19_22 de julio, 2022 Universitat Politècnica de València LIBRO DE ACTAS

TÍTULO

LIBRO DE ACTAS CUIEET_29

EDITORAS

Vanesa Paula Cuenca Gotor¹ Begoña Sáiz Mauleón²

DISEÑADORES

Olga Ampuero Canellas³
José Armijo Tortajada³
Jimena González Del Río Cogorno³
Begoña Jordá Albiñana³
Begoña Sáiz Mauleón²
Nereida Tarazona Belenguer³
Irene Badía Madrigal⁴
Carlos García Corredor⁴

Rita Julia Górriz Salanova⁴
Walid Husam Jabr Herrera⁴
Empar Martí Andreu⁴
Pablo Mirón Hernández⁴
Inés Mondragón Pons⁴
Victoria Olcina Marcos⁴
Pablo Tortosa Juanes⁴
Pau Yániz González⁴

© De la edición: CUIEET_29

© Del texto: Los autores y autoras. El contenido de los artículos publicados en esta obra son responsabilidad exclusiva de los autores y autoras

Editorial: Escuela Técnica Superior de Ingeniería del Diseño Universitat Politècnica de València Camino de Vera, s/n - 46022, Valencia. España Tel +34 963877181 Web https://cuieet29.webs.upv.es

ISBN: 978-84-09-41232-7 Julio, 2022. Valencia. España

Esta obra se encuentra bajo una Licencia Creative Commons Atribución – NoComercial - SinObraDerivada 4.0 Internacional.

¹Departamento de Física Aplicada

²Departamento de Expresión Gráfica Arquitectónica

³Departamento de Ingeniería Gráfica

⁴YUDesign

Una propuesta de práctica informática: aritmética modular y encriptación de imágenes. Fernando Giménez Palomares y Juan Antonio Monsoriu Serrá	77
Jugando y aprendiendo con péndulos y muelles. Fernando Giménez Palomares y Juan Antonio Monsoriu Serrá 8	83
Espacios para el Aprendizaje por Retos como herramienta de desarrollo competencial en titulaciones universitarias (Hiperaulas). José Luis Canito Lobo, Diego Carmona Fernández, Juan Pablo Carrasco Amador y Alfonso Carlos Marcos Romero	89
Incorporación de la industria 4.0 y de la robótica colaborativa en la formación universitaria. Miguel Angel Mariscal, Susana García, Sergio Ortiz y Eva María López	95
Mejora de las asignaturas relativas a prevención de riesgos laborales con la introducción de la robótica colaborativa. Miguel Angel Mariscal, Susana García, Sergio Ortiz y Eva María López	101
La I Olimpiada de Ingenierías Industriales del Principado de Asturias. Juan Carlos Campo, Inés Suárez Ramón, Andrés Meana, Alfonso Lozano Martínez-Luengas, Juan Manuel González-Caballín Sánchez, Juan Carlos Ríos Fernández, Laura Calzada Infante, Francisco Fernández Linera, Antonio J. Calleja Rodríguez, Víctor M. González Suárez, Matías Álvarez Rodríguez, Naiara Ruiz García, Roberto Martínez Pérez, Mar Alonso Martínez, Lucía Díaz Conejero, Luis Manso Ibaseta, Mª Ángeles García García e Islam El Sayed	107
Synchronous and asynchronous tools in online teaching and assessment: Evaluation of impact on assessment results for subject Thermal Renewable Energies of the Degree in Energy Engineering at UPV during 2019-2021. David Alfonso-Solar, Carlos Vargas-Salgado, Dácil Díaz-Bello y Jesús Águila-León	113
Una experiencia en Industria 4.0 en los grados del ámbito de la Ingeniería Industrial y la Ingeniería Civil de la ETSI de Algeciras. M. Inmaculada Rodríguez-García, Javier González-Enrique, Juan Jesús Ruiz Aguilar e Ignacio J. Turias Domínguez	119
Nuevo enfoque para el TFG basado en competencias digitales: una experiencia en Ingeniería Civil. M. Inmaculada Rodríguez-García, Javier González-Enrique, Juan Jesús Ruiz Aguilar e Ignacio J. Turias Domínguez	125
Caracterización de lentes multifocales mediante un laboratorio virtual basado en la óptica de Fourier. Vicente Ferrando, Diego Montagud-Martínez, Laura Remón, Walter D. Furlan y Juan A. Monsoriu	131
Aprendizaje de conceptos de Localización de Instalaciones a través de un juego de fuga. Beatriz Andrés, Francisca Sempere y Rocío de la Torre	137
Aprendizaje de producción mediante la aplicación de la simulación. Aitor Ruiz de la Torre, Rosa Maria Rio Belver y Javier Fernandez Aguirrebeña	143

