
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Developing a framework for SPADE agents management
that implement consensus learning algorithms.

Master's Thesis

Master's Degree in Informatics Engineering

AUTHOR: Matagne , Miro-Manuel

Tutor: Carrascosa Casamayor, Carlos

Cotutor: Rincón Arango, Jaime Andrés

ACADEMIC YEAR: 2022/2023

Acknowledgements

This thesis is the fruit of more than 8 months of work in collaboration with my super-
visor Pr. Carlos Carrascosa Casamayor, and my co-supervisor Pr. Jaime Andrés Rincón
Arango, both professors at the Universitat Politècnica de València (UPV). I would like to
thank them both for this opportunity to join their team and to allow me to help them out
in a research subject that I am passionate about. I would also like to thank them for all the
support they provided me throughout this work, and all the time they dedicated to help
me reach the final objectives. The confidence and trust they had in me, and the respect
they showed towards my work are things that I am very grateful about.

I would also like to thank Aaron Pico Pascual and Francisco Engiux Andres, 2 stu-
dents at the faculty of Informatics at the UPV, who were also producing their Master
Thesis about related subjects, and who helped out with several tasks and the under-
standing of certain concepts.

I am also very grateful for the help that Pr. Miguel Rebollo Pedruelo has given me
throughout this project, especially on the theoretical point of view.

It was a huge honor for me to be able to write an academical paper, along with Pr.
Carlos Carrascosa Casamayor, Pr. Jaime Andrés Rincón Arango, Pr. Miguel Rebollo Pe-
druelo and Aaron Pico Pascual, which was written for the 22nd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS) [12].

Finally, this thesis marks the end of my stay of a year and a half as a Double Master
student at Universitat Politècnica de València. I am very grateful to my home university
(Université Libre de Bruxelles) for this opportunity, as well as to UPV for welcoming me
and providing me with such a rewarding professional and personal experience.

iii

iv

Abstract
The rapid pace of development of Artificial Intelligence, which has undeniably be-

come a key tool in our society and in industries, has lead to the development of new Ma-
chine Learning techniques. Federated Learning improves the performance of the train-
ing of a Machine Learning model by distributing this process across multiple clients and
combining the models in a central server. Each client trains a model on a subset of the full
dataset, and sends its model to the central server upon completion of a round of train-
ing. Although Federated Learning is already heavily used and provides good results, the
main drawback is that the central server receives all models from all clients, which consti-
tutes a single point of failure as well as a possible bottleneck. This lead to the apparition of
Decentralized Federated Learning architectures, where the agents communicate between
themselves and no central server is involved. However, it was noticed that this archi-
tecture could be improved further in order to reduce the idle time of all clients; which
leads to the development of a new Federated Learning algorithm presented in this pa-
per : Asynchronous Decentralized Federated Learning. The key specificity of this solution is
that the idle time of all clients is removed, and the model training is therefore performed
quicker. Furthermore, this study relates this algorithm to the concept of Multi-Agent
Systems, which correspond to systems of agents cooperating to achieve common goals.
In this sense, this work presents a concrete implementation of the Asynchronous Decen-
tralized Federated Learning algorithm in a standalone and easy to use application that
was built upon the SPADE Python library, which allows to manage Multi-Agent Systems.
This application is destined to be a concrete product that users can easily use in order to
launch, control, monitor and supervise the execution of an Asynchronous Decentralized
Federated Learning running on multiple clients. It is shown experimentally in this work
that the developed algorithm is indeed more efficient that the synchronous algorithms
in certain use cases, although some ideas can be identified as future improvements. Fur-
thermore, the developed application meets its objectives, it is to this day accessible in a
easy way by any user, and can be used at a large scale.

Key words: Machine Learning, Federated Learning, Multi-Agent Systems, Consensus,
Asynchronous Decentralized Federated Learning

v

Résumé
Le développement rapide de l’Intelligence Artificielle, qui est indéniablement deve-

nue un outil clé dans notre société et dans l’industrie, a conduit au développement de
nouvelles techniques d’Apprentissage Automatique (ou Machine Learning). L’Apprentis-
sage Fédéré (ou Federated Learning) améliore les performances de la phase d’entraînement
d’un modèle d’Apprentissage Automatique en répartissant ce processus entre plusieurs
clients et en combinant ces modèles au sein d’un serveur central. Chaque client entraîne
un modèle sur un sous-ensemble de l’ensemble des données disponibles et envoie son
modèle au serveur central à la fin d’un cycle d’entraînement. Bien que l’Apprentissage
Fédéré soit déjà largement utilisé et fournisse de bons résultats, le principal inconvénient
est que le serveur central reçoit tous les modèles de tous les clients, ce qui constitue un
point de défaillance unique ainsi qu’une éventuelle limitation en terme de performances.
Ceci a été l’élément déclencheur pour l’apparition d’architectures d’Apprentissage Fé-
déré décentralisées, où les agents communiquent entre eux et aucun serveur central n’est
requis. Cependant, il a été remarqué que cette architecture pouvait être encore améliorée
afin de réduire le temps d’inactivité de tous les clients ; ce qui a conduit au développe-
ment d’un nouvel algorithme d’apprentissage fédéré présenté dans cet article : l’Appren-
tissage Fédéré Décentralisé Asynchrone. La principale spécificité de cette solution est
que les clients ne sont plus jamais inactifs, et l’apprentissage du modèle est donc effectué
plus rapidement. De plus, cette étude relie cet algorithme au concept de Systèmes Multi-
Agents, qui correspondent à des systèmes d’agents coopérant dans le but d’atteindre des
objectifs en commun. Ce travail présente une implémentation concrète de l’algorithme
d’Apprentissage Fédéré Décentralisé Asynchrone au travers du développement d’une
application facile à utiliser basée sur la librairie SPADE du langage Python, qui permet
de gérer des Systèmes Multi-Agents. L’objectif est que cette application soit un produit
concret que les utilisateurs puissent facilement utiliser pour lancer, contrôler, surveiller
et superviser l’exécution de l’algorithme de l’Apprentissage Fédéré Décentralisé Asyn-
chrone sur plusieurs clients. Il est démontré expérimentalement dans ce travail que l’al-
gorithme développé est effectivement plus efficace que les algorithmes synchrones dans
certains cas d’utilisation, bien que certaines améliorations futures puissent être identi-
fiées. De plus, l’application développée remplit ses objectifs, elle est à ce jour accessible
de manière simple par tout utilisateur, et peut être utilisée à grande échelle.

Mots clé: Apprentissage automatique, Apprentissage Fédéré, Systèmes Multi-Agents,
Consensus, Apprentissage Fédéré Décentralisé Asynchrone

vi

Resumen
El desarrollo rápido de la Inteligencia Artificial, que se ha convertido indiscutible-

mente en una herramienta clave en nuestra sociedad y en las industrias, ha dado lu-
gar al desarrollo de nuevas técnicas de Aprendizaje Automático (o Machine Learning). El
Aprendizaje Federado (o Federated Learning) mejora el rendimiento del entrenamiento de
un modelo de Aprendizaje Automático distribuyendo este proceso entre varios clientes
y combinando estos modelos en un servidor central. Cada cliente entrena un modelo
con subconjunto del conjunto de datos completo, y envía su modelo al servidor central
al finalizar una ronda de entrenamiento. Aunque el Aprendizaje Federado ya se utiliza
mucho y proporciona buenos resultados, el principal inconveniente es que el servidor
central recibe todos los modelos de todos los clientes, lo que constituye un único punto
de fallo, y también un posible cuello de botella. Esto dio lugar a la aparición de las ar-
quitecturas de Aprendizaje Federado Descentralizado, en las que los agentes comunican
entre sí y no interviene ningún servidor central. Sin embargo, se observó que esta arqui-
tectura podría mejorarse para reducir el tiempo de inactividad de todos los clientes; lo
que dio lugar al desarrollo de un nuevo algoritmo de Aprendizaje Federado presentado
en este artículo: el Aprendizaje Federado Decentralizado Asíncrono. La especificidad clave de
esta solución es que se elimina el tiempo de inactividad de todos los clientes y, por tanto,
el entrenamiento del modelo se realiza más rápidamente. Además, este estudio relacio-
na este algoritmo con el concepto de Sistemas Multiagente, que corresponden a sistemas
de agentes que cooperan para alcanzar objetivos comunes. En este sentido, este trabajo
presenta una implementación concreta del algoritmo de Aprendizaje Federado Descen-
tralizado Asíncrono en una aplicación independiente y fácil de usar que fue construida
sobre la librería SPADE del lenguaje Python, que permite gestionar Sistemas Multiagente.
Esta aplicación está destinada a ser un producto concreto que los usuarios puedan utili-
zar fácilmente para lanzar, controlar, monitorizar y supervisar la ejecución del algoritmo
de Aprendizaje Federado Descentralizado Asíncrono ejecutado en múltiples clientes. Se
demuestra experimentalmente en este trabajo que el algoritmo desarrollado es más efi-
ciente que los algoritmos síncronos en ciertos casos de uso, aunque se pueden identificar
algunas ideas como futuras mejoras. Además, la aplicación desarrollada cumple sus ob-
jetivos, es al día de hoy accesible de forma sencilla por cualquier usuario, y puede ser
utilizada a gran escala.

Palabras clave: Aprendizaje Automático, Aprendizaje Federado, Sistemas Multiagentes,
Consensus, Aprendizaje Federado Decentralizado Asíncrono

Contents

Contents vii
List of Figures ix
List of Tables xi

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Desired Impact . 5
1.4 Structure . 5

2 State of the art 7
2.1 Multi-Agent Systems . 7

2.1.1 Agents . 8
2.1.2 Environments . 9
2.1.3 Inter-Agent Communication . 9
2.1.4 SPADE . 11

2.2 Federated Learning . 13
2.2.1 Background on Artificial Intelligence and Machine Learning 13
2.2.2 Basic principles of Federated Learning 16
2.2.3 Centralized and Decentralized Federated Learning 19
2.2.4 Asynchronous Centralized Federated Learning 25

2.3 Consensus-Based Learning . 27
2.3.1 Theory of Consensus . 27

2.4 Proposition . 30
2.5 Starting point of the implementation . 30
2.6 Preliminary analysis . 31

2.6.1 Definition of requirements . 31
2.6.2 Risk analysis . 32

3 Elaboration of the solution 35
3.1 Work Plan . 35
3.2 Creating the Asynchronous Decentralized Federated Learning algorithm . 35

3.2.1 Asynchronous Decentralized Federated Learning scheme 35
3.2.2 Asynchronous consensus . 40
3.2.3 Algorithm . 41

3.3 Datasets . 43
3.3.1 MNIST . 43
3.3.2 Fashion MNIST . 43

3.4 Models . 44
3.4.1 Multilayer Perceptrons . 45
3.4.2 Convolutional Neural Networks . 46

3.5 Model Training . 50
3.6 Consensus . 50
3.7 Agents . 50

3.7.1 Agent architecture . 51

vii

viii CONTENTS

3.7.2 Agent Web Interface . 56
3.7.3 Launcher Agent . 57

3.8 Logging . 59
3.9 Code structure . 60
3.10 Containerizing the solution . 62

3.10.1 Docker . 62
3.10.2 Creating a Docker image of the program 63

4 Experimental results 67
4.1 Evaluation of the solution . 67
4.2 Comparison with a single training agent . 68
4.3 Comparison with Synchronous Decentralized Federated Learning 69

4.3.1 Influence of the number of agents 72
5 Limitations and bottlenecks 75

5.1 Length of the messages . 75
5.2 Number of agents running on the same machine 78
5.3 XMPP server . 79

6 Methodology 81
6.1 Tools . 81

6.1.1 Notion . 81
6.1.2 PyCharm . 81
6.1.3 Git . 82
6.1.4 Zotero . 82
6.1.5 Overleaf . 83

6.2 Project Management . 83
7 Further improvements 85

7.1 Improving the current solution . 85
7.1.1 Limiting the length of the messages 85
7.1.2 Launch all agents at once . 86

7.2 Future works . 86
8 Conclusion 89

8.1 Synthesis . 89
8.2 Relation with the pursued studies . 90

Bibliography 91
A Log files 97

A.1 Message log file . 97
A.2 Training log file . 98
A.3 Weight log file . 99
A.4 Epsilon log file . 100
A.5 Training time log file . 101

Appendices
B Link with Sustainable Development Goals (SDG) 103

B.1 Sustainable Development Goals . 104
B.2 Relating this study to SGDs . 104

B.2.1 Artificial Intelligence and Sustainable Development Goals 104
B.2.2 Federated Learning and Sustainable Development Goals 106
B.2.3 Dangers of AI . 106

List of Figures

2.1 Example of an agent network graph used in a MAS 8
2.2 Example of the usage of XMPP protocol . 10
2.3 Example of a SPADE agent’s default graphical interface 12
2.4 Example of a SPADE agent behaviour’s default graphical interface 13
2.5 Steps of a Federated Learning training round 18
2.6 Usage of Federated Learning in Gboard. This picture was taken from [46] 19
2.7 Graph representing the agents and their connections 20
2.8 Steps of a Synchronous Decentralized Federated Learning training round 23
2.9 Comparison between a centralized architecture and various implementa-

tions of asynchronous architectures. This figure was taken from [38]. . . . 24
2.10 Results of experiments on the MNIST dataset using the Asynchronous De-

centralized Federated Learning algorithm described in [15]. This figure
was taken from [15]. 25

2.11 Comparison between a synchronous and asynchronous implementation of
Centralized Federated Learning. This figure was taken from [14]. 26

2.12 Results of experiments on the following datasets : FirRec, Air Quality, Ex-
traSensory, Fashion-MNIST, with several Federated Learning algorithms.
This figure was taken from [14]. 26

3.1 Steps of an Asynchronous Decentralized Federated Learning training round 39
3.2 Example of MNIST dataset samples . 43
3.3 The 10 Fashion MNIST classes and examples of dataset samples 44
3.4 Multilayer Perceptron architecture . 46
3.5 Convolutional Neural Network architecture 47
3.6 Example of 3 convolution operations. This figure was taken from [72] . . . 48
3.7 Example of a max pooling with a 2× 2 kernel. This figure was taken from

[72] . 49
3.8 First proposed solution . 54
3.9 Second proposed solution . 55
3.10 Third proposed solution . 55
3.11 Agent’s graphical interface . 56
3.12 Graphical Interface when the user selects the option to create the agent by

uploading a Network Graph . 58
3.13 Graphical Interface when the user selects the option to create the agent

without a Network Graph . 59
3.14 How Docker allows to create containerized applications. This figure was

taken from https://www.docker.com/resources/what-container/ 62

4.1 Evolution of training and test accuracy in function of the number of itera-
tions, both for a Multi-Layer Perceptron (a) and for a Convolutional Neural
Network (b) . 68

4.2 Evolution of one MLP weight of 2 agents throughout 20 rounds of training 68

ix

https://www.docker.com/resources/what-container/

x LIST OF FIGURES

4.3 Evolution of training and test accuracy for 2 agents applying the ADFL
algorithm and one single agent training locally in function of the number
of iterations, both for a Multi-Layer Perceptron (a) and for a Convolutional
Neural Network (b) . 69

4.4 Graph representing the network of agents used to conduct experiments to
compare the ADFL setting to the SDFL setting 70

4.5 Evolution of test accuracy round by round for the synchronous and asyn-
chronous setting . 70

4.6 Evolution of test accuracy in function of time for the synchronous and
asynchronous setting . 71

4.7 Evolution of average test accuracy in function of the number of rounds for
a system with 2 agents and a system with 7 agents 72

5.1 Evolution of test accuracy in function of the number of neurons in the hid-
den layer of the used MLP . 77

6.1 Example of a team meeting summary on Notion 82

7.1 Evolution of normalized and unnormalized Mutual Information in func-
tion of the number of users in the Federated Learning setting, with 3 dif-
ferent models. This figure was taken from [18]. 87

A.1 Example of an message log file . 97
A.2 Example of a training log file . 98
A.3 Example of a weight log file . 99
A.4 Example of an epsilon log file . 100
A.5 Example of an training time log file . 101

List of Tables

2.1 Requirements for the development of the ADFL algorithm 31
2.2 Requirements for the development of the application implementing the

ADFL algorithm . 32
2.3 Risks involved in the development of the application and measures to

migitate them . 33

3.1 Work plan. Each phase is described and is attributed a certain number of
working hours as well as a difficulty. 36

3.2 Characteristics of the MAS environment implemented in the solution . . . 51

5.1 Length of the sent messages in function of the x parameter of the MLP . . 75
5.2 Average, minimum and maximum times taken to send a message in func-

tion of the length of this message . 76
5.3 Duration of the MLP model training on the MNIST dataset in function of

the size of the model . 77
5.4 Duration of the MLP model training on the MNIST dataset in function of

the number of agents training on the same device 78

xi

Glossary

ADFL Asynchronous Decentralized Federated Learning. 4, 30, 31, 36, 41, 69, 73

AI Artificial Intelligence. 3, 13, 14, 18

CNN Convolutional Neural Network. 46–49, 58, 67, 69, 86

DAI Distributed Artificial Intelligence. 7

FL Federated Learning. 3, 4, 6, 16, 18, 23, 25, 79

IoT Internet of Things. 7, 8

MAS Multi-Agent Systems. 3, 4, 6–13

ML Machine Learning. 3, 13, 14, 18, 78

MLP Multilayer Perceptron. 45, 49, 58, 67, 69, 70, 75–78, 86

NN Neural Network. 45

SDFL Synchronous Decentralized Federated Learning. 4, 20, 23, 36, 72

SDG Sustainable Development Goals. 6

SPADE Smart Python Agent Development Environment. 3–5, 11, 12, 36, 51–53, 57

XMPP Extensible Messaging and Presence Pro- tocol. 9–12, 79, 85

1

CHAPTER 1

Introduction

The code related to this project is available publicly at the following link :

https://github.com/miromatagne/spade-adfl

1.1 Motivation

Artificial Intelligence (AI) is today widely accepted as a society-changing technology. Its
impact on a wide range of industries such as transportation [1], healthcare [5], banking
[32], real estate [30] and many more is considerable. Researchers are constantly search-
ing for ways to improve existing Artificial Intelligence solutions or to create new ones
in order to respond to specific needs in our society, and to adapt to other technology
related trends such as Internet of Things (IoT) or cloud computing. This paper focuses
more specifically into Machine Learning (ML), which is a branch of Artificial Intelligence
which "gives computers the ability to learn without explicitly being programmed" [61].
In other terms, ML allows machines to learn from past data without being explicitly pro-
grammed and produce predictions. The main component of ML is called a model, which
is the program that allows to learn from data and make predictions.

In 2017, Google presented the idea of Federated Learning (FL) [45, 46], which is a
new form of Machine Learning involving multiple devices, called clients, that cooperate
together. The key idea is that multiple devices train a Machine Learning model and then
share their knowledge in a central server that aggregates all of their results.

This aggregation of all the models by the central server is a very important step, and
makes use of a concept called consensus. This concept is the subject of a lot of research, in
order to be able to prove that the way the central server combines the models is efficient
and leads to appropriate results. Algorithms making use of consensus in the ML domain
can be referred to as Consensus-based Learning algorithms.

In parallel, the last decades have seen the apparition and development of Multi-Agent
Systems (MAS). These are systems that involve multiple agents that cooperate in order to
achieve a particular goal [16]. The particularity of these systems is that they are decen-
tralized, the agents can communicate between themselves without needing the presence
of a central server. In practise, frameworks and libraries have been created in order to fa-
cilitate the creation of Multi-Agent Systems, such as SPADE, a Python library developed

3

https://github.com/miromatagne/spade-adfl

4 Introduction

by Pr. Javi Palanca [53], professor at Universitat Politècnica de València (UPV).

Due to their collaborative nature, it is understandable that Federated Learning and
MAS could be grouped in a single solution, where the different agents of the MAS play
the role of the different clients of FL. Furthermore, the Federated Learning setting could
possibly benefit from the decentralized aspect of Multi-Agent Systems. Indeed, we could
imagine a version of FL where the centralized server is absent, and where the various
clients communicate directly between themselves in order to exchange information. This,
of course, presents some limitations and requires to adapt the original FL algorithm to
this new environment.

A first solution to combining the principles of FL and MAS is called Synchronous De-
centralized Federated Learning (SDFL), which, in broad terms, consists in a solution where
agents share the information about the model they are training to other neighbours in a
synchronous fashion. Generally speaking, this means that until all agents have not sent
their results, the next round of this iterative process can not begin.

An alternative solution which works as the SDFL solution but in an asynchronous
fashion, which we will call Asynchronous Decentralized Federated Learning (ADFL), could
avoid all these waiting times and improve the SDFL algorithm. This is a new algorithm
that will be developed throughout this work, and that will be tested and compared to ex-
isting alternatives. In broad terms, the main idea of this new algorithm is that the agents
do not need to wait for all the other agents to send their model information before begin-
ning the next iteration, and therefore gain in efficiency.

1.2 Objectives

The objectives of this work all include the combination of MAS and FL, making use of
the SPADE library in order to produce a finished product that is easily usable to run and
test these new ML algorithms.

First of all, the first objective is to develop a solution implementing Synchronous De-
centralized Federated Learning using SPADE. Experiments should be made in order to
evaluate the performance of this solution, and check that it works as desired.

Next, the Asynchronous Decentralized Federated Learning algorithm and specifica-
tions should be elaborated. This is a phase where a lot of research and investigation is
necessary, in collaboration with the supervisors as well as Pr. Miguel Rebello Pedru-
elo. There was a lot of theoretical issues to discuss, as well as practical implementation
choices. Since this is a new algorithm that had not been created or tested by any other
researcher, to our knowledge, a lot of tests and simulations were required to prove the
solution would give good results.

