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Abstract: Air temperature records are acquired by networks of weather stations which may be several kilometres 
apart. In complex topographies the representativeness of a meteorological station may be diminished in relation 
to a flatter valley, and the nearest station may have no relation to a place located near it. The present study 
shows a simple method to estimate the spatial distribution of minimum and maximum air temperatures from 
MODIS land surface temperature (LST) and normalized difference vegetation index (NDVI) images. Indeed, there is 
a strong correlation between MODIS day and night LST products and air temperature records from meteorological 
stations, which is obtained by using geographically weighted regression equations, and reliable results are found. 
Then, the results allow to spatially interpolate the coefficients of the local regressions using altitude and NDVI as 
descriptor variables, to obtain maps of the whole region for minimum and maximum air temperature. Most of the 
meteorological stations show air temperature estimates that do not have significant differences compared to the 
measured values. The results showed that the regression coefficients for the selected locations are strong for the 
correlations between minimum temperature with LSTnight (R

2 = 0.69–0.82) and maximum temperature with LSTday 
(R2 = 0.70–0.87) at the 47 stations. The root mean square errors (RMSE) of the statistical models are 1.0 °C and 
0.8 °C for night and daytime temperatures, respectively. Furthermore, the association between each pair of data is 
significant at the 95% level (p<0.01).

Key words: MODIS, land surface temperature, topoclimate, spatial regression models, geographically weighted 
regression, geostatistical interpolations.

Un método simple para la estimación de los mapas medios mensuales de temperaturas mínimas y 
máximas del aire utilizando imágenes MODIS en la región de Murcia, España
Resumen: Los registros de temperatura del aire son adquiridos por redes de estaciones meteorológicas las 
cuales podrían estar alejadas varios kilómetros entre sí. En topografías complejas la representatividad de una 
estación meteorológica podría verse disminuida en relación con un valle más plano, y la estación más cercana no 
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1. Introduction

Air temperature (Ta) describes the land’s surface 
environmental conditions (Prihodko & Goward 
1997) and is one of the most important climate 
variables in the study of terrain conditions. 
Climate risk models need daily Ta estimations 
with a considerable spatial resolution in order to 
provide more accurate conclusions. The Fireglove 
fire risk assessment project used an operation 
method developed by Recondo et al. (2013) in 
which the Ta was obtained with a spatial resolution 
of 1 km2 based on MODIS data and information 
from 331 weather stations throughout the Iberian 
Peninsula.

Weather stations’ measurements are highly 
accurate, however their distribution in an area is 
limited and it is not easy to extrapolate values to 
zones in which on-site measurement is not possible, 
and so we resort to spatial interpolation methods 
based on geostatistics like kriging, or spatial 
regression models such as Ordinary Least Square 
(OLS) and Geographically Weighted Regression 
(GWR), which allow us, based on their numerical 
algorithm, to estimate Ta in spots that do not have 
weather station registries (Montaner-Fernández 
et al., 2020). Certain areas have low weather 
station density, mainly mountain zones, which 
hinders the attainment of dense Ta spatial estimates 
in those areas. Despite the previous limitations, it is 
possible to use remote sensing data, which allows 
for improvement in spatial estimation of various 

meteorological variables, particularly the Ta based 
on satellite-obtained Land Surface Temperature 
(LST) (Montaner-Fernández et al., 2020; Huang 
et al., 2017). Nevertheless, Ta calculation based on 
satellite data is limited by the temporal resolution 
of higher spatial resolution satellites, such as 
MODIS, LANDSAT or SENTINEL, given that 
the time intervals between each successive image 
are much too broad.

To cover for the sparse spatial coverage (weather 
station density), we use interpolation between 
known points methods to generate the thermal 
field in a determined area of earth. These 
interpolation methods are effective in areas close 
to the weather stations, but present limitations 
in more remote areas (Herrera et al., 2016). The 
interpolation process errors reported in scientific 
literature generally range from 1 to 3 °C (Willmott 
& Robenson, 1995; Vogt et al., 1997).

In studies that have compiled land surface 
temperature (LST) time series data with weather 
station data to estimate the air temperature at the 
average monthly level, local regressions have been 
used. For example, through geographic weighted 
regressions (GWR) results have been obtained, 
using terrain elevation as independent variable, 
with values of R2>0.91 and RMSE = 1.1-1.5 °C 
in comparison with the estimate obtained using 
Ordinary Least Square (OLS) (Yao & Zhang, 
2013).

