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Abstract: A fundamental problem in the design of a classroom is to identify what characteristics it
should have in order to optimize learning. This is a complex problem because learning is a construct
related to several cognitive processes. The aim of this study is to maximize learning, represented
by the processes of attention, memory, and preference, depending on six classroom parameters:
height, width, color hue, color saturation, color temperature, and illuminance. Multi-objective integer
linear programming with three objective functions and 56 binary variables was used to solve this
optimization problem. Virtual reality tools were used to gather the data; novel software was used to
create variations of virtual classrooms for a sample of 112 students. Using an interactive method, more
than 4700 integer linear programming problems were optimally solved to obtain 13 efficient solutions
to the multi-objective problem, which allowed the decision maker to analyze all the information and
make a final choice. The results showed that achieving the best cognitive processing performance
involves using different classroom configurations. The use of a multi-objective interactive approach
is interesting because in human behavioral studies, it is important to consider the judgement of an
expert in order to make decisions.

Keywords: optimization; multi-objective integer linear programming; classroom design; cognitive
learning processes

MSC: 90C90; 90C29

1. Introduction

Multi-objective linear programming (MOLP) is a mathematical model in which two or
more conflicting linear objective functions, which dependent on variables subject to certain
linear constraints, are optimized simultaneously [1–4]. MOLP has several variations; in
particular, if all variables must be integers, the model is known as the multi-objective integer
linear programming (MOILP), which will be the fundamental tool for the development of
the study presented here.

Given the MOILP problem Maximize{Cx : Ax ≥ b, x ≥ 0 and integer}, a feasible solu-
tion x’ is efficient if there is no other feasible solution x such that Cx′ ≤ Cx with at least
one strict inequality. In this case, the objective vector Cx′ is called non-dominated. It is
highly unlikely that a MOILP problem will have an optimal solution, and therefore, solving
a MOILP problem generally entails identifying the set of its efficient solutions.

There are several algorithms to solve a MOILP problem. The very recent survey
by Halffmann et al. [5] presents all the exact algorithms known up to that date but also
gives references on approximate algorithms. To solve a MOILP problem, scalarization
methods, which, as their name indicates, turn such a problem into solving single-objective
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integer linear programming problems, play a crucial role in finding all or a subset of the
non-dominated objective vectors. Note that a single-objective integer linear programming
problem is known in the literature as an integer linear programming (ILP) problem [6–10].

In this work, the scalarization known as the weighted sum is used [11]. This basi-
cally consists of solving ILP problems where the objective functions are convex combina-
tions of the objective functions in the original MOILP problem, with the same restrictions
(Ax ≥ b, x ≥ 0 and integer) plus Cx ≥ g, where g is a row vector of objective bounds. Each
optimal solution to an ILP problem with the above conditions is an efficient solution to the
MOILP problem.

Therefore, a method that generates the whole set, or a large subset, of non-dominated
objective vectors may require an excessive amount of computational resources, which may
make it inappropriate for dealing with large problems. Another approach is to use the
so-called interactive methods [3], which basically consist of phases of human intervention
alternated with phases of computation. Human intervention is carried out by a decision
maker (DM), which is a domain expert who can provide preferences toward solutions
and select the most preferred one for implementation. It is essential that, on interactive
methods, the computational effort is not too high in the computation phase and that the
questions asked to the DM are simple and understandable. In these procedures, the DM
makes the final choices.

In this work, an interactive method based on a MOILP weighted-sum scalarization
is used to examine how classroom design affects cognitive processes. The objective of the
study is to maximize learning (represented by memory, attention, and preference) from
six classroom parameters (height, width, color hue, color saturation, color temperature,
and illuminance).

MOLP has already been used to model problems in the field of human behavior, for
instance, in psychology, for item calibration/selection in psychometrics [12]. Additionally„
very recently, González-Gallardo et al. [13] used a variant of MOLP known as interval
multi-objective linear programming (e.g., see Oliveira and Antunes [14]) to analyze the
well-being of students in Spain and Finland. Specifically, the main purpose was to study
how four indicators (positive feelings, motivation, sense of belonging, and bullying) could
be simultaneously improved while taking into account the particularities of both countries.
This variation of the MOLP has also been used in order to simultaneously achieve a balanced
performance in four measures of academic achievement from their use of the internet [15].

To solve the problem presented here, the help of virtual reality (VR) will be essential
because VR allows researchers to overcome the difficulties, including cost, of using real
spaces to study any one contextual key (keeping the others unchanged) in a controlled
manner. VR can simulate different configurations of classroom characteristics. In recent
years, VR has gained particular importance, with 2020 being the turning point at the
international level due to the health situation. An increasing body of literature has validated
the use of VR [16,17] for perception studies [18] and, specifically, environmental psychology
studies [19,20]. Some authors [21–23] have concluded that VR is an efficient tool for
measuring attention performance.

To collect the data, the subjects were presented with variations of a VR-based replica
of a representative classroom at the Polytechnic University of Valencia. Six classroom
parameters were varied: wall height and width, color hue, saturation and temperature, and
lighting. Three objective functions were analyzed: memory, attention, and environmental
preference. The solutions produced different cognitively efficient design configurations (in
terms of memory and attention performance and environmental preference) that allowed
the DM to analyze all the information and make a final choice. This is the fundamental
contribution of this analytical methodology to the area of human behavioral studies, where
statistical approaches have traditionally been applied. MOILP allows researchers to identify
combinations of classroom design parameters that can simultaneously optimize cognitive
processes taking into account the judgement of an expert.
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The remainder of this work is organized as follows: Section 2 exhaustively reviews
the existing literature about the influence of the environment on cognitive processes,
including an analysis of how previous studies relate to this work. Section 3 explains the
data collection process (procedure, conditions, software used for the VR, etc.). Section 4
presents the mathematical model, that is, the MOILP approach used to optimize the three
functions cited above. Section 5 presents the results, which are discussed in Section 6, and
finally, some conclusions and possible future research directions are provided in Section 7.

