2 ≤ ηHm−1((m − 1)!)p, ∀m ≥ m0 ≥ 1, integers,

some of the authors have recently studied the RFIVP (1.3) [14]. Specifically, in that article one constructs the solution stochastic
process by means of the following finite sum of n random generalized power series

Y (t) =
n−1∑
j=0

Y j (t), (1.4)

where

Y j (t) =
∞∑

m=0

Xm, j t
γm+ j , Xm, j = Bm A j gm, j , gm, j =

m∏
k=1

	(kγ + j + 1 − α)

	(kγ + j + 1)
, γ = α + β. (1.5)

In [14], besides constructing the foregoing solution and studying its convergence, in the mean square sense, approximations for
the mean and for the variance functions of the solution were also obtained by truncating Y j (t) at certain order, say M . Then, taking
advantage of this punctual statistical information, the Principle of Maximum Entropy (PME) [15] was applied to construct reliable
approximations of the 1-PDF of the solution. The accuracy in the approximations of the 1-PDF, via this approach, heavily depends
on controlling two main sources of errors, first the ones associated with the approximations of the mean and the variance, and
secondly, the associated with the application of the PME with only these two (approximate) statistical moments. The aforementioned
errors involved in the calculation of the mean and the variance could, theoretically, be reduced at expense of increasing the order
of truncation, M , of the random generalized power series solution (1.4)–(1.5) and/or by constructing approximations for higher
statistical moments. However, both strategies might be unaffordable in many cases. Motivated by these drawbacks, in this paper we
propose a direct method to approximate the 1-PDF of the solution stochastic process of the RFIVP (1.3), that avoids approximating
the first statistical moments of the solution, and the subsequent application of the PME.

Our subsequent study will be based on the representation of the solution given in (1.4)–(1.5), hence the foregoing assumptions
H1 and H2 must be fulfilled. Specifically, hereinafter, we will assume the following assumptions:

A1: A0, A1, . . . , An−1 and B are (mutually) independent random variables whose respective domains will be denoted by D(A j ),
j = 0, 1, . . . , n − 1 and D(B).
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A2: B is a bounded random variable that takes values away from the origin, i.e., there exist positive lower and upper bounds, bl
and bu , such that

0 < bl ≤ |B(ω)| ≤ bu < ∞, ∀ω ∈ �.

Now, we give two key remarks. The first one justifies that assumption A2 guarantees that hypothesis H2 fulfils, while in the second
one shows that the random variables A j , j = 0, 1, . . . , n − 1, defining the initial conditions, have finite expectation. This latter fact
will be used later.

Remark 1 In [16, Subsect. 3.3] one proves that the boundedness of random variable B is equivalent to the following condition about
the exponential growth of its absolute moments

∃ ρ,H > 0 : ||Bm ||2 ≤ ρHm, ∀m ≥ m0 ≥ 1, integers,

Notice that, this condition can be obtained from the inequality stated in assumption A2 just taking p = 0 and relabeling the constant η
as ρ = ηH. Furthermore, as it is proved in [14], the random generalized power series solution (1.4)–(1.5) is mean square convergent
on the whole real line. Almost surely convergence on the whole real line is also guaranteed since, by assumption A2, B is a bounded
random variable.

Remark 2 As A0, A1, . . . , An−1 ∈ L2(�), then E[A2
j ] < ∞, and by the Schwarz’s inequality, E[|A j |]) < (E[A2

j ])1/2 < ∞. This
fact will used later.

The key tool to conduct our subsequent analysis is the Probabilistic Transformation Method (PTM) (also called the Random
Variable Transformation technique). This result permits determining the PDF, say fY(y), of a random vector, Y, that results from
mapping another random vector, Z, whose PDF, fZ(z), is known.

