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Abstract We present a model for incompressible fi-
nite strain orthotropic hyperelasticity using logarithmic
strains. The model does not have a prescribed shape.

Instead, the energy function shape and the material
data of the model are obtained solving the equilibrium
equations of the different experiments. As a result the

model almost exactly replicates the given experimental
data for all six tests needed to completely define our
nonlinear orthotropic material. We derive the constitu-

tive tensor and demonstrate the efficiency of the finite
element implementation for complex loading situations.

Keywords Hyperelasticity · Incompressible or-

thotropic materials · Finite Elements · Living tissues ·
Rubber-like materials

1 Introduction

In the mechanics of deformation of solids, large strain
kinematics introduce many difficulties. The first one is
the consideration of the adequate strain and stress mea-

sures over which to build the constitutive model that
represents the behavior of the solid for the problem at
hand [1], [2], [3]. Even though once a strain measure is

obtained any other strain measure may be readily ob-
tained from the former one [4], [5], the structure of a
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constitutive equation based on a specific measure im-
plies some hypothesis over the behavior predicted by
the model, not only on the form of the stress-strain

curves but also on the form of the coupling between
components [3]. The second type of consideration re-
lates to the physical and mathematical correctness of

the derived constitutive equations which in the small
strains context are almost given for granted. For exam-
ple, in large strain elasticity, care must be exercised in

order to preserve energy during closed cycles [6]. Hence,
the use of hyperelastic models in nonlinear elasticity is
nowadays rather standard in computational mechanics

[1].

Hyperelastic behavior is truly elastic because en-

ergy is exactly preserved in conservative systems [6].
The reason is that hyperelasticity assumes the existence
of a stored energy function (a model) of the total de-

formations. The key for energy preservation is at the
same time the reason of the main difficulty. Stored ener-
gies cannot be measured. Hence, a specific function de-

pendency must be assumed (i.e. a hyperelastic model).
From the derivative of such function, stresses are ob-
tained for a given strain tensor. Of course the resulting

stress-strain relation may, or may not be close to the ac-
tual behavior of the material at hand. Therefore, many
different stored energy functions have been proposed for

different classes of materials. For isotropic materials the
models of Ogden [7], Mooney [8] and Rivlin [9], Blatz
and Ko [10], Yeoh [11] and Arruda and Boyce [12] are

well known. Ogden’s proposal [7] is a very commonly
used model because a variable number of parameters
may be obtained by an optimization algorithm [13], [3]

in order to very closely capture the global behavior of
most isotropic nonlinear elastic materials. For trans-
versely isotropic materials or orthotropic materials the

situation is not so optimal. Some models have been pro-
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posed for transversely isotropic materials [14], [15] and

for orthotropic materials [16], [17], [18]. However, the
results are not so successful as for the isotropic case.

A significative change in the way the problem is ad-
dressed is given in the work of Sussman and Bathe [19].
In their work, instead of directly assuming a stored en-

ergy function form (i.e. the shape) they interpolate ex-
perimental stress-strain data. In order to interpolate
such data they use cubic splines. The key to the pro-

cedure is to solve the equilibrium equation of the par-
ticular experiment from which the stress-strain data is
obtained to compute the derivative of the stored energy

function at each point. Once this stored energy function
is obtained, it is of course valid in any other situation,
different from the experimental setup. The main math-

ematical difficulty is that the equilibrium equation is
nonlinear and mostly recursive. However, the use of an
inversion formula originally given by Kearsley and Za-

pas [20] provides a gate to the solution of such equation
for the isotropic incompressible case.

The work of Sussman and Bathe [19] was developed
for isotropic hyperelastic materials, where the above
mentioned material models are often considered sat-

isfactory if an adequate parameter fitting procedure
is performed. However, the methodology is more far
reaching because it can be extended both to incom-

pressible transversely isotropic materials [21] and to in-
compressible orthotropic materials under some condi-
tions. For these materials, less satisfactory constitutive

models are available, so the contribution for these two
classes of materials is important, specially if the exper-
imental stress-strain data is “exactly” predicted by the

model. In summary, it is a WYPIWYG (What-You-
Prescribe-Is-What-You-Get) procedure or model.

The extension of the Sussman-Bathe model to in-
compressible transversely isotropic materials and in-
compressible orthotropic materials is by no means ev-

ident. The number of experimental curves to prescribe
and to be reproduced by this type of models is three
for the transversely isotropic model and six for the or-

thotropic model. Thus, the number of distinct equilib-
rium equation sets from experiments is three and six
respectively. Furthermore, the lack of isotropy invali-

dates the original inversion formula of Kearsley and Za-
pas [20], which must be reformulated for a more general
case [21]. The procedure also requires some stored en-

ergy uncoupling hypothesis in the spirit of (but different
from) the Valanis-Landel hypothesis. For such hypothe-
sis, the use of logarithmic strain measures and a proper

understanding of their components is evident [22]. In
Reference [21] we developed the procedure for trans-
versely isotropic materials, where the excellent capabil-

ity of the model to predict actual experimental behavior

was apparent. The purpose of the present manuscript

is to extend the procedure to the even more complex
orthotropic case.

The layout of the manuscript is as follows. First, in

order to bring the manuscript as self-contained as pos-
sible, we briefly review the piecewise nonuniform spline
interpolation (which slightly differs from the one pre-

sented in Ref. [21]), the new inversion formula and the
uncoupled form of the stored energy function that we
propose for the orthotropic case. We also pay special

attention to the logarithmic strain and stress measures
employed in our orthotropic model. Once the basic in-
gredients of the formulation have been introduced, we

describe the procedure for obtaining the different terms
of the stored energy from stress-strain experimental
data taken from different typical sets of experiments.

Then, through some examples we show the predictive
capabilities of the model. Finally, we include an aca-
demic example to show the finite element implementa-

tion of the model and the efficiency of the algorithm in
complex loading situations.

2 Building blocks

In this section we introduce the basic ingredients of
the formulation which will be used in the remaining
part of the paper. The understanding of these “building

blocks” is crucial to understand the overall procedure.

2.1 Spline-based piecewise interpolation used in the
model

All the functions of the model presented in this work are
built using a spline-based interpolation methodology.

The aim of this subsection is to show how to interpolate
a set of experimental data points using piecewise cubic
splines. The procedure detailed herein is valid for non-

uniform subintervals, hence it is more general than the
one presented in Ref. [21]. Evidently, for equally spaced
points (abscissae), both procedures coincide.

Let {xi, yi}, with i = 1, ..., N + 1, be the set of
points to be interpolated, where xi usually corresponds
to strain measures and yi to stress measures. Cubic

splines interpolate these points by means of cubic poly-
nomials, which will be enforced to fulfill some smooth-
ness conditions. For each subinterval [xi, xi+1], a new

normalized variable ξ = (x− xi) / (xi+1 − xi) is used,
so each one of the interpolating polynomials, i.e. Pi (ξ)
with i = 1, ..., N , is defined in the corresponding uni-

form unit-length subinterval [ξi, ξi+1] = [0, 1]. The cu-
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bic polynomial defined within the ith subinterval is

Pi (ξ) = ai + biξi + ciξ
2
i + diξ

3
i

0 ≤ ξ ≤ 1 i = 1, ..., N
(1)

The piecewise function, formed by N splines, has
to fulfill several requirements. These requirements, to-

gether with two extra end conditions, will let us cal-
culate the 4 × N polynomial coefficients. First of all,
simply make

ai = yi , i = 1, ..., N

aN + bN + cN + dN = yN+1

(2)

so that the resulting function exactly passes through the

measured data points. Aside, continuity of the function
at each break point xi implies that

ai−1 + bi−1 + ci−1 + di−1 = ai , i = 2, ..., N (3)

Continuity of the first and second derivatives of the

spline-based function provides

bi−1 + 2ci−1 + 3di−1

hi−1
=

bi
hi

, i = 2, ..., N (4)

2ci−1 + 6di−1

h2
i−1

=
2ci
h2
i

, i = 2, ..., N (5)

where hi = xi+1 − xi is the length of the subinter-

val [xi, xi+1] and appears in the two previous equations
because the smoothness requirements must be imposed
to the derivatives of the interpolating function with re-

spect to x. Note that for equally spaced subintervals,
hi is the same for i = 1, ..., N and the equations and
the procedure detailed in Ref. [21] are recovered. How-

ever, using the present procedure the intervals do not
have to be equal in length. At this point, only two more
equations are needed to close the system. Several end

conditions can be used, such as prescribing the value of
the first or second derivatives at both ends or imposing
any specific requirement to the first and last polyno-

mial. The usual approach is to simply make the second
derivative of the 1st and Nth splines equal to zero at x1

and xN+1, respectively (which is known as “natural”

end condition), or also impose third-derivative conti-
nuity between the first and second splines at x2 and
between the second to last and last splines at xN . For

this last case, the first (or last) two splines represent the
same cubic polynomial, hence the name “not-a-knot”.

To solve these equations, first note that from Eqs.

(3) and (4) we can obtain

ci−1 = 3 (yi − yi−1)− 2Yi−1 −
hi−1

hi
Yi

di−1 = −2 (yi − yi−1) + Yi−1 +
hi−1

hi
Yi

 i = 2, ..., N

(6)

where Eq. (2)1 has been used and we have denoted bi =

Yi. The substitution of these two last expressions in Eqs.
(5) provides the following N−1 (i = 2, ..., N) equations

h2
i

h2
i−1

Yi−1 + 2

(
hi

hi−1
+ 1

)
Yi +

hi

hi+1
Yi+1 =

= −3
h2
i

h2
i−1

yi−1 + 3

(
h2
i

h2
i−1

− 1

)
yi + 3yi+1

(7)

where the unknowns are the N+1 values Yi. The equa-
tions for i = 1 and i = N + 1 are obtained from the

selected type of end conditions. For example, for “nat-
ural” end conditions these two equations are

2Y1 +
h1

h2
Y2 = 3 (y2 − y1) (8)

YN + 2
hN

hN+1
YN+1 = 3 (yN+1 − yN ) (9)

Once the values Y1, ..., YN+1 are calculated from the
previous linear system (or any other for different end

conditions), Equations (6) evaluated for i = 2, ..., N +1
provide the remaining spline coefficients c1, ..., cN and
d1, ..., dN . Finally, we note that the value assigned

to hN+1, which appears in the previous equations and
which is initially unknown, is arbitrary and that the so-
lution coefficients obtained are independent of the se-

lected value for hN+1. One possible choice is just to
take hN+1 = hN .