2. Related Cognitive Processing and Environment Works

Over the last decades, increasing attention has been paid to the influence of the envi-
ronment on human beings at the cognitive–emotional level. Several studies have analyzed
the effects of environmental characteristics on mental states and cognitive processes [24–27].
Ulrich’s [27] pioneering study found that patients suffered less stress and enjoyed improved
recovery in post-surgical scenarios when the windows of their rooms looked out onto natu-
ral vistas. Over the years, studies such as these have examined clinical populations and
real environments and expanded into other contexts, such as education.

The study of the effects of classroom environments on experimental subjects must
address two fundamental questions: first, how to assess improvements in learning, which
can be understood as an active mental process of acquisition, retrieval, and use of informa-
tion [28,29], and second, which classroom characteristics influence this process?

Taking the first question, learning is a complex psychological construct. There is
no consensus in the scientific community on its measurement: some studies focus on
completing general tasks and others on specific tests of fundamental learning-related
processes, such as attention and memory. Attention is a cognitive process that captures
information from the environment [30], and memory stores it [31]. The study of attention
and memory involves performing specific tasks in specific environments. The nature
of the tasks is important because it has been shown that the neuronal load involved
in concentration prevents individuals becoming distracted [32,33]. Thus, easier tasks
that require less concentration make people pay more attention to their environments.
Another line of work, however, has examined subjects’ preferences for environments.
Perceptions of one’s environment are important for two reasons: (1) There is a strong
positive correlation between subjects’ preferences and improvements in their mood [34];
and (2) a brief, positive mood improvement enhances performance in short- and medium-
term learning tasks [35]. That is, one’s environment influences one’s mood [36], which, in
turn, acts as a cognitive mediator, which results in positive perceptions, which strongly
improve student performance [37].

As to the second question, on classroom characteristics, it has been shown that when
plants are present in the environment, student performance improves [38–40] and that the
arrangement of furniture in classrooms influences teachers’ behaviors [41], in-class teaching
methodologies [42,43], and how students interact [43–45]. However, the central theme
has been the influence of the built space on student learning. Thus, Marchand et al. [46]
recently discovered that in a space classified as uncomfortable (temperature of 26.67 ◦C,
lighting of 2500 lx, and ambient sound of 60–65 dBA), university students scored lower in a
reading comprehension test than students in a comfortable space (22 ◦C, 500 lx, 35 dBA);
and it has been shown that a green-colored wall simulating vegetation did not improve
subjects’ performance in a specific test of sustained and selective attention in contrast to
the effects of real vegetation found in a school classroom-based longitudinal study [47].
However, most studies have analyzed the visual characteristics of classrooms.

The scientific literature highlights, among others, the visual characteristics of classroom
color, lighting, and dimensions. These coincide with three of the seven characteristics of the
built environment that have been shown to most influence the progress of primary school
students [48]. As for color, it has been shown that in chromatic spaces, fewer errors are
made in text correction tasks [49] and that tasks are performed quicker [50]. It has also been
shown that cold tones improve the performance of complex tasks [51,52] and enhance the
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cognitive processes, such as attention and memory, of university students [53]. In addition,
it has been shown that the contextual key of lighting influences student learning and
performance [54]. For example, it has been observed that greater illuminance is associated
with greater attention [55,56]. In another line of work, Huiberts [57] observed that very
bright, direct light improved the retrieval of numerical information in easy memory tasks,
while more muted lighting was better when retrieving similar information in more difficult
memory tasks. It has also been observed that higher color-temperature lighting (the
light spectrum emitted by a black body heated to a certain temperature) produces faster
cognitive processing speed and higher concentration [58] and better attention and memory
task performance [56]. As for dimensions, it has been observed that lower ceilings promote
cooperation in school classrooms [59] and that smaller classrooms are associated with
better performance and higher arousal [60]. In any case, while classroom dimensions have
featured in many studies [61–63], they have not been their central focus; thus, there are few
relevant conclusive results.

Although many studies have been undertaken in this area, they have all examined the
individual characteristics of the classroom and cognitive processes in isolation, ignoring
the impact they may have on each other. Classrooms have numerous characteristics, and it
is possible that the results obtained from isolated analyses will differ from results obtained
from combinations of characteristics. Thus, a good result in terms of lighting may be poorer
when it is combined with a certain color or ceiling height, which might make subjects
perceive the environment as a whole differently. The existing literature has not examined
the effects of different combinations of classroom characteristics. In addition, researchers
should simultaneously examine the different cognitive processes underlying learning, as
some classroom characteristics might generate positive effects in one cognitive process and
negative in others. Thus, for example, a study conducted with university students showed
that low illuminance levels (100 lx–200 lx) improved memory but reduced attention [56,64].
An investigation into color showed that the subjects preferred blue and yellow tones, but
these were associated with the poorest results in reading comprehension tasks [65]. Thus,
classroom designs must optimize the set of these cognitive processes. Table 1 summarizes
studies carried out into classrooms, detailing some relevant aspects.

Table 1. Summary of studies of human behavior in classrooms.

Reference Classroom Design Parameters Experience Register Behavioral Experience Methods

Ahrentzen and Evans, 1984 Interior Spaciousness; Degree of
Open Perimeter and Amenities Distraction; Privacy RC 3

Wheldall and Lam, 1987 Seating Arrangements Classroom Disruption Rate; Task
Behavior; Teacher Behavior RC 3

Jago and Tanner, 1999 Lighting; Color Academic Progress RC 3

Read, Sugawara,
and Brandt, 1999 Ceiling Height; Wall Color Cooperative Behavior RC 3

Wannarka Ruhl, 2008 Seating Arrangements Attention; Instructional Time RC 3

Doxey, Waliczek,
and Zajicek, 2009 Plants Cognitive Performance;

Perception RC 3

Daly, Burchett, and Torpy, 2010 Plants Classroom Performance RC 3

Yang, Becerik-Gerber,
and Mino, 2013

Temperature; Air quality;
Artificial and Natural Lighting;

Acoustics; Visibility; Room
Layout; Furniture; Hardware

and Software.

Satisfaction; Performance RC 3

Park and Choi, 2014 Seating Arrangements Motivation; Participation RC 3

Marchand, Nardi,
Reynolds, et al., 2014 Lighting; Sound; Temperature Student Learning; Mood;

Environmental Perception RC 3
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Table 1. Cont.