Una propuesta de práctica informática: aritmética modular y encriptación de imágenes

Fernando Giménez Palomares^a y Juan Antonio Monsoriu Serrá^b

^alUMPA, Universitat Politècnica de València, fgimenez@mat.upv.es, ^bDepartamento de Física Aplicada, Universitat Politècnica de València, jmonsori@fis.upv.es.

Abstract

This paper presents a teaching experience designed on the basis of a computer practice, and an associated group work, on the application of modular arithmetic to the encryption/decryption of digital images. The procedure is based on the Hill encryption algorithm. Although the final objective is for students to program in Matlab the necessary functions to implement this procedure, use them with examples and assess their effectiveness, they can also previously use a virtual laboratory (app designer) that has been designed for this purpose.

Keywords: Encryption, decryption, modular arithmetic, Hill encryption, digital imaging, Matlab, app designer, virtual lab.

Resumen

En este trabajo se presenta una experiencia docente diseñada a partir de una práctica de ordenador y un trabajo grupal asociado, sobre la aplicación de la aritmética modular a la encriptación/desencriptación de imágenes digitales. El procedimiento está basado en el algoritmo de cifrado de Hill. Aunque el objetivo final es que los alumnos programen en Matlab las funciones necesarias para implementar dicho procedimiento, las utilicen con ejemplos y valoren su efectividad, también pueden utilizar previamente un par de laboratorios virtuales (app designer) que se han diseñado al respecto.

Palabras clave: Encriptación, desencriptación, aritmética modular, cifrado de Hill, imagen digital, Matlab, app desginer, laboratorio virtual.

INTRODUCCIÓN Y OBJETIVOS

En la era digital en que vivimos es importante el tratamiento seguro de la información. De vez en cuando van apareciendo noticias que hacen referencia a intromisiones y caídas de sistemas informáticos por ataques externos. La criptografía es un campo que a lo largo de la historia ha ido cobrando cada vez mayor importancia de cara a proteger la información (Gómez, 2010).

En este trabajo abordaremos el intercambio seguro de imágenes digitales entre un emisor y un receptor a partir de un procedimiento del álgebra modular basado en el algoritmo de cifrado de Hill (Zuñiga et al., 2019). Se ha diseñado una práctica informática y un trabajo grupal que puede darse en asignaturas de Cálculo Numérico en ingenierías con el objetivo de:

- conocer el álgebra matricial que está detrás de las imágenes digitales
- estudiar el método de cifrado de Hill
- aplicar dicho método a la encriptación/desencriptación de imágenes
- experimentar con ejemplos de imágenes y valorar la efectividad del método
- proponer formas de mejorar los resultados
- generar las funciones de Matlab que implementen dicho método (trabajo grupal)

La experiencia docente mostrada en este trabajo ha sido llevada a cabo durante el curso 2021-2022 en la asignatura Complementos de Métodos Matemáticos para Nivelación del Máster de Ingeniería Industrial con un total de 28 alumnos. Puede darse en cualquier curso de cálculo numérico de las ingenierías.

METODOLOGÍA

En lo que sigue presentaremos con detalle la metodología que se ha diseñado para llevar a cabo nuestra propuesta pedagógica.