2.2 The inversion formula

In this paper we will have to solve a particular type

of equations in which the unknown function cannot di-
rectly be factored out. In these cases, an “inversion for-
mula” (see Refs. [19], [21]) is to be used.

The type of these specific equations is as follows.

Consider two known functions f (x) and y (x), which
relates to another unknown function g (x) through the
following equation

f (x) = g (x)− g (y (x)) (10)

all the functions being continuous in all the domain of
interest. Then, obviously

f (x) = g (x)− g (y (x)) (11)

f (y (x)) = g (y (x))− g
(
y(2) (x)

)
(12)

...

f
(
y(K) (x)

)
= g

(
y(K) (x)

)
− g

(
y(K+1) (x)

)
(13)
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where the notation y(k) (x) has been used to denote the

kth recursive composition of function y (x), that is

y(k) (x) = y(y(...(y︸ ︷︷ ︸
k

(x))...)) k ≥ 1 (14)

For k = 0, the convention y(0) (x) = x is taken.

The sum of both sides of the set of Eqs. (11)–(13)
provides the still implicit relation

K∑
k=0

f
(
y(k) (x)

)
= g (x)− g

(
y(K+1) (x)

)
(15)

which yields an explicit, useful, solution for g (x) if

lim
K→∞

g
(
y(K) (x)

)
= 0, i.e.

g (x) =
∞∑
k=0

f
(
y(k) (x)

)
(16)

As we will see below, the functions f (x), y (x) and g (x)

that we will employ are such that f (0) = 0, |y (x)| < |x|
and g (0) = 0. Therefore, g

(
y(∞) (x)

)
= g (0) = 0 and

Eq. (16) can effectively be regarded an exact solution

of Eq. (10).

The elegant form Eq. (16) is due to Sussman, who
improved our original proposal (Ref. [21]).

2.3 Assumed uncoupled decomposition of the stored

energy function

In Ref. [21], motivated by the initial work of Sussman

and Bathe for incompressible isotropic hyperelastic ma-
terials [19], we present a spline-based strain energy de-
scription separable in terms of logarithmic strains to

model isochoric transversely isotropic materials. In that
work, we take advantage of the assumed additive de-
composition of the stored energy function, the spline

interpolation methodology and the application of the
inversion formula, to reproduce very accurately (ex-
actly in practical cases) the measured stress-strain data

points obtained from experiments. Several possibilities
of user-prescribed experimental curves are allowed as
input data to define the model, which are properly ad-

dressed therein.

In this subsection, we extend the uncoupled formu-
lation presented in Ref. [21] to orthotropic symmetry

conditions. We will see within next sections that, with
the proposed extension, the model is capable of pro-
viding a very good fitting for a set of six experimental

curves, which will be used to entirely define our or-
thotropic model.

The orthotropic nature of a material is character-

ized by the existence of three orthogonal symmetry

planes with respect to which the mechanical behavior

of the material preserves the symmetries. The unit nor-
mal vectors to those planes form a right-handed basis
Xpr = {e1, e2, e3} = {a0, b0, c0} defining the preferred

orthotropic directions in the reference material config-
uration. Obviously, this direction dependence has to be
included into the energy function for these type of mate-

rials in order to be able to reproduce the corresponding
symmetries and to fulfill the required invariance prin-
ciples. Since c0 = a0 × b0, the explicit dependence

of the hyperelastic strain energy function reduces to
W (E,a0, b0), where in our case E is the material log-
arithmic (Hencky) strain tensor for the considered iso-

choric deformation, and W (E,a0, b0) can be regarded
a function of seven invariants expressed in terms of the
components of E in the preferred orthotropy directions

Xpr (cf. Ref. [3]), that is

W = W(E11, E22, E33, E
2
12, E

2
23, E

2
31, E12E23E31) (17)

where Eij = ei · Eej , with i, j = {1, 2, 3}. Due to the
incompressibility constraint tr(E) = E : I = E11 +

E22 + E33 = 0 and the list of independent invariants
reduces to six. The fully uncoupled decomposition of
the strain energy function that we propose is separable

in terms of six of these seven invariants and it reads

W = ω11 (E11) + ω22 (E22) + ω33 (E33)+

+2ω12 (E12) + 2ω23 (E23) + 2ω31 (E31)
(18)

where the terms ωij for i ̸= j are required to be symmet-
ric functions and where the dependence on the shear-
strain-coupled-invariantE12E23E31 is not included. The

six different functions involved in Eq. (18) can be deter-
mined from a proper set of six user-prescribed curves
obtained from experimental testing, as it is explained

below. Regarding this decomposition, note that the num-
ber of (initially unknown) independent functions coin-
cide with the number of independent material parame-

ters which define the fully uncoupled isochoric behavior
of orthotropic materials within the small strain frame-
work. Also, it can be observed that for finite deforma-

tions in which the principal directions of strain are co-
incident with the preferred material directions, Eq. (18)
reduces to

W = ω11 (E1) + ω22 (E2) + ω33 (E3) (19)

which can be considered a generalization of the Valanis-
Landel hypothesis (see Refs. [23], [3]) applicable to in-
compressible orthotropic hyperelastic materials. Advan-

tage of this fact can be taken in order to isolate the
components of the strain energy function (we note that
the adoption of the form of Eq. (18) means a special

(un)coupling of the different terms). However, a further
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motivation for the choice of the decomposition given in

Eq. (18) (additive, with uncoupled addends in terms
of logarithmic strain components and non-dependent
on E12E23E31) will be apparent in Section 4.1, where

we show that it exactly applies in some specific cases.
Then in Sections 4.2 and 4.3, we show the very good
prediction capability of this model. For the sake of sim-

plicity, symmetry considerations in Eq. (18) have not
been explicitly written. We take them into considera-
tion in Section 2.5, where the spectral decomposition

of second-order stress tensors and fourth-order elastic-
ity tensors are obtained.

2.4 The stress tensor work-conjugate to the

logarithmic strain tensor

Let 0V and tV be the original volume and deformed vol-

ume at time t of a body, respectively. A point represent-
ing an infinitesimal volume is denoted in the reference
configuration by 0x, and in the current configuration

by

tx = 0x+ tu (20)

where tu are the displacements at time t. The deforma-

tion gradient is defined by

t
0X =

∂tx

∂0x
(21)

—note that frequently this tensor is denoted by F but
we use the notation of Refs. [1] and [2]. Consider also
the Right Polar Decomposition of the deformation gra-

dient

t
0X = t

0R
t
0U (22)

where t
0R is the rotation tensor and t

0U is the material

stretch tensor. Work conjugacy may be very easily mo-
tivated by the existence of a stored energy W per unit
reference volume 0V and by the mechanical power con-

servation principle (in the equations to follow we omit
the time left-indices)

P = Ẇ = S : Ȧ = T : Ė (23)

whereA = 1/2(XTX−I) is the Green-Lagrange strain
tensor, S = ∂W/∂A is the Second Piola Kirchhoff
stress tensor,E = lnU is the already mentioned Hencky

strain tensor and T = ∂W/∂E is the Generalized Kirch-
hoff stress tensor, which is work-conjugate of E in the
most general anisotropic case. Note that the preferred

directions {a0, b0, c0} are assumed to remain constant
in the material configuration and that possible addi-
tional terms to be considered in Eq. (23) due to the ro-

tation of the anisotropy axes are not considered herein.

For a detailed understanding of these additional terms

in the context of large strain anisotropic elastoplastic-
ity, the reader is referred to Refs. [4] and [24].

There exist a mapping between the stress tensors S

and T . This mapping can be easily obtained from the
comparison of tensors Ȧ and Ė expressed in spectral
form, which yields (cf. Ref. [5])

Ȧ =
∂A

∂E
: Ė = MȦ

Ė
: Ė (24)

∂A

∂E
= MȦ

Ė
=

3∑
i=1

λ2
i M i ⊗M i+

+
3∑

i=1

∑
j ̸=i

λ2
j − λ2

i

2 (lnλj − lnλi)
MS

ij ⊗MS
ij

(25)

where λi are the principal stretches and

MS
ij =

1

2
(N i ⊗N j +N j ⊗N i) = MS

ji (26)

M i = MS
ii = N i ⊗N i (27)

are expressed in terms of the principal directions of de-

formation in the material description N i. Note that the

tensor MȦ
Ė

has minor and major symmetries and can,

therefore, be stored in the common compact form used
for constitutive tensors. For the special case of λi = λj

for i ̸= j, the following result is to be used

lim
λj→λi

λ2
j − λ2

i

2 (lnλj − lnλi)
= λ2

i (28)

Hence, using Eqs. (23) and (24) we obtain

S :

(
MȦ
Ė

: Ė

)
=

(
S : MȦ

Ė

)
: Ė = T : Ė ⇒

⇒ T = S : MȦ
Ė

= MȦ
Ė

: S

(29)

A relationship between the Generalized Kirchhoff
stress tensor T and the rotated Kirchhoff stress tensor
τ̄ = RT τR (τ = Jσ being the Kirchhoff stress tensor,

J = detX the jacobian determinant of the deformation
and σ the Cauchy stress tensor) is obtained if we re-
write the stress power, Equation (23), as

P = Ẇ = T : Ė = τ̄ : d̄ (30)

where d̄ = RTdR is the rotated deformation rate ten-
sor, which is power-conjugate of τ̄ . Since d = X−T ȦX

−1

then

d̄ = Md̄
Ȧ

: Ȧ (31)
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where the full symmetric fourth-order mapping tensor

Md̄
Ȧ

is

(
Md̄
Ȧ

)
ijkl

=
1

2

(
U−1
ik U−1

jl + U−1
il U−1

jk

)
(32)

The spectral decomposition of the tensor Md̄
Ȧ

may be

readily obtained from Eq. (32) using the components of
U−1 in the Lagrangian basis, giving as a result