Reference Classroom Design Parameters Experience Register Behavioral Experience Methods

Smolders and de Kort, 2014 Lighting (Bright Light)
Alertness; Vitality; Performance

and Physiological Arousal (HRV 1

and Electrodermal Activity)
ER 4

Keis, Helbig, Streb, et al., 2014 Lighting (Blue-enriched White
Light vs. Standard Lighting)

Speed of Cognitive Processing;
Concentration Performance;

Visuospatial and Verbal Memory
RC 3

Barrett, Davies,
Zhang, et al., 2015

Lighting; Temperature; Air
quality; Ownership; Flexibility;

Complexity; Color
Academic Progress RC 3

Huiberts, Smolders,
and de Kort, 2015

Lighting (Illuminance Level and
Bright Light) Working Memory ER 4

Xia, Song,
Wang, et al., 2016 Color Cognitive Task Performance RC 3

Al-Ayash, Kane,
Smith, et al., 2016 Wall Color

Reading Task Performance;
Emotional Responses;

Neurophysiological (HRV 1)
ER 4

Van den Berg, Wesselius,
Maas, et al., 2017 Green Walls vs. Plants Cognitive Performance;

Well-being RC 3

Shernoff, Sannella,
Schorr, et al., 2017 Seating Location Student Engagement; Attention RC 3

Baum, 2018

Node Classroom vs. Spoke
Classroom (Seating

Arrangement; Lighting;
Audio-visual and Computing

equipment)

Classroom Activity;
Student Attitude RC 3

Bernardo, Loupa-Ramos,
Matos, et al., 2021 Plants Sustained and Selective Attention;

Working Memory RC 3

Llinares, Higuera-Trujillo, and
Serra, 2021 Wall color

Attention; Memory;
Neurophy-siological (HRV 1

and EEG 2)
VR

Llinares, Castilla, and
Higuera-Trujillo, 2021 Lighting (Illuminance; CCT) Attention; Memory VR

Llinares, Higuera-Trujillo,
Montañana i Aviñó, et al., 2021 Classroom Width

Attention; Memory;
Neurophy-siological (HRV 1

and EEG 2)
VR

1 Heart rate variability. 2 Electroencephalogram. 3 Real classroom. 4 Experimental room.

The present study analyzes the simultaneous effects of different classroom charac-
teristics on different cognitive processes. That is, an assessment is made of which design
configurations of a university classroom (combining the characteristics lighting, color, and
size) enhance the set of significant cognitive processes in learning, memory, attention, and
preference). To do so, MOILP is used as an analytical tool and VR as an environmental-
simulation tool.

3. Materials and Methods
3.1. Participants

The model used data collected from the Polytechnic University of Valencia stu-
dent population. A total of 112 students participated (50.9% men, 49.1% women, mean
age 23.24 years, standard deviation 3.79). To avoid the physical problems associated with
VR glasses and to control cultural influences, the subjects were required to: (1) have good
vision without glasses (they could wear contact lenses) and (2) be Spanish nationals. The
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procedure, including its non-invasive techniques, was explained to the participants, and
they signed the appropriate informed consent form.

3.2. Procedure

The study procedure is shown in Figure 1. In the first phase, a VR replica of a
classroom at the Polytechnic University of Valencia was used as the base. Each participant
viewed 5 randomly physically modified base classrooms. Each view was modified in the
parameters of only one of the classroom characteristics: (a) wall color (hue and saturation);
(b) interior lighting (illuminance and color temperature); and (c) dimensions (width and
height of the walls). The levels of three psychological metrics and the students’ sense of
presence were assessed in this phase. Sense of presence is a crucial element of virtual
environments. Presence can be understood as the user’s illusion of “being there”, in
a virtual environment [66], where (s) he has lost the sense of being in an environment
simulated by a technological medium, and therefore, (s) he responds as if (s) he was in the
real world [67]. It has been found that sense of presence is directly related to the validity
of the virtual experience [68], understood as the similarity of the simulated experience to
one generated by the physical environment represented. For this reason, sense of presence
is sometimes used to validate virtual experiences. A detailed description of how the data
were obtained is provided in the following two subsections.
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3.3. Experimental Design

The same experimental procedure was followed for all conditions, with only one
difference, namely the type of classroom each subject viewed in the VR scenario: the base
classroom was modified in color, lighting, and dimension. The criteria and processes
associated with manipulating these three characteristics are described below.

3.3.1. Conditions

The original characteristics of the real classroom were maintained in each virtual
reality scenario, modifications being made on an individual basis only to the parameters of
the classroom characteristics. A set of specific values was selected from among the possible
values of the different parameters. The criteria for choosing the color, illumination, and
dimensions’ values were based on the equitable distribution of colors in the Itten chromatic
circle [69], on the information provided by the light bulb suppliers, and on the standard
measurements used in the construction of removable ceilings.

A total of 29 values for the classroom parameters were obtained: 10 for color hue, 2 for
color saturation, 3 for lighting, 4 for color temperature, 4 for height, and 6 for width. These
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were used to assess which combination optimizes memory, attention, and preference. It was
not feasible for the experimental procedure to examine the 5760 (10 × 2 × 3 × 4 × 4 × 6)
possible combinations individually. It should be taken into account that each visualization
and corresponding data collection took at least 30 min, and each had to be viewed by at
least 5 subjects so that the data were statistically validated. Therefore, a comprehensive
analysis would take more than 14,400 working hours.

Therefore, the study was simplified by using 56 variables. The variables examined
were those resulting from combinations of the two parameters that made up each contex-
tual key. Each variable corresponds to a modification of the base classroom. Thus, each
modification involved changing the values of the two parameters that made up the class-
room characteristics color, lighting, and dimensions. The changes were applied separately
to the two parameters of the classroom characteristics, while the remaining parameters
maintained their original values.

3.3.2. Materials Set-Up

The VR classrooms were recreated using Rhinoceros Software v.5.0 and the Corona
Renderer Software v.2.0 These provided high-quality modeling and rendering, respectively.
ColorMunki TM software was used to translate the 10 colors studied in Munsell notation
into RGB notation.

The subjects viewed the classroom simulation, which allowed them to make changes
to their visual fields through head movements through a head-mounted device (HTC Vive)
connected to the researcher’s computer. Unity3D was used to generate the software, which
allowed the researcher to show the subjects the different scenarios through the HTC Vive.