1.1. Aritmética modular y cifrado de Hill

Consideremos el grupo aditivo de los enteros modulo m

$$\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z} = \{0,1,2,...,m-1\}$$

con las operaciones suma y producto (modulo m). $a \in \mathbb{Z}_m$ tiene inverso modulo m si existe un número natural en \mathbb{Z}_m que multiplicado por éste de 1. Se puede demostrar que a tiene inverso modulo m si es coprimo con respecto a m, es decir, si a y m no tienen factores comunes.

En el conjunto de las matrices cuadradas de orden N con coeficientes en \mathbb{Z}_m

$$\mathcal{M}_{N\times N}(\mathbb{Z}_m) = \{(a_{ij}): a_{ij} \in \mathbb{Z}_m\}$$

podemos considerar la suma y producto de matrices y el producto por un escalar en \mathbb{Z}_m . Se dice que una matriz $A \in \mathcal{M}_{N \times N}(\mathbb{Z}_m)$ tiene inversa si existe una matriz $B \in \mathcal{M}_{N \times N}(\mathbb{Z}_m)$ tal que

$$AB = BA = I \pmod{m}$$

Es conocido que una matriz tiene inversa si y solo si su determinante modulo m es no nulo y coprimo respecto con respecto a m.

El cifrado de Hill es un sistema de cifrado de sustitución poligráfica y originalmente tiene su aplicación a texto, donde cada letra se sustituye por su ordinal en el abecedario y se genera a partir de una matriz cuadrada con coeficientes en \mathbb{Z}_m (llave) donde m es el número total de caracteres es el alfabeto en cuestión. En la operación básica de cifrado, el texto a encriptar es un vector columna x de N términos módulo m, y la llave de encriptación es una matriz A invertible en \mathbb{Z}_m y el resultado de la operación es y = Ax (mod m) que da lugar al texto codificado. De esta forma, para desencriptar y se procede al camino inverso, es decir $x = A^{-1}x$ (mod m).

1.2. Aplicación a la encriptación de imágenes

Una imagen digital es una representación bidimensional de una imagen a partir de una matriz numérica. En concreto, una imagen de color RGB se representa por tres matrices bidimensionales, correspondientes a los planos en escala de rojos (R), verdes (G) y azules (B). Al respecto pueden consultarse la referencia (González et al., 2009). Para nuestro propósito trabajaremos con matrices en $\mathcal{M}_{n_1 \times n_2}(\mathbb{Z}_{256})$ donde $n_1 \times n_2$ es el tamaño de la imagen (número de pixeles de la imagen dada).

Para encriptar una matriz $=(w_{ij})\in\mathcal{M}_{n_1\times n_2}(\mathbb{Z}_m)$ se transforma en un vector columna de longitud $k=n_1\times n_2$

$$x = \begin{bmatrix} W_1^T \\ W_2^T \\ \vdots \\ [W_{n_1}^T] \end{bmatrix}$$

donde W_i es el i-ésimo vector fila de W y después proceder como arriba. En el proceso de decodificación una vez obtenido el vector x se reconstruye la matriz W usando

$$w_{ij} = x_{(i-1)n_2+j}$$
, $i = 1,2,...,n_1$, $j = 1,2,...,n_2$

Se podría aplicar la codificación básica de un bloque a partir de una única matriz de orden m, pero hay que tener en cuenta que como la gran mayoría de las fotografías se componen de matrices de tamaños muy grandes no es demasiado eficaz ni rápido trabajar con matrices llave de dicho tamaño. Tampoco es necesario que las entradas de las matrices pertenezcan a \mathbb{Z}_{256} : basta con que pertenezcan a \mathbb{Z}_m con $m \ll 256$ para evitar problemas con el redondeo cuando se trabaja con el ordenador. La solución pasa por la descomposición del vector en vectores

más pequeños de tamaños iguales
$$x = \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \vdots \\ \tilde{x}_l \end{bmatrix}$$
 y luego realizar el cifrado 'por bloques $y = \begin{bmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \vdots \\ \tilde{y}_l \end{bmatrix}$

siendo $\tilde{y}_1 = A\tilde{x}_1, \tilde{y}_2 = A\tilde{x}_2, ..., \tilde{y}_l = A\tilde{x}_l \pmod{256}$