Theorem 1 (PTM) [13, p. 25]. Let us consider Z = (Z1, . . . , Zk) and Y = (Y1, . . . , Yk) two k-dimensional absolutely con-
tinuous random vectors defined on a common complete probability space (�,F�,P). Let r : Rk → R

k be a one-to-one deter-
ministic transformation of Z into Y, i.e., Y = r(Z). Assume that r is continuous in Z and has continuous partial derivatives
with respect to each Zi , 1 ≤ i ≤ k. Then, if fZ(z) denotes the joint probability density function of random vector Z, and
s = r−1 = (s1(y1, . . . , yk), . . . , sk(y1, . . . , yk)) represents the inverse mapping of r = (r1(z1, . . . , zk), . . . , rk(z1, . . . , zk)), the
joint probability density function of random vector Y is given by

fY(y) = fZ (s(y)) |J | , (1.6)

where |J |, which is assumed to be different from zero, is the absolute value of the Jacobian defined by the following determinant

J = det

(
∂s
∂y

)
= det

⎛
⎜⎜⎝

∂s1(y1,...,yk )
∂y1

· · · ∂sk (y1,...,yk )
∂y1

...
. . .

...
∂s1(y1,...,yk )

∂yk
· · · ∂sk (y1,...,yk )

∂yk

⎞
⎟⎟⎠ . (1.7)

In the setting of differential equations with uncertainties, the PTM method has been successfully applied to determine, exact or
approximately, the 1-PDF of the solution to some classes of ordinary and partial differential equations [17–19] and [20], respectively,
and differential equations with delay [21]. To the best of our knowledge, contributions with regard to fractional differential equations,
are still scarce. In [22], one determines the 1-PDF of the solution for the simplest autonomous linear Caputo fractional differential
equation with 0 < α ≤ 1 by taking advantage of the PTM technique.

2 Computing the 1-PDF of the solution stochastic process by applying PTM

To compute the 1-PDF of the solution of the RFIVP (1.4), by means of the application of Theorem 1, we will first consider the
truncation of (1.4),

Y M (t) =
n−1∑
j=0

Y M
j (t), (2.1)

where

Y M
j (t) =

M∑
m=0

Xm, j t
γm+ j = A j

M∑
m=0

Bmgm, j t
γm+ j . (2.2)

For t fixed, expression (2.1)–(2.2) can be interpreted as a continuous mapping of the random variables, A0, A1, . . . An−1 and B,
whose joint PDF, can be expressed as f A0,A1,...,An−1,B = f A0 f A1 · · · f An−1 fB , by assumption A1. Then, in order to apply Theorem 1
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with k = n + 1, we identify Z = (Z1, Z2, . . . , Zn, Zn+1) = (A0, A1, . . . , An−1, B), and define Y via the following transformation
r : Rn+1 −→ R

n+1 of Z whose components are

y1 = r1(z1, z2, . . . , zn, zn+1) = z1

M∑
m=0

zmn+1gm,0t
γm +

n−1∑
j=1

M∑
m=0

z j+1z
m
n+1gm, j t

γm+ j ,

y2 = r2(z1, z2, . . . , zn, zn+1) = z2,
...

...
...

...
...

yn = rn(z1, z2, . . . , zn, zn+1) = zn,
yn+1 = rn+1(z1, z2, . . . , zn, zn+1) = zn+1.

(2.3)

The inverse mapping of r, s = r−1, is given by

z1 = s1(y1, y2, y3, . . . , yn, yn+1) = y1 − ∑n−1
j=1

∑M
m=0 y j+1ymn+1gm, j tγm+ j∑M

m=0 y
m
n+1gm,0tγm

,

z2 = s2(y1, y2, y3, . . . , yn, yn+1) = y2,
...

...
...

...
...

zn = sn(y1, y2, y3, . . . , yn, yn+1) = yn,
zn+1 = sn+1(y1, y2, y3, . . . , yn, yn+1) = yn+1,

(2.4)

being its Jacobian

J =
∣∣∣∣ ∂s1

∂y1
(y1, y2, y3, . . . yn, yn+1)

∣∣∣∣ = 1∣∣∣∑M
m=0 y

m
n+1gm,0tγm

∣∣∣ �= 0.