Next, once the theoretical algorithm was created, a new solution implementing Asyn-
chronous Decentralized Federated Learning using SPADE must be implemented, in the
form of a standalone application that can be easily executed by a user in order to perform
ADFL on several devices. This solution should be a easy to execute application, taking
advantage of the benefits of using SPADE to provide some abstraction. It is then very im-

1.3 Desired Impact 5

portant to compare this solution to the SDFL solution in order to determine if it presents
any significant advantages or disadvantages, and to understand in which situation one
algorithm could be more performant than another. Furthermore, the interaction with the
user must be taken into consideration. Indeed, the user needs to be able to follow the
evolution of the execution in real time and monitor how the system is evolving. The user
must also be able to enter custom preferences very easily, and the solution should adapt
to it and offer a clear and easy to use interface to the user.

Next, an academic paper was written, in collaboration with Pr. Carlos Carrascosa
Casamayor, Pr. Jaime Andrés Rincón Arango, Pr. Miguel Rebello Pedruelo and Aaron
Pico Pascual. This paper was titled Asynchronous Consensus for Multi-Agent Systems and its
Application to Federated Learning [12], and was submitted to the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS)1 which takes place be-
tween the 29th of May 2023 and the 2nd of June 2023 in London. A part of this paper was
dedicated to the development of a SPADE framework implementing the Asynchronous
Decentralized Federated Learning algorithm that was created.

Finally, the last objective of this work is to understand in which circumstances any of
these solutions would be of an appropriate use, and understanding what are the limita-
tions or bottlenecks in these architectures. Furthermore, we should think about how the
developed solutions could be improved in the future to produce solutions that are more
efficient.

1.3 Desired Impact

First of all, on the research part of this work, a desired impact is to conclude that the
developed Asynchronous Decentralized Federated Learning setting presents some ad-
vantages compared to other Federated Learning implementations in some use cases. In
particular, an experimental comparison with the Synchronous Decentralized Federated
Learning setting should be conducted, in the hopes of observing an improvement pro-
vided by the newly created algorithm. We hope that, through the publication of the
academic paper that was written, this algorithm and its performances could lead to more
research in this field and inspire researchers to further improve the solution.

Next, on the more practical and product-oriented part of this work, a desired impact
is that the developed application which runs the Asynchronous Decentralized Federated
Learning algorithm is performant, easy to use, error-free and intuitive. The application
should enable users to execute this algorithm in a very simple manner, which would al-
low them to easily set up a network of communicating agents implementing the ADFL
algorithm.

1.4 Structure

This work will first of all analyze the state of the art in the domains that are relevant to the
study. We first of all explain the principles of Multi-Agent Systems, Federated Learning

1https://aamas2023.soton.ac.uk/

6 Introduction

and Consensus-Based Learning in order to give the reader all the necessary theoretical
background before explaining the developed solution in more detail. Next, an analysis of
the state of the art advances in FL systems involving MAS principles in a decentralized
fashion will be analysed, and the work that was already carried out in this project before
the start of this work will also be detailed.

Next, the elaboration of the produced solution will be explained, before analyzing the
results returned by the various experiments made on this solution.

The limitations and bottlenecks that limit the performance of the solution will then be
analyzed, in order to explain the experimental results.

Next, the methodology, tools and project management techniques used throughout
the project will be detailed.

Finally, some further improvement ideas will be given in order to inform the reader
on how these kinds of implementations could possibly be improved in the future, before
giving a final conclusion about the work.

In addition, some information will be given in the appendices of this work. Appendix
A will give examples of some log files that were useful during the elaboration of the solu-
tion. Appendix B will then present how this work relates to the Sustainable Development
Goals (SDG) published by the United Nations (UN).

CHAPTER 2

State of the art

Before diving into the implementation of the final solution, a lot of background work and
research was necessary. Indeed, this section focuses on giving the required prerequisites
and explains the state of the art concepts concerning Multi-Agent Systems, Federated
Learning and Consensus-Based Learning.

Then, a deeper analysis of the current state of the art of Federated Learning algorithms
is given, analysing thoroughly the latest advances made in this field, as it is the core of
this work. In particular, we will focus on the implementations and current advances in
Synchronous Decentralized Federated Learning and some research in asynchronous im-
plementations.

Finally, a part of the implementation had already been started before the start of this
work by Pr. Carlos Carrascosa Casamayor and Pr. Jaime Andrés Rincón Arango. This
previous work will be detailed in this section too, in order to better understand the scope
of the implementation.

2.1 Multi-Agent Systems

Multi-Agent Systems (MAS) is one of multiple algorithms that classify as Distributed Ar-
tificial Intelligence (DAI) algorithms. DAI is a class of technologies concerned with the
cooperative solution of problems by a decentralized group of agents [28]. This family
of algorithms has received a lot of attention in the past years as it allows to resolve effi-
ciently problems that are very difficult to solve on a single machine.

A MAS is a collection of autonomous entities, known as agents, that are capable of
learning, making autonomous decisions and collaboratively solve tasks [16]. Indeed,
agents are autonomous in the sense that they are capable of executing actions by them-
selves, but are also collaborative (or social) in the sense that they communicate with each
other in order to reach their objective.

These agents can be of many different types, they can be a software, a hardware com-
ponent, or a combination of both (for example a robot). This is one of the reasons why
MAS is often associated with IoT (Internet of Things) [63]. IoT is defined in [23] as a
"dynamic global network infrastructure with self-configuration and interoperable com-
munication". In broad terms, IoT refers to a system of things such as sensors or software

7

8 State of the art

that can communicate with each other over the Internet. Therefore, to make a parallel
between MAS and IoT, MAS agents could be considered as any type of thing used in IoT
(such as a thermostat, or a drone for instance) [63].

The network of all agents is represented by an agent network graph, which is an undi-
rected graph where each node represents an agent and each edge connecting 2 agents
indicates that these 2 agents can communicate one with another. Indeed, not all agents
can communicate with each other. An example of an agent network graph is shown in
figure 2.1. From this graph, we can see that agent 1 can communicate with agent 2, agent
2 can communicate with agents 1, 3 and 4, etc...

Figure 2.1: Example of an agent network graph used in a MAS

2.1.1. Agents

An agent in a MAS is an entity placed in an environment which he can interact with, and
that is capable of performing some flexible and autonomous actions inside this environ-
ment in order to achieve its goal [73]. The environment designs the place where the agent
is located. It provides information that the agent can use in order to learn, make deci-
sions and ultimately meet the deign objectives. The agent senses information from the
environment, which are called parameters. These parameters allow the agent to build
up knowledge about the environment. He can then, based on its previous knowledge
and the parameters that he sensed, perform an action that affects the environment [73].
Of course, the main characteristic of the MAS is that agents can communicate between
themselves, and therefore use knowledge of other agents as well when making the deci-
sion of which action to perform.

Agents can be characterized by different attributes that must comply with :

• Reactivity : agents must be able to react to changes in the environment. The agent
must at all times keep track of the environment’s evolution and adapt to the changes
in it.

• Proactivity : agents must be focused on achieving their objectives, and should there-
fore take initiatives and the actions should not only be event-driven.

• Autonomy : each agent should be able to decide which action to execute autonomously.

• Sociability : capacity to communicate with other agents through mechanisms of co-
operation (share the knowledge between agents on order to help each other achieve

2.1 Multi-Agent Systems 9

their objectives), coordination (manage the interdependencies between the activi-
ties of the different agents) and negotiation (reach a common agreement about an
issue of common interest).

2.1.2. Environments

The environment is a key part of a MAS, as it possesses many features that heavily influ-
ence the complexity of a MAS, such as :

• Accessibility : defines how accurately an agent can obtain data from the environ-
ment.

• Determinism : refers to the predictability of the consequences of an action on the
environment of the MAS.

• Dynamism : indicates if there can be some changes in the environment that are not
caused by an agent’s actions.

• Continuity : indicates if the environment is continuous or discrete. In a continuous
environment, the agent’s state is modified by the environment following a contin-
uous function, whereas in a discrete environment the environment can only place
the agent in a finite amount of states.

2.1.3. Inter-Agent Communication

Once agents are setup, some mechanisms still need to be put into place in order for them
to be able to communicate (communication channels, protocols, ...).

Message sending and receiving

In order for the agents to be able to exchange messages and communicate one with an-
other, a specific messaging protocol must be defined. One of the multiple existing pro-
tocols, and the one used in this study, is XMPP1 (Extensible Messaging and Presence
Protocol) [60, 70]. It is a set of technologies used for instant messaging, managing pres-
ence mechanisms and multiple other routing or messaging purposes. XMPP was built
in the Jabber2 (an instant-messaging protocol) open-source community, in the hopes to
improve the existing solution. XMPP offers open and standard protocols, as well as a
decentralized alternative to closed instant messaging protocols. Indeed, anyone can run
their own XMPP server and handle its own communications. An XMPP server is a server
that provides routing services to the agents. Indeed, each agent is identified by its Jabber
Identifier (JID), which contains a username and the name of the XMPP server, separated
by the symbol @. The XMPP server corresponding to the agent is responsible of sending
and receiving the messages that need to be transmitted to other agents. When an agent
wants to send a message to another agent, it sends this message to its XMPP server. The
XMPP server then finds a way to send this message to the XMPP server of the receiving
agent, which finally sends the message to the receiving agent.

An example is presented at figure 2.2. If agent1@server1.com wants to send a mes-
sage to agent2@server2.com, he first sends this message to its XMPP server, which is

1www.XMPP.org
2www.jabber.com

10 State of the art

server1. Then, server1will look the for XMPP server corresponding to agent2@server2.com.
He identifies server2 and transfers him the message. server2 then forwards the message
to agent2@server2.com.

Figure 2.2: Example of the usage of XMPP protocol

XMPP is an extensible protocol, which means that new features (extensions, called
XEP) can be easily added to the existing solution. XMPP is nowadays considered as
the universal standard protocol for instant messaging by the IETF3 (Internet Engineering
Task Force), and it is widely in the industry. For instance, companies like WhatsApp4 or
Zoom5 make use of this protocol [69, 17].

Presence mechanism

An XMPP server does not only handle the routing of the messages as depicted previ-
ously. Indeed, it also handles the contact lists of each agent. The contact list of an agent
corresponds to a list of all the agents the agent has subscribed to, or in clear all the agents
that the agent wants to communicate with. The contact list of each agent is stored on
the corresponding XMPP server. When an XMPP agent connects (or disconnects) to its
XMPP server, the server automatically notifies all the agents on its contact list about this
connection (or disconnection). This is therefore a very useful mechanism, since an agent
is immediately notified when he can start (or should stop) communicating with an agent
he has subscribed to.

Furthermore, an agent can possess a presence state, which is simply an indication
about what the agent is doing. For instance, presence states can be Do Not Disturb
(when the agent is busy and should not be messaged), or Chat when the agent is waiting
to start a conversation.

XMPP also provides a way to manage availability, which is quite similar to the pres-
ence states. Indeed, each agent can either be in an available state or an unavailable
state. The factors that influence the agent to be in either one of those states is determined
by the developer of the agents, and depends on the usage that is made of the MAS. When
a previously available agent becomes unavailable, all the agents on its contact list are
notified by this event. Similarly, when a previously unavailable agent becomes available,

3https://www.ietf.org/
4www.whatsapp.com
5www.zoom.us

2.1 Multi-Agent Systems 11

all of the agents on its contact list are notified.

2.1.4. SPADE

SPADE (Smart Python Agent Development Environment) is a multi-agent systems plat-
form written in Python and based on instant messaging using the XMPP protocol [53].
This library is very much adapted to the goal of this research, as it allows to embody
Multi-Agent Systems in a simple way, and provides a level of abstraction for Inter-Agent
Communication.

Since SPADE is based on XMPP, an XMPP server is necessary in order for SPADE
agents to be able to run and communicate between themselves. In the case of this study,
a private XMPP server will be used, but multiple online XMPP servers exist that could
also be used. When a SPADE agent wants to connect to the server, it needs to have a JID
(username@server) and a password.

Once the agent is created and connected to its server, it can create one or several be-
haviours. A behaviour produces a "particular execution pattern designed to support a
typical execution requirement of agents in a Multi-Agent System" [53]. In other words,
a behaviour represents a task that an agent is expected to carry on during its execution.
There are 5 different pre-defined behaviours in SPADE :

• Cyclic Behaviour : performs a task repeatedly, until the behaviour is stopped.

• Periodic Behaviour : performs a task periodically, with a period specified by the
user.

• One-Shot Behaviour : performs a task only once as soon as the behaviour is created.

• Timeout Behaviour : performs a task only once, but after a certain time which is
specified by the user.

• Finite State Machine Behaviour : performs more complex tasks. This behaviour
contains multiple states that are created by the user and allow events to trigger
the state switches. All the permitted transitions between the states should also be
specified.

All SPADE agents possess a message dispatcher, whose role is to redirect the incom-
ing messages to the agent’s behaviour that is expecting that type of message, and to send
any message to the XMPP server.

SPADE makes an extensive use of asynchronous programming. Indeed, all behaviours
of an agent run simultaneously and execute in parallel, and SPADE tackles this situation
by making an extensive use of the Python library AsyncIO, which is used to write con-
current code. In the case of this study, the agent must be able to train its model, but also
be ready to send or receive messages simultaneously.

SPADE is a useful library as it addresses issues in current MAS platforms. First of all,
it offers a simple, clear and standardized alternative to other solutions. Indeed, SPADE
provides an easy to use abstraction to instant messaging, and makes use of XMPP which

12 State of the art

is a widely used protocol, in opposition to some other MAS platforms that may have
their own specific communication protocols. SPADE also tackles a problem of scalability,
as it allows to dynamically allocate communication resources, such as the agents do not
suffer when the amount of messages arriving to a server is higher than usual. Further-
more, SPADE allows to connect agents and humans, which is a key aspect of Ambient
Intelligence (AmI), a very relevant subject these days. Indeed, since agents use the XMPP
protocol, they can easily connect with other humans or even other applications (like Tele-
gram bots for instance [65]). SPADE also provides graphical interfaces for each agent.
These interfaces provide various data about the agents in real time, the agents they com-
municate with and the messages that they exchange, their behaviours, etc... An example
of this default interface is presented in figure 2.3, where all the behaviours and contacts
of the agent is displayed.

Figure 2.3: Example of a SPADE agent’s default graphical interface

Details about the several behaviours of the agent can also be shown, such as in the
example in figure 2.4.

In addition, SPADE allows the developer to create its custom agent graphical inter-
faces. Indeed, SPADE provides a scheme that allows the developer to create its own
HTML file, using the Jinja6 syntax. The agent must then contain a controller function,

6https://jinja.palletsprojects.com/en/3.1.x/

2.2 Federated Learning 13

Figure 2.4: Example of a SPADE agent behaviour’s default graphical interface

that allows to send data relative to the agent constantly to the graphical interface. Note
that these graphical interfaces can be used for information displaying as we discussed
until now, but also for information retrieval. Indeed, the graphical interface could be a
form to fill up by the user, and the data entered would then be sent to the agent that could
make an adequate use of it.

2.2 Federated Learning

Now that the concept of Multi-Agent Systems has been introduced, it is important to un-
derstand how to relate it with the concept of Federated Learning, and how the agents in
the MAS setting become clients in the FL setting.

2.2.1. Background on Artificial Intelligence and Machine Learning

Before diving into the details of Federated Learning, it is necessary to give a brief intro-
duction about Artificial Intelligence and Machine Learning in general. Although it may
seem like a new concept, the first program commonly seen as implementing Artificial
Intelligence was released in 1956 [9].

Artificial Intelligence refers to the development of computer systems able to realize
tasks which normally would require human intelligence [29]. In the case of this work,
a subset of AI will be made use of : Machine Learning (ML), which "gives computers
the ability to learn without explicitly being programmed" [61]. ML makes use of models,
which are programs that learn from the input data and produce outputs. It is important
to understand than not all of AI can be seen as ML. Indeed, for example, an algorithm

14 State of the art

programmed to play Tic Tac Toe where the developer of the algorithm indicated the best
move for each singular position is considered as AI since the algorithm plays the game
perfectly without requiring the presence of a human. However, it is not ML since the
algorithm didn’t learn anything, it simply applied rules that were explicitly given to it.
On the other hand if someone was to create an algorithm that learns from previous Tic
Tac Toe games in order to be able to play, this would be ML. In this study we will focus
on ML since the algorithms used will all form part of this family.

Supervised and unsupervised learning

ML can be split into 2 categories : supervised and unsupervised learning. In the super-
vised setting, the ML model is trained with labeled data. In other words, the data that
the ML model with train on will already contain the real value of the prediction that the
model will try to output [62]. For instance if a model is trained to recognize cats from
dogs on images in a supervised setting, the user will know the answer (whether each pic-
ture is a dog or a cat) for each piece of data that will be used to train the model.

In the unsupervised setting, the data used to train the model is unlabeled, which
means the user does not know the answer that the model is trying to predict. The models
therefore try to recognize patterns in the data, and can perform tasks such as clustering
[11].

In the case of this study, we will only consider the supervised learning setting.

Classification and regression

Two subsets of supervised ML are classification and regression. Classification refers to a
problem where the goal of the model is to output a discrete variable, or class. For instance,
the cat/dog recognition problem mentioned previously is a classification problem since
there are only 2 possible outcomes.

On the other hand, regression concerns the problems where a continuous variable
needs to be outputted by the model (for example the price of a product).

In this study we will focus on classification problems.

Train-test splitting

In order to train a model, the input data is split into 2 sets : the training set and the test
set. The training set is used to train the model, and the test set is then used to evaluate
the quality of the model. The sizes of both sets depends on the data and the model being
used for training. The size of the sets was proven to quite heavily influence the perfor-
mance of the models in some cases [47].

The reason why the data is split into training and test sets is because if we would
evaluate the model with the same data that we trained it on, we don’t have a proper idea

2.2 Federated Learning 15

of how the model reacts to data it has never seen before. If the model is good at predict-
ing data from the training set but bad at predicting data from the test set, we say that the
model is overfitting. In this case, the model has learned too much about the training set, to
the point where it can not cope with new data [74]. We could imagine this as if the model
had "memorized by heart" the training set instead of learning the real relation between the
input data and the output.

On the other hand, when the model does not manage to capture the relationship be-
tween the input data and the output on the training set nor on the test set, this situation is
called underfitting. In this case, it means that the model is not complex enough to capture
this relationship, and needs to be adapted.

Performance metrics

In order to evaluate a model and to be able to compare models together, performance
metrics need to be defined [42]. The most simple and easily understandable performance
metric for a classification problem is the accuracy, which is defined as follows :

Accuracy =
of Correct Predictions

of Total Predictions
(2.1)

This metric gives us a number between 0 and 1 which indicates the proportion of cor-
rect predictions made in comparison to the total number of predictions.

The accuracy is first of all measured on the training set, which we will call the training
accuracy, and then on the test set which we will call test accuracy. In general, the training
accuracy is always higher than the test accuracy, since the models always slightly overfit
the training set. The goal is that the difference between the training accuracy and the test
accuracy stays quite small, in order to have a robust model.

Although there exists many other performance metrics, accuracy is the metric that
will be used throughout this study. More specifically, when comparing models between
themselves, test accuracy will be used.

Model training process

The training of the model is the process during which the model learns from the input
data, and learns how to make accurate predictions. As explained previously, models out-
put predictions. In the case of a classification problem with more than 2 possible classes
(called non-binary classification problems), the model outputs predictions of probabili-
ties of the sample belonging to each class. The class with the highest probability is then
considered as the output prediction.

A large amount of models contain a certain number of weights and biases, that allow
to produce mathematical outputs. Weights and biases are simply numbers that describe
a given model. The output of the model is a mathematical combination of all the weights
and biases of the model. These weights will then be adjusted throughout the training in
order to produce the best possible outputs. In order to evaluate the quality of an output
during the training phase, a Loss Function (or Cost Function) has to be defined. This is

16 State of the art

a function that compares the predictions of the model to the actual class of the samples.
The objective is always to minimize this loss function in order to have predictions that
are as close as possible to the real classes. Some of the most used Loss Functions are the
MSE (Mean Squared Error) [27] or Cross-Entropy Loss [75]. Another very popular loss
function is the Negative Log Likelihood (NLL). It corresponds to the negative sum of all
logarithms of the outputs of the model, and the result shows how good or bad the model
is at predicting the correct class in a classification case.

Once a loss function is defined, the training process works as follows :

• One sample is given as input to the model, and the output is computed

• The cost function is applied to this output, in order to see how good or bad the
prediction is

• An algorithm is applied to change the weights in a way that the cost function is
minimized

These steps are then applied for all samples, which then constitutes an epoch of train-
ing. In most cases, multiple epochs of training are required before obtaining a performant
and robust model.

This algorithm applied to change the weights of the model is the key of the training
process, as it is the element that actually makes the model learn from the data. Most
algorithms are gradient based, which means that they compute the gradient of the cost
function in regard to the weights. Indeed, the sign of the gradient will give an indication
on how to modify the weights in order to minimize the loss function. The most popular
algorithms used are the Stochastic Gradient Descent (SGD) [58] and Adam, which is an
alternative algorithm that is not gradient based [34].

In some cases, samples are not considered one by one during the training process,
but are instead grouped by batches. Each batch is processed completely before applying
the cost function and changing the weights. The batch size corresponds to the number of
images in a single batch.

2.2.2. Basic principles of Federated Learning

The term Federated Learning (FL), was first introduced by McMahan et al. [45], and de-
fined as follows : "We term our approach Federated Learning, since the learning task is
solved by a loose federation of participating devices (which we refer to as clients) which
are coordinated by a central server." The main specificity of FL compared to other Arti-
ficial Intelligence techniques is that it uses multiple devices, and model training is not
made on one sole device. This implies that devices have to be able to communicate with
the central server, which means some kind of communication network needs to be in
place for FL to be used.