tener relación con un lugar ubicado cerca de ella. El presente estudio, muestra un método simple para estimar la 
distribución espacial de las temperaturas mínimas y máximas del aire a partir de imágenes MODIS de temperatura 
de la superficie terrestre (LST) y el índice de vegetación de diferencia normalizada (NDVI). En efecto, existe 
una fuerte correlación entre los productos LST día y noche MODIS y los registros de temperatura del aire de 
las estaciones meteorológicas, lo que se obtiene al usar ecuaciones de regresión ponderadas geográficamente, 
encontrándose resultados confiables. Luego, los resultados permiten interpolar espacialmente los coeficientes 
de las regresiones locales usando como variable descriptora la altitud y el NDVI, para obtener mapas de la región 
completa para la temperatura del aire mínima y máxima. La mayoría de las estaciones meteorológicas muestran 
estimaciones de temperatura del aire que no tienen diferencias significativas en comparación con los valores 
medidos. Los resultados mostraron que los coeficientes de regresión para las ubicaciones seleccionadas son 
fuertes para las correlaciones entre temperatura mínima con LSTnoche (R

2 = 0,69–0,82) y temperatura máxima con 
LSTdía (R

2 = 0,70–0,87) en las 47 estaciones. Los errores cuadráticos medios (RMSE) de los modelos estadísticos 
son 1,0 °C y 0,80 °C para las temperaturas nocturna y diurna, respectivamente. Además, la asociación entre cada 
par de datos es significativa al nivel del 95% (p<0,01).

Palabras clave: MODIS, temperatura de la superficie terrestre, topoclimatología, modelos de regresión espacial, 
regresiones ponderadas geográficamente, interpolación geoestadística. 
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In the Iberian Peninsula there are studies available 
on the air temperature estimation derived from 
land surface temperature measured by the MODIS 
satellite by Recondo et al. (2011), who used the 
algorithms proposed by Sobrino et al. (2003) 
with R2 = 0.86-0.88 and residual standard error 
(RSE) = 2.5-2.7 °C, but if variables such as the 
total atmospheric column water vapor content 
(W), the normalized difference vegetation index 
(NDVI), the year’s Julian day, the elevation and 
the incline, are included, results improve with an 
R2 of 0.92 and a RSE between 1.9 and 2.1 °C.

In the Cataluña region, northeast of the Iberian 
Peninsula, Spain, we also have at our disposition 
studies conducted by Cristóbal et al. (2008) based 
on MODIS data for the 2000 to 2005 period whose 
monthly model results range between 0.65 and 
0.94 for R2 with an RMSE average of 1.0 °C.

Additionally, other methods have been suggested 
by other authors to estimate air temperature 
through satellite data and auxiliary variables like 
predictors, using machine learning algorithms 
such as Support Vector Machines and Random 
Forest. However, these are not approached in this 
article (Ruiz-Álvarez et al., 2019; Otgonbayar 
et al., 2019; Marzban et al., 2018).

The general objective of this study is developing 
and implementing a simple method, based on 
spatially explicit linear regressions, that allows 
to obtain an estimate of the daily minimum and 
maximum air temperature level using information 
provided by weather stations and MODIS satellite 
images in the visible, near infrared and far infrared 
(thermal) spectrums.

2. Materials and methods

2.1. Study area

The Murcia region (MR) is located in the south 
of the European continent, southeast of the 
Iberian Peninsula between the 37° and 38° north 
latitude parallels and the 0° and 2° east longitude 
meridians. It is an area near subtropical latitudes, 
which conditions the regional climate. It possesses 
a complex and diverse landform, with coasts, 
plateaus, mountains, and valleys that create great 
landscape variety. The mountain landform usually 
surpasses altitudes of 1000 meters (Sierra de la 
Pila, Ricote, Carrascoy and other mountains) and 

even 2000 meters at Pico Revolcadores. There 
are hollows situated between 500 to 1000 meters 
high such as the Yecla-Jumilla Plateau to 
the northeast and the San Juan Valley to the 
northwest (Climate Atlas of the Murcia region, 
http://hdl.handle.net/20.500.11765/13220). In 
the central area we have the Río Segura Valley 
from Cieza to Murcia and coast-adjacent plains, 
all lower than 200 meters above mean sea level. 
Approximately, 27% of the Murcian territory 
corresponds to mountain landforms, 38% to 
intermontane depressions and corridors, and 
the leftover 35% to plains and plateaus. There 
is a Mediterranean climate, although there 
are important local contrasts and variations 
that make the Murcia region an ideal place to 
compare temperature trends and other climate 
parameters (Climate Atlas of the Murcia region, 
http://hdl.handle.net/20.500.11765/13220).

Figure 1. Study area and SIAM-IMIDA network compo-
sed of 47 weather stations, superimposed over the topogra-
phy of the Murcia region and its surrounding areas, the Mar 
Menor and Mediterranean Sea (Mar Mayor) shown in grey.