The expression in the denominator of the Jacobian depends on the random variable B, which is absolutely continuous, so the
denominator is distinct from zero with probability one (w.p. 1), hence it is well-defined.

Applying Theorem 1, one gets

fY1,Y2,...,Yn ,Yn+1(y1, y2, . . . , yn, yn+1)

= fZ1

(
y1 − ∑n−1

j=1
∑M

m=0 y j+1ymn+1gm, j tγm+ j∑M
m=0 y

m
n+1gm,0tγm

)
fZ2(y2) · · · fZn (yn) fZn+1(yn+1)

1∣∣∣∑M
m=0 y

m
n+1gm,0tγm

∣∣∣ .
(2.5)

For t fixed, Y1 = Y M (t), and marginalizing with respect to Y2 = A1, . . . , Yn = An−1, Yn+1 = B, the 1-PDF of the truncated
solution (2.1)–(2.2) is given by

fY M (t)(y) =
∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

f A0

(
y − ∑n−1

j=1
∑M

m=0 a jbmgm, j tγm+ j∑M
m=0 b

mgm,0tγm

)

· f A1(a1) · · · f An−1(an−1) fB(b)
1∣∣∣∑M

m=0 b
mgm,0tγm

∣∣∣ da1 · · · dan−1db.
(2.6)

So far, the 1-PDF, fY M (t)(y), of the truncated solution, Y M (t), has been obtained via a semi-explicit expression (in terms of a
multidimensional integral). Now, we will impose mild conditions on the data so that fY M (t)(y) converges to fY (t)(y), where

fY (t)(y) =
∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

f A0

(
y − ∑n−1

j=1
∑∞

m=0 a jbmgm, j tγm+ j∑∞
m=0 b

mgm,0tγm

)

· f A1(a1) · · · f An−1(an−1) fB(b)
1∣∣∑∞

m=0 b
mgm,0tγm

∣∣ da1 · · · dan−1db.

(2.7)

For the sake of clarity in the presentation of the forthcoming development, we introduce the following notation

sMj (t) =
M∑

m=0

bmgm, j t
γm+ j , s j (t) =

∞∑
m=0

bmgm, j t
γm+ j , j = 0, 1, . . . n − 1. (2.8)

123



Eur. Phys. J. Plus         (2022) 137:554 Page 5 of 12   554 

Then, expressions (2.6) and (2.7), can be written, respectively, as

fY M (t)(y) =
∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

f A0

(
y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

)

· f A1(a1) · · · f An−1(an−1) fB(b)
1∣∣sM0 (t)

∣∣ da1 · · · dan−1db

(2.9)

and

fY (t)(y) =
∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

f A0

(
y − ∑n−1

j=1 a j s j (t)

s0(t)

)

· f A1(a1) · · · f An−1(an−1) fB(b)
1

|s0(t)| da1 · · · dan−1db.

(2.10)

Now, let us derive a lower bound for S0(t) and SM0 (t), and an upper bound for S j (t) and SMj (t), j = 1, . . . n − 1, in a certain
neighborhood, that will be required later when studying the convergence fY M (t)(y) −→ fY (t)(y) as M → ∞. Let us first observe
that, from the initial condition and the form of the solution, one gets

A0 = Y (0) = Y0(0) =
∞∑

m=0

Xm,0t
γm

∣∣∣
t=0

=
∞∑

m=0

Bm A0gm,0t
γm

∣∣∣
t=0

= A0

∞∑
m=0

Bmgm,0t
γm

∣∣∣
t=0

= A0S0(0).