El proceso de decodificación es como sigue: a partir de y se obtiene x mediante

$$\tilde{x}_1 = A^{-1} \tilde{y}_1, \tilde{x}_2 = A^{-1} \tilde{y}_2, ..., \tilde{x}_l = A^{-1} \tilde{y}_l \pmod{256}$$

Dicho esto, el procedimiento anterior presenta el inconveniente de que si alguno de los vectores \tilde{x}_j es el vector nulo entonces lo mismo le ocurre a \tilde{y}_j y en ese caso no se ha producido encriptación. Una posible forma de evitar esto es utilizar además un vector v no nulo para la codificación $\tilde{y}_j = A\tilde{x}_j + v \pmod{256}$ y la decodificación sería entonces $\tilde{x}_j = A_j^{-1} (\tilde{y}_j - v) \pmod{256}$.

El procedimiento puede mejorarse utilizando las matrices $A, A^2, A^3, ..., A^l \pmod{m}$ para cada uno de los bloques.

1.3. La práctica informática y el trabajo

La práctica está diseñada de la siguiente forma: los estudiantes disponen de un documento en pdf que recoge los pasos que hay que seguir, junto con dos laboratorios virtuales (app designer

de Matlab) que se ha diseñado para que puedan experimentar en la propia aula informática y la propuesta de trabajo grupal (Attaway, 2019 y Matlab App Designer). Se trata de:

- 1) Antes de la realización de la práctica los alumnos deben de leer y estudiar la parte de la práctica que presenta el método del cifrado de Hill y como trabaja Matlab con las imágenes digitales y formar los grupos de trabajo.
- 2) Al comienzo de la práctica el profesor repasa de forma breve lo anterior y les indica como trabajar con el laboratorio virtual.
- 3) Se estudian varios ejemplos de encriptación de fotografías para ver y analizar los resultados de la encriptación para cada uno de los métodos propuestos en el apartado 1.1.
- 4) El profesor presenta el trabajo a realizar consistente en la programación de varias funciones de Matlab que implementen los métodos estudiados
- 5) Los alumnos comienzan a elaborar el trabajo que acabaran más tarde y lo enviaran entonces al profesor para su corrección.

1.4. Los laboratorios virtuales de encriptación y desencriptación

La figura 1 recoge un ejemplo de aplicación de la app designer code.mlapp. Las entradas son:

- Tipo de encriptación: $m\acute{e}todo\ 1$ (sin vector auxiliar no nulo y una única matriz), $m\acute{e}todo\ 2$ (con vector auxiliar no nulo y una única matriz) y $m\acute{e}todo\ 3$ (con vector auxiliar no nulo y matrices $A,A^2,A^3,...$).
- Matriz: Matriz llave.
- m: Valor máximo de las entradas de la matriz llave
- Off/On: si se selecciona las imágenes se muestran con la aplicación por defecto del ordenador
- Ayuda: Abre un pequeño manual de uso.
- Nombre de la imagen codificada
- Seleccionar foto y CODIFICAR: cuando se pulsa se ejecuta la app. Al acabar se puede elegir donde guardar la foto codificada.

La app designer decode.mlapp tiene el diseño y las entradas similares a las de code.mlapp.

Si se aplica el método 1 con una matriz invertible de orden 6 a la clásica fotografía *lenna.jpg* se observa que se obtienen buenos resultados (ver figura1). Sin embargo, si se aplican los métodos 1 y 2 a la imagen de un código de barras los resultados finales dejan bastante que desear (ver figura 2 (a), (b) y (c)). El método 3 si proporciona muy buenos resultados (figura 2 (d)). Incluso con una imagen completamente negra (figura 3 (a) y (b)) el procedimiento es muy eficiente. Cuando se modifica, aunque sea ligeramente, alguna de las entradas de la matriz llave, al decodificar no es posible recuperar la imagen original. La figura 3 (c) muestra la imagen decodificada usando la matriz llave con la entrada (1,1) con valor 14 en vez de 16 que es el original.