2.2. Weather information

The utilized data correspond to the maximum 
temperature (°C) and minimum temperature (°C) 
in daily and mean monthly values, measured 
by sensors located in the 47 automatic weather 
stations (AWS) belonging to the Agrarian 
Information Service of Murcia (SIAM in its 
Spanish acronym) of the Murcian Institute of 
Agrarian and Alimentary Investigation and 
Development (IMIDA in its Spanish acronym), 
shown in Figure 1. The information was collected 
from hourly temperature data, where subsequently 
a database was created which allowed for 
verification of spatiotemporal variation between 

http://hdl.handle.net/20.500.11765/13220
http://hdl.handle.net/20.500.11765/13220
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all the weather stations involved. Anomalous data 
was removed, and missing data were identified 
based on a systematic review of the data (data 
cleaning) and validation at several stages. The 
AENOR 500540 Spanish regulation was chosen, 
which in accordance with, consists of 7 kinds of 
consecutive weather data validations (Estévez 
et al., 2011). Thus, having the data filtered and 
the database systematized, we proceeded to fill 
in missing data using machine learning tools, 
specifically, the Support-Vector Machine (SVM) 
(Cortes & Vapnik, 1995; Zhao et al., 2006; 
Karatzoglou et al., 2006). To complete the missing 
data and outliers in the time series, some predictor 
variables were used, such as: (a) Altitude; (b) 
Location of the weather stations in the study 
area; (c) Month of the year; (d) Distance between 
stations; and (e) The 7 nearby stations that had at 
least 95% of available data.

For each of the 47 meteorological stations in the 
MR, different levels of validation were used on the 
meteorological information (AENOR 500540) to 
finally have a homogeneous database. During the 
validation process, 32008 records were calculated, 
equivalent to 9.3% of the total number of records 
in all the weather stations used.

2.3. Digital elevation model

Digital Elevation Models (DEMs) used correspond 
to the product ASTER GDEM, which is a global 
coverage grid DEM, with a spatial resolution of 
approximately 30 square meters depending on the 
location of each pixel.

2.4. Satellite data

The satellite data used were obtained from the 
TERRA and AQUA satellites and correspond 
to spatial information collected by the MODIS 
(Moderate Resolution Imaging Spectroradiometer) 
sensor, which was used by NASA to develop 
34 products derived from its collected data 
(http://reverb.echo.nasa.gov/reverb). Of these, 
this study used the MOD11A2, MOD13A2 
and MOD13Q1 products, which correspond 
respectively to land surface temperature and 
vegetation indices. The products associated 
with vegetation indexes contain the Normalized 
Difference Vegetation Index (NDVI) and the 
Enhanced Vegetation Index (EVI), obtained every 

16 days, among other images, while the product 
associated with surface temperature contains 
daytime and night-time Land Surface Temperature 
and Emissivity, obtained every 8 days. All of these 
are sourced from the Earthdata NASA website 
and have a spatial resolution of 1 kilometre 
(km), except for MOD13Q1 which has a spatial 
resolution of approximately 250 meters (m).

The images correspond to an extent covering the 
MR for a time interval of 19 years (2001 and 2019) 
which were downloaded from MODIS archives 
and further processed. These were adjusted 
according to the scale factor recommended by 
MODIS (Wan, 2008), to later be averaged at the 
monthly-mean level for each year. Finally, the 
time series monthly mean values are calculated, 
obtaining the climatological values.

It is of importance to note that the acquisition time 
of the study area’s LST images includes pixels 
with up to 3 different hours during daytime and 
3 different hours during night-time. The obtained 
LST data were stored in °C to finally put together 
a mosaic with each variable’s images, cropping 
the area of interest and then projecting to the 
geographic reference system with Datum WGS8 
in spherical coordinates.

2.5. Topoclimatic modeling

To study the spatial distribution of minimum and 
maximum air temperatures it is necessary to have 
periodic, spatially distributed temperature data. 
The integration of weather station data and sat-
ellite images allows calibration of the LST and 
air temperature registry through the adjustment 
of statistical models, and subsequently extends 
the estimation to the entire study area via spatial-
ly explicit models and geostatistics (Littmann, 
2008).

Traditionally global regressions are used which 
seek to understand the spatial behaviour of a 
variable through a unique equation, however, 
this equation’s coefficients do not vary spatially 
(Aparecido et al., 2022; Lorençone et al., 2022). 
This search is done with a methodology named 
distance Weighted Least Squares (WLS); these 
weighted nonnegative constants being a function 
between each point and the rest (Fotheringham 
et al., 2002). Fundamentally due to statistical 
fit-based methods’ defining parameters showing 

http://reverb.echo.nasa.gov/reverb


ASOCIACIÓN ESPAÑOLA DE TELEDETECCIÓN

A simple method for the estimation of minimum and maximum air temperature monthly mean maps using MODIS 
images in the region of Murcia, Spain

63

spatial variability (parametric instabilities), is that 
the Geographically Weighted Regression (GWR) 
method is used.