Observe that in the above expression, we have used capital letter to denote the series S0(t) evaluated at t = 0 because of in
this setting it represents a random power series. Later, when this series as well as S j (t), j = 1, . . . , n − 1 are considered via
its samples or trajectories, for consistency with the notation, hereinafter they will be denoted using lower-case letters, i.e., s j (t),
j = 0, 1, . . . , n − 1. Since the random variable A0 is different from zero w.p. 1 (because is absolutely continuous), then by the last
expression one deduces S0(0) = 1 w.p. 1. From this fact and taking into account that S0(t) is a random power series evaluated at
t := tγ , so continuous w.p. 1, it is guaranteed that

∃ δ0 > 0 : 0 < ms,0 ≤ min{|sM0 (t)|, |s0(t)|}, ∀t : |t | ≤ δ0, ∀M ≥ 0 integer. (2.11)

On the other hand, by Remark 1 and the definition of SMj (t), j = 1, . . . , n − 1, which are random power series evaluated at

t := tγm+ j and convergent on the whole real line, it is known that each SMj (t) is almost surely uniformly convergent in every
compact set of R. This guarantees that

∃ Ms, j > 0 : max{|sMj (t)|, |s j (t)|} ≤ Ms, j , ∀t : |t | ≤ T, T > 0, ∀M > 0, integer j = 1, . . . , n − 1. (2.12)

Finally, as SMj (t) converges uniformly to S j (t), for each j = 0, 1, . . . , n − 1 and given ε j > 0, then

∃ M0 > 0 integer : |sMj (t) − s j (t)| < ε j , ∀M ≥ M0 integer and ∀t : |t | ≤ T, T > 0. (2.13)

Hereinafter, and according to (2.11), we will work in a neighborhood of t = 0 (possibly small), where the RFIVP (1.3) is
formulated, and where the bounds (2.11)–(2.13) are guaranteed. We will prove the convergence fY M (t)(y) −→ fY (t)(y) as M → ∞
for each t in that neighborhood. To this end, besides assumptions A1 and A2, we will suppose that

– A3: The PDF of the first random initial condition A0, f A0 , is Lipschitz in R, i.e., exists L0 > 0 such that

| f A0(a2) − f A0(a1)|≤L0|a2 − a1|, ∀a2, a1 ∈ R.

Let us observe that

∣∣ fY (t)(y) − fY M (t)(y)
∣∣ ≤

∫
D(A1)

· · ·
∫
D(An−1)

intD(B)

∣∣∣∣∣ f A0

(
y − ∑n−1

j=1 a j s j (t)

s0(t)

)
1

|s0(t)|

− f A0

(
y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

)
1∣∣sM0 (t)

∣∣
∣∣∣∣∣ f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db. (2.14)

Now, we first add and subtract f A0

(
y−∑n−1

j=1 a j SMj (t)

SM0 (t)

)
1

|S0(t)| inside the absolute value. We then arrange the terms and we apply

the triangular inequality. Finally, we take into account that any PDF is a non-negative function to remove the unnecessary absolute
values. The last expression then writes
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∣∣ fY (t)(y) − fY M (t)(y)
∣∣ ≤

∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f A0

(
y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

)
︸ ︷︷ ︸

(I)

∣∣∣∣∣ 1

|s0(t)| − 1∣∣sM0 (t)
∣∣
∣∣∣∣∣︸ ︷︷ ︸

(II)

+
∣∣∣∣∣ f A0

(
y − ∑n−1

j=1 a j s j (t)

s0(t)

)
− f A0

(
y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

)∣∣∣∣∣︸ ︷︷ ︸
(III)

1

|s0(t)|︸ ︷︷ ︸
(IV)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

· f A1(a1)) · · · f An−1(an−1) fB(b) da1 · · · dan−1db. (2.15)

We are going to bound the terms (I)–(IV). For the term (I), let us denote by F0 = f A0(0) (remember that by assumption A3 this
value exists), then first applying A3, secondly the triangular inequality together with bounds (2.11) and (2.12), one gets

f A0

(
y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

)
≤

∣∣∣∣ f A0

(
y−∑n−1

j=1 a j sMj (t)

sM0 (t)

)
− f A0(0)

∣∣∣∣ + F0

≤ L0

∣∣∣∣ y−
∑n−1

j=1 a j sMj (t)

sM0 (t)

∣∣∣∣ + F0

≤ L0
ms,0

(
|y| + ∑n−1

j=1 |a j |Ms, j

)
+ F0.