FL exploits the resources of each user device in order to train a Machine Learning
model, by keeping the training data decentralized. Indeed, each user device performs a
local training using the data at his disposal, and then sends information (model weights
and biases) to the central server. The central server then performs a step called Model

2.2 Federated Learning 17

Aggregation, which consists in combining the different models that were received, and to
have one resulting model as a result. There are multiple model aggregation techniques,
some of which will be presented throughout this paper. This resulting model is then used
to measure the accuracy on the test set. The central server then sends the updated weights
obtained after model aggregation to the clients, and the next round of local training starts
based on these new weights. The different steps of a Federated Learning training itera-
tion are presented in Figure 2.5.

(a) The clients train their models locally, using the local training data

(b) After training, the clients send the model weights and biases to the central server

(c) The central server performs model aggregation from all the received models and creates a resulting model

18 State of the art

(d) The central server sends the model resulting from model aggregation to the clients

Figure 2.5: Steps of a Federated Learning training round

FL presents a lot of advantages compared to traditional AI techniques. First of all,
FL embodies the principle of data minimization as each user trains its model on a small
portion of the total data used throughout the process. The fact of not overpowering ML
models with large quantities of data and keeping the amount data minimal in model
training has proven to be way more efficient [20]. Furthermore, FL can present an ad-
vantage in terms of execution times. Indeed, the model training phase is much faster in
this scenario as it is made with a smaller quantity of data, and the model aggregation is
usually a quickly executed phase. The limitations of FL and of the gain in computational
time will be further studied in chapter 5.

FL allows to solve a tackle a serious challenge : analyze and learn from data dis-
tributed among multiple devices or users by running Machine Learning models while
maintaining the privacy and not exposing this data. Indeed, exploiting data in big data
centers that collect information from all clients, even anonymously, has proven to be at
high risk of breaching data privacy [66]. By using FL, the raw training data never leaves
the user’s device, as the training is performed locally. The communications between the
user devices and the central server only contain model weights and biases, which do not
reflect directly the training data and preserves the user’s privacy.

This is for example a problem tackled by Google with Gboard, a keyboard developed
by Google capable of suggesting the next work depending on the context. In order to
guarantee privacy for all users and still be able to learn from all user experiences and
history of typing, FL was used in order to train locally the models on each user device,
and then simply sharing model parameters and weights to a central server [46]. The dif-
ferent steps illustrating how FL allows to learn from user input in the case of Gboard is
described in Figure 2.6. In the step A, the user input is collected and a model is trained
locally. Next, in step B, all the user devices send the learned data to a central server. This
server makes a model aggregation in step C, and updates the models in each individual
user device.

2.2 Federated Learning 19

Figure 2.6: Usage of Federated Learning in Gboard. This picture was taken from [46]

2.2.3. Centralized and Decentralized Federated Learning

The Federated Learning principles explained in section 2.2.2 refer to what would be more
specifically called Centralized Federated Learning. This term of course refers to the presence
of a central server, responsible for performing the model aggregation once all the clients
perform a training step. However, this central server presents a single point of failure
(SPoF) and could also be a bottleneck because of all the messages arriving from the multi-
ple clients at the same time. Indeed, it was proven that with a large number of clients, the
centralized architecture could face serious bottlenecks due to communication overflows
and lead to a severe lack of performance [39]. Therefore, some alternatives to Centralized
Federated Learning have been advanced, in order to mitigate the disadvantages of the
central server [68].

The key idea of Decentralized Federated Learning is that the central server is removed,
and that the clients directly communicate one with another using a peer-to-peer archi-
tecture. This therefore means that the clients are themselves performing the model ag-
gregation step. The communication topology is therefore a bit more complex than in the
Centralized Federated Learning scenario, as it is represented by a graph where the nodes
are the different clients and the edges connect the clients that can communicate one to
another. Not all the nodes have to be connected to each other, the graph is made com-
pletely arbitrarily and depends on the context of the execution. Therefore, all clients do
not necessarily have the same number of neighbours in the graph, and therefore do not
all connect with the same amount of clients. This creates a sort of asymmetry that does
not exist in the context of Centralized Federated Learning. Note that the graphs used in
the decentralized setting are usually undirected (if a client b is the neighbour of the client
a, then client a is also the neighbour of client b), but cases with directed graphs have also
been studied. For instance, this can be useful when studying single-sided trust social
networks (if a client a trusts client b, client b may not trust client a) [24].

In this decentralized setting, clients can be in different states :

• Training State : the client is locally training his model

• Sending State : the client is sending his model’s weights and biases to his neigh-
bours

20 State of the art

• Receiving State : the client is waiting for his neighbours to send him their model’s
weights and biases

The Decentralized Federated Learning setting can further be divided into two differ-
ent versions : Synchronous Decentralized Federated Learning and Asynchronous Decen-
tralized Federated Learning [41].

Synchronous Decentralized Federated Learning

In the Synchronous Decentralized Federated Learning (SDFL) setting, a round of training
can be described as follows :

• All clients start training their local models, using their local training data

• As soon as a client is done training, he sends his model weights and biases to all his
neighbours in the graph

• Each client waits until they have received the weights and biases of all their neigh-
bours, and then perform a local model aggregation

• Once the model aggregation has been performed, the local training starts again

In order to illustrate the Synchronous Decentralized Federated Learning more clearly,
an example is given using 4 clients, connected to each other as presented in figure 2.7. The
several steps of an iteration in the SDFL setting in the case of these 4 agents is presented
in figure 2.8.

Figure 2.7: Graph representing the agents and their connections

2.2 Federated Learning 21

(a) The clients train their models locally, using the local training data

(b) Client 2 is done training, he sends his model weights and biases to his neighbours

(c) Client 2 now waits for the weights and biases of his neighbours (clients 3 and 4)

22 State of the art

(d) Clients 3 and 4 are done training and send their model weights and biases to their neighbours

(e) Client 2 now received the weights from all his neighbours and performs model aggregation

(f) Client 1 is done with training and sends his weights and biases, client 2 starts training again

2.2 Federated Learning 23

(g) Clients 1, 3 and 4 have now received all the weights and biases from their neighbours and perform model
aggregation

Figure 2.8: Steps of a Synchronous Decentralized Federated Learning training round

As mentioned previously, the SDFL setting offers multiple advantages compared to
the Centralized FL setting, mainly brought by the removal of the central server that rep-
resents a Single Point of Failure as well as a bottleneck with the important traffic of in-
coming messages.

However, the SDFL architecture presents one major inconvenient, which is the large
amounts of time that the agents spend waiting for their neighbour’s weights. Indeed,
referring to the example in Figure 2.8, the client 2 finishes training first, and has to wait a
long time until the clients 3 and 4 also finish their training round and send their weights.
After a training round, an agent has to wait for the model weights of all of its neighbours
and can not start another training round in the meantime due to the synchronous charac-
ter of the architecture. A lot of execution time is therefore lost as the agents spend a non
negligible time waiting, and this alters the overall efficiency of the SDFL solution.

The first studies of Synchronous Decentralized Federated Learning were made by
Lan et al. [35] and by Sirb and Ye [64]. These studies give a theoretical proof that Syn-
chronous Decentralized Federated Learning leads to convergence asymptotically, but no
theoretical speedup could be proven compared to the centralized architecture. Indeed,
the speedup depends on a number of factors, some of which are more practical than the-
oretical (such as communication delays, training times,...).

Li et al. [38] then proposed a new solution, actually implementing Synchronous De-
centralized Federated Learning and applying various techniques in order to compress
the data that is sent between the devices. In the end, experiments showed that the decen-
tralized architecture did present a clear advantage over the centralized architecture. For
example, figure 2.9 shows the results of one of the experiments carried out by Li et al.,
where we can clearly see that the implementation represented by the green curve (Pipe-
SGD + 16-bit Trunc) is the more efficient. Indeed, it reaches higher accuracies than other
models in the same amount of time, before stagnating at 0.48. This implementation is
in reality a variant of Synchronous Decentralized Federated Learning, where pipelining
was used in order to be able to train the model and communicate at the same time. The
blue line on the graphs corresponds to the centralized architecture, and we can see that

24 State of the art

all the decentralized solutions clearly outperform the centralized one.

Figure 2.9: Comparison between a centralized architecture and various implementations of asyn-
chronous architectures. This figure was taken from [38].

In 2018, He et al. [25] create COLA (Communication-Efficient Decentralized Linear
Learning), which has been proven to converge and presented significantly better exper-
imental results than the centralized setting. Nedic et al. [49] adapted this solution to
time-changing networks, which means that the network is dynamic, nodes can enter and
leave the network whenever. The convergence of the solution was still proven asymptot-
ically, and proved to have better results compared to the centralized architecture.

Let us not forget that a centralized architecture also provides some advantages. In
particular, the devices used by clients are sometimes of a different nature, and establish-
ing a communication scheme between themselves can prove to be complicated, whereas
if all the agents communicate only with the central agent the communication protocol
is easier to establish. Furthermore, the central server allows to change the model ag-
gregation characteristics more easily. If a different type of consensus was to be applied,
it should only be changed in the central server as it is never performed by the agents
themselves. Also, the central server can in some cases be helpful in terms of security and
privacy. Indeed, all the agents communicate only to the server, therefore no information
relative to one agent is directly sent to another agent. The security and privacy concerns
in Federated Learning is studied by Kairouz et al. in [31].

In general, it is now commonly accepted that Synchronous Decentralized Federated
Learning is implementable and does present advantages in most use cases compared to
centralized architectures.

Asynchronous Decentralized Federated Learning

As mentioned previously, the Asynchronous Decentralized Federated Learning algo-
rithm is a new algorithm that was developed throughout this study. However, some
asynchronous Federated Learning algorithms have been studied in the literature, but
they do not operate the same way as the algorithm that will be implemented in this
study. The Asynchronous Decentralized Federated Learning implementation is an area
that is in general less studied, because it is more complex mathematically speaking, and
also harder to implement. There are not a lot of implementations that have been created,
to our knowledge, of this algorithm.

In 2022, Chen et al. implement an Asynchronous Decentralized Federated Learning
algorithm [15] based on the FODAC (First-Order Dynamic Average Consensus) [76] con-

2.2 Federated Learning 25

sensus algorithm. The clients use the models of all their neighbours during the model ag-
gregation phase, but in an asynchronous manner. There is still, implicitly, some waiting
times involved in this architecture, although the model aggregation algorithm is adapted
to an asynchronous setting.

The results obtained in this study were quite convincing, as shown in figure 2.10.

Figure 2.10: Results of experiments on the MNIST dataset using the Asynchronous Decentralized
Federated Learning algorithm described in [15]. This figure was taken from [15].

We can clearly notice that the asynchronous algorithms perform way better than the
synchronous ones in this experiment. However, these results were obtained through sim-
ulations, which means that although the results are correct and analyzable, no communication-
related issues or hardware issues are taken into consideration.

Also, Liu et al. have designed a system in order to detect faults on Power Voltage
stations [41]. The results in simulation show very good results, and the asynchronous
aspect of the algorithm fits perfectly to the Power Voltage station situation. However,
just like in the study carried out by Chen et al. [15], the consensus algorithm during the
model aggregation phase is made only when the weights of all the neighbour agents are
available.

However, creating a solution that implements Asynchronous Decentralized Feder-
ated Learning is still, to our knowledge, non-existant. Furthermore, an algorithm with
a consensus algorithm that updates the model after every message received by a neigh-
bouring agent, instead of using all neighbours’ models at each model aggregation as done
by Chen et al. [15] does not seem to be existing either. Therefore, the goal of this study
is to implement this solution with SPADE agents with a fully decentralized consensus
algorithm, and to evaluate this solution compared to other FL techniques.

2.2.4. Asynchronous Centralized Federated Learning

Some work has been made in the field of Asynchronous Centralized Federated Learn-
ing for instance, where there is still the presence of a central server but where the clients
communicate with this model in an asynchronous way and the model aggregation is
also performed in an asynchronous fashion [14]. This is an interesting subject for this

26 State of the art

work although we are focusing on decentralized settings. Indeed, the way to handle the
asynchronous aspect in a centralized setting could be useful to implement Asynchronous
Decentralized Federated Learning. The difference between the synchronous and asyn-
chronous versions of Centralized Federated Learning are shown in figure 2.11.

Figure 2.11: Comparison between a synchronous and asynchronous implementation of Central-
ized Federated Learning. This figure was taken from [14].

We can see that the asynchronous implementation improves the solution as if one
device is down, or takes too long, the other devices can still communicate with the central
server, which performs model aggregation and returns updated weights to all agents.
Chen et al. developed an Asynchronous Centralized Federated Learning algorithm called
ASO-Fed. They made several experiments (the results are presented in figure 2.12) in order
to evaluate this solution, using as metrics the following metrics :

• SMAPE (Symmetric Mean Absolute Percentage Error) : a higher value means a
higher error and therefore a lower accuracy [43]

• F1-Score : compares the precision (number of true positive results divided by the
number of all positive results) and the recall (the number of true positive results
divided by the number of all samples that should have been identified as positive)
[40]

• Accuracy : defined in equation 2.1

Figure 2.12: Results of experiments on the following datasets : FirRec, Air Quality, ExtraSensory,
Fashion-MNIST, with several Federated Learning algorithms. This figure was taken from [14].

In all 4 experiments, we notice that the ASO-Fed algorithm is the most efficient and
performant. This shows that Asynchronous Centralized Federated Learning can present

2.3 Consensus-Based Learning 27

some great advantages over the synchronous methods, but the central server still remains
a Single Point of Failure (SPoF), which lead to the studies of asynchronous solutions.

2.3 Consensus-Based Learning

Now that the concepts of Multi-Agent Systems and Federated Learning have been ex-
plained, and that the advances made in the research of decentralized and asynchronous
implementations have been explored, it is important to focus on the Model Aggregation
step, which is the crucial part of Federated Learning. This phase is extremely important
as it merges several ML models together with the goal to produce an output model. This
step makes use of the consensus principle, which allows to obtain one output model that
merges the information contained in all input models. Federated Learning can therefore
be seen as a form of Consensus-Based Learning, this chapter intends to define formally
how the consensus is performed during the model aggregation phase, and to put in evi-
dence why this technique allows to reach a consensus in the whole network of agents.

2.3.1. Theory of Consensus

The term consensus in the context of a network of agents is defined in [51] as the fact to
"reach an agreement regarding a certain quantity of interest that depends on the state of
all agents". In the case of this work, the quantity of interest represents all the weights
constituting the models of the agents.

In order to give a formal definition of the consensus in the context of a network of
agents, we will define the directed network graph of n agents as G = (V, E) where V =
1, 2, ..., n is the set of all vertices of the graph and E ⊆ V ×V is the set of all edges of the
graph (the same notation as in [51] is used). We will call A = {aij} the adjacency matrix
of G, which is defined as follows :

aij =

{
1, if (i, j) ∈ E
0, otherwise

(2.2)

We also define Ni as the set of all neighbours of agent i, such as Ni = {j ∈ V : (i, j) ∈
E}. The degree of a node i corresponds to the number of neighbours that agent i has,
which can be denoted by |Ni| or deg(i). We can therefore define the degree matrix of the
graph G as D = {Dij}, which is defined such as :

Dij =

{
deg(i), if i = j
0, otherwise

(2.3)

Furthermore, we define the Laplacian of graph G as :

L = D− A (2.4)

Since a consensus is performed on a quantity of interest, we will define the value of
an agent i as xi for all i ∈ V. In more general terms, we will consider x as the ensemble of
all values xi of all nodes i, x = (x1, x2, ..., xn)T. We say that consensus was reached when
there exists a value x∗ such as xi = x∗ ∀i ∈ V [59].

28 State of the art

Continuous-Time Consensus

In a continuous-time model, the consensus algorithm can be expressed by the following
equation [51] :

ẋi(t) = ∑
j∈Ni

(xj(t)− xi(t)) (2.5)

where ẋi(t) represents the derivative of xi(t) in regard to t.

This equation can also be rewritten in a matrix form, as follows :

ẋ = −Lx (2.6)

where L is the Laplacian of graph G, as shown in equation 2.4. In this case, ẋ =
(ẋ1, ẋ2, ..., ẋn)T and x = (x1, x2, ..., xn)T.

It can be proven that if all n nodes of a connected graph G follow this algorithm,
then all nodes asymptotically reach a consensus value x∗ such as xi = x∗ ∀i ∈ V [59].
Furthermore, this final value is actually the average of all initial values of all nodes of the
graph :

x∗ = lim
t→−∞

x(t) = ∑i∈V xi(0)
n

(2.7)

Discrete-Time Consensus

In the case of this work, we will focus on the iterative version of the consensus algorithm,
as presented in [51]. In this case, we will define k ≥ 0 as the number of iterations of the
consensus algorithm that have been performed. In general terms, the iterative form of
the consensus algorithm can be formalized as follows :

xi(k + 1) = xi(k) + ui(k) ∀i ∈ V (2.8)

This equation illustrates that the changes made to a certain value xi after k + 1 iter-
ations depends on the value of xi after k iterations which is altered by another term ui.
By expanding the second term of the equation, we obtain the more detailed expression
of the iterative consensus algorithm :

xi(k + 1) = xi(k) + ϵ ∑
j∈Ni

(
xj(k)− xi(k)

)
∀i ∈ V (2.9)

where ϵ > 0 represents the step-size. We therefore notice that the value of xi(k + 1) is
influenced by the values of all the neighbours of node i. Indeed, since the sum is made on
the set Ni of all neighbours of node i, the values of each of the neighbours are taken into
account. Furthermore, we notice that the step-size ϵ gives an indication on how much
the neighbours’ values influence the new value xi(k + 1) of node i. Indeed, if the value of
ϵ is very low, the ui term has a limited influence on the computation of xi(k + 1), which
therefore relies heavily on the previous iteration value xi(k). On the other hand, if the
epsilon value is high, xi(k + 1) is more influenced by its neighbour’s values.

Equation 2.9 can be rewritten in the following way using a matrix notation :

2.3 Consensus-Based Learning 29

x(k + 1) = (I − ϵL)x(k) (2.10)

where L is the Laplacian of the graph G. The term (I − ϵL) can be referred to as the
Perron matrix, and denoted by P. Equation 2.10 can therefore be rewritten as :

x(k + 1) = Px(k) (2.11)

We define ∆ = max(Dij) as the maximum degree of graph G, which corresponds to
the maximum number of neighbours that any node in G has. In can be proven that if a
network of n agents that is represented by a strongly connected digraph G follows the
consensus equation presented in 2.9 and that 0 < ϵ < 1/∆, then [51]:

• A consensus is asymptotically reached for all agents’ initial states;

• The final value of each agent is a linear combination of all initial values of all agents
such as x∗ = ∑i wixi(0). The wi values are real coefficients such as ∑i wi = 1;

• If G is a balanced digraph, then the final value of each agent is the average of all
agents’ initial values such as x∗ = (∑i xi(0))/n.

In order to understand this theorem, it is important to define what a strongly connected
digraph is, which is a necessary condition for G for the theorem to be applicable. A di-
graph is a directed graph, which means that all edges have a certain direction, they go
from one node to another. A digraph is strongly connected if and only if it is possible to
reach all nodes starting from any node and traversing the edges of the graph in their ap-
propriate direction. Therefore, if G respects this condition, the previously stated theorem
guarantees that a consensus will be reached asymptotically.

Furthermore, it is important to clarify the 3rd point of the theorem, in order to under-
stand when the obtained consensus is an average-consensus. A digraph is balanced, if
and only if for every node i ∈ V, the amount of edges entering the node and the amount
of edges leaving the node are equal. In more formal terms, a balanced digraph can be
defined as follows :

∑
i

aij = ∑
i

aji ∀i ∈ V (2.12)

In the case of this study, we will systematically work with undirected graphs, which
are graphs where all edges are bidirectional. Indeed, when an agent can connect to his
neighbour, he must be able to answer to him, so they are both consequently connected
to each other. This, however, does not go against the definition of a digraph, since an
undirected graph is a particular case of a digraph where for every edge (i, j) ∈ E, there
exists another edge (j, i) ∈ E. Furthermore, an undirected graph is always balanced. In-
deed, since all edges are bidirectional, it means that the number of entering edges is by
definition always equal to the number of exiting edges for each node. Therefore, the only
conditions to respect throughout this study in order to obtain an average-consensus (a
consensus where the final value is the average of all agents’ initial values) is to have a
strongly connected network graph and to satisfy the inequality 0 < ϵ < 1/∆.

30 State of the art

2.4 Proposition

From this review of the state of the art, we realize that there is no existing Asynchronous
Decentralized Federated Learning algorithm where the agents are never waiting. We
could therefore imagine an algorithm where the model aggregation is made by an agent,
only considering one of its neighbour’s model at a time. Indeed, this would mean that
every time an agent receives the model weights of a neighbour, he applies the consensus
to perform model aggregation with just these received weights. This eliminates totally
the waiting times as the agents never have to wait to be in possession of all the neigh-
bour’s weights.

As we have seen, there seems still not to exist a proper implementation of Asyn-
chronous Decentralized Federated Learning. Some studies have been conducted through
simulations, but no real implementations have been compared to the synchronous set-
ting. Therefore we could create a concrete solution that implements this algorithm and
compare it to synchronous versions. It would also be useful to create an application out
of this implementation, that would be easy to use and that would allow any user to very
easily launch, control, monitor and evaluate the performance of different agents execut-
ing the ADFL algorithm. Our hypothesis is that ADFL will, at least in some use cases,
present advantages in terms of performance compares to existing solutions. Therefore,
this application could be used in practical cases in order to apply Federated Learning in
a more efficient way.

2.5 Starting point of the implementation

Before the start of this work, a large part of the desired implementation concerning Syn-
chronous Decentralized Federated Learning was already implemented. Indeed, Pr. Car-
los Carrascosa Casamayor and Pr. Jaime Andrés Rincón Arango had started implement-
ing the code for the Synchronous Decentralized Federated Learning implementation. The
implementation was not completely done, some code had to be added to create logs and
conduct experiments, but the major part was already done.

Concerning the Asynchronous Decentralized Federated Learning however, the code
was entirely produced during this work, although taking the Synchronous Decentralized
Federated Learning code as a starting point.