RESULTADOS

Durante la sesión práctica se pudo constatar una buena acogida por parte de los alumnos que, según nos dijeron, se divirtieron mucho probando mediante el laboratorio virtual como afectaba el método de encriptación a los diversos ejemplos que fueron ensayando. Tras la

elaboración y posterior evaluación de los trabajos, en la siguiente práctica informática se procedió a llevar a cabo una pequeña encuesta para valorar los resultados. La tabla 1 muestra la breve encuesta que se les paso y la figura 4 los resultados obtenidos.

Fig. 1. Ejemplo de la aplicación code.mlapp con método 1.

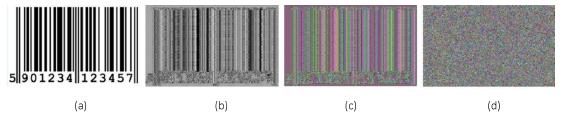


Fig. 2. (a) Imagen original, (b) imagen codificada método 1, (c) imagen codificada método 2, (d) imagen codificada método 3.

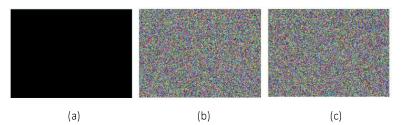


Fig. 3. (a) Imagen original, (b) imagen codificada método 3, (c) Imagen decodificada con matriz llave incorrecta.

CONCLUSIONES

Los alumnos han valorado muy positivamente la práctica y el correspondiente trabajo posterior tal y como muestran no solo las encuestas sino las impresiones recibidas por los profesores durante su realización. En su mayoría lo ven como una aproximación útil y muy interesante al tema de la seguridad informática de la información y su vinculación con la matemática discreta.

Tabla 1. Encuesta de satisfacción de la práctica de encriptación de imágenes

Valora de 1 (mínimo) a 5 (máximo) los siguientes apartad	:sob				
Me ha servido la información recogida en el documento de la práctica	1	2	3	4	5
El laboratorio virtual ha satisfecho mis expectativas	1	2	3	4	5
El trabajo propuesto ha sido adecuado	1	2	3	4	5
En general me ha gustado la experiencia y la considero útil	1	2	3	4	5

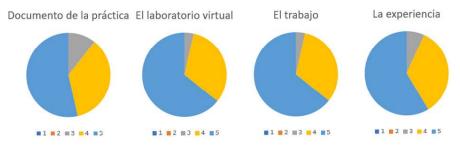


Fig. 4. Resultados de la encuesta.

AGRADECIMIENTOS

Los autores agradecen al Instituto de Ciencias de la Educación de la Universitat Politècnica de València por su ayuda al Equipo de Innovación y Calidad Educativa MSEL.

REFERENCIAS

- Attaway, S. (2019). MATLAB: A Practical Introduction to Programming and Problem Solving. Ed. Butterworth Heinemann.
- De la Fuente, E. (2015). *Método grupal para el aprendizaje de la matemática*. Praxis Investigativa ReDIE. Vol. 7, num. 13, 117-126.
- Gómez, J. (2010), Matemáticos, espías y piratas informáticos (Codificación y Criptografía), España, RBA Coleccionables S.A.
- González, R. C., Woods, R. E., Eddins, S. E. (2009). *Digital image processing using Matlab*. González, Woods, & Eddins.
- Matlab App Designer. https://www.mathworks.com/help/matlab/app-designer.html
- Vidal, A., Boigues, F. J., Estruch, V. D. (2017). La importancia de la sesión grupal en la clase inversa: Trabajos colaborativos en una asignatura de Matemáticas de Grado durante el curso 2016-2017. eXIDO 17.
- Zuñiga, G., López, F. E., Quenta, R. F. (2019) *Criptografía con matrices, el cifrado de Hill*. Criptografía en Algebra Lineal.