These sorts of methods are useful for performing 
spatial regressions affected by the parametric 
instability phenomenon with good results and 
the ability to generate maps of the adjusted 
parameters at a global scale (Fotheringham 
et al., 2002; Draper & Smith, 1981). The GWR 
method combines surface observation data 
(Automatic meteorological stations data) and the 
predictions to find a linear function that relates 
them, where the coefficients varying in the space 
adjusting to local effects (Equation 1). This 
method allows to calculate the coefficients of a 
multiple linear regression at each measurement 
point and to obtain the associated local errors. 
It is of importance to note that the coefficients 
calculated using GWR method must be spatially 
interpolated to obtain the selected variable’s 
predictions on a full study area level. Equation 
1 shows the applied linear estimation in GWR 
method.

 (1)

Where (ui, vi) indicates the coordinates of the 
n-nth point in space, yi is the dependent variable 
value, xki is descriptive independent variable in the 
i point, ak(ui, vi) is a parameter of the regression 
on each point of the independent variable, and δi 
is the error in the i point. On the other hand, the 
ak(ui, vi) coefficients are determined by a vector 
equation dependent on a Wi,j weights function.

2.6. Downscaling LST

It is worth mentioning that once all the daytime 
and night-time LST climatic layers were 
obtained, their spatial resolution was augmented 
via the application of the previously described 
topoclimatic modelling method, using the 
monthly NDVI layers and the ASTER GDEM 
digital elevation model as descriptive variables. 
The topoclimatic model coefficients found after 
applying the GWR method correspondent to each 
pixel were interpolated using ordinary kriging with 
automatic variogram adjustment, thus obtaining 
monthly climatic layers with a 250 meter of spatial 
resolution.

2.7. Climatological maximum and 
minimum temperatures estimation

In the case of the minimum (TN) and maximum 
(TX) air temperature estimating, each month’s 
climatological database information was used as 
dependent variable and the monthly daytime and 
night-time land surface temperature (LST) images 
of the pixels that span each respective station’s 
area as descriptive variable. It should be noted 
that the MODIS sensor in its MOD11A2 product 
includes the survey of the study area 2 times a 
day in 3 different schedules, on board the TERRA 
satellite between 9:00 and 11:00, and on board the 
AQUA platform between 22:00 and 24:00, local 
time.

Considering the previous paragraph, 
Equation 2 allows the calculation of the maximum 
and minimum air temperature, using a multiple 
linear regression as a function of the predictive 
variable LST daytime and night-time, respectively.

 (2)

Where a0(x, y) and a1(x, y) correspond to the 
regression’s coefficients and ε(x, y) to the error 
or deviation, with (x, y) representing spatial 
variability. As a result of this process, whichever 
the data included in the models is, an equation 
that allows prediction of the local air temperature 
from the LST values of a pixel registered by 
the satellite over the weather station used for 
modelling will be obtained (Gutiérrez-Puebla 
et al., 2012). Geographic Weighted Regressions 
(GWRs) are local models that create an equation 
for each element of the dependent variable’s 
data set (Soto-Estrada, 2013). In this case the 
equation’s coefficients (a0,a1) were interpolated 
using ordinary cokriging with automatic 
variogram adjustment using altitude and distance 
to the Mediterranean coast as co-variables, thus 
obtaining monthly climatic layers adjusted to the 
station’s collected values.

2.8. Statistical analysis

The analysis of the results was based on 
comparing each statistical model with the 
observed or measured value. Comparison of the 
results is at the mean monthly level and metrics 

𝑦𝑦! = 𝑎𝑎"(𝑢𝑢! , 𝑣𝑣!) +*𝑎𝑎#(𝑢𝑢! , 𝑣𝑣!)𝑥𝑥#!
#

+ 𝛿𝛿! 
(1) 

 1 

𝑇𝑇!(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎"(𝑥𝑥, 𝑦𝑦) + 𝑎𝑎#(𝑥𝑥, 𝑦𝑦) ∙ 𝐿𝐿𝐿𝐿𝑇𝑇(𝑥𝑥, 𝑦𝑦) + 𝜀𝜀(𝑥𝑥, 𝑦𝑦) (2) 

 1 
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such as Systematic Error or Bias (BIAS), Mean 
Absolute Error (MAE) and Root Mean Squared 
Error (RMSE) are used. Furthermore, a linear 
regression analysis was performed to test slope 
homogeneity between the methods displayed in 
Table 1 (Rawlings, 1988) and the observed value; 
and to calculate the Coefficient of Determination 
(R2), which has been broadly used to evaluate 
the goodness of fit between the observed and 
estimated values. Additionally, other statistical 
indexes were calculated, such as the Index of 
Agreement (d) (Willmott et al., 1985; Legates and 
McCabe, 1999; Willmott and Matsuura, 2005; 
Meek et al., 2009; Willmott et al., 2012) and the 
Akaike Information Criterion (AIC), which is 
useful when comparing two or more statistical 
models that use the same dependent variable 
(Sakamoto et al., 1986; Burnham and Anderson, 
2002; ). A numerical expression used to obtain the 
AIC is the equation presented above (8) (Burnham 
and Anderson, 2002). Table 1 show the statistical 
criteria used to estimate each model’s goodness 
of fit statistics, where N represents the number 
of observations, O the observed value, P is the 
predicted value, O the mean observed value, P 
the mean predicted value and k the number of 
parameters or independent variables used.