However, the professors had created and tested Google Colab7 notebooks that im-
plement simulations of Synchronous Decentralized Federated Learning and these were
adapted to Asynchronous Decentralized Federated Learning. These files were executed
to prove the convergence of the algorithms before starting the Python implementations,
and were very useful for the comprehension of the subject before starting the develop-
ment.

7https://colab.research.google.com/

2.6 Preliminary analysis 31

2.6 Preliminary analysis

Before starting to develop the application to implement the ADFL algorithm, a prelimi-
nary analysis was conducted in order to identify the key requirements as well as the risks
involved in the development.

2.6.1. Definition of requirements

Concerning the theoretical work to conduct in order to produce the ADFL algorithm,
some of the main requirements are presented in table 2.1, where the importance of each
requirement is also presented.

Name Description Importance
(1-5)

1 Eliminate the waiting
time

The clients of the network should never
have to be waiting, without doing any-
thing, for the weights of of their neigh-
bours before doing model aggregation.

5

2 Asymptotically reach
consensus

The values of the clients should asymp-
totically reach the same value, the models
should converge.

5

3 Adapt to dynamic net-
works

The clients should be able to adapt when
agents enter or leave the network.

4

4 No training time waste The time clients spent training their
model should never be wasted, all the
training should be fully exploited.

3

5 Message reception at
anytime

The clients should be prepared to receive
messages at anytime, no incoming mes-
sages can be discarded.

4

6 Realism The existing technologies should be kept
in mind when developing the algorithm,
since it will have to be implemented in a
real application.

5

Table 2.1: Requirements for the development of the ADFL algorithm

These requirements were always kept track of all along the project, which helped
guide the work and prioritize certain tasks. As we see, the most important requirements
is to develop a feasible algorithm that works as expected (so reaches consensus) and that
differentiates itself from SDFL by not having any waiting times (fully asynchronous).

Concerning the development of the application that implements ADFL, the main re-
quirements are presented in table 2.2.

32 State of the art

Name Description Importance
(1-5)

1 Implement the ADFL
algorithm

The application should enable a network
of agents to run the developed ADFL al-
gorithm correctly.

5

2 Adapt to dynamic net-
works

The agents should be able to adapt to new
agents entering the network or to agents
leaving the network.

4

3 Agent Graphical Inter-
face

Present a clear Graphical Interface for
each agent that displays the performance
of the solution

4

4 Launcher agent Develop a launcher agent that allows the
user to enter all the specifications of the
execution before executing the agents of
the network.

3

5 Launcher Agent
Graphical Interface

Present a clear Graphical Interface for the
launcher agent where the user can enter
the specifications.

3

6 Enable measures and
analysis

The solution should allow to easily make
studies and conclusions about the perfor-
mance of the solution.

4

7 Easy to launch The application should be easy to launch
by any user, installing requirements
should not be complicated.

3

8 Easy to use A clear description of how to use the ap-
plication should be given to the user.

3

Table 2.2: Requirements for the development of the application implementing the ADFL algo-
rithm

2.6.2. Risk analysis

There are also a few risks involved in the implementation of the application that imple-
ments ADFL, which are listed in table 2.3. For each one, a way to mitigate the risk is also
presented.

2.6 Preliminary analysis 33

Risk Probability Consequences Mitigation
1 A user can’t execute

the solution because he
doesn’t have the cor-
rect Operating System
or version of Python in-
stalled

High High Containerize the solu-
tion so that the execu-
tion is platform inde-
pendent

2 Losing all the progress
of the implementation
because of a technical
failure or a mistake

Low High Use a Version Control
solution such as Git
during the develop-
ment

3 Not having a finished
product at the deadline
of the project

Low High Make a work plan
estimating the number
of hours per phase
and keep track of the
progress of the imple-
mentation throughout
the development

4 Creating code that is
not understandable by
other researchers who
want to modify the so-
lution

Medium Medium Respect good coding
principles such as PEP8
and document the code

5 Presence of bugs in the
code that make the ap-
plication unusable

Medium High Test the code thor-
oughly and experiment
all the possible settings

6 Lack of staff during a
long period, unavail-
able supervisors

Low Medium Always think a step
ahead, ask information
about the next steps at
each meeting i order to
always have something
to work on

7 Third-party libraries
not working as ex-
pected

Low High Research alternative li-
braries in case a library
does not work properly
or is outdated

8 Unavailability of the
computer laboratories
for making experi-
ments

High Medium Prioritize the most
important experiments
when the laboratories
are available

Table 2.3: Risks involved in the development of the application and measures to migitate them

CHAPTER 3

Elaboration of the solution

3.1 Work Plan

In order to efficiently build the solution to this study and document it, a work plan was
made, it is presented in table 3.1. This allows to separate the different steps of the work
and associate a number of hours to each one of them.

Note that the number of working hours for each phase was just an estimation, and
that it is difficult to say if the actual number of working hours were close to these predic-
tions or not.

Also, this work plan does contain some phases that are carried out in parallel. For
example, the writing of the final report was carried out throughout the whole work, and
was not left until the end. Indeed, it is important to have clear conclusions for each step
of the project and to document it as the project advances.

3.2 Creating the Asynchronous Decentralized Federated Learn-
ing algorithm

In order to create and specify the execution pattern for the Asynchronous Decentralized
Federated Learning algorithm, the first step is to explain the general scheme of the al-
gorithm, and the different steps that constitute one iteration of this algorithm. Next, the
consensus algorithm of the model aggregation phase must be adapted to this situation.

3.2.1. Asynchronous Decentralized Federated Learning scheme

The Asynchronous Decentralized Federated Learning setting differentiates itself from the
synchronous version presented in section 2.2.3 by the absence of waiting times after an
agent finishes a local training of its model and sends its weights to its neighbours in the
agent network graph. Indeed, by the asynchronous nature of this solution, the model
aggregation is made gradually everytime the model weights of a neighbour agent are

35

36 Elaboration of the solution

Phase Description Predicted
working
hours

Difficulty

Research and
documentation

Getting to know the principles of
Federated Learning, Consensus-Based
Learning, Multi-Agent Systems and
SPADE based on academic papers, ar-
ticles and official documentation.

30 Medium

SDFL implemen-
tation

Complete the existing code in order to
implement the SDFL algorithm using
SPADE agents. This phase also con-
tains a lot of documentation to track
the progress of the phase and establish
conclusions as the progress advances.

40 Medium

Create the ADFL
algorithm

Create and specify all the components
of the ADFL algorithm. This phase in-
cludes a lot of research and investiga-
tion, as well as theoretical simulations
to justify the elaboration of the solu-
tion.

80 High

ADFL implemen-
tation

Create the code that implements the
ADFL algorithm using SPADE agents,
starting from the code written for the
SDFL algorithm. This phase also con-
tains a lot of documentation to track
the progress of the phase and establish
conclusions as the progress advances.

100 High

Create a Docker
container of the
ADFL implemen-
tation

Creating a Docker image of the ADFL
solution and publishing it on Docker
Hub.

4 Low

Refactoring and
documentation
of the ADFL code

Refactoring the code and making sure
that the PEP8 principles were re-
spected.

5 Low

Testing the im-
plementation

Carry out various experiments test-
ing the SDFL and ADFL algorithms
(mainly ADFL), compare the obtained
results and establish conclusions.
Some of the experiments required
using the DSIC computer laboratories.

60 Medium

Writing the aca-
demic paper

Write a part concerning the ADFL im-
plementation with SPADE agents of
the academic paper [12] sent to the AA-
MAS conference.

20 Medium

Writing the final
report

Write the final Master Thesis Report.
This phase was carried out throughout
the whole work and was not left as a fi-
nal task.

60 Low

Table 3.1: Work plan. Each phase is described and is attributed a certain number of working
hours as well as a difficulty.

3.2 Creating the Asynchronous Decentralized Federated Learning algorithm 37

received, without interrupting the training process. This solution allows to avoid the loss
of execution time present in the synchronous solution when the agents are waiting for
their neighbour’s responses.

In the Asynchronous Decentralized Federated Learning setting, a round of training
can therefore be described as follows :

• All clients start training their local models, using their local training data

• As soon as a client is done training, he sends his model weights and biases to one
random neighbour in the graph, and this neighbour responds to him with its cur-
rent weights and biases

• He then checks if he had received any messages during his training phase, and if it
is the case he applies model aggregation for every received message

• The client then starts the training phase again

In order to illustrate the different steps of a Asynchronous Decentralized Federated
Learning round of training, an example using the same agent network graph as in figure
2.7 is presented in figure 3.1.

(a) The clients train their models locally, using the local training data

(b) Client 2 is done training, he sends his model weights and biases to his neighbours

38 Elaboration of the solution

(c) Client 2 resumes training without waiting for answers from its neighbours

(d) Clients 3 and 4 are done training and apply model aggregation with the previously received weights

(e) Clients 3 and 4 send their model weights to their neighbours

3.2 Creating the Asynchronous Decentralized Federated Learning algorithm 39

(f) Client 1 is done with training and applies model aggregation with the weights he received during training

(g) Client 1 sends his model weights to his neighbours

Figure 3.1: Steps of an Asynchronous Decentralized Federated Learning training round

In this example, we clearly notice that the main difference compared to the example of
the Synchronous Decentralized Federated Learning setting (figure 2.8) is that the agents
are never waiting. This might seem like a very obvious way to improve the algorithm
using the synchronous setting, but it is not as trivial.

The model aggregation performed in the synchronous architecture can be seen as
more powerful as it combines all the models of all the neighbours of the agent. The aggre-
gation therefore takes into consideration more data, and should logically output a more
precise model. The model aggregation performed in the asynchronous architecture only
handles one neighbour at the time, which means that for each model aggregation, the
model evolves less than in the synchronous setting. The consensus algorithm will there-
fore have to be applied many more times in the asynchronous setting before reaching
similar performances, which might imply increasing slightly the execution times.

40 Elaboration of the solution

3.2.2. Asynchronous consensus

The general consensus algorithm described in section 2.3.1, and more particularly the
equation 2.9, needs to be slightly adapted to the asynchronous setting. In the setting of
this study, the agents communicate between themselves in an asynchronous manner, and
the agent network graph evolves dynamically since agents can join or leave the network
during the execution. Therefore, the algorithm presented in 2.9 has to be slightly adapted
in order to take these factors into consideration. As mentioned previously, 0 < ϵ < 1/∆
is a necessary condition to fulfill in order to obtain a consensus. The practical issue with
this is that in the implemented MAS, the agents do not have a knowledge of the full
network but only of their direct neighbours. Therefore, agents can not know what the
maximal degree of the graph is, and can therefore not know what value of ϵ to use to
perform the consensus. Each agent only knows about the degree of its own node. Thus,
agents must communicate their local degrees to each other in order for each agent to be
able to determine the maximal degree of the graph. It is important to remember that
the maximal degree of the graph is also a dynamic value, as adding or removing agents
throughout the execution influences this value.

Since the ϵ value used by each agent is a dynamic value, we will call ϵi(k) the ϵ
value of node i after k iterations. As mentioned previously, the model aggregation phase
(during which the consensus algorithm is executed) is applied only with one neighbour
at the time. This neighbour, along with its model weights, sends his own local ϵ value.
Since the objective is to respect the 0 < ϵ < 1/∆ condition, a technique would be to
always try to minimize the value of ϵ in order to make sure it satisfies the constraint.
Therefore, every time a message is received, if the ϵ value of the neighbour is lower than
the ϵ value of the agent, then the agent must replace its ϵ value by its neighbour’s ϵ
value. Formally, at each consensus step of an agent i, where a neighbour j ∈ Ni sends his
step-size ϵj(k), ϵi is updated as follows :

ϵi(k + 1) = min(ϵi(k), ϵj(k)) (3.1)

From now on, we will call ϵ(k) the real maximal degree of the graph at iteration k,
whereas ϵi(k) represents the belief of agent i to what is the maximal degree of the graph.

Since the ϵ value is not constant and is constantly updated, the theorem stated in sec-
tion 2.3.1 does not hold anymore. However, it is understandable that, if the graph G is
connected, then a consensus is asymptotically reached for all agent’s initial states. In-
deed, when there are no new agents entering the network or agents leaving the network
for a reasonable amount of time, the ϵ value propagates in the network, all the agents end
up fulfilling the condition ϵi = ϵ and the problem becomes the one stated in equation 2.9
and the theorem becomes applicable. We can therefore establish that, if there is a certain
iteration k∗ such as ∀k > k∗ no more agents enter or quit the agent network graph at
iteration k, then a consensus will asymptotically be reached.

However, there is no proof that the final value of each agent would be the average of
all agents’ initial values. Indeed, the reasoning that we just made applies to guarantee
that a consensus will be reached, but does not say anything about the final value of each
agent.

The full proof will not be shown here, but is available in [57], and shows us that the
final asynchronous consensus algorithm equation is :

3.2 Creating the Asynchronous Decentralized Federated Learning algorithm 41

xi(k + 1) = ϵi ∑
j∈Ni

(xj(k)− xi(k))−
(

1− ϵi(k + 1)
ϵi(k)

)
(xi(k)− xi(0)) (3.2)

The second term of this expression is a correction term, that is added only to be able
to ensure that the consensus will be reached. Indeed, it is proven that this term maintains
the necessary conditions to ensure convergence [57]. This correction term involves the
values of ϵi(k + 1) which is the value of ϵi used at iteration k+1, and ϵi which is the value
of ϵi used at iteration k. As we see, if ϵi(k) = ϵi(k + 1) then the fractions equals to 1 and
the correction term equals to 0, which leads back to the original version of the consensus
algorithm 2.9. Therefore, this term only plays a role when ϵi(k) ̸= ϵi(k + 1), which con-
cretely speaking is the moment where the local value of the step-size known by an agent
changes.

Furthermore, it can be proven that this algorithm reaches consensus and converges
towards the average of the initial values. A sufficient condition to ensure this is that the
sum of the values of all clients at every iteration is constant [57]. Indeed, if the sum of all
values is constant, the average is constant too, and it is therefore equal to the average of
all initial values. The proof that the sum of all values remains constant in this setting is
given in [12]. We can therefore ensure that the asynchronous consensus algorithm con-
verges to the average of the initial values, as long as 0 < ϵ < 1/∆.

Equation 3.2 gives a general expression of the asynchronous consensus, but in our
case, as mentioned in equation 3.1, the consensus is always applied to only 2 agents at
the time. Therefore, the final asynchronous consensus expression can be rewritten as :

xi(k + 1) = (1− ϵi(k + 1))xi(k) + ϵi(k + 1)xj(k)−
(

1− ϵi(k + 1)
ϵi(k)

)
(xi(k)− xi(0)) (3.3)

Equation 3.3 is therefore the final formula that will be used throughout this work to
apply the asynchronous consensus.

3.2.3. Algorithm

The ADFL algorithm involves parallelism. Indeed, agents are able to train and receive
or send messages simultaneously. Therefore, specifying a single written algorithm in a
simple manner is quite difficult. Therefore, we first of all present the main lines of the
algorithm that handles the training, the sending of the message and the receiving of the
response before applying the consensus (Algorithm 3.1). Then, we present briefly the
algorithm of the message reception, and how messages are handled upon reception (Al-
gorithm 3.2). Please note that these are not the fully detailed algorithms, the more specific
details will be discussed in section 3.7.1 where the implemented agents’ architectures are
described. In these algorithms, we denote as Wi(k) the weights and biases of the model
of client i at iteration k.

42 Elaboration of the solution

Algorithm 3.1 Model training, message sending, response receiving and consensus in
the Asynchronous Decentralized Federated Learning algorithm

1: while !killed do
2: Wi(k)← TRAIN()
3: j← RANDOM_SELECT(Ni)
4: SEND(Wi(k), ϵi, j)
5: Wj(k)← RECEIVE_RESPONSE(j)
6: Wi(k + 1)← CONSENSUS(Wi(k), Wj(k), Wi(0), ϵi(k), ϵi(k + 1))
7: end while

This first algorithm shows that when a user finished to train its model, it selects a
random neighbour and sends him his weights along with its ϵ value. Then, he receives
the weights of the neighbour in response to this message. He then applies the consensus
algorithm in order to update its weights, and starts training again.

Algorithm 3.2 Message receiving and consensus in Asynchronous Decentralized
Federated Learning algorithm

1: while !killed do
2: ϵj, Wj(k)←WAIT_FOR_MESSAGE()
3: RESPOND(Wi(k), j)
4: if !training then
5: Wi(k + 1)← CONSENSUS(Wi(k), Wj(k), Wi(0), ϵi(k), ϵi(k + 1))
6: else
7: STORE_WEIGHTS(Wj)
8: end if
9: if ϵj < ϵi then

10: ϵi ← ϵj
11: end if
12: end while

This second algorithm shows that the agent is always waiting for a message. When he
receives the weights of a neighbour, he responds with his own weights, and then applies
the consensus algorithm. There is a slight particularity in this moment, as the agent can
not perform model aggregation if the agent’s model is currently training. If the agent is
training, the received weights are simply stored, and will be used later on. This issue will
be further discussed in section 3.7.1.

Before implementing the code of the actual application, this algorithm was tested by
simulations on Google Colab1. In these simulations, agents were represented by their
adjacency matrices, and were given different initial values. The communication delays
were not taken into consideration, but the experiments showed that the algorithm did
converge, which meant that we could start implementing it in the application.

1https://colab.research.google.com

3.3 Datasets 43

3.3 Datasets

3.3.1. MNIST

In order to test the efficiency of the proposed solution and to assert that it is working
as desired, datasets need to be used in order to benchmark the performances. The main
dataset used throughout this work is the MNIST database (Modified National Institute of
Standards and Technology database) [37]. Is is a wide dataset of handwritten digits (Fig-
ure 3.2), containing 60,000 training samples and 10,000 test samples. The MNIST dataset
is widely used by researchers to test various model performances, and therefore a large
number of accuracy benchmarks are available online [37]. This allows us to compare our
results with the available benchmarks in order to validate some of the obtained results.

Figure 3.2: Example of MNIST dataset samples

The images contained in the MNIST dataset are all in black or white (which means
each pixel of the images can be encoded either by a 0 or a 1), and have the same format
(28 pixels wide and 28 pixels high).

Since the goal of this study is not to reach an optimal accuracy score for the MNIST
dataset prediction but rather test and compare new AI model training techniques, no pre-
processing was applied to the samples contained in the dataset.

3.3.2. Fashion MNIST

Another dataset was used in this work in order to give a different benchmark, the Fash-
ion MNIST dataset [71]. This dataset contains 60,000 training samples and 10,000 test
samples of images of the same size as the MNIST dataset (28 pixels wide and 28 pixels
high). The images show articles of clothing taken from Zalando2 and the goal is to clas-
sify them into 10 different classes. These classes as well as examples of images are shown
in figure 3.3.

2www.zalando.com

44 Elaboration of the solution

Figure 3.3: The 10 Fashion MNIST classes and examples of dataset samples

As explained previously, no preprocessing was applied to the images contained in
this dataset.

This dataset is not used for the experiments presented later in this project, but is use-
ful in order to test that the proposed solution works for multiple different datasets.

In practise, the datasets were imported using the torchvision library [44], through
the torchvision.datasets.MNIST and torchvision.datasets.FashionMNIST classes. If
it is the first time the code is executed on a device, the code fetches the dataset from
a server and saves it locally in a folder named data in the root repository. For all the
next executions, the dataset will directly be fetched in the local folder to avoid having to
download it every time.

It is also important to describe how the agents obtain the data they will train on.
The Sampling.py file allows to select a random subset of the MNIST or Fashion MNIST
dataset. In practise, each agent trains on 300 random images.

Next, it is also important, as mentioned in section 2.2.1, to split the data into a training
set and a test set. In the case of this study, the split was made such as 80% of the available
data was used for training and 20% for testing. This splitting is done in the Utilities.py
file.

3.4 Models

The principles of Federated Learning apply to any type of models, as long as model
information can be sent from one agent to another. The selection of the model is therefore
not crucial in the elaboration of the solution presented in this study. In order to have

3.4 Models 45

a clear and simple representation of the results obtained, this work uses mostly quite
comprehensive models, in order to illustrate more clearly the principles of Asynchronous
Decentralized Federated Learning.

3.4.1. Multilayer Perceptrons

In the first place, the models used for testing the solution were Multilayer Perceptrons
(MLP). These models belong to the class of feed-forward Neural Networks. Feed-forward
Neural Networks are a subcategory of Artificial Neural Networks, also called Neural
Networks (NN). These are computing systems that allow a model to predict an output
based on data given as input and a training process. A Neural Network is a collec-
tion of connected Artificial Neurons. Each neuron can receive signals and send num-
bers (weights) to the other neurons they are connected to. These weights then allow to
compute a mathematical value based on the input values and output a prediction. The
training process consists in changing these weights in a way that the prediction outputted
by the model is as close as possible to the expected output.

Neurons are typically aggregated into layers, as in the Multi-Layer Perceptron for ex-
ample. The first layer is called the input layer, where the raw data is given as input. The
last layer produces the prediction of the model, it is called the output layer. The layers
in between the input and output layer are called hidden layers. Feed-forward Neural
Networks are a subset of Artificial Neural Networks where the connections between the
nodes do not form a cycle. Therefore, the information moves in only one direction : from
the input layer nodes to the hidden layer nodes, until the output nodes.

The MLP models used in this study contain 3 layers :

• the input layer which contains the input data to the Neural Network, the number
of neurons it is made out of depends on the size and nature of the input data

• one hidden layer, which consists in an arbitrary number of neurons

• the output layer, which contains as many neurons as there are possible outcomes to
the prediction problem

As mentioned in section 3.4, the images have a total size of 28 by 28 pixels, therefore
the total number of pixels is 784. Since each input to the MLP corresponds to the value
of one pixel, the input layer of the MLP consists of 784 neurons. The goal of the model
is to recognize handwritten numbers, going from 0 to 9, therefore there are 10 possible
prediction outcomes, which means that the output layer must contain 10 neurons. The
number of neurons in the hidden layer remains to be chosen, this is a parameter that will
be tuned throughout in order to evaluate its impact on the efficiency of the solution (this
parameter is referred to as x in Figure 3.4).