Md̄
Ȧ

=
3∑

i=1

3∑
j=1

λ−1
i λ−1

j MS
ij ⊗MS

ij (33)

By simply substitution of Eqs. (31), first, and (24),
then, in Eq. (30) we obtain

τ̄ : d̄ = τ̄ :

(
Md̄
Ȧ

: Ȧ

)
=

(
τ̄ : Md̄

Ė

)
: Ė (34)

where the geometric mapping tensor Md̄
Ė

= Md̄
Ȧ

: MȦ
Ė

obtained from the spectral forms of Md̄
Ȧ

and MȦ
Ė

is

Md̄
Ė

=
3∑

i=1

M i ⊗M i+

+

3∑
i=1

∑
j ̸=i

λ2
j − λ2

i

2λiλj (lnλj − lnλi)
MS

ij ⊗MS
ij

(35)

with

lim
λj→λi

λ2
j − λ2

i

2λiλj (lnλj − lnλi)
= 1 (36)

The comparison of Eqs. (30) and (34) provides

T = τ̄ : Md̄
Ė

= Md̄
Ė

: τ̄ (37)

Finally, projecting T and τ̄ in the principal material
strain directions N i and combining Eqs. (35) and (37),
we get the following useful relations between the com-

ponents of both tensors in the Lagrangian strain basis

Tij = τ̄ij if i = j

Tij =
λ2
j − λ2

i

2λiλj (lnλj − lnλi)
τ̄ij if i ̸= j

(38)

2.5 Elastic tangent moduli

The model presented in Section 2.3 is well suited to be
implemented in a Finite Element Analysis code. Fre-

quently, the treatment of the incompressible hyperelas-
tic model is based on a penalty method in which a rela-
tively high volumetric stiffness contribution is added to

the isochoric strain energy function given in Eq. (18),
providing a behavior that can be considered as slightly
compressible. The value assigned to the penalty param-

eter will determine the accuracy of the results in terms
of incompressibility.

To this end, the logarithmic strain tensor E is split

into its (additive) isochoric and volumetric parts

E = Eiso +Evol (39)

Evol =
1

3
(lnJ) I =

1

3
(trE) I =

1

3
(E : I) I (40)

Eiso = E −Evol =

(
IS − 1

3
I ⊗ I

)
: E = PS : E (41)

where J = det(X) and ISijkl = 1/2 (δikδjl + δilδjk) is
the fourth-order identity tensor with minor and major
symmetries. The deviatoric projector tensor PS = IS −
1/3 (I ⊗ I), defined in terms of full symmetric tensors
IS and I ⊗ I, preserves the symmetries. The stored
energy function, represented by Ψ (E), is then written

as

Ψ (E) = W
(
Eiso,a0, b0

)
+ U (J) (42)

where W(Eiso,a0, b0), as given in Eq. (18), represents

the pure isochoric contribution to the strain energy and
U (J), for which a typical explicit form is given in the
examples below, represents the pure volumetric contri-

bution to Ψ (E).
Using the additive decomposition of Eq. (42), the

Generalized Kirchhoff stress tensor T = ∂Ψ/∂E can be

calculated as T = T iso + T vol, with

T iso =
∂W
∂E

=
∂W
∂Eiso

:
∂Eiso

∂E
=

∂W
∂Eiso

: PS (43)

T vol =
∂U
∂E

=
∂U
∂J

∂J

∂ (ln J)

∂ (ln J)

∂E
= J

dU
dJ

I (44)

The specific form of the strain energy Eq. (18) yields
the following expression for the stress-like symmetric

tensor ∂W/∂Eiso projected in the preferred orthotropic
directions Xpr = {e1, e2, e3} = {a0, b0, c0}

∂W
∂Eiso

=
3∑

i=1

3∑
j=1

dωij(E
iso
ij )

dEiso
ij

LS
ij (45)

where

LS
ij =

1

2
(ei ⊗ ej + ej ⊗ ei)
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Note that we consider the inherent (symmetry) rela-

tions 2ωij(E
iso
ij ) = ωij(E

iso
ij )+ωji(E

iso
ji ) for i ̸= j in Eq.

(18) before carrying out the differentiation ∂W/∂Eiso.
The Second Piola Kirchhoff stress tensor is obtained

from the inverse mapping of Eq. (29)

S = T :
∂E

∂A
=

∂Ψ

∂E
:
∂E

∂A
(46)

where ∂E/∂A = MĖ
Ȧ
. It is straightforward to obtain

the spectral form of this mapping tensor using Eq. (25)

and the identity MĖ
Ȧ
MȦ
Ė

= IS

∂E

∂A
= MĖ

Ȧ
=

3∑
i=1

λ−2
i M i ⊗M i+

+

3∑
i=1

∑
j ̸=i

2 (lnλj − lnλi)

λ2
j − λ2

i

MS
ij ⊗MS

ij

(47)

The elasticity tensor in the material description is then
obtained by the formal application of the chain rule
over the tensor S given in Eq. (46)

C =
∂S

∂A
=

∂E

∂A
:

∂2Ψ

∂E∂E
:
∂E

∂A
+

∂Ψ

∂E
:

∂2E

∂A∂A
(48)

which, obviously, can also be split into its isochoric and

volumetric parts C = Ciso +Cvol. Expressions for both
∂E/∂A (which major symmetry has been taken into
account in Eq. (48)) and ∂Ψ/∂E = T = T iso + T vol

have just been given above. In what follows, we provide
expressions for the remaining tensors in Eq. (48), that
is, the fourth-order moduli tensor ∂2Ψ/∂E∂E and the

sixth-order mapping tensor ∂2E/∂A∂A.
The elasticity tensor ∂2Ψ/∂E∂E is obtained from

our model by means of

∂2Ψ

∂E∂E
=

∂T

∂E
=

∂T iso

∂E
+

∂T vol

∂E
(49)

Using Eqs. (43) and (44), we get

∂T iso

∂E
=

∂2W
∂E∂E

= PS :
∂2W

∂Eiso∂Eiso
: PS (50)

∂T vol

∂E
=

∂2U
∂E∂E

=

(
J
dU
dJ

+ J2 d
2U
dJ2

)
I ⊗ I (51)

where the second gradient tensor ∂2W/∂Eiso∂Eiso can

be calculated in terms of the second derivatives of the
strain energy terms ωij , i.e.

∂2W
∂Eiso∂Eiso

=
3∑

i=1

3∑
j=1

d2ωij(E
iso
ij )

(dEiso
ij )2

LS
ij ⊗LS

ij (52)

Although full symmetries are directly imposed to the

tensor ∂2W/∂Eiso∂Eiso in Eq. (52) (by means of the

use of the basis tensors LS
ij ⊗ LS

ij), note that the iso-

choric strain energy function given in Eq. (18) would
also provide all these symmetries if its arguments were
written as Eiso

ij = (Eiso
ij +Eiso

ji )/2. However, we do not

adopt this full-symmetric notation for gaining simplic-
ity throughout the text.

The last tensorial expression we provide is that of
the sixth-order purely geometrical tensor ∂2E/∂A∂A.

This is also a (geometrical) mapping tensor, which re-
lates the rate of the mapping ∂E/∂A and the rate of
the Green-Lagrange strain tensor A, i.e.

�(
∂E

∂A

)
=

∂2E

∂A∂A
: Ȧ (53)

This sixth-order tensor can be entirely determined fol-

lowing a similar procedure to that inferred from Ref. [3]
(where the result for the sixth-order tensor ∂2A/∂U∂U
is provided), that is, by means of the comparison of

the spectral forms of the rates of both ∂E/∂A and
A. Alternatively, this tensor can be obtained by di-
rect derivation, as Miehe and Lambrecht show in Ref.

[25]. However, to be more concise, we only give herein
the expression of the second addend of Eq. (48), i.e.
T : (∂2E/∂A∂A) = (∂2E/∂A∂A) : T , which can di-

rectly (and more efficiently) be implemented in the fi-
nite elements code. Using T =

∑∑
TijM

S
ij , the fourth-

order tensor (∂2E/∂A∂A) : T is found to be

∂2E

∂A∂A
: T =

3∑
i=1

F (λi)Tii M i ⊗M i (54)

+
3∑

i=1

∑
j ̸=i

G (λi, λj)Tii M
S
ij ⊗MS

ij (55)

+
3∑

i=1

∑
j ̸=i

G (λi, λj)Tij LS
iij (56)

+
3∑

i=1

∑
j ̸=i

∑
j ̸=k ̸=i

1

2
H (λi, λj , λk)Tik LS

ijk

(57)

where

LS
ijk = MS

ij ⊗MS
jk +MS

jk ⊗MS
ij (58)

F (λi) = − 2

λ4
i

(59)

G (λi, λj) =
8 (log λj − log λi)− 4Λij/λ

2
i

Λ2
ij

(60)

H (λi, λj , λk) = 8
−Λjk log λi − Λki log λj − Λij log λk

ΛijΛjkΛki

(61)
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with Λij = λ2
j − λ2

i . From Eq. (61), it can be seen

that H (λi, λj , λk) = H (λj , λi, λk) = H (λi, λk, λj) =
H (λk, λj , λi). However, note thatG (λi, λj) ̸= G (λj , λi).
Also, it is straightforward to compute the special cases

when two or three principal stretches converge to the
same value

H (λi, λj , λk → λi) = G (λi, λj) (62)

H (λi, λj → λi, λk → λi) = G (λi, λj → λi) = F (λi)

(63)

Using the symmetric dependences ofH (λi, λj , λk), other
equivalent results to Eq. (62) hold. We note that each
term of the summation given in Eqs. (54)–(57) presents

minor and major symmetries, so the final result ob-
tained for (∂2E/∂A∂A) : T preserves them.

Hence, as a summary, the elasticity tensor C =

Ciso + Cvol is

Ciso =
∂E

∂A
:
∂T iso

∂E
:
∂E

∂A
+

∂2E

∂A∂A
: T iso (64)

Cvol =
∂E

∂A
:
∂T vol

∂E
:
∂E

∂A
+

∂2E

∂A∂A
: T vol (65)

where all the needed expressions to compute these ten-
sors are provided above.