Let us now bound the term (II) by applying (2.11) and (2.13) for j = 0,∣∣∣∣∣ 1

|s0(t)| − 1

|sM0 (t)|

∣∣∣∣∣ =
∣∣|sM0 (t)| − |s0(t)|

∣∣
|s0(t)||sM0 (t)| ≤ |sM0 (t) − s0(t)|

|s0(t)||sM0 (t)| ≤ ε0

m2
s,0

.

The term (IV) can be similarly bounded applying (2.11)

1

|s0(t)| ≤ 1
ms,0

.

Finally, let us bound the term (III). To this end, we first apply assumption A3, and secondly, the triangular inequality together
with bounds (2.11)–(2.13),∣∣∣∣∣ f A0

(
y − ∑n−1

j=1 a j s j (t)

s0(t)

)
− f A0

(
y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

)∣∣∣∣∣
≤ L0

∣∣∣∣∣
y − ∑n−1

j=1 a j s j (t)

s0(t)
− y − ∑n−1

j=1 a j sMj (t)

sM0 (t)

∣∣∣∣∣
= L0

∣∣∣∣∣
ysM0 (t) − sM0 (t)

∑n−1
j=1 a j s j (t) − ys0(t) + s0(t)

∑n−1
j=1 a j sMj (t)

s0(t)sM0 (t)

∣∣∣∣∣
= L0

∣∣∣∣∣∣
y
(
sM0 (t) − s0(t)

) + ∑n−1
j=1 a j

(
s0(t)sMj (t) − sM0 (t)s j (t)

)
s0(t)sM0 (t)

∣∣∣∣∣∣
≤ L0

|y||sM0 (t) − sM0 (t)| + ∑n−1
j=1 |a j |

∣∣∣s0(t)sMj (t) − sM0 (t)s j (t)
∣∣∣

|s0(t)||sM0 (t)|

= L0

|y||sM0 (t) − sM0 (t)| + ∑n−1
j=1 |a j |

∣∣∣s0(t)sMj (t) − s j (t)s0(t) + s j (t)s0(t) − sM0 (t)s j (t)
∣∣∣

|s0(t)||sM0 (t)|

≤ L0

|y||sM0 (t) − sM0 (t)| + ∑n−1
j=1 |a j |

(
|s0(t)||sMj (t) − s j (t)| + |s j (t)||s0(t) − sM0 (t)|

)
|s0(t)||sM0 (t)|

≤ L0
|y|ε0 + ∑n−1

j=1 |a j |
(
Ms,0ε j + Ms, jε0

)
m2

s,0

.
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Substituting the previous bounds in (2.15), one gets

∣∣ fY (t)(y) − fY M (t)(y)
∣∣ ≤

∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

⎧⎨
⎩
⎛
⎝ L0

ms,0

⎛
⎝|y| +

n−1∑
j=1

|a j |Ms, j

⎞
⎠ + F0

⎞
⎠ ε0

m2
s,0

+
(
L0

|y|ε0 + ∑n−1
j=1 |a j |

(
Ms,0ε j + Ms, jε0

)
m2

s,0

)
1

ms,0

}

· f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db.