The entire experiment was carried out in the same laboratory. The participants under-
took the experiment in the same time slots, and the temperature (22.5–23 ◦C) and sound
insulation (34 dbA) were kept constant. The researcher’s table and the participant’s table
faced each other in the center of the room.

3.4. Metrics

Data on memory, attention, and preference were collected for each visualization. All
were statistically normalized. The data collection is now described.

3.4.1. Memory Task

The memory task was based on the auditory presentation of three out of a total of
16 randomized word lists. The lists were composed of 15 words in the same semantic field.
Before the tests, the researcher said: “ . . . then, you will hear a list of words. Try to remember
them. Then, you will be asked to repeat them regardless of their order in a time of 30 s. This will be
repeated 3 times.” Thus, immediately after listening to the words, the subjects were asked
to repeat those they could remember. Memory was measured by adding the number of
words the subjects repeated from the 45 presented; thus, the more words remembered, the
better the result. This is similar to the DRM experimental paradigm [70]. The information
was collected through audio recordings, which the researcher played back to calculate the
number of correct words recalled by the participants.

3.4.2. Attention Task

The attention task was based on the presentation of 3 lists of 40 sounds of 4 different
types; 3 were distracting, and only 1 was objective. The subjects had 750 ms after the
presentation of each sound during which to make a mouse click only to the target stimuli.
Before the tests the researcher said: “ . . . then, you will hear a series of sounds. You should react
as soon as possible to this stimulus (target) by making a single mouse click and avoid clicking when
you hear other sounds” (the 3 distractors). Attention was measured by calculating the average
of the reaction times to the objective stimuli; thus, shorter times represented better results.
This is similar to Seidman’s [71] continuous auditory performance test. The information on
reaction times was collected through software developed specifically for this research.
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3.4.3. Preference Task

The subjects’ subjective perceptions of the environments were assessed through the
degree of “I like” that they reported about their experiences of the classroom in a post-
experiment written survey. This was rated through a Likert scale, from −4 to 4, addressed
by the subjects at the end of their visualizations. The precise question was “Please rate
your degree of agreement/disagreement with the following sentence (−4 being a high degree of
disagreement, and +4 a high degree of agreement): In general, how much do you like this place?”
To avoid any bias, the subjects were first told that there were no correct or incorrect
answers. The question is based on that used by Galindo and Corraliza [72] to assess general
preference judgements in the Spanish population. The participants gave oral answers to
the survey to the interviewers, who incorporated them into a database.

3.4.4. Sense of Presence

The SUS questionnaire [73] was used to quantify sense of presence. This is a six-
item self-report, rated from 1 to 7 on a Likert-type scale. The participants completed
the questionnaire at the end of each classroom-simulation experience. The scenarios all
achieved reasonably high mean values (mean = 29.38, standard deviation = 8.48). Based on
the evidence provided by previous studies into presence [74], it can be concluded that the
classroom simulations were satisfactory and that the results obtained are similar to those
that might have been obtained by modifying actual classrooms.

3.5. Data Collection Results

The objective of the problem is to maximize learning from classroom design features.
Learning was represented by attention (a) and memory (m), cognitive processes directly
related to learning, and preference (p), which has an indirect effect. The design features were
illumination (x), dimension (y), and color (z), each of which is represented by two design
parameters (ij): illuminance and color temperature for x, height and width for y, and hue
color and saturation color for z. In the experimental process, these design features (xij, yij,
and zij) were viewed by 10 participants, from whom a, m, and p were collected. These
data were normalized, subsequently obtaining the mean values by SPSS v. 26 software.
These mean values represent the levels of a, m, and p for the study population in each of
the design situations. The points below provide a good understanding of the data and the
formulae used in this work:

1. Let ax
ij, ay

ij, and az
ij be the means of the levels of attention obtained in the lighting, di-

mension, and color conditions of the base classroom, respectively, for each combination.
These values are shown in column 5 in Tables 2–4, which shows the sets where i and j
vary in each case.

2. Let mx
ij, my

ij, and mz
ij be the means of the levels of memory obtained in the lighting,

dimensions, and color conditions of the base classroom, respectively, for each combi-
nation. These values are shown in column 4 in Tables 2–4, with the same sets for i and
j cited above.

3. Let px
ij, py

ij, and pz
ij be the means of the levels of preference obtained for the lighting,

dimensions, and color conditions of the base classroom, respectively, for each combi-
nation. These values are shown in column 6 in Tables 2–4, with the same sets for i and
j cited above.

4. Let ax, ay, az, mx, my, mz, px, py, and pz be the means of the values ax
ij, ay

ij, az
ij, mx

ij, my
ij,

mz
ij, px

ij, py
ij, and pz

ij, respectively, with their respective variations being i and j. These
values are shown at the end of the respective columns in Tables 2–4;
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5. Let xij, yij, and zij be the 0–1 variables whose values of 1 indicate that the classroom
has lighting with illuminance of type i, color temperature of type j, dimensions with
height type i, and width type j, and walls colored with hue type i, and with saturation
type j, respectively. Conversely, a 0 value indicates that the classroom does not have
type i lighting and j-type color temperature, dimensions of height type i and width
type j, and walls colored with tone type i and saturation of type j, respectively. These
variables are shown in column 3 of Tables 1–3, respectively.

Tables 2–4 provide the data obtained on illumination, dimensions, and color, respectively.

Table 2. Grouping of variables for each parameter of the classroom lighting characteristic.

Illuminance Color Temperature Variable mx
ij ax

ij px
ij

500 lx

10,500 K x11 −0.3573 0.4647 0.7778
6500 K x12 0.1104 −0.2373 0.6154
4000 K x13 −0.0857 0.208 0.6429
3000 K x14 −0.1174 0.0887 −0.3571

300 lx

10,500 K x21 −0.5019 −0.1531 0.3333
6500 K x22 0.4349 −0.7734 0.0714
4000 K x23 −0.0525 0.0225 0.011
3000 K x24 0.2053 −0.2405 0.4615

100 lx

10,500 K x31 −0.1168 0.0298 0.5714
6500 K x32 0.5459 −0.2542 1.3846
4000 K x33 0.4598 0.1283 1
3000 K x34 −0.1188 0.2714 0.7059

mx = 0.0338 ax = −0.0371 px = 0.5182

Table 3. Grouping of variables for each parameter of the classroom characteristic dimensions.