In practise, these models were created using the Pytorch library [55]. A custom class
called MLP was created, which inherits from the nn.Module class, which is a Pytorch base
class for all Neural Network modules. In the forward method defined in this class, the
different steps of the training of the model are specified. First, the data enters into the in-
put layer, which is defined using the nn.Linear class, which means that the transforma-
tion applied to the incoming data will be a linear transformation (of the type y = ax + b).
Then, the result is passed through a dropout layer. This layer randomly sets some of the
weights to 0, in order to avoid an overfitting of the model. The result is then passed to the

46 Elaboration of the solution

Figure 3.4: Multilayer Perceptron architecture

ReLU activation function [2]. This activation function brings non-linearity to the model
and allows the model to solve more difficult problems by increasing its complexity. Then,
the result is passed to the hidden layer, which is also defined with the nn.Module class.
Finally, the result passes through the softmax activation function [50], which allows to
convert the final 10 weights into 10 numbers between 0 and 1, corresponding to the prob-
abilities of the sample to belong to each class. In order to obtain the output of the model,
it therefore suffices to identify which output neuron displays the maximal probability.
For example in the case of MNIST, if the 3rd neuron in the output layer has the maximal
output out of all the neurons of the layer, the prediction of the model is that the input
image is a 2.

3.4.2. Convolutional Neural Networks

The other models that were used in this solution are Convolutional Neural Networks
(CNN). These models also belong, just like MLPs, to the class of Artificial Neural Net-
works, and are particularly used to analyze visual imagery [67]. In opposition to MLPs
where the image is flattened and each input to the model corresponds to one pixel value
of the image, CNNs are able to capture spatial dependencies on the picture. Indeed,
when an image is flattened (when the matrix of pixel values is transformed into a uni-
dimensional vector), the spatial dependency is completely lost, which is avoided by the
use of CNNs. The role of the CNN is to reduce the images into a form that is easier to
compute for the models, and keep all the important features of these images. This first
of all allows the model developer to perform way less extensive pre-processing, and also
saves a lot of execution time as the input data is smaller.

3.4 Models 47

CNNs are composed of 3 types of layers : Convolutional Layers, Pooling Layers and
Fully-connected Layers [52]. The first part of a CNN model is called the Feature Learning,
in which the Convolutional Layers and Pooling Layers are used to extract features and
compress the input image. In the second part, the Classification part, the Fully-connected
Layers take as input the output of the Feature Learning part, and work exactly the same
as a traditional Artificial Neural Network, in order to produce an output. An example
of this architecture is shown in figure 3.5, where the layers in blue represent the Feature
Learning part and the 2 Fully-connected layers represent the classification part.

Figure 3.5: Convolutional Neural Network architecture

Convolutional Layer

The Convolutional Layer consists in a combination of linear operations (the convolution)
and non linear operations (the activation) [72].

The convolution operation’s goal is to extract features from the input image. In order
to do this, a small matrix of numbers, called kernel, is applied to the input image, such
as for each pixel of the image an output value is computed based on the kernel and
on the neighbouring pixels of the image. This computation is done by an element-wise
operation between each element of the kernel and each corresponding element of the
input image, and by summing all these values to obtain a single output value for one
input pixel. The output is therefore a matrix of numbers, and is called a feature map. An
example of convolution is showed at Figure 3.6. We can see that the kernel does not
change, but it is simply placed at each possible position on the input image.

48 Elaboration of the solution

Figure 3.6: Example of 3 convolution operations. This figure was taken from [72]

On the previous example, we can notice that the obtained feature map has a smaller
dimension than the input image. This is due to the fact that the pixels on the border of the
image can not be computed because they do not have enough neighbouring pixels to use
the kernel. In some cases, adding pixels around the border of the image (called padding)
can be useful in order to obtain a feature map of the same size as the input image. One
solution is to apply zero-padding which means that pixels with a value of 0 are added all
around the borders of the input image in order to have a feature map of the same size as
the input image. The distance which the kernel moves between 2 successive convolutions
is called the stride, it is equal to 1 on the example in figure 3.6. Multiple kernels are used
and therefore multiple feature maps are produced at each round.

Once the feature maps are produced, they are passed through a non-linear activation
function in order to bring non-linearity to the model. The most common activation func-
tion used in the case of CNNs is ReLU (Rectified Linear Unit) [56].

3.4 Models 49

Pooling Layer

The Pooling Layer performs a downsampling operation on the input that it is given. In-
deed, it allows to reduce the size of the feature map, and this makes the model more
robust to small translations and shifts in the input image. There are multiple ways of
performing pooling, but the most common one is max-pooling.

Max-pooling consists in keeping only the maximum value of a group of values in a
feature map and outputting it. The most common max-pooling is performed with a 2× 2
kernel, which means that for each square of 4 values in the feature map, only the maximal
one is kept. This, of course, reduces the dimensions of the feature map by a factor of 2.
An example of max-pooling with a kernel of 2× 2 is presented at figure 3.7.

Figure 3.7: Example of a max pooling with a 2× 2 kernel. This figure was taken from [72]

Fully-Connected Layer

After a series of convolutions and pooling steps, the data is completely flattened, which
means a 2 dimensional image is transformed into a unidimensional array, and given as
input to an Artificial Neural Network, which works just as the MLP as explained in sec-
tion 3.4.1. The input to this Neural Network is therefore not image pixels as previously,
but rather numbers that correspond to features identified in the image through the con-
volutions and pooling steps.

In practise, the CNN used in this study has the following components :

• A Convolutional Layer that produces 10 feature maps in output, using a kernel of
size 5× 5.

• A Max-Pooling layer using a kernel of size 2× 2, and applying the ReLU activation
function on the output.

• A second Convolutional Layer that produces 20 feature maps in output, using a
kernel of size 5× 5.

• A Dropout layer that randomly sets some values to 0 in order to avoid an overfitting
of the model.

• A second Max-Pooling layer using a kernel of size 2× 2, and applying the ReLU
activation function on the output.

50 Elaboration of the solution

• A Fully-Connected linear input layer, which has 320 neurons, after flattening the
data. It then applies the ReLU activation function to the data.

• A second Dropout layer that randomly sets some values to 0 in order to avoid an
overfitting of the model.

• A Fully-Connected linear hidden layer that contains 50 neurons.

• An output layer of 10 neurons.

3.5 Model Training

In order to train the model, the Pytorch library was used. The train_local_model func-
tion of the Federated.py file is called in order to perform one training round of the model
and return all the results of the training. The optimizer used in order to train the model
and perform backtracking is SGD (Stochastic Gradient Descent). The images if the dataset
are regrouped in batches of 3 images, and the model is trained on all batches once. The
loss criterion used in the training is the Negative Log Likelihood Loss (NLLL) imple-
mented in Pytorch.

Next, the model is saved locally by default so that it could later be used as an input
when executing the code. Indeed, the file containing the model weights could be used to
define the initial weights of a model when launching the program.

Once the training and saving of the model is complete, the accuracy and loss of the
training round is computed and returned to the agent.

3.6 Consensus

As explained in 3.2.2, the consensus algorithm in this solution is applied only by 2 agents
at the time, following equation 3.3. In practise, this is done in the Consensus.py file, using
the apply_consensus function. This function takes as input the weights of the agent the
weights of the neighbour with whom the consensus has to be applied with, and applies
the consensus formula for each layer of the model successively.

The arrays of weights of each layer have to be flattened in order to be able to manip-
ulate them and apply the consensus algorithm. At the end of the process, the results are
formatted in the same way as the input weights, and the final weights are returned to the
agent, which updates its model with these new weights.

3.7 Agents

An mentioned previously in sections 2.1.1 and 2.1.2, agents are entities that are placed in
an environment. In the case of this study, the environment corresponds to the knowledge
of a part of the agent network graph. Indeed, all agents need to know with which par-
ticular agents they need to connect in order to exchange information. The features of the
developed environment are described in table 3.2. This environment is fully accessible

3.7 Agents 51

since an agent always knows to who he must send his messages to. Furthermore, it is a
fully deterministic environment as the agents modify the environment in a determinis-
tic way. The only situations when the agents can bring changes to the environment are
when they connect or disconnect, which effectively modifies the agent network graph
in a deterministic fashion. The environment is also dynamic, since new agents can join
at anytime, and therefore modify the agent network graph. Finally, the environment is
discrete since an agent can only be in a finite amount of states, the interaction with the
environment is not defined by a continuous function.

Environment Feature Implementation
Accessibility Fully Accessible
Determinism Fully Deterministic
Dynamism Dynamic
Continuity Discrete

Table 3.2: Characteristics of the MAS environment implemented in the solution

The clients in the FL setting are each represented by one SPADE agent, represented by
the FLAgent class. As stated previously, agents contain various behaviours that allow it to
perform the desired tasks. Furthermore, a well-designed and user-friendly web interface
should be created for each agent in order to be able to track relevant data during the
execution (for example the accuracy after the last training round, the history of messages
received, ...).

3.7.1. Agent architecture

The agents built in this solution contain 3 behaviours :

• A Presence Behaviour which handles the notification of presence, which allows
agents to notify their neighbours when they connect or disconnect.

• A Message Receiving Behaviour, which allows agents to constantly be ready to
receive messages and apply the consensus algorithm in an asynchronous fashion.

• A State Machine Behaviour which allows to transition between the training, send-
ing and receiving states in order to follow the Asynchronous Decentralized Feder-
ated Learning scheme.

Presence Management

As soon as an agent connects, the Presence Behaviour automatically identifies its neigh-
bours in the graph that as given as an input to the agent, and subscribes to all of them.
If the neighbours are connected, they will therefore receive a notification stating that this
agent is trying to subscribe.

When an agent receives a subscription request, he accepts it, then, if he is not already
subscribed to this agent, subscribes back. All agents keep track of the active neighbours

52 Elaboration of the solution

that they are subscribed to in a list, and keep updating this list when a new agent sub-
scribes or disconnects.

When an agent disconnects (he becomes unavailable), the presence mechanism im-
plemented in SPADE allows to notify all subscribed agents about this event. Therefore,
when this occurs, the agent simply removes the disconnected agent from its list of active
neighbours.

Furthermore, as mentioned in 2.3.1, the maximal degree of the graph is an essential
piece of data in order to apply the consensus algorithm. However, since the graph is dy-
namic as agents can connect and disconnect whenever they want to, this maximal order is
also a dynamic value. Therefore, it needs to be updated everytime a new agent connects
or disconnects. The Presence Behaviour allows to constantly keep track of the number of
active neighbours the agent has, and it can therefore update the maximum order of the
graph when new agents are added or removed. The maximal degree known by the agent
is saved locally, and is sent along with the weights of the agent everytime the agent sends
its weights.

Receiving Messages

A behaviour dedicated to constantly receive messages was implemented. This behaviour
waits for a message to arrive from one of the agent’s neighbours, then responds to this
agent with its own weights and finally applies the consensus using the model weights
and biases that were contained in this message. The message also contains the maximal
degree of the graph to the knowledge of the neighbour agent. Therefore, the agent checks
if the neighbour’s ϵ value is inferior to his own, and if it is the case he replaces his own
value by the one of the neighbour. Note that, in accordance with the asynchronous char-
acter of the implementation, this behaviour is constantly running in parallel to the other
behaviours of the SPADE agent.

State Machine

The State Machine Behaviour is a behaviour that contains several states, and allows to
transition from one state to another based on certain conditions. In this case, 4 different
states are needed in order to build the solution :

• The SETUP state : the initial state of the State Machine, can be used to perform
operations before starting the other processes

• The TRAINING state : performs the training of the local model

• The SEND state : after the training of the local model, sends the model’s weights and
biases to a randomly chosen neighbour of the agent

• The RECEIVE state : waits for a response to the message sent in the SEND state and
applies the consensus algorithm when the weights of the other agent are received

Note that sending the weights is not as trivial as it might seem. Indeed, the weights
are tensors from the Pythroch library, and the SPADE library only allows to send strings
(characters). Therefore, the model weights and biases have to be converted to a string

3.7 Agents 53

before being sent, which is done using the pickle and codecs libraries. Also, as men-
tioned previously, the maximal degree of the graph to the knowledge of the agent has
to be sent along these model weights. Therefore, a "|" symbol is added after the string
encoding of the weights and biases, and the maximal degree is then added to the end of
the message before sending it. Once the message is received, it has to be decoded using
the same libraries in order to transform the string back to a Pytorch tensor and get the
maximal degree of the graph to the knowledge of the sender of the message as well as
his weights.

Global running of an agent

Now that the 3 behaviours used in the SPADE agents have been defined, it is important to
understand how they interact between themselves in order to follow the Asynchronous
Decentralized Federated Learning scheme.

First of all, when an agent is executed but none of his neighbours are connected, he
can of course not send his model’s weights and biases. In this case, instead of waiting,
the agent trains locally its model until at least one of its neighbours connects.

In the case of the State Machine, the execution is pretty straightforward : the agents
trains its model locally in the TRAINING state, then switches to the SEND state in order to
send its model’s weights and biases, and then finally to the RECEIVE state in order to re-
ceive a response from the neighbour he sent the weights to, and applies the consensus
algorithm. However, all this process implies that the agent did not receive any message
from one of his neighbours asking for his weights throughout the execution. Indeed,
if a neighbour asks the agent’s model’s weights and biases during the training phase,
the question is to know with which weights to apply the consensus. If the consensus is
made with the incoming weights from the neighbour and the pre-training weights of the
agent, then the whole training process that has been made during the current round is
lost. Indeed, the training of a model consists in changing the model’s weights, so not tak-
ing these changes into consideration would represent a huge waste of time and resources.

The first solution to this problem was to interrupt the training phase if a message ar-
rives from one of the agent’s neighbours during the training phase, apply the consensus
with the weights of the model before the training phase, replace the mid-training weights
by the weights obtained by the consensus, and then resume the training. This solution is
represented in figure 3.8.

54 Elaboration of the solution

Figure 3.8: First proposed solution

The problem with this solution is that the first part of the training (before the inter-
ruption) is still lost, as the weights obtained through the consensus replace the weights
of the current training round. Therefore, the modifications made to the weights are lost
in the process, and this part of the training proves to be useless.

A second solution was therefore implemented, which is presented on figure 3.9. In
this solution, the training part is never interrupted. When a message arrives from a neigh-
bour, the agent switches the value of a flag (here called weights_received) to 1. At the end
of the training phase, the agent systematically verifies the value of this flag, and if it is set
to 1, applies the consensus on the model that is resulting from this training phase. The
flag is then of course reset to 0. This solution allows to never waste any training time,
which improves the efficiency of the solution.

There is however a slight twitch to me made to this solution, as we only considered
the situation where one neighbour sends a message to the agent, whereas there could be
multiple neighbours sending messages to the agent during one training phase. Therefore,
instead of using a flag as in figure 3.9, a queue was implemented to store all the messages
that arrived during a training phase. After the training round, the agent goes through all
the messages that were stored and applies the consensus algorithm one by one with all
of them. This solution is illustrated at figure 3.10, which is the final solution adopted in
this study.

3.7 Agents 55

Figure 3.9: Second proposed solution

Figure 3.10: Third proposed solution

56 Elaboration of the solution

3.7.2. Agent Web Interface

As mentioned in section 2.1.4, the agents can have default graphical interfaces for the
user to be able to get some information on the execution. We also discussed that cus-
tom graphical interfaces could be created. In this study, an objective is that the user of
the application should have a clear understanding of the execution of the program, and
have clear metrics to evaluate the performance of the algorithm during the execution.
Therefore, a custom graphical interface was developed for the agents showing several
information about the ongoing execution, it is presented in figure 3.11.

Figure 3.11: Agent’s graphical interface

As we can see, the top banner of the page shows the name of the agent, along with a
STOP button on the right. This button allows to kill the agent by simply clicking it. The
training, messaging, and all other processed carried out by the agent will then simply
stop.

Next, 2 graphs are presented. The first one displays the evolution of training accu-
racy and test accuracy in function of the number of training rounds that have been com-
pleted. The second one shows the evolution of the training loss and test loss in function
in function of the completed training rounds. These 2 graphs are interactive, the user can

3.7 Agents 57

change the scales, move them around,... These graphs were built using the Plotly3 library
for JavaScript. Indeed, although the code is in Python, the interface is coded in HTML
and some inline JavaScript code has been implemented, for example to create the several
graphs.

Then, a list of all available neighbours of the agent is shown. Below that, a history of
all past sent and received messages is shown. For each received message, the sender is
indicated and for each sent message the receiver is shown.

Finally, the graphical web interface displays a bar plot which indicates the number of
sent and received messages in function of the neighbour. Indeed, the blue bar represents
the amount of messages the agent has sent to this agent, whereas the orange bar repre-
sents the amount of messages the agent has received from this agent. The number below
each bar refers to the number of the agent in the list of available neighbours.

The content and appearance of this graphical interface is defined in the agent.html
file, located in the directory Agents/Interfaces. In practise, the SPADE agent contains
a function called agent_web_controller, which sends various data to the graphical in-
terface periodically. For instance, the data sent is the evolution of the training and test
accuracy and loss, the names of the neighbours of the agent,... This function also allows
to format some elements before sending them to the interface. For example the text corre-
sponding to the message history is built in this function, as well as the arrays containing
the number of sent and received messages per neighbour.

3.7.3. Launcher Agent

In order to have a more complete solution and offer an optimal user experience, another
SPADE agent was created, whose goal is to offer a clear interface for the user to setup the
agent before launching it. Therefore, this launcher agent is the first one to be launched
during the execution. It collects the input from the user and then creates another SPADE
agent as explained previously. This agent was created in the LauncherAgent class.

The first thing that is displayed on the interface of this launcher agent is a choice
between 2 options : creating an agent based on an network graph, or creating an agent
without giving a network graph as input. Indeed, if the user gives the agent network
graph as input and precises which agent of this network he wants to launch, the neigh-
bours of this agent can easily be identified thanks to the graph. The input format of the
network agent graph should follow the GraphML4 format. This format allows to describe
graphs using XML. Each node of the graph has its own identifier, and all edges are listed
in the GraphML file, whether they are directed or undirected.

In the case that the user wants to give an agent network graph as input, the different
pieces of information that the user can give as an input to setup the agent are :

• the GraphML file corresponding to the agent network graph

• the identifier of the agent in this previously uploaded graph

3https://plotly.com/
4http://graphml.graphdrawing.org

58 Elaboration of the solution

• the port on which the agent’s graphical interface will be accessible

• a file containing the initial weights that the model should have before starting train-
ing (optional)

• a choice to use either the MNIST or Fashion MNIST dataset

• a choice to use either a MLP or a CNN as a model

The graphical interface presented to the user in order for him to enter this data is pre-
sented in figure 3.12.

Figure 3.12: Graphical Interface when the user selects the option to create the agent by uploading
a Network Graph

In the case where the user does not want to input an agent network graph to create
the agent, he must specify the following :

• the name of the agent, without specifying the server name as this is a default pa-
rameter stored in the code

• the list of neighbours of the agent (also without specifying the name of the server)
separated by commas

• the port on which the agent’s graphical interface will be accessible

• a file containing the initial weights that the model should have before starting train-
ing (optional)

• a choice to use either the MNIST or Fashion MNIST dataset

• a choice to use either a MLP or a CNN as a model

In the case where the user does not wish to specify a network graph as input, the
graphical interface is as presented in figure 3.13.

3.8 Logging 59

Figure 3.13: Graphical Interface when the user selects the option to create the agent without a
Network Graph

We also notice that in both interfaces, there is a Stop button at the top right that allows
to kill the launcher agent at any time.

Once the user submits the information, the launcher agents collects the data and cre-
ates the training agent, specifying the following parameters :

• the Jabber ID of the agent (name and server name)

• the password of the agent (set to a default value in the code)

• the port on which the agent’s graphical interface will be available

• the dataset that will be used

• the type of model that will be used

• the list of neighbours of the agent

• the path of the file of the initial weights of the agent’s model (optional)

3.8 Logging

In order to track the execution of the code and evaluate if the solution works as desired,
several logging systems were implemented. These logs allow not only to control that
the execution is working as expected, but also allows to create graphs and other visual
products about the executions. The different logging systems that were created are :

• Message Logs : these logging files contain the history of all sent or received mes-
sages by the agent. Each line of this file contain the exact time when the message
was sent or received, the ID of the message and the sender/receiver of the mes-
sage. This allows to verify that the messaging scheme is respected. An example of
a Message Log file is presented in appendix A.1.

60 Elaboration of the solution

• Training Logs : these logging files contain data about model training. For each
round of training, this file contains the exact time, the training accuracy, the test ac-
curacy, the training loss and the test loss. This allows to evaluate the performance
of the model and of the overall solution. An example of a Training Log file is pre-
sented in appendix A.2.

• Weight Logs: these logging files contain the values of certain weights of the agent
after each round of training or whenever consensus is applied. This allows to mon-
itor if the consensus algorithm works effectively. An example of a Weight Log file
is presented in appendix A.3.

• Epsilon Logs : these logging files contain data about the ϵ parameter. Indeed, as
mentioned previously this is a dynamic parameter and it has to be exchanged be-
tween the agents of the network. Every time the local ϵ value of an agent changes,
it is reported in this file. An example of a Epsilon Log file is presented in appendix
A.4.

• Training Time Logs : these logging files simply contain data about when the model
training phase starts and stops. This allows to have a clear idea of how long the
model training process is, and to evaluate which parameters could influence this
execution time. An example of a Training Time Log file is presented in appendix
A.5.