3. Results

The extreme air temperatures (minimum Tn and 
maximum Tx) estimation method was applied to 
the entire downloaded and processed MODIS 
image set for the estimation. In addition, a homog-
enous meteorological database was generated so 
that synergy between both types of data would 
be achieved for a better and more accurate esti-
mation. In this section, the results are described 
showing a good representation of the temperature 
spatial patterns for the study area. Figures 2(a) and 
2(b) show daytime and nighttime LST-MODIS’ 
spatial variability for the spring, summer, winter, 
and autumn seasons in the MR.

3.1. Meteorological database

A total of 47 meteorological stations were collected 
in the MR, of which 40 had 20 years of data, which 
represents a total of 292200 records, of which 4281 
correspond to missing data, equivalent to 1.4% of 
the total records. The other 7 remaining stations 
had between 3 and 15 years of data, with a total 
of 51135 records, of which 27727 correspond to 
missing data, which is equivalent to 54.2% of the 
total records. All the stations had periods of time 
in which no readings were recorded for hours or, in 
some cases, days, and prolonged periods of time.

Table 1. Statistical criteria for evaluation performances of each model showed in Equation 1.

Description Symbol Formula N°

Systematic error or Bias BIAS

Description Symbol Formula N° 
Systematic error or Bias BIAS 1

𝑁𝑁#
(𝑂𝑂! − 𝑃𝑃!)

"

!#$

 
(3) 

Mean Absolute Error MAE 

)
1
𝑁𝑁#

|𝑂𝑂! − 𝑃𝑃!|
"

!#$

 

(4) 

Root Mean Square Error RMSE 

)
1
𝑁𝑁#
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"

!#$

 

(5) 
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!#$
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Index of Agreement d 
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Akaike Information Criterion AIC 
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𝑁𝑁 3 
(8) 

 1 

(3)

Mean Absolute Error MAE

Description Symbol Formula N° 
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Root Mean Square Error RMSE 

)
1
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(8) 
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Root Mean Square Error RMSE

Description Symbol Formula N° 
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Akaike Information Criterion AIC 
2 ∙ 𝑘𝑘 − 𝑁𝑁 ∙ 𝐿𝐿𝐿𝐿 2

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

𝑁𝑁 3 
(8) 

 1 

(5)

Coefficient of Determination r2

Description Symbol Formula N° 
Systematic error or Bias BIAS 1

𝑁𝑁#
(𝑂𝑂! − 𝑃𝑃!)

"

!#$

 
(3) 

Mean Absolute Error MAE 

)
1
𝑁𝑁#

|𝑂𝑂! − 𝑃𝑃!|
"

!#$

 

(4) 

Root Mean Square Error RMSE 

)
1
𝑁𝑁#

(𝑂𝑂! − 𝑃𝑃!)%
"

!#$

 

(5) 

Coefficient of Determination r2 ∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

∑ (𝑂𝑂! − 𝑂𝑂,)%"
!#$

 
(6) 

Index of Agreement d 
1 −

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

∑ (|𝑃𝑃! − 𝑂𝑂,| − |𝑂𝑂! − 𝑂𝑂,|)%"
!#$

 
(7) 

Akaike Information Criterion AIC 
2 ∙ 𝑘𝑘 − 𝑁𝑁 ∙ 𝐿𝐿𝐿𝐿 2

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

𝑁𝑁 3 
(8) 

 1 

(6)

Index of Agreement d

Description Symbol Formula N° 
Systematic error or Bias BIAS 1

𝑁𝑁#
(𝑂𝑂! − 𝑃𝑃!)

"

!#$

 
(3) 

Mean Absolute Error MAE 

)
1
𝑁𝑁#

|𝑂𝑂! − 𝑃𝑃!|
"

!#$

 

(4) 

Root Mean Square Error RMSE 

)
1
𝑁𝑁#

(𝑂𝑂! − 𝑃𝑃!)%
"

!#$

 

(5) 

Coefficient of Determination r2 ∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

∑ (𝑂𝑂! − 𝑂𝑂,)%"
!#$

 
(6) 

Index of Agreement d 
1 −

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

∑ (|𝑃𝑃! − 𝑂𝑂,| − |𝑂𝑂! − 𝑂𝑂,|)%"
!#$

 
(7) 

Akaike Information Criterion AIC 
2 ∙ 𝑘𝑘 − 𝑁𝑁 ∙ 𝐿𝐿𝐿𝐿 2

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

𝑁𝑁 3 
(8) 

 1 

(7)

Akaike Information Criterion AIC

Description Symbol Formula N° 
Systematic error or Bias BIAS 1

𝑁𝑁#
(𝑂𝑂! − 𝑃𝑃!)