Height Width Variable my
ij ay

ij py
ij

3.2 m

8.4 m y11 0.2123 −0.4279 1
6.2 m y12 0.964 0.0556 0.1333
6 m y13 0.3807 −0.1804 1.1429

4.8 m y14 −0.3999 0.2504 −0.625
3.6 m y15 −0.1748 0.4341 −2
2.4 m y16 −0.6995 0.6277 0

3.8 m

8.4 m y21 −0.0828 0.1032 −0.0814
6.2 m y22 0.1614 −0.0116 0.1333
6 m y23 −0.3945 0.5679 0.3333

4.8 m y24 0.0007 0.5091 −0.375
3.6 m y24 −0.4977 −0.5824 0
2.4 m y26 −0.0565 −0.1736 −2.1667

4.4 m

8.4 m y31 0.1639 −0.6203 1.1429
6.2 m y32 0.0575 −0.27 −0.1
6 m y33 −0.5299 0.0587 −1

4.8 m y34 0.0537 0.1453 −0.1429
3.6 m y35 −0.1942 −0.2556 −1.3333
2.4 m y36 −0.5925 0.916 −0.8333

2.6 m

8.4 m y41 −032256 −0.432 0.5455
6.2 m y42 −0.1003 −0.2714 0.3077
6 m y43 −0.1668 2.2663 −1.2857

4.8 m y44 −0.2615 0.117 1
3.6 m y45 0.1623 −0.0309 −2.625
2.4 m y46 0.0421 0.7354 −1.7143

my = −0.1269 ay = 0.1471 py = −0.3417
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Table 4. Grouping of variables for each parameter of the classroom characteristic color.

Hue Saturation Variable mz
ij az

ij pz
ij

5B
High z11 0.9211 0.0702 −0.3333
Low z12 −0.0039 0.2269 −0.1667

5G
High z21 −0.4155 0.2138 −0.2
Low z22 −0.2939 0.4916 −2.1429

5GY
High z31 −0.0421 −0.0328 −0.8333
Low z32 −0.0758 0.3397 1.4286

5Y
High z41 −0.6764 −0.3718 1.1429
Low z42 −0.1845 −0.6578 1.8571

5YR
High z51 0.0605 −0.1496 0.5
Low z52 0.0816 −0.3638 −0.3333

5R
High z61 −0.1929 0.3043 −2.125
Low z62 −0.309 0.2662 1.5

5RP
High z71 −0.2257 0.6897 −0.625
Low z72 −0.544 −0.3037 −2.1429

5P
High z81 0.3314 0.0233 −1.1667
Low z82 0.9799 −0.127 −0.8333

5PB
High z91 −0.1766 −0.3066 0.2222
Low z92 0.249 −0.073 1.5714

5GB
High z101 −0.1321 −0.0261 0.6667
Low z102 0.0734 0.0751 −0.1429

mz = −0.0288 az = 0.0144 pz = −0.1078

4. Mathematical Model

The problem of identifying the combinations of the six classroom parameters (height,
width, color hue, color saturation, color temperature, and lighting) that provide the best
results for memory and attention performance and preference was addressed by modeling
a MOILP problem designed to optimize these functions. It should be noted that the aim is to
maximize the memory and preference values and minimize the attention values. Therefore,
equality Maximize f (x) = −Minimize (− f (x)) is used for the attention function. With this
equation, all the functions can be maximized.

Taking into account the information given in Section 3.3.1, the ideal MOILP problem
should consider 5760 binary variables, each one corresponding to a different combination
of color hue, color saturation, lighting, color temperature, height, and width. Its aim should
be maximizing the three-dimensional vector corresponding to the average (normalized)
results of memory, attention, and preference obtained for each one of the 5760 combinations.
However, to pose and solve this problem is practically impossible due to the data collection
time (more than 14,400 h) and to the number of variables. Instead, a more realistic situation
is to consider the 56 variables introduced in Section 3.3.1 and detailed in Section 3.5 so
that the three-dimensional vector to maximize has as components the sum of the means
of the results of memory, the sum of the means of the results of attention, and the sum
of the means of the results of preference (always normalized values) for each one of the
12 combinations of lighting and color temperature, 24 combinations of height and width,
and 20 combinations of color hue and color saturation (a total of 56 combinations).

Therefore, using the notation given in Section 3.5, the following MOILP problem
was formulated:
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Maximize

(
3
∑

i=1

4
∑

j=1
mx

i,j·xi,j +
4
∑

i=1

6
∑

j=1
my

i,j·yi,j +
10
∑

i=1

2
∑

j=1
mz

i,j·zi,j,

−
3
∑

i=1

4
∑

j=1
ax

i,j·xi,j −
4
∑

i=1

6
∑

j=1
ay

i,j·yi,j −
10
∑

i=1

2
∑

j=1
az

i,j·zi,j,

3
∑

i=1

4
∑

j=1
px

i,j·xi,j +
4
∑

i=1

6
∑

j=1
py

i,jyi,j +
10
∑

i=1

2
∑

j=1
pz

i,j·zi,j

) (1)

s.t:
3

∑
i=1

4

∑
j=1

xi,j = 1 (2)

4

∑
i=1

6

∑
j=1

yi,j = 1 (3)

10

∑
i=1

2

∑
j=1

zi,j = 1 (4)

3

∑
i=1

4

∑
j=1

mx
i,j·xi,j +

4

∑
i=1

6

∑
j=1

my
i,j·yi,j +

10

∑
i=1

2

∑
j=1

mz
i,j·zi,j ≥ mx + my + mz (5)

−
3

∑
i=1

4

∑
j=1

ax
i,j·xi,j −

4

∑
i=1

6

∑
j=1

ay
i,j·yi,j −

10

∑
i=1

2

∑
j=1

az
i,j·zi,j ≥ −ax − ay − az (6)

3

∑
i=1

4

∑
j=1

px
i,j·xi,j +

4

∑
i=1

6

∑
j=1

py
i,j·yi,j +

10

∑
i=1

2

∑
j=1

pz
i,j·zi,j ≥ px + py + pz (7)

xi,j , yi,j, zi,j ∈ {0, 1} ∀ i, j (8)

where:
Equation (1) represents the multi-objective function, that is, the vector with compo-

nents students’ memory, attention, and preference.
Equations (2)–(4) guarantee that each classroom is composed of a single parameter of

illuminance and temperature in terms of lighting, height, and width (in terms of size) and
a single parameter of hue and saturation (in terms of wall color), respectively.