3.9 Code structure

Several versions of the code of the implementation exist, which each are dedicated to a
certain objective. For example, one of the versions also contains a lot of scripts in order
to produce graphs and histograms from the logs. In the final version of the code, which
is the one made available to the user, the file structure is the following :

3.9 Code structure 61

/
Agents

Behaviours
StateMachineBehaviourStates

ReceiveState.py
SendState.py
SetupState.py
TrainingState.py

Interfaces
agent.html
launcher.html

FLAgent.py
LauncherAgent.py

Consensus
Consensus.py

data
FederatedLearning

Federated.py
Models.py
Update.py
Utilities.py

Logs
Epsilon Logs
Message Logs
Training Logs
Training Time Logs
Weight Logs
Logger.py

Saved Models
Dockerfile
launcher_main.py

The repository is divided into 6 parts :

• Agents : Code related to the Agents and Launcher Agents, their behaviours, and
their graphical interfaces

• Consensus : Code related to the consensus algorithm.

• data : Folder where Pytorch saves the datasets locally.

• FederatedLearning : Code related to Federated Learning, loading the datasets, cre-
ating and training the ML models.

• Logs : Code related to logging.

• Saved Models : Folder where the models are saved after each training round.

Concerning the Agents, a separate file was created for each of the agent’s behaviours,
and grouped under a folder named Behaviours. The HTML codes used to create their
graphical interfaces are grouped under the Interfaces folder.

Concerning the code related to Federated Learning, separate files were created for
model creation and initialization, and model training (where the weights of the model

62 Elaboration of the solution

get updated).

The Dockerfile file present in the root directory will be detailed in section 3.10.2.

The launcher_main.py script in the root repository is the file to execute in order to
create the Launcher Agent. As explained previously, this launcher agent will then, after
receiving input from the user, create an agent. This is therefore the script to be executed
in order to launch the program.

3.10 Containerizing the solution

With the objective to present a standalone and easy to use application, having the user to
install all the dependencies by himself and launch the launcher_main.py script does not
seem like an appropriate solution. The last step of the construction of the solution was
therefore to find a solution so that the user could extremely easily execute the application.
In order to achieve that, the last step of the construction of the solution is to create a
Docker image of the program so that it could be executed from a Docker container.

3.10.1. Docker

Docker5 is a platform that allows to run applications in containers. A container is a sin-
gle piece of software that allows to run an application very easily. Indeed, the container
contains the code to run but also all the dependencies, which allows the user to simply
execute the container without having to worry about the dependencies or the platform
issues. When a Docker container is created, any user on any platform that runs Docker
can execute it in the same way and have the same user experience. Figure 3.14 shows that
Docker executes a level above the host Operating System, and then contains the different
containerized apps.

Figure 3.14: How Docker allows to create containerized applications. This figure was taken from
https://www.docker.com/resources/what-container/

5https://www.docker.com/

https://www.docker.com/resources/what-container/

3.10 Containerizing the solution 63

In the case of this work, creating a container out of the program seems like a good so-
lution since it avoids all the users to have to install all the dependencies of the code, which
can be quite long. Furthermore, there can be issues with the versions of the libraries that
have to be installed, and the fact to have a container that already has everything installed
is helpful. In addition, the launching of the application becomes much easier and it gives
this work an aspect of a finished standalone easy to use solution.

A Docker image is a package of executable software, with all the required dependen-
cies and settings required to run the program correctly. A Docker image is used to create a
Docker container which will effectively run the application. Therefore, creating a Docker
image is the first step in containerizing a program.

3.10.2. Creating a Docker image of the program

The first step before creating the Docker image was to make an exhaustive list of all the
dependencies that were necessary to install. This file, called requirements.txt was gen-
erated automatically by the IDE used in this project (see 6.1.2) and contains all the Python
libraries to install along with their version.

The dependencies file generated by the IDE is as follows :

1 pandas ~=1 .4 .2
2 m a t p l o t l i b ~=3 .5 .2
3 spade ~=3 .2 .2
4 termcolor ~=1 .1 .0
5 networkx ~=2.8
6 torch ~=1 .11 .0
7 numpy~=1 .19 .5
8 t o r c h v i s i o n ~=0 .12 .0
9 tensorboardX ~=2.5

10 s c i k i t − le a rn ~=1 .0 .2

As we can see, there are a lot of libraries used in this project, and it would be long for
a user to install all these libraries with the correct versions.

Next, a Dockerfile had to be written. This file contains instructions that Docker will
execute in order to create the Docker image. The Dockerfile used to create the image
was :

1 FROM ubuntu : 2 0 . 0 4 as base
2

3 RUN apt −get update −y
4 RUN apt −get i n s t a l l −y python3−pip
5 RUN pip i n s t a l l −−upgrade pip
6

7 COPY requirements . t x t /usr/ s r c /
8 RUN pip i n s t a l l −r /usr/ s r c /requirements . t x t
9

10 COPY . /usr/ s r c /
11 WORKDIR ./ user/ s r c
12

13 ENTRYPOINT [" python3 " , "/usr/ s r c /launcher_main . py "]

Line 1 indicates that our solution will run on Ubuntu, a Linux distribution, on the
20.04 version. Initially, Alpine was the choice of distribution but it gave place to errors

64 Elaboration of the solution

while creating the image, which is why we preferred to use Ubuntu.

Lines 3 to 5 install Python3 and pip (which is used to install Python dependencies).

Line 7 is used to copy the requirements file from the local machine to the Docker im-
age, and line 8 then installs all the dependencies listed in that file.

Line 10 then copies the rest of the files to the Docker image, and line 11 makes this
directory the working directory. Finally, line 13 executes the script corresponding to the
launcher agent described in 3.7.3 and passes the command line arguments.

Once the Dockerfile was crated, we only had to use the docker build command in
order to create the image.

The image was then pushed onto Docker Hub6, which is a hosted repository service
used to store container images and be able to share them easily. Therefore, since the
repository was made public, anyone can access this container, and execute the solution
in a very easy way.

In order to execute the container, a user with Docker installed on his machine first just
has to pull the repository :

docker pull miromatagne2103/tfm-spade-agents:latest

Then, in order to execute the application, the only command to execute is :

docker run -it --net=host miromatagne2103/tfm-spade-agents:latest
--interface-port <port>

where <port> is the number of the port where the graphical interface of the launcher
agent will be accessible.

This interface is always available in the user device’s browser at the address
127.0.0.1:<port>/agent

The --net=host argument indicates that Docker host networking is used, which means
that Docker shares the same namespace as the host machine. This is useful in this situa-
tion because the graphical interfaces of the agents are available on certain specific ports,
and need to be accessible on the host machine. Therefore, by using this option, the agent
interfaces are available on the specified ports without any problem and without need-
ing to specify port redirections to Docker. Indeed, the previous solution was to redirect
ports between Docker and the host machine, but this meant that either we had to redi-
rect a lot of ports (which takes a lot of time and memory), or the user could only choose
from a selection of ports for the interfaces, which makes the application less user-friendly.

IMPORTANT : Note that the execution will only work if the user device is connected
to a UPV network, or to a VPN to a UPV network. Indeed, the gtirouter.dsic.upv.es

6https://hub.docker.com/

3.10 Containerizing the solution 65

XMPP server is used in this application, which is only accessible from a UPV network. If
the user is not connected to a UPV network, the application will not work.

CHAPTER 4

Experimental results

Once the Asynchronous Decentralized Federated Learning algorithm was defined and
the application running this algorithm was implemented, experiments had to be made
in order to first of all test if the solution works appropriately. Then, it is important to
evaluate if this solution presents advantages compares to the other versions of Federated
Learning. In these experiments, the MNIST database will be used.

4.1 Evaluation of the solution

First of all, the solution had to be tested in order to see if the agents communicate well
between themselves, and if the training process is carried on appropriately.

In order to verify this, we used the logs that were created in order to keep a trace of
all sent messages, all training data after each round, all variations of the ϵ parameter, as
well as all the weights of the local model after each change (training or consensus).

The first tests were carried out on a single machine (a MacBook Pro with a 1.4 GHz
Quad-Core Intel Core i5, 8GB of RAM), with 2 running agents that are both connected
one to another in the network graph. In order to evaluate if the training was working
as desired or not, 10 identical experiments were made, where each agent would run for
10 training rounds. The test accuracies were stored in the logs, and we could follow the
evolution of the training process throughout the rounds by writing some scripts that cre-
ate graphics using Matplotlib1, which is a Python library used to create visualizations.
Note that in this experiment, the used MLP contains 32 neurons in the hidden layer (the
x parameter in figure 3.4 is equal to 32). The results are plotted in figure 4.1.

For both models (MLP and CNN), the test accuracy is clearly increasing as the number
of rounds increases, which tends to indicate that the training process is working properly.
We also notice that in both cases the training accuracy is slightly higher than the test ac-
curacy, which is a sign of a slight overfitting, which is very common during ML model
trainings. The test accuracies reached after 10 rounds are around 91% for the MLP and
around 97.2% for the CNN. By comparing these values to the various benchmarks present
in [37], we realize that the obtained results seem coherent. Of course, we do not reach the
maximal test accuracies ever registered, because training only 10 rounds is quite short

1https://matplotlib.org/

67

68 Experimental results

(a) (b)

Figure 4.1: Evolution of training and test accuracy in function of the number of iterations, both
for a Multi-Layer Perceptron (a) and for a Convolutional Neural Network (b)

and because we did not try to tune the parameters of the model.

In order to verify that the consensus is reached, another test to carry is to check if the
weights of the models of the 2 agents are converging towards the same values. In order
to test this, we simply analyze the logs containing the weights of the models of the agents
and plot the evolution of the values of one of the weights (the same one) for both agents.
The result is presented in figure 4.2, and as we see, the weights of both agents converge
throughout the training process, which indicates the consensus algorithm seems to work
properly and a consensus seems to be reached after a certain time.

Figure 4.2: Evolution of one MLP weight of 2 agents throughout 20 rounds of training

4.2 Comparison with a single training agent

A comparison was made in order to compare the Asynchronous Decentralized Federated
Learning setting with a single client training the model in local (without any communi-

4.3 Comparison with Synchronous Decentralized Federated Learning 69

cation with any other agent, and without handling any receiving messages). In the ADFL
setting, 2 agents were used, they kept exchanging their weights throughout the process,
and applied the consensus as described previously. This setting therefore has 2 times
more computational power than a single agent training a model locally, but if the con-
sensus algorithm was to be inefficient, a clear difference in performance could not be
observed. The evolution of the test accuracy throughout 10 rounds of training for both
situations was plotted and is represented at figure 4.3. Note that the displayed data is
the result of 10 simulations, averaging the accuracies for each round in order to obtain
analyzable data.

(a) (b)

Figure 4.3: Evolution of training and test accuracy for 2 agents applying the ADFL algorithm and
one single agent training locally in function of the number of iterations, both for a Multi-Layer

Perceptron (a) and for a Convolutional Neural Network (b)

For both the MLP and the CNN, the 2 agents using the ADFL setting and apply-
ing the consensus algorithm present significantly higher test accuracies than the single
agent training locally, which indicates that the consensus process seems to be efficient
and allows multiple agents to combine their weights in a way that improves the global
performance. Indeed, the single agent does not manage to achieve high test accuracies
after 10 rounds, whereas the agents applying ADFL seem to stagnate around 91% for the
MLP and around 97.5% for the CNN.

4.3 Comparison with Synchronous Decentralized Federated Learn-
ing

The main goal of the study is to determine if the Asynchronous Decentralized Feder-
ated Learning setting presents advantages compared to the Synchronous Decentralized
Federated Learning setting. Indeed, the Synchronous Decentralized Federated Learning
setting had already been created and tested before the development of the Asynchronous
Decentralized Federated Learning setting, in the hopes that the latter would represent an
improvement in performance due to the absence of waiting times, which is considerable
in the synchronous setting.

The first experiments were conducted with the graph presented in figure 4.4, which
has a maximum degree of 3 (indeed, the nodes 2, 3, 4, 5 and 6 have 3 neighbours). Note

70 Experimental results

that these tests were carried out in the DSIC computer laboratories, with one agent run-
ning on each machine. The MLP model used throughout the experiments have 32 neu-
rons in the hidden layer (the x parameter in figure 3.4).

Figure 4.4: Graph representing the network of agents used to conduct experiments to compare
the ADFL setting to the SDFL setting

The 7 agents were launched both with the synchronous and asynchronous setting
and the results of the trainings after each round were stored in logs. The results of the
evolution of the test accuracy round by round is displayed in figure 4.5. Note that these
accuracies represent the average of all test accuracies of the 7 agents round by round.
Furthermore, the experiments were conducted 5 times, and averaged, in order to obtain
more reliable results.

Figure 4.5: Evolution of test accuracy round by round for the synchronous and asynchronous
setting

As we can see, the performance of the synchronous version seems better throughout
the 5 first rounds, then is more or less equal to the performance of the asynchronous
version. This is an expected result as at each round, the synchronous version takes into
account the model of all of its neighbours, whereas the asynchronous version applies

4.3 Comparison with Synchronous Decentralized Federated Learning 71

consensus with only one agent, plus the agents that sent him weights during its train-
ing phase (no equal or lower than its number of neighbours). Therefore, the consensus
performed in the synchronous version takes into account more training data, and gives
place to a more efficient model in terms of test accuracy.

However, the advantage of Asynchronous Decentralized Federated Learning lies in
the fact that it does not present long waiting times, because of its asynchronous charac-
ter. It is therefore primordial to compare the performance of the synchronous and asyn-
chronous versions in regard to execution times, in order to see if the gain of time of the
asynchronous setting compensates the more efficient training of the synchronous version
at each round. The evolution of test accuracy in regard to time for both asynchronous
and synchronous versions are plotted on figure 4.6.

Figure 4.6: Evolution of test accuracy in function of time for the synchronous and asynchronous
setting

As we can see, after 50 seconds, the asynchronous version presents a higher test ac-
curacy than the synchronous version throughout the execution. The fact that the syn-
chronous version seems more efficient in the first 50 seconds can be explained by the fact
that the start of the timing (second 0) corresponds to the end of the first training round
(because before that moment, no test accuracies have been obtained yet). Therefore, as a
round of training is more efficient in the synchronous setting than in the asynchronous
setting, it is normal that the synchronous version presents a higher value of accuracy at
the beginning of the measurements.

In conclusion, the Asynchronous Decentralized Federated Learning setting presents a
lower efficiency than the synchronous version when comparing the performances round
by round, but does present an advantage when comparing the accuracies in regard to
time. From a practical point of view, the objective when training an AI model is more
often to train it fast, and not limit the number of rounds, which makes of Asynchronous

72 Experimental results

Decentralized Federated Learning a very interesting and efficient solution.

It is however very important to stress that these results are specific to the agent net-
work graph of figure 4.4. Indeed, it is not possible to generalize these results to any
situation. Indeed, the performance of the SDFL setting highly depends on the topol-
ogy of the network graph. If the maximum degree of the graph is higher, the time the
agents will have to wait to obtain all the weights of their neighbours will be higher, and
therefore the performance in regard to time is altered. Therefore, we could expect a bet-
ter performance from the SDFL algorithm when the experiments are run with a graph
with a maximal degree of 2 for instance. Furthermore, with a graph of degree higher
than 3, we could expect that the difference in the performance of both algorithms would
be even greater and that the Asynchronous Decentralized Federated Learning would be
even more efficient in regard to the synchronous version.

4.3.1. Influence of the number of agents

The number of agents in the network agent graph participating to the Federated Learn-
ing algorithm is also a factor that influences the performance of the solution. Indeed,
the most intuitive answer is that the more agents there are, the more computing power
is available, therefore the more performant the solution is. In order to verify this, an
experiment was made comparing the performance of an execution with 2 agents to the
performance of an execution with 7 agents. The model used for this experiment is a MLP
with 32 neurons in the hidden layer and training on the MNIST dataset. The experiment
was conducted 10 times and averaged, the test accuracy is plotted for both systems in
figure 4.7.

Figure 4.7: Evolution of average test accuracy in function of the number of rounds for a system
with 2 agents and a system with 7 agents

More experiments would have been made in this regard in order to have more com-
plete results with systems with other numbers of agents, but the availability of the com-
puter laboratories was limited during the project. In any case, the results in figure 4.7
show clearly that the system with 7 agents is more performant than the system with 2
agents. This makes sense as the computing power of the system with 7 agents is higher,

4.3 Comparison with Synchronous Decentralized Federated Learning 73

and the ADFL algorithm allows to quite quickly share the models between agents and to
therefore obtain good quality model in a shorter time.

CHAPTER 5

Limitations and bottlenecks

Although the implemented solution works perfectly and meets the objectives of this
work, it is important to analyze its limitations, which are common in Federated Learning
implementations and remain open problems today. In order to understand the limita-
tions and the causes of possible bottlenecks of the Decentralized Asynchronous Feder-
ated Learning setting, it is necessary to establish a list of factors that might influence the
performance of the solution, and that could be the cause of bottlenecks.

5.1 Length of the messages

First of all, it is reasonable to suppose that the length of the messages to be sent influ-
ences the execution times of the solution, and therefore its efficiency. Since the transmit-
ted messages contain weights and biases of the agents’ models, the length of the mes-
sages is therefore dependant on the number of weights to be transmitted. In order to
illustrate the evolution of the length of the messages in regard to the complexity of the
model, measures were made with the MLP model previously presented (figure 3.4). In
this model, the number of neurons in the hidden layer was called x. When the number of
neuron increases (x increases), the model complexity increases as well. There are there-
fore more weights contained in the model and more weights to be transmitted, giving
place to longer messages. The length of the messages to be transmitted depending on the
x parameter are shown in table 5.1. It is important to note that, as stated previously, the
transmitted messages contain the weights of the model but also information about the ϵ
parameter (the maximal degree of the graph is transmitted).

x Length of the message
8 36 480

16 70 846
24 105 225
32 139 591
40 173 957
48 208 324
56 242 690
64 ERROR

Table 5.1: Length of the sent messages in function of the x parameter of the MLP

75

76 Limitations and bottlenecks

As we can see, when the number of neurons in the hidden layer of the MLP is of 64,
an error appears and the message can not be sent. This is due to the fact that the model
is so big that the large number of weights is too long to be sent in one message. There
are solutions that could be imagined to solve this problem, such as dividing the message
into 2 parts and sending 2 separate messages for instance, but this would of course in-
duce more latency in the execution.

A first limitation of the solution is therefore that messages that are too large can not
be sent from an agent to another.

It is also interesting to see if the length of the message influences the time the message
takes to arrive until its destination. In order to analyze this, some tests were performed
with messages of different lengths, measuring the time between the moment the message
is sent and the moment the message is received by the receiving agent. The table 5.2
illustrates the results of this experiment that was run 50 times for each message length,
showing the average time of message dispatching, as well as the maximal and minimal
times recorded.

x Avg dispatching time (s) Min dispatching time (s) Max dispatching time (s)
8 0.124 0.074 0.422
16 0.174 0.085 0.476
24 0.202 0.095 0.581
32 0.233 0.111 0.609
40 0.248 0.123 0.626
48 0.322 0.133 0.812
56 0.495 0.211 1.020

Table 5.2: Average, minimum and maximum times taken to send a message in function of the
length of this message

As we can see, the time taken to send a message depends on the length of the mes-
sage, as expected. A larger message takes a longer time to be sent, and furthermore the
variance of the dispatching time seems to increase as well. Indeed, we can remark that the
maximal dispatching time grows much faster than the average dispatching time, which
indicates that when the message is longer, the time it takes to be sent is not only longer
but also less consistent.

However, we can notice that the difference between the average dispatching time of
a model with 8 neurons in the hidden layer and a model with 56 neurons in that hidden
layer is only of 0.371s. This value could possibly be negligible in comparison with the
time that the training of the model takes. In order to verify this, the training times of the
models were measured over 50 iterations and averaged, the results are displayed in table
5.3.

5.1 Length of the messages 77

x Avg training time (s) Min training time (s) Max training time (s)
8 23.741 23.505 23.908
16 23.829 23.619 24.311
24 24.548 24.309 25.025
32 24.620 24.291 25.271
40 25.154 24.932 25.513
48 25.649 25.400 25.897
56 27.260 25.808 29.715

Table 5.3: Duration of the MLP model training on the MNIST dataset in function of the size of the
model

As we can see, the training times are considerably higher than the communication
times presented in table 5.2. Therefore, in this specific case of training on a large dataset
such as MNIST, the differences in the communication times are negligible compared to
the training time of the models. The length of the messages can therefore not be consid-
ered as a limitation in this case since the difference in dispatching times is negligible.

Furthermore, table 5.3 puts in evidence that the training times increase as the size of
the model increases. The difference between the smallest MLP model tested (with 8 neu-
rons in the hidden layer) and the largest one (56 neurons in the hidden layer) is of 3.5
seconds, which could not be neglected in certain situations. It is therefore interesting to
compare the results obtained with these different models in order to understand which
value of x is the best in order to combine an efficient model in regard to execution time
and an accurate model. An experiment was made analyzing the evolution of test accu-
racy during 250 seconds for 7 models with different numbers of neurons in the hidden
layer of their MLP, the results are plotted in figure 5.1.

Figure 5.1: Evolution of test accuracy in function of the number of neurons in the hidden layer of
the used MLP

78 Limitations and bottlenecks

As we can see, as the models contain more neurons in the hidden layer, the higher the
test accuracies are. The model containing only 8 neurons in the hidden layer is unusable,
the model is too simple and is not able to learn, which explains why the accuracy does not
increase with time. We can also notice that even though the training times are higher as
the model complexity increases (as explained in table 5.3) and the communication times
increase too (as explained in table 5.2), the more complex models are still more efficient
in regard to time : they present a higher test accuracy at all times even though they are
slower models.

Therefore, this means that in this particular the developed solution does not limit the
usage of more complex models, since the benefit in performance that they present out-
weighs the increase in communication time and training time. However, there is still a
limitation in the fact that messages that are too long can not be sent, as shown in table 5.1
where the weights of a 64 neuron hidden layer MLP could not be sent.