3 Strain-energy function determination from
experimental data

In this section we explain the procedure to obtain the
different terms that are present in the isochoric strain
energy function given in Eq. (18) from experimental

measures. Some of the concepts reviewed in the pre-
vious sections will be used. As mentioned above, six
experimental curves are needed to entirely determine

the strain energy function W of Eq. (18). Three of
these curves will be used to calculate the axial terms
ωii (i = 1, 2, 3) of W using the particular case given by

Eq. (19) and the other three curves to determine the
shear terms ωij (i ̸= j).

3.1 Determination of ωii (i = 1, 2, 3)

The three longitudinal contributions ωii to the strain
energy W can be obtained from several sets of exper-
imental data points. We present here the two of them

which we consider more usual and relevant.

3.1.1 Two independent uniaxial tests in two

orthotropic directions

In this case, the experimental data points are obtained
from two tension-compression uniaxial tests performed
along two preferred directions of the material, which

we choose to be the directions e1 and e2. In both cases,
since the principal directions of deformation are the or-
thotropic material directions, all the stress and strain

tensors have the same eigenvectors, i.e. Tij = τ̄ij = 0
for i ̸= j in Eq. (38), and hence both T and τ̄ are coin-
cident in these particular load cases. Furthermore, since

the tested material is assumed to be completely incom-
pressible, the Jacobian determinant is J = λ1λ2λ3 = 1
and T is also coincident with the rotated Cauchy stress

tensor σ̄ = τ̄/J = τ̄ . Obviously, there is no rotation in
these deformation states, so R = I and σ = T .

Then, for these purely isochoric states of deforma-
tion, in which the constraint E = Eiso is enforced (note
the difference with the nearly incompressible case de-

tailed in Section 2.5), we obtain

σ = T =
∂W
∂E

+ pI (66)

where p represents a hydrostatic pressure required to
maintain incompressibility, which must be calculated by
means of equilibrium equations and proper boundary

conditions. In view of this last equation and of decom-
position Eq. (18), the principal Cauchy stresses, mea-
sured in the reference system Xpr, are

σ1 =
dω11 (E1)

dE1
+ p

σ2 =
dω22 (E2)

dE2
+ p

σ3 =
dω33 (E3)

dE3
+ p

(67)

where E1, E2 and E3 (principal logarithmic strains) are

subjected to the incompressibility condition E1 +E2 +
E3 = 0.

In what follows, we will add the superscripts 1 or 2
to the variables measured in (or associated to) the tests
performed in direction e1 or e2, respectively. The mea-

sures (pairs) to be taken from the uniaxial test in direc-
tion e1 are the axial strain-stress data points {Ẽ1

1 , σ̃
1
1}

and the longitudinal-transverse strains {Ẽ1
1 , Ẽ

1
2}. From

the second test, the strain-stress data points {Ẽ2
2 , σ̃

2
2}

are required only. The tilde decoration is used to de-
note discrete data values associated to the tests. In the

case of infinitesimal linear orthotropic elasticity, these
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experimental data points would yield the Young’s mod-

ulus EY1 and the Poisson’s ratio ν12 from the first uni-
axial test and the Young’s modulus EY2 from the sec-
ond test. Due to the incompressible behavior, the re-

maining Young’s modulus and Poisson’s ratios are no
longer arbitrary and would be easily calculated in terms
of these three independent material constants obtained

from the experiments (the corresponding relationships
are detailed in Section 4.1).

For the general case, Eqs. (67) yield for the test in

direction e1

σ̃1
1(Ẽ

1
1) =

dω11(E1)

dE1

∣∣∣∣
Ẽ1

1

+ p

0 =
dω22(E2)

dE2

∣∣∣∣
Ẽ1

2

+ p

0 =
dω33(E3)

dE3

∣∣∣∣
Ẽ1

3

+ p

(68)

where the normal Cauchy stresses in both transversal
directions have been made equal to zero and the trans-
verse strains in direction e3 are

Ẽ1
3 = −Ẽ1

1 − Ẽ1
2 (69)

which are known values obtained from the incompress-

ibility constraint Ẽ1
1 + Ẽ1

2 + Ẽ1
3 = 0. Factoring out the

pressure from Eqs. (68), they can be rewritten as

σ̃1
1(Ẽ

1
1) = ω′

11(Ẽ
1
1)− ω′

22(Ẽ
1
2) (70)

ω′
22(Ẽ

1
2) = ω′

33(Ẽ
1
3) (71)

For the test in direction e2, proceeding in the same

way as before, the corresponding equilibrium equations
are

σ̃2
2(Ẽ

2
2) = ω′

22(Ẽ
2
2)− ω′

11(Ẽ
2
1) (72)

ω′
11(Ẽ

2
1) = ω′

33(Ẽ
2
3) (73)

where in this occasion, unlike the test in direction e1,

the transverse strains Ẽ2
1 and Ẽ2

3 remain undetermined.
However, they are restricted to Ẽ2

1 + Ẽ2
2 + Ẽ2

3 = 0.
Finally, if we want our model to reproduce the third

possible uniaxial test performed on the material, i.e. in
direction e3, the compatibility equation corresponding
to this hypothetical test has to be considered, that is

ω′
11(Ẽ

3
1) = ω′

22(Ẽ
3
2) (74)

in which, again, the transverse strains Ẽ3
1 and Ẽ3

2 are

unknown, although they relate through Ẽ3
1+Ẽ3

2+Ẽ3
3 =

0. Without loss of generality, the values of the longitu-
dinal strains for this third uniaxial test may be taken

to be Ẽ3
3 = Ẽ1

1 . Note that the equilibrium equation in

direction e3 is not needed in this case because σ̃3
3(Ẽ

3
3) is

assumed to be unknown. The strain-stress distribution
σ̃3
3(Ẽ

3
3) is to be predicted by the model once the first

derivative functions ω′
11, ω

′
22 and ω′

33 are obtained by

means of the “best” fulfilling (in a least-squares sense)
of Eqs. (70)–(74). The computational procedure is as
follows.

First of all, the discrete distributions of experimen-
tal points σ̃1

1(Ẽ
1
1), Ẽ

1
2(Ẽ

1
1) and σ̃2

2(Ẽ
2
2) are interpolated

using non-uniform piecewise cubic splines (cf. Section

2.1), which we denote as σ1
1(E

1
1), E

1
2(E

1
1) and σ2

2(E
2
2),

respectively. Then, to increase numerical efficiency when
the spline-based functions are evaluated during the fi-

nite element computations, the domains [Ẽ1
1min, Ẽ

1
1max],

[Ẽ2
2min, Ẽ

2
2max] and [Ẽ3

3min, Ẽ
3
3max] are divided into N1,

N2 and N3 uniform intervals, which define the new

N1 + 1, N2 + 1 and N3 + 1 points of Ē1
1 , Ē

2
2 and Ē3

3 ,
respectively (note the bar decoration to emphasize the
new strain discrete distributions). Second, we assume

specific distributions (with their associated spline-based
representations) of the transverse strains for the real
second test, Ê2

1(E
2
2), and the hypothetical third test,

Ê3
1(E

3
3), depending on a finite number of unknown pa-

rameters, which will be determined as a part of the final
solution. The hat decoration will be used to indicate
that a variable is being assumed or that a function is

calculated using an assumed distribution. For example,
the linear dependences Ê2

1 = −ν̂21E
2
2 and Ê3

1 = −ν̂31E
3
3

may be proposed, ν̂21 and ν̂31 being constant Poisson’s

ratios defined within the logarithmic strain space. The
remaining transverse strains may be obtained by means
of the incompressibility conditions.

Then, in a similar way as we did in Ref. [21], we
combine Eqs. (70) and (74) to arrive at an equation
which adopts the specific form of Eq. (10), i.e.

σ1
1(Ē

1
1) = ω̂′

11(Ē
1
1)− ω̂′

11(ŷ(Ē
1
1)) (75)

which solution for each point Ē1
1 may be expressed as

in Eq. (16)

ω̂′
11(Ē

1
1) =

∞∑
k=0

σ1
1

(
ŷ(k)

(
Ē1

1

))
(76)

and calculated within any desired accuracy. In the pre-

vious two equations, the function ŷ(E1
1) = Ê3

1(E
1
2(E

1
1))

is the composite function which results from the inser-
tion of the spline function E1

2(E
1
1), known from the first

test, as the argument of the spline function Ê3
1(Ê

3
2),

assumed from the third one. As explained above, the
mathematical constraint

∣∣ŷ(E1
1)
∣∣ < ∣∣E1

1

∣∣ must be sat-

isfied so that the summation (76) converges to a finite
value for each strain Ê1

1 . Most orthotropic materials
fulfill this requirement. However, if Eq. (76) is non-

convergent due to this reason, it can be shown that
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this other inversion formula may be applied for those

particular cases

ω̂′
11(Ē

1
1) = −

∞∑
k=1

σ1
1

(
ĥ(k)

(
Ē1

1

))
(77)

where ĥ (x) represents the inverse function of ŷ (x), i.e.
ĥ (x) = ŷ−1 (x).

Subsequently, from the N1 + 1 values ω̂′
11(Ē

1
1), the

construction of the corresponding piecewise spline func-
tion ω̂′

11(E1) is carried out. Then, Eq. (72) provides the

N2 + 1 values

ω̂′
22(Ē

2
2) = σ2

2(Ē
2
2)− ω̂′

11(Ê
2
1(Ē

2
2)) (78)

where the splines Ê2
1(E

2
2), ω̂

′
11(E

1
1) and σ2

2(E
2
2) are to

be used. The spline-based function ω̂′
22(E2) can be built

using the N2 + 1 computed values ω̂′
22(Ē

2
2). At this

point, only the function ω̂′
33 remains to be determined.

This function can be obtained, for example, from Eq.

(71)

ω̂′
33(E

1
3(Ē

1
1)) = ω̂′

22(E
1
2(Ē

1
1)) (79)

This last equation evaluated at the N1 + 1 points Ē1
1

provides N1 + 1 values ω̂′
33(Ē

1
3), which can be inter-

polated to give the remaining piecewise spline func-
tion ω̂′

33(E3) as a result, restricted to the given interval
[Ẽ3

1min, Ẽ
3
1max].