Equations (5)–(7) ensure that the total memory value is higher than the sum of the
memory means, the total attention value is higher than the sum of the attention means,
and the total preference value is higher than the sum of the preference means, respectively.
Note that these three inequations represent the logical lower bounds for the functions, and
they can be changed for other more (or less) demanding inequations [11]. The reason why
these three restrictions were included in the formulation will be discussed later.

Equation (8) defines the problem variables as binaries.
Other linear restrictions could be added to the formulation if considered opportune.

Moreover, it is obvious that this formulation can be extended to a more general formulation,
with general bounds for i and j in each case, to more objective functions and to more
variable types.

As stated in Section 1, there are several ways to obtain the set of efficient solutions
to a MOILP problem. In this case, the following scalarization of the MOILP problem
was used: Given λ1, λ2, λ3 ∈ R+ with λ1 + λ2 + λ3 = 100 and ba, bm, bp ∈ R with
ba ≥ −ax − ay − az, bm ≥ mx + my + mz and bp ≥ px + py + pz, the optimal solutions
corresponding to each ILP problem formulated as follows are efficient solutions to the
MOILP problem [11], with objective function given by Equation (9) and restrictions given
by Equations (2)–(4), (8) and (10)–(12).
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Maximize λ1

(
3
∑

i=1

4
∑

j=1
mx

i,j·xi,j +
4
∑

i=1

6
∑

j=1
my

i,j·yi,j +
10
∑

i=1

2
∑

j=1
mz

i,j·zi,j

)

+ λ2

(
−

3
∑

i=1

4
∑

j=1
ax

i,j·xi,j −
4
∑

i=1

6
∑

j=1
ay

i,j·yi,j −
10
∑

i=1

2
∑

j=1
az

i,j·zi,j

)

+ λ3

(
3
∑

i=1

4
∑

j=1
px

i,j·xi,j +
4
∑

i=1

6
∑

j=1
py

i,jyi,j +
10
∑

i=1

2
∑

j=1
pz

i,j·zi,j

) (9)

3

∑
i=1

4

∑
j=1

mx
i,j·xi,j +

4

∑
i=1

6

∑
j=1

my
i,j·yi,j +

10

∑
i=1

2

∑
j=1

mz
i,j·zi,j ≥ bm (10)

−
3

∑
i=1

4

∑
j=1

ax
i,j·xi,j −

4

∑
i=1

6

∑
j=1

ay
i,j·yi,j −

10

∑
i=1

2

∑
j=1

az
i,j·zi,j ≥ ba (11)

3

∑
i=1

4

∑
j=1

px
i,j·xi,j +

4

∑
i=1

6

∑
j=1

py
i,j·yi,j +

10

∑
i=1

2

∑
j=1

pz
i,j·zi,j ≥ bl (12)

Note that Equations (5)–(7) are particular cases of Equations (10)–(12), respectively.
This is the fact by which they have been considered in the formulation of the problem.
Therefore, from a theoretical point of view, solving a MOILP problem involves solving
infinite ILP problems, as shown above (one for each combination of λ1, λ2, λ3, ba, bm and bp).
However, it is likely that the vast majority of these ILP problems will have the same optimal
solutions, and the total number of different efficient solutions will not be very high because
the variables are integers and particularly in this case, where they are binary.

An interactive procedure based on the scalarization described above is used here to
obtain good (according to the DM), efficient solutions to the MOILP problem. As usual
with this method, a subset of efficient solutions is generated, and from this subset, the DM
draws conclusions and proposes, for instance, new bounds for the objective functions to
generate a new subset of efficient solutions, which are in turn analyzed by the DM and so
on, until the DM decides which are the most efficient solutions to the MOILP.

The proposed heuristic is shown below. This procedure does not guarantee identifica-
tion of the complete set of efficient solutions, but based on the problem’s characteristics, it
is expected that it will obtain a representative set of solutions.

Heuristic:
Step 1. For each combination of even numbers λ1, λ2, λ3 ∈ N+ with λ1 +λ2 +λ3 = 100

(1176 ILP combinations), solve (with Mathematica v12.1) the ILP problem with Equation (9)
as the objective function, using the restrictions of Equations (2)–(8). Solve the same problem
but with λ1 = λ2 = λ3 = 100/3 (the same weight for all three objective functions). The
DM assesses the set of optimal solutions obtained (all of them are efficient solutions to the
MOILP problem) and makes decisions, such as removing from the list of solutions those
not considered adequate, and establishes (increases or decreases) the percentile to be used
in Step 2.

Step 2. Repeat Step 1, changing the right-hand side of Equations (5)–(7) by the
percentile i provided by the DM of the list of 1177 non-dominated objective vectors corre-
sponding to each objective function (in the first execution of Step 1). The new solutions
obtained are saved (although sometimes no solution is obtained). This step is repeated
until no further solutions emerge, and all the percentiles j with j < i have been considered
along the heuristic or until the DM decides that even if more solutions may exist, it is not
important to identify them.

Step 3. The DM draws conclusions about those efficient solutions obtained in the
process that remain in the list.

The criteria to be used by the DM to remove or maintain efficient solutions in the list
in Step 2 and to decide which are the best solutions in Step 3 depend on the situation. Thus,
in general, the classroom will be designed to take account of all three cognitive processes
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(memory, attention, and preference), but it is possible that, in circumstances in which a
high cognitive load is required, such as taking an exam, the DM will choose a criterion
prioritizing memory and attention over preference.

To give a general idea of how the heuristic works, in Step 2, the lower bounds for the
values of the objective functions vary; these variations are the percentiles of the 1177 initial
solutions. The higher the percentile, the greater the requirement for the objective functions.
If, for instance, the DM introduces a high percentile, and none of the 1177 ILP problems
has a feasible solution, during the next Step 2 run, the DM might lower the percentile to try
to obtain new solutions or even to terminate the process. The number of iterations will be
finite, as it is obvious that from a certain percentile (unknown a priori), no new solutions
will be found.