If we denote ε := max ε j , and M := max Ms, j , j = 0, 1, . . . , n − 1, one gets

∣∣ fY (t)(y) − fY M (t)(y)
∣∣ ≤

∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

⎧⎨
⎩
⎛
⎝ L0

ms,0

⎛
⎝|y| + M

n−1∑
j=1

|a j |
⎞
⎠ + F0

⎞
⎠ ε

m2
s,0

+L0
|y|ε + 2Mε

∑n−1
j=1 |a j |

m3
s,0

}

· f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db

=
∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

⎛
⎝ L0|y|ε

m3
s,0

+ L0Mε

m3
s,0

n−1∑
j=1

|a j | + F0ε

m2
s,0

+ L0|y|ε
m3

s,0

+ 2L0Mε

m3
s,0

n−1∑
j=1

|a j |
⎞
⎠

· f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db

= ε

(
2L0|y|
m3

s,0

+ F0

m2
s,0

)∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db

+3L0Mε

m3
s,0

n−1∑
j=1

∫
D(A1)

· · ·
∫
D(An−1)

∫
D(B)

|a j | f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db

= ε

(
2L0|y|
m3

s,0

+ F0

m2
s,0

)(∫
D(A1)

f A1(a1) da1

)
︸ ︷︷ ︸

=1

· · ·
(∫

D(An−1)

f An−1(an−1) dan−1

)
︸ ︷︷ ︸

=1

(∫
D(B)

fB(b) db

)
︸ ︷︷ ︸

=1

+3L0Mε

m3
s,0

n−1∑
j=1

(∫
D(A1)

f A1(a1) da1

)
︸ ︷︷ ︸

=1

· · ·
(∫

D(A j−1)

f A j−1(a j−1) da j−1

)
︸ ︷︷ ︸

=1

· · ·
(∫

D(A j )

|a j | f A j (a j ) da j

)
︸ ︷︷ ︸

=E[|A j |]

· · ·

·
(∫

D(An−1)

f An−1(an−1) dan−1

)
︸ ︷︷ ︸

=1

(∫
D(B)

fB(b) db

)
︸ ︷︷ ︸

=1

f A1(a1) · · · f An−1(an−1) fB(b) da1 · · · dan−1db

= ε

(
2L0|y|
m3

s,0

+ F0

m2
s,0

)
+ ε

3L0M
m3

s,0

n−1∑
j=1

E[|A j |]

= ε

⎛
⎝2L0|y|

m3
s,0

+ F0

m2
s,0

+ 3L0M
m3

s,0

n−1∑
j=1

E[|A j |]
⎞
⎠ .

Taking into account Remark 2, the above sum of the expectations is finite. So, we the following result has been established:

Theorem 2 Consider the random fractional initial value problem (1.3), where its data satisfies the assumptions A1–A3. Then, the
probability density function, fY M (t)(y), defined by (2.6), corresponding to the approximate solution of order M given in (2.1)–(2.2),
converges to the probability density function, fY (t)(y), given by (2.7) of the exact solution (1.4)–(1.5) as M → ∞ for each (t, y).
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(a) (b)

(c) (d)

Fig. 1 Approximations of fY M (t), given in (2.6), of 1-PDF of the solution stochastic process at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of
truncation M ∈ {1, 5, 10}. Example 1 with α = 1.9

Table 1 Approximations of the mean and variance at time instants t ∈ {0.5, 1, 1.5, 2} using different orders of truncation M ∈ {1, 5, 10}. These values
have been calculated using (3.1) and (3.2), respectively. Example 1 with α = 1.9

E[Y M (t)] |V[Y M (t)] t = 0.5 t = 1 t = 1.5 t = 2

M = 1 1.9841 | 1.22372 2.84533 | 1.7836 3.37137 | 2.39698 3.26288 | 3.04415

M = 5 1.9842 | 1.22378 2.84807 | 1.7872 3.40555 | 2.42417 3.46492 | 2.99021

M = 10 1.9842 | 1.22378 2.84807 | 1.7872 3.40555 | 2.42417 3.46492 | 2.99021

3 Examples

This section is devoted to illustrate the previous theoretical findings with two numerical examples, where we graphically show the
convergence of the sequence of PDFs, fY M (t)(y), to fY (t)(y), as M increases. Additionally, as assumptions A1 and A2 guarantee
hypotheses H1 and H2 fulfill, then Y M (t), given by (2.1)–(2.2), is mean square convergent to Y (t), given by (1.4)–(1.5). As a
consequence, the mean and the variance of the solution exist, and then they can be approximated by