Once the three first derivative functions ω̂′
11(E1),

ω̂′
22(E2) and ω̂′

33(E3) corresponding to the assumed dis-
tributions Ê2

1(E
2
2) and Ê3

1(E
3
3) have been calculated

using Eqs. (70)–(72), the error associated to the ful-
fillment of Eqs. (73) and (74) (note that Eq. (74) has
been used to be inserted in Eq. (70) but then it has not

been enforced) can be computed as

err2(Ē
2
2) = ω̂′

11

(
Ê2

1(Ē
2
2)
)
− ω̂′

33

(
Ê2

3(Ē
2
2)
)

(80)

err3(Ē
3
3) = ω̂′

11

(
Ê3

1(Ē
3
3)
)
− ω̂′

22

(
Ê3

2(Ē
3
3)
)

(81)

and evaluated for the N2 + 1 and N3 + 1 strain values
Ē2

2 and Ē3
3 . Hence, the value of the parameters which

define the distributions Ê2
1(E

2
2) and Ê3

1(E
3
3) and that

minimize the objective function

Ŝ =

N2+1∑
i=1

(err2(i))
2
+

N3+1∑
j=1

(err3(j))
2

(82)

will provide the best approximated solution (in a least-
squares sense and within the space defined by the cho-
sen form for the assumed transverse strain distribu-

tions) of the governing Eqs. (70)–(74). Note that only in
this last equation the superindex 2 represents a power of
order two. In order to compute optimum values for Eq.

(82), we have used the Gauss-Newton procedure, which

converged in very few iterations. The initial guess was

obtained from initial (infinitesimal) equivalent Poisson
values. In our numerical tests, the same minimum was
always obtained using other initial guesses in a rather

wide window centered in the mentioned values. How-
ever, we note that it is possible to obtain other minima
far from that solution in which cases the solutions may

not be so optimal in replicating the experimental data.
Furthermore, we note that Eq. (82) is a compromise we
took in fulfilling the system of equations, but there are

many other possibilities as well.

Table 1 summarizes the overall procedure to ob-
tain the first derivative functions ω′

11(E1), ω
′
22(E2) and

ω′
33(E3).

It is possible that some spline-based functions de-

fined in this section were needed to be evaluated be-
yond their lower and/or upper abscissa limits. In these
cases, the spline functions may be extrapolated in order

to obtain the required values. These (linear, quadratic
or cubic) extrapolations should be considered during
both the spline function determination (Table 1) and

the later Finite Element Analysis.

3.1.2 Three independent uniaxial tests in the three
preferred directions

In this case, the experimental data points are obtained
from three tension-compression uniaxial tests performed
along the three preferred directions of the material,

i.e. e1, e2 and e3. The required experimental distribu-
tions are the respective axial strain-stress data points
{Ẽ1

1 , σ̃
1
1}, {Ẽ2

2 , σ̃
2
2} and {Ẽ3

3 , σ̃
3
3}. Note that these ex-

perimental data measures are equivalent to provide the
three independent Young’s moduli EY1 , EY2 and EY 3

within the small strain and linear elasticity context.

The governing equations for this case are the same
set of equations as for the case explained in Section

3.1.1, i.e. Eqs. (70)–(74), plus the additional equilib-
rium equation involving the strain-stress distribution
σ̃3
3(Ẽ

3
3), which was irrelevant in the previous subsec-

tion. Herein, σ̃3
3(Ẽ

3
3) is part of the initial experimental

data and the following equilibrium equation must be
taken into account

σ̃3
3(Ẽ

3
3) = ω′

33(Ẽ
3
3)− ω′

11(Ẽ
3
1) (83)

The procedure to solve the system formed by Eqs. (70)–
(74) and Eq. (83) is similar to the methodology pre-

sented in the previous subsection. The only differences
are that the transverse strains for the first test will also
be assumed, that ω̂′

33(E3) will be calculated in this oc-

casion through Eq. (83), i.e.

ω̂′
33(Ē

3
3) = σ3

3(Ē
3
3)− ω̂′

11(Ê
3
1(Ē

3
3)) (84)
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Table 1 Computational procedure for the case of Section 3.1.1

Calculation of ω′
11(E1), ω

′
22(E2), ω

′
33(E3). First case.

1. Experimental data: σ̃1
1(Ẽ

1
1), Ẽ

1
2(Ẽ

1
1) and σ̃2

2(Ẽ
2
2) from two tension-compression

uniaxial tests (directions e1 and e2).

2. Build (non-uniform) piecewise spline functions: σ1
1(E

1
1), E

1
2(E

1
1) and σ2

2(E
2
2).

3. Assume Ẽ3
3 = Ẽ1

1 and define new N1 + 1, N2 + 1 and N3 + 1 uniformly
distributed points Ē1

1 , Ē
2
2 and Ē3

3 within their respective domains.

4. Propose two distributions Ê2
1(E

2
2) and Ê3

1(E
3
3) depending on several

parameters that you freely specify and build the required spline functions.

5. For each strain measure Ē1
1 , calculate ω̂′

11(Ē
1
1) with Eq.(76)

(or Eq. (77)) where ŷ(E1
1) is composed by Ê3

1(Ê
3
2) and E1

2(E
1
1).

6. With all the values ω̂′
11(Ē

1
1) compute the uniform spline function ω̂′

11(E1).

7. Obtain ω̂′
22(Ē

2
2) and ω̂′

33(Ē
1
3) using Eqs. (78) and (79)

and build the associated uniform spline functions ω′
22(E2) and ω′

33(E3).
8. Minimize the function Eq. (82) to find the values of the parameters

which provide the best approximated solution of the Eqs. (70)–(74).

and that the objective function will be

Ŝ =

N1+1∑
i=1

(err1(i))
2
+

N2+1∑
j=1

(err2(j))
2
+

N3+1∑
k=1

(err3(k))
2

(85)

where

err1(Ē
1
1) = ω̂′

22

(
Ê1

2(Ē
1
1)
)
− ω̂′

33

(
Ê1

3(Ē
1
1)
)

(86)

Hence, we directly proceed to give a step-by-step im-

plementation in Table 2 of the overall algorithm corre-
sponding to this case.

3.2 Determination of ωij (i ̸= j)

In Ref. [21] we describe two different procedures to ob-
tain a shear term of the type ωij . One method requires
experimental data measures from a pure shear test and

the other procedure needs input data obtained from a
simple shear test. In this case, following similar steps,
three simple shear tests could be used to calculate the

three different functions ωij present in Eq. (18). How-
ever, because of the simplicity of this procedure, we only
present herein the methodology to determine them if

the experimental data are obtained from three specific
pure shear tests.

Following the same lines given in Ref. [21], we show

next that some specific biaxial tests performed over the
orthotropic material being modelled lead to pure shear
state representations for logarithmic strains in certain

reference frames. We will further see that the use of

our hyperelastic model predicts associated pure shear

state representations for the Cauchy stresses. Hence the
determination of the first derivative functions ω′

ij is a
very simple and direct task.

Three biaxial tests are required. In each one of them,

two preferred material directions are involved. We de-
note the variables measured in (or associated to) the
test performed in the plane defined by directions ei and

ej with the superscript ij = 12, 23, 31, which in turn
will provide the first derivative spline-based function
ω′
ij . For the test ij, Figs. 1(a) and 1(b) illustrate the

orientation of the reference configuration and the de-

formation being imposed to the material, respectively.
As it can be seen, the test is performed in material
(and spatial) principal strain directions N i and N j .

The direction N i is loaded in tension and the direc-
tion N j in compression in order to achieve the pre-
scribed stretches λij

i > 1 and λij
j = 1/λij

i . We con-

sider a plane stress state in which the faces of the body
normal to the direction ek = Nk (i ̸= k ̸= j) are
free from tractions. Note also that the preferred direc-

tions ei and ej are initially oriented clockwise 45o with
respect to the principal strain directions N i and N j .
Then, a pure shear state for strains may be analyzed us-

ing the system of representation Xpr, see Figures 1(c)
and 1(d). The required experimental data are the mea-
sured points (λ̃ij

i , σ̃
ij
i ) or, equivalently, the distribution

σ̃ij
i (Ẽij

i ), where σ̃ij
i is the normal Cauchy stress acting

on the face normal to N i and Ẽij
i = ln λ̃ij

i is the axial
logarithmic principal strain in that direction.

In the homogeneous deformation state depicted in

Figure 1, the Hencky strain tensor E expressed in the
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Table 2 Computational procedure for the case of Section 3.1.2

Calculation of ω′
11(E1), ω

′
22(E2), ω

′
33(E3). Second case.

1. Experimental data: σ̃1
1(Ẽ

1
1), σ

2
2(Ẽ

2
2) and σ̃3

3(Ẽ
3
3) from three tension-compression

uniaxial tests (directions e1, e2 and e3).

2. Build (non-uniform) piecewise spline functions: σ1
1(E

1
1), σ

2
2(E

2
2) and σ3

3(E
3
3).

3. Define new N1 + 1, N2 + 1 and N3 + 1 uniformly distributed points Ē1
1 , Ē

2
2 and

Ē3
3 within their respective domains.

4. Propose three distributions Ê1
2(E

1
1), Ê

2
1(E

2
2) and Ê3

1(E
3
3) depending on several

parameters that you freely specify and build the required spline functions.
5. For each strain measure Ē1

1 , calculate ω̂′
11(Ē

1
1) with Eq.(76)

(or Eq. (77)) where ŷ(E1
1) is composed by Ê3

1(Ê
3
2) and Ê1

2(E
1
1).

6. With all the values ω̂′
11(Ē

1
1) compute the uniform spline function ω̂′

11(E1).
7. Obtain ω̂′

22(Ē
2
2) and ω̂′

33(Ē
3
3) using Eqs. (78) and (84)

and build the associated uniform spline functions ω′
22(E2) and ω′

33(E3).
8. Minimize the function Eq. (85) to find the values of the parameters

which provide the best approximated solution of Eqs. (70)–(74) and (83).