Note that, in each iteration, the proposed heuristic must optimally solve 1177 ILP
problems, each of which theoretically has exponential complexity. Therefore, from a
computational viewpoint, this is a complex heuristic; but the Mathematica V.12 tool has
been shown to be very effective in this regard. This fact, together with the simplicity of the
alternation and connection between the computation phases and the intervention phases of
the DM, has prompted the authors of the present study to opt for this heuristic although,
obviously, other procedures could have been applied to obtain a reasonable set of “good”,
efficient solutions to the MOILP problem here formulated.

5. Results

The results obtained by the heuristic are shown in Table 5. On the 1st run of Step
1, only 10 efficient solutions were obtained from the 1177 ILP problems. This caused the
DM to adopt a conservative stance and advance from percentile to percentile. The DM
decided not to discard any of the 10 solutions and to apply the 1st percentile in the 1st run
of Step 2. On the 2nd run of Step 1, seven efficient solutions to the MOILP problem were
obtained from the new 1177 ILP problems, only two of which were new. The DM decided
not to discard any of the 12 solutions and applied the 2nd percentile in the 2nd run of
Step 2. Only two efficient solutions were obtained during the 3rd run of Step 1 from the
new 1177 ILP problems, only one of which differed from those previously obtained. The
DM decided not to discard any of the 13 solutions and applied the 3rd percentile in the
3rd run of Step 2. None of the 1177 ILP problems assessed in the 4th run of Step 1 had a
feasible solution; therefore, the heuristic procedure was terminated after the DM provided
conclusions on the 13 efficient solutions obtained (provided below).

The Mathematica software was run on a PC Intel®CoreTM I5-7500 with 3.40 GHz and
16GB RAM. The average CPU time to obtain the optimal solution on all ILP problems was
0.0035 s, with a maximum value of 0.0156 s and a minimum value of 0 s, which, according
to Mathematica’s assumptions, means that the calculation took no measurable CPU time.

Figure 2 represents the position in three-dimensional space of the points correspond-
ing to the 13 non-dominated objective vectors obtained by the heuristic. Note that the
Mathematica software automatically scales the points. Figure 3 shows the points of the
vectors of the three objective functions on the same scale. It is worth remembering that the
values entered in Equation (1) are normalized.
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Table 5. Set of efficient solutions obtained with the heuristic.

Solutions n 1 Memory Attention Preference R-h Side 2 Step 1

1 : x22 = 1, y13 = 1, z82 = 1 9 1.7955 1.0808 0.381

bm = −0.1218;
ba = −0.1244;

bp = 0.0686
1st run

2 : x22 = 1, y31 = 1, z42 = 1 200 0.4143 2.0515 3.0714
3 : x22 = 1, y31 = 1, z82 = 1 55 1.5787 1.5207 0.381
4 : x32 = 1, y13 = 1, z11 = 1 50 1.8477 0.3644 2.1942
5 : x32 = 1, y13 = 1, z42 = 1 108 0.7421 1.0924 4.3846
6 : x32 = 1, y13 = 1, z82 = 1 86 1.9065 0.5616 1.6942
7 : x32 = 1, y13 = 1, z92 = 1 121 1.1756 0.5076 4.0989
8 : x32 = 1, y31 = 1, z42 = 1 527 0.5253 1.5323 4.3846
9 : x32 = 1, y31 = 1, z82 = 1 18 1.6897 1.0015 1.6942
10 : x32 = 1, y31 = 1, z92 = 1 3 0.9588 0.9475 4.0989

11 : x22 = 1, y31 = 1, z51 = 1 16 0.6593 1.5433 1.7143

bm = 0.4143;
ba = 0.5076;
bp = 1.6942

2nd run

12 : x22 = 1, y31 = 1, z92 = 1 131 0.8478 1.4667 2.7857
5 : x32 = 1, y13 = 1, z42 = 1 672 0.7421 1.0924 4.3846
6 : x32 = 1, y13 = 1, z82 = 1 140 1.9065 0.5616 1.6942
7 : x32 = 1, y13 = 1, z92 = 1 127 1.1756 0.5076 4.0989
9 : x32 = 1, y31 = 1, z82 = 1 83 1.6897 1.0015 1.6942
10 : x32 = 1, y31 = 1, z92 = 1 8 0.9588 0.9475 4.0989

10 : x32 = 1, y31 = 1, z92 = 1 1124 0.9588 0.9475 4.0989 bm = 0.5253;
ba = 0.5616;
bp = 3.0714

3rd run
13 : x32 = 1, y11 = 1, z92 = 1 53 1.0072 0.7551 3.956

1 n represents the frequency with which the solution was repeated among the 1177 possible. 2 r-h side column
shows the right-hand side values of Equations (5)–(7).
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In Step 3, the DM identified the four best solutions based on the different selection
criteria. The first criterion is to ensure that the three objective functions are broadly in
balance, that is, that one is not more salient than the others. Based on this decision, the DM
chose solutions 9 and 10. It is worth mentioning that solution 10 attached equal importance
to the three metrics (λ1 = λ2 = λ3 = 100/3) and was the most frequently cited solution to
the 1770 problems. Another possible criterion would be to prioritize memory and attention
over preference, particularly relevant in the design of classrooms where important cognitive
effort is required, such as for exams. In this case, the DM would select solutions 1 and 3.
Table 6 lists the design configurations of these four solutions.
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Table 6. Design configurations for the best solutions.

Design Parameters
Decision Criterion

Better (Memory, Attention, Preference) Better (Memory, Attention)
10 9 1 3

Lighting Color Temperature 6500 K 6500 K 6500 K 6500 K
Illuminance 100 lx 100 lx 300 lx 300 lx

Color
Hue 5PB 5P 5P 5P

Saturation low low low low

Dimension
Height 4.4 m 4.4 m 3.2 m 4.4 m
Width 8.4 m 8.4 m 6 m 8.4 m

As shown in Table 6, the best solutions have the same illumination color temperature
(6500 K) and the same wall color saturation (low). The difference between the solutions,
according to the decision criteria, is in illuminance. A higher illuminance level (300 lx) en-
hances attention and memory processes although it is regarded as less pleasant, decreasing
preference level. The solutions with the best results in attention, memory, and preference
levels (9 and 10) have the same characteristics in terms of lighting, color saturation, and di-
mension but feature different hues. On the other hand, the solutions that enhance attention
and memory feature the same configurations except in dimensions.