5.2 Number of agents running on the same machine

Another factor that could influence the performance of the solution is the number of
agents that are running on the same machine. Indeed, training a ML model requires
computational resources, and when a lot of agents are training their models simultane-
ously on the same machine, they have to share these resources. Therefore, the training
times may be slower when more agents run on the same machine. In order to verify this
statement and evaluate how big of a difference in training times is observed when chang-
ing the number of agents running on a single machine, experiments were made with a 32
neuron hidden layer MLP. For different amounts of agents running simultaneously on
the same machine, the average, maximal and minimal training times were measured and
are displayed in table 5.4.

Number of agents Avg training time (s) Min training time (s) Max training time (s)
1 24.620 24.291 25.271
2 26.477 26.178 31.416
3 30.720 29.514 32.345
4 34.993 33.649 35.695

Table 5.4: Duration of the MLP model training on the MNIST dataset in function of the number
of agents training on the same device

As we can see, the differences in the training times when the number of agents run-
ning on the same device increases are significant. Indeed, there is nearly a 50% increase
in the average training time when there are 4 agents training on a single device compared
to the case where only a single agent is running.

Therefore, the number of agents running on a single device is clearly a factor that re-
duces the performance of this solution. In all experiments that were made, it was always
made sure that when comparing results, the number of agents running on the same de-
vice in different experiments was the same. In practise, the ideal case is of course when

5.3 XMPP server 79

a different device is attributed to each agent, which was the case for the tests that were
made in the computer labs.

5.3 XMPP server

As mentioned previously, the solution relies on the XMPP protocol for the inter-agent
communication. This induces the presence of a XMPP server, to which the agents will
send the messages, and that will be dispatched to the other agents later. Therefore, in the
case where all the agents are on the same XMPP server, all the messages transit through
this server, which may represent first of all a Single Point of Failure (SPoF) but also a
bottleneck in terms of performance. Let us remember that the main advantage of the
decentralized FL architecture is that there is no more central server, the presence of this
central XMPP server that dispatches the messages can therefore be a little controversial.
However, the role of a central server in a centralized FL architecture and the role of a
XMPP server are very different. The XMPP server simply dispatches the messages, and
keeps in memory the contacts of each agent. It does not have to perform model aggrega-
tion or other operations that require a lot of computing power. The operations performed
by the XMPP server are very fast, and in contrary to a central server in a centralized ar-
chitecture, the messages do not all arrive at the same time to the server, which reduces
already a bit the risk of having a bottleneck.

However, we can not deny that the quality of the XMPP server is an important criteria
to consider. It should have the following properties :

• Receive, process and dispatch the incoming messages quickly.

• Be able to receive a large number of messages at the same time.

• Process multiple messages in parallel

CHAPTER 6

Methodology

6.1 Tools

Multiple tools were used throughout this project, which were carefully chosen to opti-
mize efficiency and performance.

6.1.1. Notion

A Notion1 workbook was used throughout the study, in order to organize the work done
so far, as well as track the current progress and the tasks that remain to be done. This
workbook contained several pages :

• A To-Do list that allows to track the tasks to do, the ones being treated at the mo-
ment and the completed ones.

• A Calendar that keeps track of all team meetings and deadlines, and contains sum-
maries of all meetings, as well as the next working steps discussed in these meet-
ings.

• A Redaction section, that gathers ideas throughout the work in order to organize
and prepare the redaction of the final report.

Figure 6.1 shows an example of a notion page summarizing a team meeting.

6.1.2. PyCharm

As the implementation is in the Python programming language, the IDE (Integrated De-
velopment Environment) used throughout this work is PyCharm2. This choice is justified
by its ease to use and its integrated work environments that allow easy installations of
packages.

Furthermore, Pycharm provides support for documenting, structuring and comment-
ing the code following the PEP83 code conventions. Indeed, the whole project was made

1https://www.notion.so/
2www.jetbrains.com/pycharm/
3https://peps.python.org/pep-0008/

81

82 Methodology

Figure 6.1: Example of a team meeting summary on Notion

following these convention and allows other developers to have a quick and easy under-
standing of the code.

6.1.3. Git

Git4 is a version control system that was used throughout this project to store the code
and control the different versions of the solution. In particular, Github5, which is an
Internet hosting for version control making use of Git was used. This allows the different
contributors to the project to be able to see the advances made throughout the process.

6.1.4. Zotero

The research part of this project constituted a major part of the work, and had to be prop-
erly organized in order to not get confused with the amount of information to process,
and to be able to write a clear report. In order to achieve this, Zotero6 was used through-
out the work. Zotero is free and open source reference management software, that allows

4https://git-scm.com/
5https://github.com/
6https://www.zotero.org/

6.2 Project Management 83

to very efficiently organize references used for a study. Most of the references are auto-
matically added, simply by entering the ISBN, the DOI, the PMID, the arXiv ID, or the
ADS bibcode of the reference. The relevant data about the reference is then automatically
filled out.

These references can then be exported, to be used in a Microsoft Word or LATEX docu-
ment for example.

6.1.5. Overleaf

Overleaf7 is a free online LATEX editor. The report was written in LATEX for its easiness to
write mathematical equations and for the flexibility it brings when writing a long report.

Overleaf also allows to automatically sync the Zotero references into the final docu-
ment, and it also creates the Reference section of the report automatically.

6.2 Project Management

A meeting with my supervisors was organised every week at the beginning of the project,
in order to track the progress of the work, and establish what were the next steps. At each
meeting, I would explain the advances that were made since the last meeting, the prob-
lems I have encountered, ask the questions I may have about this work, and propose
some next steps and objectives. As the project moved on, these meetings became less
frequent as I got more comfortable working on this project, the guiding lines were more
clear and the tasks to achieve were sometimes of a larger scope and required more time.
All the content of these meetings was marked down in the Notion document.

At some points in the project, as explained in the report, some experiments had to be
carried out and sometimes this could not be done on a single machine. Therefore, com-
puter labs of the DSIC department at the UPV were booked in order to perform these
experiments and deduce results about the developed solution.

The requirements of the project and risks involved were constantly kept track of, and
updated when necessary. When new risks would appear, they would immediately be
treated (finding ways to mitigate it).

7https://www.overleaf.com/

CHAPTER 7

Further improvements

Although the developed solution is completely functional and can be used to perform
Asynchronous Decentralized Federated Learning, there are still some further improve-
ments that could be made to it, which were outside the scope of this work. Furthermore,
concerning the themes of Federated Learning and in particular Asynchronous Decentral-
ized Federated Learning, a lot of research is still made to this day in order to find reach
better performing algorithms.

7.1 Improving the current solution

7.1.1. Limiting the length of the messages

As seen in section 5.1, the length of the messages can be a factor that weakens the per-
formance of the solution, although in the case that we studied it is negligible because the
difference in time caused by the length of the message is very small compared to training
times. However, we could think of settings where the dataset is much smaller, or where
the models are way more simple, and where the training would be quicker, and in that
case the length of messages could be an influential factor. Furthermore, let us not forget
that, as explained in section 5.3, the XMPP server can be a bottleneck when transmitting
messages, and if the messages are larger the risk of bottleneck could increase. Further-
more, as we saw in section 5.1, there is a maximal length above which a message can’t be
sent, which means some complex models are not usable with the current solution. There-
fore, in any case, trying to limit the length of messages could be useful.

One way to reduce the length of the messages could be to use rounding in the weights
of the model. Indeed, the weights stored in the model are decimal numbers, with a pre-
cision of 18 decimals. This occupies a lot of memory, and we could think of rounding
these weights to less decimals. Of course, this makes the model less precise and we could
expect a decrease in the performance. The increase in performance obtained by reducing
the execution times has to be compared to the decrease of performance due to the loss of
precision in the model weights, in order to conclude if this method improves the solution
or not.

Another solution to limit the length of the messages is to use matrix compression.
Indeed, as explained in [54], there are several matrix compression techniques that exist,
and that can efficiently reduce the size of a matrix. For example, a popular compression
method is pruning, where all the weights that are very close to 0 are replaced by a 0,

85

86 Further improvements

which considerably reduces the size of the matrix.

7.1.2. Launch all agents at once

Another drawback of this implementation is that all agents have to be executed individ-
ually. This, of course, seems logical from a resources point of view. Indeed, the agents
consume a lot of resources and are most efficient when ran on separate machines (see
section 5.2) so it makes sense to execute each agent by itself. However, when the agent
network graph is very large and the number of agents is large, launching all the agents
could prove to be a long process. Therefore, some kind of automation of this process
could be implemented, even though it would imply several devices. We could imagine
that the user specifies in an interface which devices he wants to use, as well as the agent
network graph, and that the code would automatically connect with these devices and
launch each agent automatically on all the devices.

7.2 Future works

A lot of research nowadays is conducted on an aspect of Decentralized Federated Learn-
ing that was not focused on in this work, which is privacy aspect [8]. Indeed, we could
imagine a setting where each of the agents possess private data that can not be shared
with any other agent. During the Federated Learning process, the agents communicate
weights, which are not private pieces of information. However, after an agent performs
model aggregation, some information about the other agent’s dataset could be figured
out. Indeed, Elkody et al. [18] showed that the information leakage is sometimes non
negligible, and that it is higher when the amount of participating agents is lower. Their
investigation were conducted on a Centralized Federated Learning setting, which means
that model aggregation was performed on a central server with all the weights of all the
agents. Therefore, it makes sense that if the number of agents is high, there are contri-
butions from so many agents in the final model that it is difficult to identify the contri-
bution of a single agent’s model, and that makes the privacy leaks lower. On the other
hand, when the number of participating agents is low, it is easier to identify the contri-
butions of each agent to the final model. Figure 7.1 shows the results obtained in [18]
when making experiments measuring the evolution of Mutual Information in function
of the number of clients present in the Federated Learning setting. Mutual Information
(MI) effectively represents the privacy leakage, as it measures the mutual information
between an agent’s model and the output model after the model aggregation phase. The
tests were made with 3 models : a SLP (Single-Layer Perceptron, which is just like a MLP
but with one layer), a MLP and a CNN. As we can see, the Mutual Information decreases
as the number of clients increase.

However, in the Asynchronous Decentralized Federated Learning Architecture pre-
sented in this study, the model aggregation is always performed on only 2 agents’ weights
at a time, as explained previously. Therefore, following the conclusions of Elkody et al.
[18], this could lead to a large amount of privacy leakage. This is therefore an aspect of
the elaborated solution that should be investigated in order to remove privacy concerns.

Another aspect of Federated Learning that is studied is the defense against attacks.
Indeed, a number of attacks such as data poisoning [36], model update poisoning [4, 7]

7.2 Future works 87

Figure 7.1: Evolution of normalized and unnormalized Mutual Information in function of the
number of users in the Federated Learning setting, with 3 different models. This figure was taken

from [18].

and model evasion attacks exist [21, 36]. Without going into details into these different
attacks, we can illustrate a very simple one. If a malicious agent sends weights to a run-
ning agent and no security is implemented, the agent will perform model aggregation
with erroneous weights and give bad results. We could even think that the malicious
agent would send weights that influence the outcome of the model in a malicious way.
There are already some defenses against these attacks as explained in [31], but the de-
centralized architecture makes it more difficult to implement. Therefore, some research
could be made on this subject to make the implemented solution more secure against at-
tacks.

CHAPTER 8

Conclusion

8.1 Synthesis

The numerous objectives of this work have all been met and the final obtained results are
very satisfactory. Indeed, the first objective was to develop a Synchronous Decentralized
Federated Learning implementation which was already started by other researchers be-
fore the start of this work. This was successfully achieved and proved to be very useful
in order to evaluate the performance of the other implementation that was realized.

The second objective was to create a new Federated Learning algorithm that gath-
ers the advantages of Decentralized Federated Learning and of Asynchronous Federated
Learning, which we named Asynchronous Decentralized Federated Learning. This was
a success since the algorithm was created, and then tested theoretically providing satis-
factory results.

Next, the focus was on the creation of a standalone user-friendly application that al-
lows to easily execute the Asynchronous Decentralized Federated Learning algorithm
for an arbitrary configuration of agents. This represented the largest part of the work,
and combined a lot of different themes to obtain the final product. This final applica-
tion was evaluated, tested, and compared to the synchronous implementation that was
created. As expected, the ADFL algorithm presented very good results, outperforming
the synchronous algorithm in the tested cases. Furthermore, an emphasis was put on the
usability of the application, which is why graphical interfaces monitoring the execution
were implemented, along with an interface where the user could specify the parameters
of the execution. In addition, the solution was containerized so that it could be accessed
and executed very easily by any user. The application is therefore first of all performant,
but also accessible and easy to use.

Finally, since a part of this project is dedicated to research and investigation, it is im-
portant to think about the impact of the produced work and of the possible future lines of
work it enables. In this regard, this work enables other researchers to further pursue the
work, in particular thanks to the publication of an academic paper sent to the 22nd In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS) [12].
We believe the developed solution opens new doors in the domain of Federated Learning
and could possibly be improved.

89

90 Conclusion

8.2 Relation with the pursued studies

This thesis is the perfect conclusion to the Master studies I am carrying out at ULB (Uni-
versité Libre de Bruxelles) and UPV (Universitat Politècnica de Valencia) as it involves
many concepts that were at the heart of my education.

First of all, the heart of the project focuses on Artificial Intelligence, which is the spe-
cialty my Master at ULB is focused on. The thesis was therefore a great opportunity to
put into practise the theoretical knowledge I had learned about Artificial Intelligence in
general, but also Machine Learning in specific. This allowed me to discover the state of
the art algorithms in Federated Learning, which was a concept I was not familiar with
before the start of the work, and I believe this to be a great discovery for my future pro-
fessional career as it is one of the most promising technologies in this field.

Next, this thesis also allowed me to put into practise the skills I have learned through-
out my time at UPV. Indeed, Multi-Agent Systems and in particular the SPADE Python
library had been seen in class, but not to the extent that it was used in this thesis. This
work has made me really use the knowledge I learnt through these classes, and pushed
me to research further about these subjects. This project also involved web-development
skills, which were required to create the graphical interfaces of the agents using HTML,
CSS and Javascript. Furthermore, the organization of the work was also something that
the Master classes really helped me with. Indeed, the course "Planificación y Dirección de
Proyectos" in particular was very helpful in order to properly organize the work and to fo-
cus on the final expectations of the developed application. Finally, on the more practical
side, the several subjects of the Master presenting the use of Docker helped to produce
a final solution that meets the requirement of it being a user-friendly and standalone ap-
plication.

Bibliography

[1] Rusul Abduljabbar, Hussein Dia, Sohani Liyanage, and Saeed Asadi Bagloee. Appli-
cations of Artificial Intelligence in Transport: An Overview. Sustainability, 11(1):189,
January 2019.

[2] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU), February
2019. arXiv:1803.08375 [cs, stat].

[3] Asian Development Bank, Hubert Jenny, Yihong Wang, Asian Development Bank,
Eduardo Garcia Alonso, Asian Development Bank, Roberto Minguez, and Asian
Development Bank. Using Artificial Intelligence for Smart Water Management Sys-
tems. Technical report, Asian Development Bank, July 2020.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How To Backdoor Federated Learning, August 2019. arXiv:1807.00459
[cs].

[5] Kanadpriya Basu, Ritwik Sinha, Aihui Ong, and Treena Basu. Artificial intelligence:
How is it changing medical sciences and its future? Indian Journal of Dermatology,
65(5):365, 2020.

[6] Floris Bex and Henry Prakken. Can Predictive Justice Improve the Predictability and
Consistency of Judicial Decision-Making? In Erich Schweighofer, editor, Frontiers in
Artificial Intelligence and Applications. IOS Press, December 2021.

[7] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
Analyzing Federated Learning through an Adversarial Lens, November 2019.
arXiv:1811.12470 [cs, stat].

[8] Subrato Bharati, M. Rubaiyat Hossain Mondal, Prajoy Podder, and V. B. Surya
Prasath. Federated learning: Applications, challenges and future directions. Interna-
tional Journal of Hybrid Intelligent Systems, 18(1-2):19–35, May 2022. arXiv:2205.09513
[cs, eess, math].

[9] Bruce Buchanan. A (Very) Brief History of Artificial Intelligence. AI Magazine, De-
cember 2005.

[10] Nanette Byrnes. As Goldman Embraces Automation, Even the Masters of the Uni-
verse Are Threatened. MIT Technology Review, July 2017.

[11] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep Clus-
tering for Unsupervised Learning of Visual Features, March 2019. arXiv:1807.05520
[cs].

[12] Carlos Carrascosa, Miguel Rebollo, Aaron Pico, Jaime A. Rincon, and Miro-Manuel
Matagne. Asynchronous Consensus for Multi-Agent Systems and its Application to

91

92 BIBLIOGRAPHY

Federated Learning. 22nd International Conference on Autonomous Agents and Multia-
gent Systems, October 2022.

[13] Lijia Chen, Pingping Chen, and Zhijian Lin. Artificial Intelligence in Education: A
Review. IEEE Access, 8:75264–75278, 2020.

[14] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous
Online Federated Learning for Edge Devices with Non-IID Data, October 2020.
arXiv:1911.02134 [cs].

[15] Zhikun Chen, Jiaqi Pan, and Sihai Zhang. Asynchronous Federated Learning in
Decentralized Topology Based on Dynamic Average Consensus. In ICC 2022 - IEEE
International Conference on Communications, pages 2822–2827, Seoul, Korea, Republic
of, May 2022. IEEE.

[16] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-Agent Systems: A Survey. IEEE
Access, 6:28573–28593, 2018.

[17] Chris Duckett. Zoom patches XMPP vulnerability chain that could lead to remote
code execution. ZdNET, May 2022.

[18] Ahmed Roushdy Elkordy, Jiang Zhang, Yahya H. Ezzeldin, Konstantinos Psounis,
and Salman Avestimehr. How Much Privacy Does Federated Learning with Secure
Aggregation Guarantee?, August 2022. arXiv:2208.02304 [cs, math].

[19] European Commission for the Efficiency of Justice (CEPEJ). Justice of the future :
predictive justice and artificial intelligence, September 2018.

[20] Abigail Goldsteen, Gilad Ezov, Ron Shmelkin, Micha Moffie, and Ariel Farkash.
Data Minimization for GDPR Compliance in Machine Learning Models. AI and
Ethics, 2(3):477–491, August 2022. arXiv:2008.04113 [cs].

[21] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harness-
ing Adversarial Examples, March 2015. arXiv:1412.6572 [cs, stat].

[22] Morten Goodwin, Kim Tallaksen Halvorsen, Lei Jiao, Kristian Muri Knausgård, An-
gela Helen Martin, Marta Moyano, Rebekah A Oomen, Jeppe Have Rasmussen,
Tonje Knutsen Sørdalen, and Susanna Huneide Thorbjørnsen. Unlocking the po-
tential of deep learning for marine ecology: overview, applications, and outlook.
ICES Journal of Marine Science, 79(2):319–336, March 2022.

[23] Zainab H., Hesham A., and Mahmoud M. Internet of Things (IoT): Definitions, Chal-
lenges and Recent Research Directions. International Journal of Computer Applications,
128(1):37–47, October 2015.

[24] Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu. Central Server
Free Federated Learning over Single-sided Trust Social Networks, August 2020.
arXiv:1910.04956 [cs, stat].

[25] Lie He, An Bian, and Martin Jaggi. COLA: Decentralized Linear Learning, June
2019. arXiv:1808.04883 [cs, stat].

[26] Trevor Hill. How Artificial Intelligence is Reshaping the Water Sector. May 2018.

[27] Timothy O. Hodson, Thomas M. Over, and Sydney S. Foks. Mean Squared Error,
Deconstructed. Journal of Advances in Modeling Earth Systems, 13(12), December 2021.

BIBLIOGRAPHY 93

[28] Michael N. Huhns, editor. Distributed artificial intelligence. 1: ed. by Michael N. Huhns.
Pitman, London, repr edition, 1988.

[29] Ida Arlene Joiner. Emerging Library Technologies. Elsevier, 2018.

[30] Stanimir Kabaivanov and Veneta Markovska. Artificial intelligence in real estate
market analysis. page 030001, Tomsk, Russia, 2021.

[31] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür,
Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Flo-
rian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang,
Felix X. Yu, Han Yu, and Sen Zhao. Advances and Open Problems in Federated
Learning. arXiv:1912.04977 [cs, stat], March 2021. arXiv: 1912.04977.

[32] Navleen Kaur, Supriya Lamba Sahdev, Monika Sharma, and Laraibe Siddiqui.
BANKING 4.0: “THE INFLUENCE OF ARTIFICIAL INTELLIGENCE ON THE
BANKING INDUSTRY & HOW AI IS CHANGING THE FACE OF MODERN DAY
BANKS”. INTERNATIONAL JOURNAL OF MANAGEMENT, 11(6), June 2020.

[33] Brendan S. Kelly, Conor Judge, Stephanie M. Bollard, Simon M. Clifford, Ger-
ard M. Healy, Awsam Aziz, Prateek Mathur, Shah Islam, Kristen W. Yeom, Aonghus
Lawlor, and Ronan P. Killeen. Radiology artificial intelligence: a systematic review
and evaluation of methods (RAISE). European Radiology, 32(11):7998–8007, April
2022.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization,
January 2017. arXiv:1412.6980 [cs].

[35] Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-Efficient Algorithms for
Decentralized and Stochastic Optimization, February 2017. arXiv:1701.03961 [cs,
math].

[36] John Langford and International Machine Learning Society, editors. Proceedings of
the Twenty-Ninth International Conference on Machine Learning: held from June 26 to July
1 in Edinburgh, Scotland ... in conjunction with the 25th Conference on Learning Theory
(COLT 2012). Madison, Wis, 2012.

[37] Yann LeCun, Corinna Cortes, and Christopher Burges. The MNIST database of
handwritten digits, 1998.

[38] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and Alexan-
der Schwing. Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed
Deep Net Training, January 2019. arXiv:1811.03619 [cs, stat].