Fig. 1 Pure shear test in the plane ij = 12, 23, 31. From
left upper corner clockwise: (a) Reference configuration rep-
resented in principal strain basis {N i,Nj ,Nk} (i ̸= k ̸= j).
(b) Kinematics of deformation in the biaxial test, with corre-
sponding principal stretches. (c) State of deformation (pure
shear state) described in material reference frame Xpr. (d)
Reference configuration represented in Xpr. ei and ej define
the orientation of the material preferred directions (clockwise
45 degrees with respect to N i and Nj , respectively)

basis of principal stretches {N i,N j ,Nk} is

[E]N = ln [U ]N =

Eij
i 0 0

0 −Eij
i 0

0 0 0

 (87)

where Eij
j = lnλij

j = ln(1/λij
i ) = −Eij

i and the result

Eij
k = lnλij

k = ln 1 = 0 emerges as a consequence of the

isochoric motion being imposed on the plane {N i,N j}
and the incompressibility constraint λij

i λ
ij
j λ

ij
k = 1. The

projection of this strain tensor into the basis Xpr =

{ei, ej ,ek} provides the pure shear description

[E]Xpr
=

 0 Eij
i 0

Eij
i 0 0
0 0 0

 (88)

Therefore, the only non-zero component of the logarith-
mic strain tensor that takes part in the strain energy
function given in Eq.(18) is the shear strain Eij = Eij

i .

As in the two previous subsections, the Generalized
Kirchhoff stress tensor T can be obtained from

T =
∂W
∂E

+ pI (89)

where the hydrostatic pressure p is found to be zero
from the plane stress condition σij

k = τ ijk = T ij
k = 0,

i.e.

0 = ω′
kk(E

ij
k ) + p = ω′

kk(0) + p = 0 + p = p (90)

Thus, the tensor T is just

[T ]Xpr
=

 0 ω′
ij(E

ij
i ) 0

ω′
ij(E

ij
i ) 0 0

0 0 0

 (91)

and a pure shear description for stresses is also ob-
tained. Furthermore, as we mentioned above, note that

this last fact implies that principal directions of strains
and stresses are coincident for this specific test, so strain
and stress tensors commute and T is completely coin-

cident with σ (see Eq. 38). Then, for each strain value



What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity 13

Ẽij
i , the Cauchy stress tensor in the basis of principal

stretches is

[σ]N =

ω′
ij(Ẽ

ij
i ) 0 0

0 −ω′
ij(Ẽ

ij
i ) 0

0 0 0

 (92)

where we immediately identify

ω′
ij(Ẽ

ij
i ) = σ̃ij

i (Ẽij
i ) (93)

and, as a result, we also deduce that the stress in direc-
tion N j predicted by our model is σij

j = −σij
i . Finally,

from all the values ω′
ij(Ẽ

ij
i ), the spline representation

ω′
ij(Eij) can be built.

For convenience, the procedure to determine the
spline-based function ω′

ij(Eij) from each one of the three

tests ij = 12, 23, 31 is summarized in Table 3. Unlike
the previous cases, where tension and compression data
points were necessary, we only need here experimental

data points for Eij
i > 0. In this case, symmetry consid-

erations are taken into account before constructing the
odd spline function of the strains ω′

ij(Eij) and the cal-

culation σ̃ij
i (−Ẽij

i ) = −σ̃ij
i (Ẽij

i ) is performed for every
strain Ẽij

i > 0.

4 Examples

4.1 Case of linear logarithmic stress-strain measures

In this simple example we show that the incompressible
orthotropic model separable in terms of uncoupled log-
arithmic strains Eq. (18) provides exact results for hy-

perelastic materials with linear logarithmic strain-stress
relations. This example also illustrates that, for linear
small strains, the strain energy function Eq. (18) coin-

cides with the isochoric stored energy function of or-
thotropic materials undergoing infinitesimal deforma-
tions. Hence, the more general spline-based orthotropic

model presented in this paper can be considered as an
extension of this simple case in which general material
non-linearities and finite deformations may be fully in-

cluded.

For the case of linear logarithmic strain-stress re-
lations, the strain energy function given in Eq. (18) is
a quadratic function of the isochoric logarithmic strain

components Eiso
ij (i, j = 1, 2, 3) in the reference frame

Xpr and it adopts the form

W =
1

2

(
2µ11

(
Eiso

11

)2
+ 2µ22

(
Eiso

22

)2
+ 2µ33

(
Eiso

33

)2)
+2µ12

(
Eiso

12

)2
+ 2µ23

(
Eiso

23

)2
+ 2µ31

(
Eiso

31

)2
(94)

where it can be identified ωij(E
iso
ij ) = (1/2) · 2µij ·

(Eiso
ij )2. Equation (94) is the extension to large strains

of the infinitesimal model

W =
1

2

(
2µ11

(
εiso11

)2
+ 2µ22

(
εiso22

)2
+ 2µ33

(
εiso33

)2)
+2µ12

(
εiso12

)2
+ 2µ23

(
εiso23

)2
+ 2µ31

(
εiso31

)2
(95)

Here, the use of logarithmic strains is a natural ex-
tension of the use of infinitesimal strains [22]. It has

been shown that using small strain constants and log-
arithmic strains substituting engineering strains yield
a rather accurate description of the material behavior

in metals up to moderate large strains [26], [27]. Fur-
thermore, the uncoupled stored energy function is also
exact in this case for large strains. Hence it has been

extensively used in large strain computational plastic-
ity [4], [5]. In Eq. (94), the unknown constants µij

stand for the six independent Lame’s moduli of the

purely incompressible orthotropic material under study.
Again, note that symmetries of the type 2µ12(E

iso
12 )2 =

(2µ12(E
iso
12 )2 + 2µ21(E

iso
21 )2)/2 are implicit in Eq. (94).

As it is explained above, these constants are to be de-
termined from six independent experimental curves: the
first three constants (slopes) from three curves obtained

from uniaxial testing (Sections 3.1.1 or 3.1.2) and the
last three constants from three pure shear tests (Sec-
tion 3.2) or also by means of simple shear or biaxial

testing. Then, the correspondence to the small strain
case is apparent.

For example, the experimental data for Section 3.1.2

would consist in these three linear relations

σ̃i
i = EYiẼ

i
i i = 1, 2, 3 (96)

where EYi stands for the Young’s modulus in the i di-

rection. For this case, since all the functions present in
the equilibrium equation of each uniaxial test are linear
(see Eq. (75)), they can be solved analytically

σi
i(E

i
i) = 2µiiE

i
i − 2µii

[
νki
νkj

(−νijE
i
i)

]
ϵijk = 1

(97)

EYiE
i
i = 2µii

(
1 +

νijνki
νkj

)
Ei

i ϵijk = 1 (98)

to give

2µii =
EY i

1 +
νijνki
νkj

ϵijk = 1 (99)

where ϵijk = (ei × ej) · ek represents the permutation

symbol. Using these expressions for µii, i = 1, 2, 3,
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Table 3 Computational procedure for the case of Section 3.2

Calculation of ω′
ij(Eij) (ij = 12, 23, 31)

1. Experimental data: σ̃ij
i (Ẽij

i ) from a biaxial test like the one shown in Figs. 1(a) and 1(b).

2. Perform the operation σ̃ij
i (−Ẽij

i ) = −σ̃ij
i (Ẽij

i ) for each value Ẽij
i > 0.

3. Build (non-uniform) piecewise spline function σij
i (Eij

i ) from points σ̃ij
i (Ẽij

i ).

4. Define new N ij subintervals with N ij + 1 uniformly distributed points Ēij
i .

5. Calculate the value ω′
ij(Ē

ij
i ) = σij

i (Ēij
i ) for all the strain points Ēij

i .

6. Build uniform spline function ω′
ij(Eij) from all the values ω′

ij(Ē
ij
i ).

together with the incompressibility conditions νij =
1 − νik, i ̸= j ̸= k ̸= i, the three compatibility rela-
tions Eq. (71), Eq. (73) and Eq. (74) can be solved to

provide the following values of the Poisson’s ratios in
terms of the Young’s moduli (an expected result due to
incompressibility)

νij =
1

2
EY i

(
1

EY j
+

1

EY i
− 1

EY k

)
i ̸= j ̸= k ̸= i = 1, 2, 3

(100)

These expressions are in concordance with the expres-

sions given in Ref. [14] for infinitesimal strains, where
the index numeration of the Poisson’s ratios is inverted
with respect to the one presented herein. Hence, us-

ing Eqs. (99) and (100), it is clear that we obtain the
three longitudinal Lame constants µii as functions of
the three independent Young moduli EY i.

On the other hand, the necessary experimental data
for Section 3.2 would consist in these other three linear
relations

σ̃ij
i = 2GijẼ

ij
i ij = 12, 23, 31 (101)

where Gij is the elastic shear moduli corresponding to
the test performed in the ij plane. Then, from Eq. (93),

we get

µij = Gij ij = 12, 23, 31 (102)

where the correspondence with the small strain case is
again apparent.

Once the six independent material parameters char-
acterizing the purely incompressible material are known
from experimental testing, the deviatoric strain energy

function Eq. (94) formed by uncoupled additive terms
can be used to exactly predict the stress field associated
to a general finite deformation state undergone by this

type of materials. That is, in a similar way to what oc-
curs in the small strain case, the constitutive behavior
does not depend on the coupled term E12E23E31 (see

Eq. 17) and the quadratic strain energy function given

in Eq. (94) is exact. Moreover, in the following Sections
we show that for the more general, non-linear, case the
consideration of the six functions present in Eq. (18)

is sufficient to very accurately predict the mechanical
behavior of the material in six different, independent,
experimental tests. Hence, because of these two last rea-

sons, we do not consider relevant for practical purposes
the absence of the term depending on E12E23E31 in Eq.
(18).

4.2 Uniaxial tests in preferred orthotropic directions

To the best of the authors’ knowledge, there is no work
in the literature which contains a complete set of ex-

perimental tests performed over the same material and
which provides the needed data to define the non-linear
model we present in this paper (and of course none

to completely define the orthotropic behavior of a ma-
terial). However, for the transversely isotropic model
that we recently presented in Ref. [21], we were able

to completely describe the model (at least in the rele-
vant part) using the experimental results of Morrow et
al [28]. In Refs. [14], [18] (see also the references cited

therein) and [29], it can be seen that a usual approach
to characterize an incompressible orthotropic hypere-
lastic material is by means of the fitting of a set of two

strain-stress curves obtained from mechanical testing.
All the strain energy functions presented in those works
have a predefined shape and contain several constants

to be determined from the experimental data-fitting
process. Other works provide experimental results ob-
tained from specific planar biaxial tests, see for example

Ref. [30], or from a set of simple shear tests, see Ref.
[31], which can be used to characterize the shear re-
sponse of the chosen hyperelastic model (cf. Ref. [17]).