E[Y M (t)] =
∫ ∞

−∞
y fY M (t)(y) dy (3.1)

and

V[Y M (t)] = E[(Y M (t))2] − (E[Y M (t)])2 =
∫ ∞

−∞
y2 fY M (t)(y) dy −

(∫ ∞

−∞
y fY M (t)(y) dy

)2

, (3.2)

respectively, (see [13, Th.4.2.1] and [13, Th. 4.3.1], respectively).

Example 1 The first example aims at showing that the results obtained with the approach presented in this paper are in full agreement
with the ones obtained in [14]. To show the results given in [14, Example 1] agree with the ones in the present example, let us
assume that the values of A0 and A1 and B are close to that example, so ensuring assumptions A1–A3 fulfill. Firstly, let us consider
β = 1 and α = 1.9. In [14] the random variable B is considered as a negative beta distribution of parameters 2 and 3. According to
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Table 2 Values of the L1-norm defined in (3.3) for different orders of truncation, M ∈ {1, 5, 10}, at the time instants t ∈ {0.5, 1, 1.5, 2}. The order of the
fractional derivative is α = 1.9. Example 1

eM (t); α = 1.9 t = 0.5 t = 1 t = 1.5 t = 2

M = 1 0.00003521008 0.00184215438 0.01988455842 0.11839990407

M = 5 2.5804011 · 10−17 1.4576956 · 10−12 1.6507047 · 10−9 4.0953768 · 10−7

M = 10 0. 0. 0. 3.4694469 · 10−17

(a) (b)

(c) (d)

Fig. 2 Approximations of fY M (t), given in (2.6), of 1-PDF of the solution stochastic process at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of
truncation M ∈ {1, 5, 10}. Example 1 with α = 1.2

Assumption A2 the random variable B must be bounded and away from 0. To guarantee this assumption is satisfied while the spirit
of [14, Example 1] holds true, we here take B as a negative Beta distribution of parameters 2 and 3 truncated at the interval [0.05, 1],
i.e., B ∼ −Be[0.05,1](2, 3). The initial conditions A0 and A1 are taken as in [14, Example 1]. So A0 is a Normal distribution with
mean 1 and standard deviation 1, i.e., A0 ∼ N(1; 1), hence E[A0] = 1 E[A2

0] = 2. It is important to remark that the PDF of a
Gaussian distribution has bounded derivative on the whole real line, so applying the Mean Value theorem it is straightforward to
check that is globally Lipschitz continuous [23]. As a consequence, assumption A3 fulfills. The random variable A1 is assumed to
have a uniform distribution of mean 2 and standard deviation 1, i.e., A1 ∼ U(2 − √

3, 2 + √
3). Additionally, we will assume that

A0, A1 and B are independent, so assumption A1 holds.
In Fig. 1, we graphically show the approximations, fY M (t), of the 1-PDF (2.6) at the time instants t ∈ {0.5, 1, 1.5, 2} for different

orders of truncation, M ∈ {1, 5, 10}. In each panel, we have performed a zoom to better illustrate the convergence as M increases.
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Table 3 Approximations of the mean and variance at time instants t ∈ {0.5, 1, 1.5, 2} using different orders of truncation M ∈ {1, 5, 10}. These values
have been calculated using (3.1) and (3.2), respectively. Example 1 with α = 1.2