"

!#$

 
(3) 

Mean Absolute Error MAE 

)
1
𝑁𝑁#

|𝑂𝑂! − 𝑃𝑃!|
"

!#$

 

(4) 

Root Mean Square Error RMSE 

)
1
𝑁𝑁#

(𝑂𝑂! − 𝑃𝑃!)%
"

!#$

 

(5) 

Coefficient of Determination r2 ∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

∑ (𝑂𝑂! − 𝑂𝑂,)%"
!#$

 
(6) 

Index of Agreement d 
1 −

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

∑ (|𝑃𝑃! − 𝑂𝑂,| − |𝑂𝑂! − 𝑂𝑂,|)%"
!#$

 
(7) 

Akaike Information Criterion AIC 
2 ∙ 𝑘𝑘 − 𝑁𝑁 ∙ 𝐿𝐿𝐿𝐿 2

∑ (𝑂𝑂! − 𝑃𝑃!)%"
!#$

𝑁𝑁 3 
(8) 

 1 

(8)



ASOCIACIÓN ESPAÑOLA DE TELEDETECCIÓN

A simple method for the estimation of minimum and maximum air temperature monthly mean maps using MODIS 
images in the region of Murcia, Spain

65

During the data homogenization process, 32008 
records were calculated, equivalent to 9.3% 
of the total records of all the meteorological 
stations considered for this study. Thus, missing 
records were completed for stations CA12, CA73, 
CI71, CR61, MO62, TP52 and TP91, up to the 
years 2005, 2016, 2015, 2006, 2015, 2009 and 
2005 respectively. For the rest of the stations, 
the completed data corresponded to the period 
between the years 2000 and 2019.

3.2. Estimation of the air’s minimum and 
maximum temperatures

Figures 2(a) and 2(b) respectively show the night-
time and daytime LST-MODIS climatological 
maps corresponding to the 4 yearly seasons in 
the Murcia region, Spain. Figure 2(a) specifically 
shows the night-time LST, as the scene is captured 
at some point during the night and later converted 
to an approximately weekly product. On the 
other hand, Figure 2(b) shows the daytime LST, 
which corresponds to a scene captured at some 
point in the day and subsequently converted to an 
approximately weekly product. In both figures, 
the general patterns for the spatial distribution of 
night-time and daytime LST in the study area are 
clearly observed, fundamentally associated with 
topography and land use. A single-color scale is 
used to comparatively represent the LSTs for all 
the average seasons, since in this way it is possible 

to visualize the contrast between the different 
seasons.

The satellite information is used to obtain the 
spatially explicit linear regression between the air 
temperature (Minimum and Maximum), obtained 
from the network of meteorological stations, and 
the MODIS LST. The results of the topoclimatic 
modelling using GWR-Method for minimum and 
maximum temperature values related to the LST-
MODIS values corresponding to night and day 
images, are shown in Tables 2 and 3, respectively. 
As shown in Tables 2 and 3, there is a strong 
linear correlation between LST from satellite 
images and Ta data obtained from weather stations 
in the study area, both for day and night LST. 
Specifically, Tables 2 and 3 show a summary of the 
results obtained for the minimum and maximum 
temperatures observed (Obs), modelled (Mod), 
and their difference (Diff = Mod-Obs), for mean 
values (ME) and the standard deviation (SD), 
respectively. In the same tables, the root mean 
square error (RMSE) and the Index of Agreement 
(d) are shown as indicators of the performance of 
the estimates made with GWR, for all the values 
extracted from the LST-MODIS images and the 
estimated values for each weather station and for 
the entire set of images used.

This numerical algorithm found values for the 
coefficients of determination (R2) of the spatially 
explicit linear regression in the range of 0.82 to 

Figure 2. Maps for nocturnal (a) and diurnal (b) land surface temperature (LST) of climatological MODIS images for 
Spring, Summer, Autumn and Winter for the Murcia region, Spain.
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0.89 for the minimum temperatures, with an 
RMSE that varied between 0.8 and 1.0 °C. On the 
other hand, for maximum temperatures, the range 
for R2 sits between 0.91 and 0.97, with an RMSE 
that ranges between 0.5 and 0.6 °C. In relation to 
the variability of the minimum and maximum air 
temperature, it is observed that these estimations  
represent adequately the seasonal patterns of 
temperature throughout the Murcia region, since 

the algorithm used represents local variabilities. 
The greatest difference in absolute values between 
the observed and modelled values at the monthly 
mean level is found at the El Chaparral (Cehegín) 
station with a value of 3 °C for the minimum 
temperature, while the smallest difference, 
corresponds about 0 °C, is found at the station 
Román (Jumilla) for the maximum temperature.