The difference between our approach and that of those
references is that in our case, if the mentioned complete
set of experimental test data were available for the same

material, our model would be capable of “exactly” cap-
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ture the behavior for all tests simultaneously, regard-

less of the shape of the curves. Hence, the fact that our
model needs a complete set of six curves should never
be considered as a drawback because some of them can

be “guessed” or “assumed” without affecting the other
ones. In contrast, in the previous works the remaining
curves are intrinsically imposed by the model, not by

the material behavior.

Then, in order to include some examples of “real”

material behavior, we combine actual results obtained
from experiments with other assumed “experimental”
distributions, used as input data to define the model

given in Eq. (18). Although we are characterizing an
incompressible orthotropic material, we use experimen-
tal data points from a transversely isotropic rubber-like

material measured by Diani et al [32]. We assume herein
that these two curves are associated to an orthotropic
material and then proceed to perform a parametric

study in terms of transverse strain distributions, follow-
ing the procedure detailed in Table 1 for each case. We
show how the consideration of several Poisson’s ratio

“experimental” values ν12 as input data (Ẽ
1
2 = −ν12Ẽ

1
1)

will effectively lead to different orthotropic stored en-
ergy functions, recovering the transversely isotropic be-

havior of the material under study when the specific
value ν12 = 1/2 is prescribed.

We begin the parametric study of the axial terms
ω11, ω22, ω33 with an equivalent Poisson’s ratio value
of ν12 = 0.3. In Figure 2, the two strain-stress point dis-

tributions obtained by Diani et al from tensile tests over
the rubber-like material are represented. We present
the results in terms of logarithmic strains and Cauchy

stresses. Due to the absence of experimental data for
the compression branch, the antisymmetric stress dis-
tributions σ̃i

i(−Ẽi
i) = −σ̃i

i(Ẽ
i
i), for i = 1, 2 and Ẽi

i > 0,

are assumed. If real measured compression data points
were available, they could be used instead to compute
the terms ω11, ω22, ω33. In Figure 2, we also represent

the predictions provided by the first derivative spline-
based functions ω′

11, ω
′
22, ω

′
33 and the Poisson’s ratios

ν21, ν31 which are solution of the procedure of Table 1.

These predicted stress values are calculated through

σ1
1(Ē

1
1) = ω′

11(Ē
1
1)− ω′

33(−ν13Ē
1
1) (103)

σ2
2(Ē

2
2) = ω′

22(Ē
2
2)− ω′

33(−ν23Ē
2
2) (104)

where ν13 = 1 − ν12 = 0.7 is directly obtained from
the initially prescribed Poisson’s ratio ν12 = 0.3 and
the value ν23 = 1− ν21 = 0.740 is calculated using the

computed value ν21 = 0.260.

The strain-stress curve predicted by the model for

an hypothetical uniaxial test in direction e3

σ3
3(Ē

3
3) = ω′

33(Ē
3
3)− ω′

11(−ν31Ē
1
1) (105)

Fig. 2 Cauchy stresses σ̃1
1(Ẽ

1
1) and σ̃2

2(Ẽ
2
2) obtained from

uniaxial tests performed on calendered rubber (adapted from
Ref. [32]). Predictions of the experimental data (Eqs. (103)
and (104)) and of an hypothetical uniaxial test in the mate-
rial preferred direction 3 (Eq. (105)) using the Spline model
(Section 3.1.1) with an initially prescribed transverse strain
distribution Ẽ1

2 = −0.3Ẽ1
1 . The material is assumed to be

orthotropic for this parametric study

Fig. 3 Spline-based representation of the first derivative of
the strain energy terms ωii (i = 1, 2, 3) calculated using the
Spline model (Section 3.1.1) with the experimental data from
Fig. 2 (or Fig. 4) and the transverse strain distribution Ẽ1

2 =

−0.3Ẽ1
1

is also depicted in Figure 2. Since σ2
2 (E) > σ3

3 (E) for a
given E > 0, the material results to be stiffer in direc-

tion e2 than in direction e3 (ω
′
22 (E) > ω′

33 (E) as well).
However, note that this is an expected result due to the
fact that the specific “experimental” value ν12 < 0.5

(and ν13 = 1− ν12 > 0.5) has been prescribed as input
data to compute the spline-based stored energy func-
tion. Clearly, the background on the small strain case

is useful herein to understand the behavior of the mate-
rial undergoing finite deformations, which is a clear ad-
vantage of this model. Moreover, this result shows that

the calculated strain energy function captures the im-
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Fig. 4 Cauchy stresses σ̃1
1(Ẽ

1
1) and σ̃2

2(Ẽ
2
2) obtained from

uniaxial tests performed on calendered rubber (adapted from
Ref. [32]). Predictions of the experimental data (Eqs. (103)
and (104)) and of an hypothetical uniaxial test in the mate-
rial preferred direction 3 (Eq. (105)) using the Spline model
(Section 3.1.1) with an initially prescribed transverse strain
distribution Ẽ1

2 = −0.7Ẽ1
1 . The material is assumed to be

orthotropic for this parametric study

portant, inherent in the experiments, information con-
tained in the third curve and that the model provides
mechanical responses in generic situations which are

consistent with the experimental data.

Using the same two strain-stress point distributions
obtained by Diani et al, we prescribe now a Poisson’s
ratio value of ν12 = 0.7. That is, the third curve defining

the in-axis behavior of the material is changed with
respect to the previous example. In Figure 4 it can be
seen that the model is again able to exactly predict the

experimental data.

In this case, since ν12 > 0.5 (and ν13 < 0.5), the

material is stiffer in direction 3 than in direction 2.
The computed strain energy function manifest this fact,
which is clear in Figures 4 and 5.

The solution values of the remaining Poisson’s ra-

tios result in ν21 = 0.623 and ν31 = 0.408, which are
also in correspondence with the stress-strain distribu-
tions shown in Figure 4 (σ3

3 (E) > σ1
1 (E) and σ1

1 (E) >

σ2
2 (E)).

As a final case, it can be shown that for an initial
value of ν12 = 1/2 (= ν13), the procedure of Table 1
provides identical representations for the first derivative

functions ω′
22 (E) and ω′

33 (E). As a result σ2
2 (E) =

σ3
3 (E) < σ1

1 (E) and the procedure converges to the
case presented in Section 3.1.3 of Ref. [21], with the

only exception of the index numeration. The Poisson’s
ratios for this case are found to be ν21 = ν31 = 0.435.

This simplistic yet useful parametric study shows
the relevance of considering a third curve, additionally

to σ̃1
1(Ẽ

1
1) and σ̃2

2(Ẽ
2
2), representing transverse strains

Fig. 5 Spline-based representation of the first derivative of
the strain energy terms ωii (i = 1, 2, 3) calculated using the
Spline model (Section 3.1.1) with the experimental data from
Fig. 4 (or Fig. 2) and the transverse strain distribution Ẽ1

2 =

−0.7Ẽ1
1

Ẽ1
2(Ẽ

1
1) or normal stresses σ̃3

3(Ẽ
3
3) to properly charac-

terize the longitudinal behavior of an incompressible
orthotropic material along the preferred material axes.
Hence, characterizations such as the ones performed in

Refs. [14] or [29], which consider only two behavior-
curves obtained from uniaxial testing, are somehow in-
complete and can lead to some unexpected results re-

garding transverse strains, as it can be seen in Ref. [16].
The importance of the third curve is apparent here.

4.3 Off-axis mechanical behavior

For deformation states in which the principal strain
directions are coincident with the preferred directions
of the orthotropic material (in-axis deformation), the

components Eij , i ̸= j, are zero and the terms ωij are
not needed to perform Finite Element simulations or
any other calculations regarding these particular defor-

mation states. When considering a more general de-
formation state in which the principal strain directions
are not the preferred directions of the orthotropic mate-

rial (off-axis deformation), the shear terms ωij must be
previously calculated from experimental data. If these
test results are only known for small strains, that is, the

shear elastic moduli Gij are known, a possible approach
would be to prescribe σ̃ij

i = 2GijẼ
ij
i , ij = 12, 23, 31, in

the procedure of Table 3 and then to obtain a quadratic

contribution for ωij . If no data is available at all (or
partially), the shear curves are to be assumed, and the
user of the model has to be aware of the fact that the

behavior which is being prescribed will be replicated by
the model.

To completely define our model and to reproduce

the actual user situation, we will assume three pure
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Fig. 6 Calculated Cauchy stress distribution σ̃12
1 (Ẽ12

1 ) us-
ing the model of Itskov and Aksel [15] and assumed Cauchy
stresses σ̃23

2 (Ẽ23
2 ) and σ̃31

3 (Ẽ31
3 ) for the three pure shear

tests defined in Section 3.2. Spline-based representations of
functions ω′

12(E12) ≡ σ12
1 (E12

1 ), ω′
23(E23) ≡ σ23

2 (E23
2 ) and

ω′
31(E31) ≡ σ31

3 (E31
3 ), which are solution of the procedure

given in Table 3

shear test curves as detailed in Section 3.2. The pre-
scribed “experimental” points and the direct spline-

based representation of the first derivative of the strain
energy function terms ωij ≡ σij

i are shown in Figure 6.

In order to prescribe “experimental” results for these

tests, the invariant-based transversely isotropic hyper-
elastic model of Itskov and Aksel of Ref. [15] has been
used with the material parameters given therein, which

provide the best-fit to the experimental data of Diani
et al used in the previous example (cf. also Ref. [21]).
Using this model, we have analytically reproduced the

corresponding pure shear test of Section 3.2 to obtain
the data σ̃12

1 (Ẽ12
1 ) shown in Figure 6. The other two

distributions σ̃23
2 (Ẽ23

2 ) and σ̃31
3 (Ẽ31

3 ) plotted in Figure

6 have been assumed to be proportional to σ̃12
1 (Ẽ12

1 ).