6. Discussion

The present study aims to identify the combination of classroom design parameters
that optimize students’ internal psychological processes by applying MOLP as an anal-
ysis method and using VR as an environmental-simulation tool. The study makes three
fundamental contributions: one methodological, one at the results level, and one at the
application level.

As for the methodological contribution, a mathematical analysis was undertaken to
complement the traditional statistical approach of the behavioral study. In this sense, this
methodology is novel and ideal for: (1) identifying the design configurations that take
into account the combination of parameters that make up spaces, as in real scenarios;
(2) optimizing several objective psychological metrics, which is of special interest for multi-
functional spaces; and (3) considering the judgement of an expert, which is important in
human behavior studies.

The results of the present study provided a small set of efficient solutions to be
evaluated by the DM. As shown in Table 5, there are two possible selection criteria. On
the one hand, taking into account the three cognitive processes, the DM would select
solutions 10 and 9, which combine dimensions of 4.4 m height and 8.4 m width, interior
artificial lighting of 6500 K and 100 lx, and low-saturation blue or purple wall color. These
solutions are suitable, as they maintain a high level of preference and the best combination
of attention and memory levels. Moreover, solution 10 gives all three psychological metrics
equal importance (λ1 = λ2 = λ3 = 100/3). Another possible criterion would be to
prioritize memory and attention over preference given their importance in learning [28,29].
Both are important for class sessions with activities that require different levels of cognitive
load, such as taking exams [75], undertaking projects [76], and teaching through alternative
educational methodologies, such as the flipped classroom [77]. In this case, the DM would
choose solutions 1 and 3, which combine interior artificial lighting of 6500 K and 300 lx,
low-saturation purple wall color, and dimensions of 3.2 m height and 6 m width or 4.4 m
height and 8.4 m width. These solutions, while subject to the constraints of the model,
are efficient for this set of cognitive processes; while they present the lowest preference
values, they achieved the highest values in the combination of attention and memory. The
preference–performance relationship has been examined in many studies, but no conclusive
results have been achieved. Some authors have negatively correlated the two [65], and
others have done so positively [78].
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In any case, this research provides concrete design results to consider. The benefit
of using a color temperature of 6500 K was clear for attention, memory, and preference.
In addition, some authors have observed that blue-enriched white light has a positive
effect on performance [58,79]. The combination of high lighting color temperature (6500 K)
and low illuminance (100 lx and 300 lx) was common to all 13 solutions. Several authors
have shown that lower illuminance improves cognitive performance [80,81]. This lighting
effect is repeated with color. Virtually all the solutions featured low-saturation colors.
Similarly, Kwallek et al. [49] observed that fewer errors were made in performance tasks in
environments with colors of saturations similar to or lower than those used in the present
study. The solutions included both cold and warm hues. On this issue, the literature is
conflicting. Some authors, for example, Mahnke [82], have argued that better academic
performance is achieved with blue colors in high/secondary school classrooms, while
Barret [83] observed that warm-hue colors are more appropriate for senior grades and that
cold-hue colors are more appropriate for junior grades. As to the dimensions contextual
key, in no case did lower ceilings (2.4 m) or narrow classrooms (3.6 m) improve student
performance. Specifically, heights between 3.2 m and 4.4 m and widths between 6 m
and 8.4 m provided efficient solutions. This outcome may be consistent with the results
obtained by Vartanian et al. [84], in which high ceilings were evaluated as more beautiful
than low ceilings because they expanded the viewers’ fields of view.

Regarding the application contribution, this article connects two different fields of
study: architecture and psychology. In general, from the architectural perspective, studies
have analyzed human responses to built spaces taking preference as the main decision-
making criterion [85,86] and used psychological metrics other than task performance, that
is, through self-reports [62,87]; this may be a limited approach. The present study proposes
using environmental preferences (typical in architectural studies) and the results of tests
analyzing cognitive processes (typical in psychology studies) to bridge the gap between
the two disciplines.

7. Conclusions and Future Research

This study addresses the complexity of the analysis of the effects of classroom environ-
ments on subjects. This complexity drives the need to analyze the various environmental
characteristics of classrooms and the cognitive processes involved in learning. This process
requires the application of techniques that can simultaneously analyze a large number of
variables. In the present study, the MOLP analysis technique was applied to optimize this
set of variables. The advantages of this method for this work are: (1) it takes into account
the interdependencies between classroom characteristics; (2) it maximizes the levels of the
cognitive processes attention, memory, and preference; and (3) it provides several efficient
solutions to allow the DM to select the most appropriate depending on the situation. In this
case, the best solutions share interior artificial lighting of 6500 K and low-saturation wall
colors. If the DM wants to achieve high levels in the three psychological metrics (memory,
attention, and preference), the classroom should also be 4.4 m high and 8.4 m wide and
have 100 lx of lighting and blue or purple wall color. If, on the other hand, the requirement
is to enhance only the cognitive functions of attention and memory, the DM will choose a
classroom combining 300 lx and low-saturation purple wall color, with dimensions of 3.2 m
height and 6 m width or 4.4 m height and 8.4 m width. These results may be of interest to
researchers and professionals involved in the design of educational centers.

Finally, as for future research lines, three aspects should be considered. First, the
present study used auditory tasks to examine the processing of classroom characteristics.
In future works, it would be interesting to include other types of tasks, as information
processing through other sensory pathways requires different neural bases [88–90]. Second,
regarding the stimuli presented, it would be interesting to address the influence of multi-
sensory contextual cues [91]. Synergies between interior design parameters may involve
senses other than sight, such as auditory and tactile temperature receptors [46]. Third,
regarding the sample, it would be interesting to analyze whether differences exist between
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men and women [92,93]. In all these lines, MOILP analyses with appropriate interactive
methods can help researchers to obtain good results.
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