Figure 3. Graph: Estimated and observed temperatures for minimum air temperature OLS (a) and GRW (b), and maximum 
air temperature OLS (c) and GRW (d) in the Murcia region, Spain.

Table 2. Summary statistics of GWR linear regression coefficients for estimation the spatial variation for the relationship 
between monthly mean LST and minimum air temperature (TN).

Month a0 a1 RMSE R2 p d AIC
January -0.5±0.5 1.2±0.1 1.0 0.82 ** 0.94 138.26
February -1.1±0.4 1.2±0.1 1.0 0.82 ** 0.93 138.26
March -0.7±1.2 1.0±0.1 1.0 0.82 ** 0.92 137.09
April -1.5±2.6 1.0±0.2 0.9 0.85 ** 0.93 128.46
May -1.7±4.6 1.0±0.3 0.9 0.85 ** 0.93 121.99
June 4.5±7.3 0.6±0.4 0.8 0.85 ** 0.93 118.36
July 1.7±9.9 0.8±0.4 0.8 0.84 ** 0.93 116.05
August 1.2±10.1 0.9±0.5 0.8 0.86 ** 0.94 117.50
September 0.9±8.3 0.9±0.5 0.8 0.89 ** 0.96 112.18
October 1.2±5.5 1.0±0.4 0.9 0.88 ** 0.95 122.83
November -0.4±1.1 1.1±0.1 0.9 0.86 ** 0.95 130.18
December -0.1±0.7 1.1±0.1 1.0 0.84 ** 0.95 133.61
RMSE units correspond to °C. The ** is a high statistical significance (p<0.01).
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Figures 3(a) and 3(b) show the pairwise 
comparison between the observed and estimated 
values for the minimum temperature (Tn) through 
the (a) Ordinary Least Squares regression (OLS) 
and (b) GWR methods. The value of the coefficient 
of determination was 0.93 and 0.97 respectively, 
considered high, however the differences in the 
RMSE values, which were 1.4 °C and 0.9 °C 
respectively, indicate that the GWR method has a 

better performance than OLS for monthly mean 
values of minimum temperatures. In the case of 
maximum temperatures (Tx), the values of the 
coefficient of determination were 0.88 and 0.99, 
which correspond to the pairwise comparison 
between the observed and estimated values for 
the maximum temperature using the methods of 
(c) OLS and (d) GWR. The RMSE values in this 
case were 2.1 °C and 0.6 °C, respectively, which 

Table 3. Summary statistics of GWR linear regression coefficients for estimation the spatial variation for the relationship 
between monthly mean LST and maximum air temperature (TX).

Month a0 a1 RMSE R2 p d AIC
January 11.4±10.1 0.3±0.7 0.5 0.96 ** 0.97 75.76
February 13.1±11.9 0.2±0.6 0.5 0.97 ** 0.97 73.03
March 14.6±13.2 0.2±0.5 0.6 0.94 ** 0.95 92.21
April 15.1±14.4 0.2±0.5 0.6 0.92 ** 0.94 96.17
May 19.7±19.3 0.2±0.6 0.6 0.95 ** 0.95 87.03
June 26.6±18.7 0.1±0.5 0.6 0.95 ** 0.97 79.77
July 30.0±17.9 0.1±0.4 0.6 0.93 ** 0.97 84.55
August 31.8±19.1 0.0±0.5 0.5 0.93 ** 0.97 78.76
September 26.8±19.3 0.1±0.6 0.6 0.91 ** 0.94 92.71
October 21.0±16.3 0.1±0.6 0.6 0.94 ** 0.95 90.07
November 13.3±12.8 0.3±0.7 0.6 0.96 ** 0.96 80.54
December 10.3±10.0 0.4±0.7 0.5 0.96 ** 0.97 67.33
RMSE units correspond to °C. The ** is a high statistical significance (p < 0.01)

Figure 4. Minimum (TN) and maximum (Tx) monthly mean air temperature values in the Murcia region, Spain.
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indicates that in this case, too, the GWR method 
presents a better performance than OLS for 
mean monthly values of maximum temperatures. 
Figure 4 shows the spatial distribution of the 
monthly mean values   of the minimum (TN) 
and maximum (TX) air temperature using the 
coefficients of the linear equations shown in 
Tables 2 and 3.

4. Discussion

The minimum (TN) and maximum (TX) monthly 
mean air temperatures estimated through the 
method used in the Murcia region, Spain, show 
a spatial stratification fundamentally due to the 
Mediterranean Sea and the physical geography’s 
influence. This influence becomes more evident 
during the summer and spring months, when 
temperatures are higher in the coastal areas than 
in the mountain ones (Figure 4), which is also 
observed in the mean monthly LST-MODIS 
images (Figure 2). The spatial stratification of the 
minimum and maximum temperatures remains 
during the rest of the year (autumn-winter), 
however the differences between the coastal and 
mountain areas become more apparent.