In what follows, we illustrate the simulation capa-
bilities of the present model through several numeri-

cal examples consisting in unidirectional elongations of
a three-dimensional plate with a hole made of nearly
incompressible orthotropic hyperelastic material. The

formulation for slightly compressible materials imple-
mented in the Finite Element code is the one presented
in Section 2.5. In all solutions, fully integrated finite el-

ements (3×3×3 Gauss integration) were used. We em-
ploy the 27-node u/p mixed formulation element (the
27/4 or Q2/P1 element) in order to prevent mesh lock-

ing [1], [33]. For the incremental analysis, a Newton–
Raphson scheme is employed and asymptotic quadratic
convergence is reached in each step, as should be ex-

pected due to the use of the elasticity tangent ten-

sor given in Eqs. (64)-(65). The achieved rate of con-

vergence also manifests the fact that the spline-based
representations used to build the deviatoric strain en-
ergy function Eq. (18) have the required smoothness, so

they do not damage the quadratic convergence rate dur-
ing the Newton–Raphson iterations. That is, each first
derivative term ω′

ij , i, j = 1, 2, 3, is a piecewise spline

function with second-order continuous derivatives, so
the tangent moduli are continuously differentiable.

For the first numerical example, the employed iso-

choric strain energy function W (Eq. (18)) which con-
tributes to the total stored energy Ψ (Eq. (42)) is formed
by the three longitudinal terms ωii, i = 1, 2, 3, obtained

in the previous Section for the case in which ν12 = 0.3
and the three shear terms ωij , i ̸= j, obtained in this
Section. In Figures 3 and 6 the first derivatives of these

antisymmetric functions are shown for positive strains.
Recall that antisymmetry is assumed for the longitudi-
nal terms for this particular case, whereas antisymme-

try is always enforced for the shear terms. The volumet-
ric contribution U to Ψ that we used in the examples is
described by the well-known, simple, volumetric func-
tion

U =
1

2
κ (J − 1)

2
(106)

where κ is the so-called penalty parameter (bulk modu-
lus). To approximately enforce incompressibility, a value
of κ = 1000MPa has been selected to perform the sim-

ulations. We note that any other (penalty) volumetric
function could be used, we employed a simple one often
encountered in the literature. We refer to the work of

Hartmann and Neff [34] for an analysis of some of these
functions, specially regarding policonvexity of the re-
sulting stored energy function.

A rectangular plate with a concentric circular hole
(see Fig. 7) with initial length l0 = 32mm, height h0 =
16mm, hole radius r0 = 4mm and thickness t0 = 0.5mm

is stretched under a plane strain condition along its ma-
jor dimension up to a total length of l = 44mm. The
finite element discretization of the plate is depicted in

Fig. 7. The plate is stretched by only prescribing the
horizontal displacements along the x axis at both ver-
tical ends. The results for principal direction orienta-

tions of α = 0◦, α = 30◦, α = 60◦ and α = 90◦ are
shown in Fig. 8, where α is the angle depicted in Fig.
7 between the x axis and the preferred material di-

rection e1. In Fig. 8, the deformed shapes and band
plots of the computed deviatoric Cauchy stress norm∥∥σiso

∥∥ =
√
σiso : σiso for the different orientations are

depicted. We employ the tensor σiso = PS : σ to di-
rectly see the influence of function W in the results. As
it could be expected, angular distortions appear for the

orientations α = 30◦ and α = 60◦ due to the off-axis



18 Marcos Latorre, Francisco Javier Montáns

Table 4 Asymptotic quadratic convergence: Unbalanced en-
ergy and force during a typical computed step using a
Newton–Raphson scheme

Step Iteration Force Energy

5/6 1/4 1.000E+00 1.000E+00

5/6 2/4 9.266E– 03 9.076E– 05
5/6 3/4 1.838E– 04 3.386E– 08
5/6 4/4 3.707E– 08 2.878E– 16

deformation being imposed for this cases. Obviously, for

the other two cases, α = 0◦ and α = 90◦, the geometry,
load and material symmetries lead to both symmet-
ric deformed shapes. In these two cases, α = 0◦ and

α = 90◦, (principal) stretches of about λx ≈ 2 ≈ 1/λy

(Exx ≈ 0.7 ≈ −Eyy) are obtained in the central passing
zone between the hole and the longest borders of the

plate, hence the functions depicted in Fig. 3 are evalu-
ated at almost their whole range of definition. As indi-
cated above, for larger deformations, these spline-based

functions should be accordingly extrapolated. Table 4
shows that quadratic force and energy rates of conver-
gence are obtained in a typical step during the compu-

tations.

For comparison purposes, the same computations
have been performed using the isochoric strain energy
functionW formed in this case by the three longitudinal

terms ωii, i = 1, 2, 3, obtained in the previous Section
for the case in which ν12 = 0.7 (see their derivatives
in Fig. 5) combined with, again, the three shear terms

ωij , i ̸= j, obtained in this Section (Fig. 6). The results
obtained for α = 0◦, α = 30◦, α = 60◦ and α = 90◦ are
shown in Fig. 9. From the comparison of Figures 8 and

9, we note that the stress values are larger in the first
case due to the stiffer contribution of ω11 and ω22 (com-
pare Figs. 3 and 5). Due to the plain strain condition

being imposed, the contribution of ω33 is not relevant in
any case. For this example, the combination of the hor-
izontal displacement being prescribed, the plane strain

condition and the incompressibility constraint generate
little differences regarding deformations. Even though,
from the computed results and the deformed configu-

rations for the orientation α = 0o depicted in Figures
8 and 9 (top configurations), we note that the dimen-
sion h of the deformed plate in the transverse direction

y is larger in the first case, h ≈ 13.15mm (for which
ν12 = 0.3 was prescribed to obtain W) than in the
second example, h ≈ 12.85mm (with an strain energy

function W determined for ν12 = 0.7), as it should be.
An analogous interpretation can be performed compar-
ing the configurations for the orientation α = 90o (bot-

tom configurations in Figures 8 and 9) and taking into

account that the value ν21 = 0.260 was obtained as

a part of the solution during the determination of the
strain energy function used in the first case and the
value ν21 = 0.623 was obtained for the strain energy

function used in the second case.

Finally, we want to emphasize that the only reason

for obtaining different stress and strain results in this
example (under plain strain) is the selection of a specific
transverse strain distribution Ẽ1

2(Ẽ
1
1) (or a equivalent

Poisson’s ratio ν12) used as initial “experimental” data
for the definition of the deviatoric strain energy func-
tion W given in Eq. (18). It is important to remark that

the remaining five “experimental” curves are still very
accurately replicated in both cases. Again, this fact in-
dicates the importance of defining the complete set of

experimental data indicated above (or other equivalent
set), which should be accordingly captured by the se-
lected stored energy function to be able to perform re-

alistic Finite Element simulations.

5 Conclusions

In this paper we present a model for incompressible or-
thotropic hyperelasticity. The model is based on piece-

wise spline interpolations of the experimental data, from
which the stored energy function if obtained. No specific
shape is assumed for the stored energy function. On the

contrary, the equilibrium equations of the correspond-
ing set of six experimental tests are solved in order to
obtain the function directly from those experimental

stress-strain curves. We do not assume the existence of
fibers and a matrix in the material, but consider the
material as a whole. Hence, the model may be used

for a wide range of hyperelastic materials, not only for
fiber reinforced composites, and without the knowledge
of the behavior of the isolated components. As a con-

sequence of the procedure, the prescribed experimental
data for all tests is “exactly” reproduced by the model.

The model is based on an energy form using a spe-
cial decomposition of the stored energy function pro-

posed in the spirit of the Valanis-Landel decomposition
for isotropic materials which is exact for quadratic en-
ergy functions and which includes all structural invari-

ants except one. Furthermore, the use of logarithmic
strains in the formulation facilitates the interpretation
of the model as a natural extension of the small strains

one, a fact that is also in accordance to the experimen-
tal observations of Anand for some isotropic materials
and with the geometric interpretation of the logarith-

mic strains.

Finally, we have shown that the procedure may fa-

cilitate excellent predictions for up to the six needed
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Fig. 7 Rectangular plate with a concentric hole: reference configuration, initial orientation (angle α) of the preferred material
directions and finite element mesh. Dimensions of the plate: l0 × h0 × t0 = 32mm×16mm×0.5mm. Radius of the hole:
r0 = 4mm

experiments to properly define the model. We also fa-
cilitate the constitutive tangent moduli for a finite el-

ement implementation and show that the formulation
may be efficiently programmed in a finite element code
in order to obtain predictions for more complex, non-

proportional situations.
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24. Montáns FJ, Beńıtez JM, Caminero MÁ (2012) A large
strain anisotropic elastoplastic continuum theory for non-



20 Marcos Latorre, Francisco Javier Montáns

Fig. 8 Uniaxial tension of a rectangular plate with a concentric circular hole under a plain strain condition: Deformed
configuration (length = 44mm) and distribution of the deviatoric Cauchy stress norm

∥∥σiso
∥∥ =

√
σiso : σiso (MPa) for

α = 0◦, α = 30◦, α = 60◦ and α = 90◦ (from top to bottom) using the isochoric strain energy function W of Eq. (18) with
the spline-based terms from Figures 3 and 6. Unaveraged results at nodes. Upper limit of each color scale is defined by the
maximum value (approx.) taken by

∥∥σiso
∥∥ for each case
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Fig. 9 Uniaxial tension of a rectangular plate with a concentric circular hole under a plain strain condition: Deformed
configuration (length = 44mm) and distribution of the deviatoric Cauchy stress norm

∥∥σiso
∥∥ =

√
σiso : σiso (MPa) for

α = 0◦, α = 30◦, α = 60◦ and α = 90◦ (from top to bottom) using the isochoric strain energy function W of Eq. (18) with
the spline-based terms from Figures 5 and 6. Unaveraged results at nodes. Upper limit of each color scale is defined by the
maximum value (approx.) taken by

∥∥σiso
∥∥ for each case
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