E[Y M (t)] |V[Y M (t)] t = 0.5 t = 1 t = 1.5 t = 2

M = 1 1.94084 | 1.16605 2.62433 | 1.53783 2.82825 | 1.99607 2.3131 | 3.18559

M = 5 1.94185 | 1.16743 2.65148 | 1.56298 3.01537 | 2.03536 3.03015 | 2.53089

M = 10 1.94185 | 1.16743 2.65148 | 1.56298 3.01539 | 2.03536 3.03099 | 2.52984

Table 4 Values of the L1-norm defined in (3.3) for different orders of truncation, M ∈ {1, 5, 10}, at the time instants t ∈ {0.5, 1, 1.5, 2}. The order of the
fractional derivative is α = 1.2. Example 1

eM (t); α = 1.2 t = 0.5 t = 1 t = 1.5 t = 2

M = 1 0.00093398498 0.02108848639 0.13985203151 0.48984846327

M = 5 6.5739242 · 10−12 6.1373116 · 10−8 0.00001457034 0.00091111341

M = 10 0. 3.1576341 · 10−16 5.6654917 · 10−12 8.4097494 · 10−9

(a) (b)

(c) (d)

Fig. 3 Approximations of fY M (t), given in (2.6), of 1-PDF of the solution stochastic process at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of
truncation M ∈ {1, 5, 10}. Example 2 with α = 2.5
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In Table 1, we collect the approximations of the mean and the variance of the solution using (3.1) and (3.2), respectively. We
point out these figures agree with the ones obtained in [14, Example 1]. To numerically verify the convergence of the 1-PDFs as M
increases, Table 2 collects the L1-norm of the difference between consecutive approximations of the 1-PDF with respect the order
of truncation, i.e.

eM (t) := ‖ fYM+1(t)(y) − fYM (t)(y)‖1 =
∫
Dt

| fYM+1(t)(y) − fYM (t)(y)| dy. (3.3)

Here, we have taken the same domain of integration, Dt , as the one used for plotting the PDF for for t fixed. As we can observe, the
error decreases with M , so correctly illustrating convergence as expected.

We complete this example showing the corresponding approximations when α = 1.2 at the same foregoing time instants and
using the same orders of truncation. The approximations of the 1-PDF of the solution are shown in Fig. 2, while Table 3 collects the
figures for the mean and the variance. In Table 4 we collect the L1-norm for the difference for consecutive approximations. We can
graphically and numerically observe convergence as the order of truncation increases, respectively.

Example 2 In this second example we deal with the case that α = 2.5, so n = −�−2.5� = 3, and three initial conditions, A0, A1 and
A2 are then required. We take A0 ∼ N(2; 32), hence A3 is fulfilled. The random variables A1 and A2 are assumed A1 ∼ Be(1, 1)

and A2 ∼ U(2, 4). In order to guarantee assumption A2 holds true, we will assume that B has a Gamma distribution of parameters
(2, 2) truncated at the interval [0.05, 15], i.e., A2 ∼ Ga[0.05,15](2, 2). In Fig. 3 we show the approximations fY M (t) for the PDF of
the solution at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of truncation. In each panel of Fig. 3 is graphically observed
convergence as M increases. From the plots, and particularly looking at the magnified plots, we can observe that, for t fixed, the
approximations improve when M increases, while for M fixed, the approximations deteriorate as t increases, as expected.

4 Conclusions

In this paper we have provided an alternative approach to approximate the first probability density function of the solution stochastic
process of a generalized model formulated via a differential equation that appears in a number of relevant problems of Classical
Mechanics. The proposed approach avoids double approximations, and hence their associated errors, based on first approximating
the moments of the solution and secondly applying the Principle of Maximum Entropy. The mild conditions assumed to conduct
our study permit applying our theoretical results to a wide variety of real-world scenarios where probability distributions must be
inferred from all the model data. Our study can be extended to other problems in Physics formulated by means of generalizable
differential equations with uncertainties as well as to study the randomized versions of recent techniques that have demonstrated to
be very useful to deal with linear and nonlinear problems in Physics [24] and [25].
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