In relation to the seasonal behaviour of the 
maximum temperatures in the 47 weather stations 
considered for the study, these display higher 
RMSE of 0.5 °C and 0.6 °C during winter and 
spring seasons, respectively, while the summer 
and autumn seasons showed RMSE values of 
0.6 °C. In case of the minimum temperatures the 
behaviour is similar, with highest RMSE values 
in the summer and winter seasons at 0.8 °C and 
1.0 °C, respectively, while the autumn and spring 
season values were correspondingly 0.8 °C and 
0.9 °C.

For both TN and TX, it is observed that when 
calculating temperature estimates during the 
transitions between extreme seasons (summer 
and winter), the method used shows a greater 
margin of error. The coefficient of variation for TN 
shows corresponding observed values of 41.04% 
and 31.96% during winter and autumn seasons, 
higher in comparison to the 28.51% and 12.56% 
values for spring and summer respectively. The 
situation is similar for TX, in which corresponding 
observed values for the autumn and spring seasons 
are 18.53% and 13.41%, higher than the values 

of winter and summer, at 10.08% and 6.73%, 
respectively. This error increase and spatial 
variability decrease in the estimations could be 
due to the rise in atmospheric activity during 
the autumns and spring transition months, which 
generates large air mass movement, causing more 
frequent episodes of higher and lower (though 
more spatially homogeneous) temperatures, and 
thus decreasing performance of the used simple 
method. Another source of errors could be the 
satellite observation timing, possibly due to the 
time for night and day observations. It is possible 
to correct this effect by adjusting a function that 
reproduces the behaviour of hourly temperatures, 
with the purpose of having values more adjusted 
to the satellite’s time of passage (Bustos & Meza, 
2015).

For maximum temperatures, the percentage 
relative differences between the observed and 
estimated values in the 47 weather stations display 
mean values lower than 7% (1.3 °C), showing 
a standard deviation of 0.3 °C and a spatial 
coefficient of variation of 77.8%. In the case of 
minimum temperatures, the percentage relative 
differences between the observed and estimated 
values in the 47 weather stations display mean 
values lower than 10.86% (2.5 °C) and a spatial 
coefficient of variation of 78.8%.

The results show, on average, lower error values 
compared to other studies in the field literature. 
The proposed method is based only on spatially 
explicit regression (GWR), a simple and easily 
reproducible numerical method with good results, 
as shown by some authors in different parts of 
the world (Yao & Zhang, 2013; Huang et al., 
2017; Montaner-Fernández et al., 2020). The best 
adjustment and evaluation results of the linear 
models are obtained using MODIS nighttime and 
daytime together (mixed) to estimate minimum 
and maximum temperatures, respectively. These 
values show that the applied method managed 
to capture a significant percentage of the spatial 
behavior of temperatures, which is suitable for 
generating daily air temperature maps (Huang 
et al., 2017). According to the results described in 
the previous parahraph, it is possible to assert that 
the proposed interpolation method for estimating 
the spatial distribution of extreme temperatures in 
the Murcia region can be considered a valid and 
viable process to generate digital cartography for 
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the TN and TX extreme temperatures climatological 
values (Jarvis & Stuart 2001; Bustos & Meza, 
2015).

5. Conclusions

The medium resolution daily MODIS images (day 
and night) are valuable information that allow 
studies and investigations to be carried out on 
a regional and even global scale with different 
objectives.

In this study, as in previous ones, the linear 
relationship between air temperature and the 
LST-MODIS variable is verified, however, this 
relationship is improved by using the algorithm 
called Geographically Weighted Regression 
(GWR) since it allows for a better adjustment. 
The simple method implemented in the present 
study shows a good performance in the estimation 
of spatial and seasonal variability at the monthly 
mean level of air temperature, since it uses local 
adjustments instead of global adjustments. On the 
other hand, this good adjustment found is due to the 
integration of information from weather stations 
and the information provided by the MODIS 
satellite, which allowed a good estimation at the 
mesoscale territorial level of the maximum (TX) 
and minimum (TN) temperatures in the Murcia 
region, Spain.

The method and the spatial resolution developed 
in this study (250 m) can be adapted for finer 
spatial resolutions, such as by using LANDSAT 
or SENTINEL images to similar applications 
in estimating the spatial distribution of air 
temperature or variables related to it.

This linear relationship between the air temperature 
and the LST-MODIS variable can be used in other 
types of models, for example, the estimation of 
surface potential evapotranspiration (PET), which 
could improve our understanding of various 
spatial phenomena associated with vegetation at 
the mesoscale territorial level.

To finalize, this type of studies associated with 
the estimation of air temperature at the height of a 
weather station (approximately between 1 m and 
2 m) through satellite images, can be an asset in 
relation to decision-making in territorial planning 
and definition of public policy, especially in 

studies of variability and climate change with 
applications to the agricultural sector.
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