[39] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case
Study for Decentralized Parallel Stochastic Gradient Descent, September 2017.
arXiv:1705.09056 [cs, math, stat].

94 BIBLIOGRAPHY

[40] Zachary Chase Lipton, Charles Elkan, and Balakrishnan Narayanaswamy. Thresh-
olding Classifiers to Maximize F1 Score, May 2014. arXiv:1402.1892 [cs, stat].

[41] Qi Liu, Bo Yang, Zhaojian Wang, Dafeng Zhu, Xinyi Wang, Kai Ma, and Xinping
Guan. Asynchronous Decentralized Federated Learning for Collaborative Fault
Diagnosis of PV Stations. IEEE Transactions on Network Science and Engineering,
9(3):1680–1696, May 2022. arXiv:2202.13606 [cs].

[42] Hossin M and Sulaiman M.N. A Review on Evaluation Metrics for Data Classi-
fication Evaluations. International Journal of Data Mining & Knowledge Management
Process, 5(2):01–11, March 2015.

[43] Spyros Makridakis. Accuracy measures: theoretical and practical concerns. Interna-
tional Journal of Forecasting, 9(4):527–529, December 1993.

[44] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of
torch. In Proceedings of the international conference on Multimedia - MM ’10, page 1485,
Firenze, Italy, 2010. ACM Press.

[45] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. Communication-Efficient Learning of Deep Networks from Decen-
tralized Data, February 2017. Number: arXiv:1602.05629 arXiv:1602.05629 [cs].

[46] H. Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Ma-
chine Learning without Centralized Training Data, June 2017.

[47] Ramesh Medar, Vijay S. Rajpurohit, and B. Rashmi. Impact of Training and Test-
ing Data Splits on Accuracy of Time Series Forecasting in Machine Learning. In
2017 International Conference on Computing, Communication, Control and Automation
(ICCUBEA), pages 1–6, PUNE, India, August 2017. IEEE.

[48] Elon Musk and Stephen Hawking. Research Priorities for Robust and Beneficial
Artificial Intelligence: An Open Letter. January 2015.

[49] Angelia Nedic and Alex Olshevsky. Distributed optimization over time-varying
directed graphs, March 2014. arXiv:1303.2289 [cs, math].

[50] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.
Activation Functions: Comparison of trends in Practice and Research for Deep
Learning, November 2018. arXiv:1811.03378 [cs].

[51] Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and Cooperation
in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1):215–233, January
2007.

[52] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks,
December 2015. arXiv:1511.08458 [cs].

[53] Javier Palanca, Andres Terrasa, Vicente Julian, and Carlos Carrascosa. SPADE 3:
Supporting the New Generation of Multi-Agent Systems. IEEE Access, 8:182537–
182549, 2020.

[54] Rina Panigrahy. Matrix Compression Operator, February 2022.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

BIBLIOGRAPHY 95

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
PyTorch: An Imperative Style, High-Performance Deep Learning Library, Decem-
ber 2019. arXiv:1912.01703 [cs, stat].

[56] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Func-
tions, October 2017. arXiv:1710.05941 [cs].

[57] Miguel Rebollo. Análisis de redes de comercio mediante procesos de consenso (Tesis de
máster). PhD thesis, Universidad Politécnica de Madrid, Madrid, 2013.

[58] Sebastian Ruder. An overview of gradient descent optimization algorithms, June
2017. arXiv:1609.04747 [cs].

[59] R.O. Saber and R.M. Murray. Consensus protocols for networks of dynamic agents.
In Proceedings of the 2003 American Control Conference, 2003., volume 2, pages 951–956,
Denver, Colorado, USA, 2003. IEEE.

[60] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. Techni-
cal Report RFC6120, RFC Editor, March 2011.

[61] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 44(1.2):206–226, January 2000.

[62] R. Sathya and Annamma Abraham. Comparison of Supervised and Unsupervised
Learning Algorithms for Pattern Classification. International Journal of Advanced Re-
search in Artificial Intelligence, 2(2), 2013.

[63] Munindar P. Singh and Amit K. Chopra. The Internet of Things and Multiagent
Systems: Decentralized Intelligence in Distributed Computing. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), pages 1738–1747,
Atlanta, GA, USA, June 2017. IEEE.

[64] Benjamin Sirb and Xiaojing Ye. Consensus optimization with delayed and stochastic
gradients on decentralized networks. In 2016 IEEE International Conference on Big
Data (Big Data), pages 76–85, Washington DC,USA, December 2016. IEEE.

[65] Student, Department of Information Technology, Engineering Faculty, Udayana
University, Bali, Indonesia, Kadek Darmaastawan, I Made Sukarsa, and Putu
Wira Buana. LINE Messenger as a Transport Layer to Distribute Messages to Part-
ner Instant Messaging. International Journal of Modern Education and Computer Science,
11(3):1–9, March 2019.

[66] Latanya Sweeney. Simple Demographics Often Identify People Uniquely. Carnegie
Mellon University, Data Privacy Working Paper 3., 2000.

[67] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, and N.I. Chervyakov. Ap-
plication of the residue number system to reduce hardware costs of the convolu-
tional neural network implementation. Mathematics and Computers in Simulation,
177:232–243, November 2020.

[68] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized Col-
laborative Learning of Personalized Models over Networks, February 2017.
arXiv:1610.05202 [cs, stat].

[69] Rajendra Verma. How WhatsApp works. Medium, September 2019.

[70] Lloyd Watkin and David Koelle. Practical XXPP. Packt Publishing, Limited, Birm-
ingham, September 2016. OCLC: 982652038.

96 BIBLIOGRAPHY

[71] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Im-
age Dataset for Benchmarking Machine Learning Algorithms, September 2017.
arXiv:1708.07747 [cs, stat].

[72] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. Con-
volutional neural networks: an overview and application in radiology. Insights into
Imaging, 9(4):611–629, August 2018.

[73] Dayong Ye, Minjie Zhang, and Athanasios V. Vasilakos. A Survey of Self-
Organization Mechanisms in Multiagent Systems. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 47(3):441–461, March 2017.

[74] Xue Ying. An Overview of Overfitting and its Solutions. Journal of Physics: Conference
Series, 1168:022022, February 2019.

[75] Zhilu Zhang and Mert R. Sabuncu. Generalized Cross Entropy Loss for Training
Deep Neural Networks with Noisy Labels, November 2018. arXiv:1805.07836 [cs,
stat].

[76] Minghui Zhu and Sonia Martínez. Discrete-time dynamic average consensus. Auto-
matica, 46(2):322–329, February 2010.

APPENDIX A

Log files

A.1 Message log file

The message log files contain the following content everytime a message is sent or re-
ceived :

• The time when the message was sent or received

• A word indicating if the message was sent or received, and if it is a response to a
previous message or not

• The ID of the message

• The JID of the communicating agent (sender or receiver)

An example of a message log file is presented :

time,send_or_recv,id,communicating_agent
2022-11-20 11:30:47.517603,SEND,55b53a0f-1ff3-453f-8b4a-a6dd5c3fe9bf,

my_agent_2@gtirouter.dsic.upv.es
2022-11-20 11:30:47.906637,RECEIVE,99c456e8-e750-4bb5-98b3-8d5928e3f890,

my_agent_2@gtirouter.dsic.upv.es/edxeykXa
2022-11-20 11:30:47.916086,SEND_RESPONSE,99c456e8-e750-4bb5-98b3-8d5928e3f890,

my_agent_2@gtirouter.dsic.upv.es/edxeykXa
2022-11-20 11:30:48.069169,RECEIVE_RESPONSE,55b53a0f-1ff3-453f-8b4a-a6dd5c3fe9bf,

my_agent_2@gtirouter.dsic.upv.es/edxeykXa
2022-11-20 11:31:13.926643,SEND,304dd840-7b24-4a52-908c-947c79aa3900,

my_agent_2@gtirouter.dsic.upv.es
2022-11-20 11:31:14.101474,RECEIVE,7fff0d85-f14a-4290-90bd-d4181914e4e0,

my_agent_2@gtirouter.dsic.upv.es/edxeykXa
2022-11-20 11:31:14.112035,SEND_RESPONSE,7fff0d85-f14a-4290-90bd-d4181914e4e0,

my_agent_2@gtirouter.dsic.upv.es/edxeykXa
2022-11-20 11:31:14.299558,RECEIVE_RESPONSE,304dd840-7b24-4a52-908c-947c79aa3900,

my_agent_2@gtirouter.dsic.upv.es/edxeykXa
2022-11-20 11:31:40.411015,SEND,043c64bd-0c37-495c-b339-f2ba79bc8138,

Figure A.1: Example of an message log file

97

98 Log files

A.2 Training log file

The training log files contain the following content for after each training round :

• The time at which the training round ended

• The training accuracy (in %)

• The training loss

• The test accuracy (in %)

• The test loss

An example of a training log file is presented :

time,training_accuracy,training_loss,test_accuracy,test_loss
2022-11-13 21:39:34.461417,90.47,-0.9,89.5,-0.8873
2022-11-13 21:39:58.355688,91.78,-0.91,90.27,-0.898
2022-11-13 21:40:22.238674,91.9,-0.91,90.29,-0.8998
2022-11-13 21:40:46.242788,92.23,-0.92,90.92,-0.907
2022-11-13 21:41:10.683955,92.55,-0.92,90.56,-0.9042
2022-11-13 21:41:34.681417,92.55,-0.92,91.25,-0.9095
2022-11-13 21:41:58.843816,92.4,-0.92,91.43,-0.913
2022-11-13 21:42:23.779355,92.48,-0.92,91.19,-0.91
2022-11-13 21:42:49.345270,92.75,-0.93,91.38,-0.9123
2022-11-13 21:43:16.606762,92.92,-0.93,91.29,-0.9124
2022-11-13 21:43:41.824005,92.18,-0.92,90.63,-0.9046
2022-11-13 21:44:05.943045,93.35,-0.93,92.02,-0.9191
2022-11-13 21:44:30.078670,93.17,-0.93,91.82,-0.9182
2022-11-13 21:44:54.252646,93.15,-0.93,91.84,-0.9184
2022-11-13 21:45:18.571565,92.6,-0.92,91.29,-0.9118
2022-11-13 21:45:43.045143,92.92,-0.93,91.31,-0.9124
2022-11-13 21:46:08.881585,93.17,-0.93,91.77,-0.9173
2022-11-13 21:46:33.542121,92.8,-0.93,91.69,-0.9162
2022-11-13 21:46:57.687568,93.22,-0.93,91.9,-0.9193
2022-11-13 21:47:21.894854,93.47,-0.93,92.22,-0.9221

Figure A.2: Example of a training log file

A.3 Weight log file 99

A.3 Weight log file

The weight log files contain the following content for after each training round and after
each time the consensus algorithm is applied, in the case of a MLP model :

• The time at which the training round ended or the consensus was applied

• The weight of the first neuron of the first layer

• The bias of the first neuron of the first layer

• The weight of the first neuron of the second layer

• The bias of the first neuron of the second layer

An example of a weight log file is presented (note that the weights have been rounded
to 3 decimals for displaying purposes) :

time,train_or_consensus,first_layer_weight,first_layer_bias,second_layer_weight,
second_layer_bias

2022-11-20 11:30:47.515560,TRAINING,-0.012,-0.024,0.683,-0.081
2022-11-20 11:30:48.074827,CONSENSUS,-0.024,-0.031,0.02,-0.094
2022-11-20 11:31:13.925984,TRAINING,-0.021,-0.041,-0.107,-0.117
2022-11-20 11:31:14.302717,CONSENSUS,-0.021,-0.02,0.412,-0.017
2022-11-20 11:31:40.409484,TRAINING,-0.032,0.005,0.568,0.03
2022-11-20 11:31:40.723950,CONSENSUS,-0.021,-0.029,0.124,-0.065
2022-11-20 11:32:06.763837,TRAINING,-0.016,-0.043,0.081,-0.054
2022-11-20 11:32:07.285924,CONSENSUS,-0.03,-0.003,0.498,-0.01
2022-11-20 11:32:33.167315,TRAINING,-0.044,0.028,0.626,-0.008
2022-11-20 11:32:33.587914,CONSENSUS,-0.025,-0.018,0.114,-0.067
2022-11-20 11:32:59.507949,TRAINING,-0.021,-0.027,-0.107,-0.085
2022-11-20 11:32:59.905522,CONSENSUS,-0.032,-0.0,0.51,-0.002
2022-11-20 11:33:25.884820,TRAINING,-0.033,0.002,0.814,0.046
2022-11-20 11:33:26.196448,CONSENSUS,-0.028,-0.01,0.154,-0.023
2022-11-20 11:33:52.134188,TRAINING,-0.025,-0.018,-0.02,-0.006
2022-11-20 11:33:52.474179,CONSENSUS,-0.031,-0.004,0.624,0.038
2022-11-20 11:34:18.457201,TRAINING,-0.036,0.008,0.841,0.071
2022-11-20 11:34:18.817635,CONSENSUS,-0.023,-0.022,0.212,0.059
2022-11-20 11:34:44.761239,TRAINING,-0.019,-0.031,0.134,0.098
2022-11-20 11:34:45.082825,CONSENSUS,-0.024,-0.021,0.483,0.055
2022-11-20 11:35:10.894247,TRAINING,-0.022,-0.026,0.548,0.069
2022-11-20 11:35:11.218484,CONSENSUS,-0.021,-0.027,0.226,0.066
2022-11-20 11:35:37.114189,TRAINING,-0.012,-0.048,0.051,0.051
2022-11-20 11:35:37.478274,CONSENSUS,-0.017,-0.036,0.272,0.057
2022-11-20 11:36:03.317306,TRAINING,-0.017,-0.036,0.229,0.049
2022-11-20 11:36:03.635261,CONSENSUS,-0.017,-0.037,0.108,0.032
2022-11-20 11:36:29.613757,TRAINING,-0.017,-0.037,0.008,0.029
2022-11-20 11:36:29.935264,CONSENSUS,-0.015,-0.042,0.084,0.037
2022-11-20 11:36:55.926558,TRAINING,-0.012,-0.048,-0.042,-0.003
2022-11-20 11:36:56.459658,CONSENSUS,-0.013,-0.046,-0.047,0.013
2022-11-20 11:37:26.684286,TRAINING,-0.006,-0.061,-0.07,0.016
2022-11-20 11:37:27.094495,CONSENSUS,-0.011,-0.051,-0.11,-0.006

Figure A.3: Example of a weight log file

100 Log files

A.4 Epsilon log file

The epsilon log files contain the following content everytime the epsilon value changes :

• The time when the epsilon value changed

• The value of the max order known by the neighbour (the inverse of epsilon)

An example of a epsilon log file is presented :

time,value
2022-11-20 11:30:47.515560, 2
2022-11-20 11:32:06.763837, 3
2022-11-20 11:32:59.905522, 2
2022-11-20 11:34:45.082825, 3
2022-11-20 11:36:03.317306, 2

Figure A.4: Example of an epsilon log file

A.5 Training time log file 101

A.5 Training time log file

The training time log files contain the following content after each training round :

• The time when the training starts or when the training stops

• A word indicating if the training just started or just stopped

An example of a epsilon log file is presented :

time,start_or_stop
2022-11-20 11:30:21.387399,START
2022-11-20 11:30:47.516381,STOP
2022-11-20 11:30:48.077734,START
2022-11-20 11:31:13.926108,STOP
2022-11-20 11:31:14.304751,START
2022-11-20 11:31:40.410062,STOP
2022-11-20 11:31:40.726041,START
2022-11-20 11:32:06.764027,STOP
2022-11-20 11:32:07.288001,START
2022-11-20 11:32:33.167438,STOP
2022-11-20 11:32:33.592605,START
2022-11-20 11:32:59.508734,STOP
2022-11-20 11:32:59.907896,START
2022-11-20 11:33:25.884940,STOP
2022-11-20 11:33:26.198636,START
2022-11-20 11:33:52.134787,STOP
2022-11-20 11:33:52.476969,START
2022-11-20 11:34:18.457971,STOP
2022-11-20 11:34:18.819785,START
2022-11-20 11:34:44.761749,STOP
2022-11-20 11:34:45.085311,START
2022-11-20 11:35:10.894383,STOP
2022-11-20 11:35:11.220685,START
2022-11-20 11:35:37.114323,STOP
2022-11-20 11:35:37.480360,START
2022-11-20 11:36:03.317494,STOP
2022-11-20 11:36:03.638130,START
2022-11-20 11:36:29.614269,STOP
2022-11-20 11:36:29.937368,START
2022-11-20 11:36:55.927257,STOP
2022-11-20 11:36:56.461722,START
2022-11-20 11:37:26.684773,STOP
2022-11-20 11:37:27.099590,START

Figure A.5: Example of an training time log file

APPENDIX B

Link with Sustainable
Development Goals (SDG)

Sustainable Development Goals High Medium Low Non
Applicable

SDG 1. No Poverty. x
SDG 2. Zero Hunger. x
SDG 3. Good Health and Well-being. x
SDG 4. Quality Education. x
SDG 5. Gender Equality. x
SDG 6. Clean Water and Sanitation. x
SDG 7. Affordable and Clean Energy. x
SDG 8. Decent Work and Economic Growth. x
SDG 9. Industry, Innovation and Infrastructure. x
SDG 10. Reduced Inequality. x
SDG 11. Sustainable Cities and Communities. x
SDG 12. Responsible Consumption and Production. x
SDG 13. Climate Action. x
SDG 14. Life Below Water. x
SDG 15. Life on Land. x
SDG 16. Peace and Justice Strong Institutions. x
SDG 17. Partnerships to achieve the Goal. x

103

104 Link with Sustainable Development Goals (SDG)

B.1 Sustainable Development Goals

In 2015, all the United Nations Member States adopted the 2030 Agenda for Sustainable
Development1. This Agenda is made to help the people and the planet, and also seeks
for freedom and peace across the world. It is based on 5 dimensions :

• People : dimension based on ending poverty and hunger, and ensuring that every-
one can live in dignity and equality in a healthy environment.

• Planet : dimension based on the protection of the planet, by taking urgent action
against climate change, preserve natural resources and encourage sustainable con-
sumption and production.

• Prosperity : dimension based on the fact that everyone should enjoy prosperous
and fulfilling lives and that economic, social and technological progress occurs in
harmony with nature.

• Peace : dimension based on the fostering of a war-free and violence-free society.

• Partnership : dimension based on a Global Partnership for Sustainable Develop-
ment, which involves all countries and all people to strengthen global solidarity.

These 5 dimensions encompass 17 SGD2 (Sustainable Development Goals), which ex-
plain more clearly what are the goals and ambitions that people and countries need to
aspire to in the coming years. These goals are also divided into 169 targets, that give even
more concrete objectives.

B.2 Relating this study to SGDs

Universitat Politècnica de València, as a socially responsible university, has the objective
to contribute to these Sustainable Development Goals, and wants to demonstrate how
scientific research work can be used in order to achieve these goals. Therefore, this sec-
tion focuses on explaining the possible uses of this work in order to comply with the UN
Sustainable Development Goals.

B.2.1. Artificial Intelligence and Sustainable Development Goals

First of all, Artificial Intelligence as a whole is bringing a lot of improvements that can be
used to make progress on a lot of the SDG described by the UN. Since the work carried
out in this study has as objective to create a solution that improves the performance of
some current AI solutions, it can therefore be considered as facilitating the use of AI for
sustainable development. We will analyze several sectors where AI is used or has the
potential to be used, and show their contribution to the SDGs.

1https://sdgs.un.org/2030agenda
2https://sdgs.un.org/goals

B.2 Relating this study to SGDs 105

Medicine

AI has, for a long time, been used and proven efficient in the field of healthcare and
medicine [5]. For example, Verge Genomics3 is a company that makes use of an AI plat-
form in order to analyze human genomic data and discover new drugs. They have al-
ready released a clinically approved drug for amyotrophic lateral sclerosis (ALS), and are
working on drugs for diseases such as Parkinson’s Disease. Furthermore, AI has been
widely used in radiology and has even sometimes proven to present a better percentage
of accurate analysis than actual doctors [33].

It is therefore correct to say that AI can (and does) contribute to the second SDG (Good
Health and Well-Being).

Water Crisis

Artificial Intelligence is used in water plants in order to constantly evaluate the quality
of the supplied water and to be able to learn from past patters to detect when something
needs to be corrected [26, 3]. Furthermore, AI has been used in marine life as well, in
order to distinguish debris from marine animals for instance, or predicting where the big
amounts of waste will pile up, or even predicting the amount of marine animals living in
a certain radius of a certain point in function of water characteristics [22]. This allows to
preserve marine life and reduce marine pollution.

AI can therefore contribute to the following SDGs : Clean Water and Sanitation (SDG
6), Climate Action (SDG 13) and Life Below Water (SDG 14).

Education

AI is nowadays used in the education field as well in order to improve its quality and
the processes involved. Whether it implies the usage of robots or cobots, or a software
capable of detecting plagiarism, AI is more than present in this field and is expected to
be even more omnipotent in the decades to come [13].

AI therefore contributes to the SDG 4 : Quality Education.

Justice

AI is even present in the field of justice, which gives place to the concept of predictive
justice [6]. The European Council even held several conferences to study the usage of AI
software in European justice departments [19].

AI therefore even responds to the SDG 16 : Peace and Justice Strong Institutions.

3https://www.vergegenomics.com/

106 Link with Sustainable Development Goals (SDG)

Although this was not an exhaustive list of all sectors where AI can be applied and
help towards achieving the 17 SDGs, we showed that AI can unlock a lot of societal,
environmental and financial benefits .

B.2.2. Federated Learning and Sustainable Development Goals

The focus of this study was more oriented towards Federated Learning, it is therefore
interesting to see if this field, which is a subsection of AI, presents particularities that
enhance the accomplishment of the 17 SDGs.

First of all, the Asynchronous Decentralized Federated Learning setting which was
the focus of this study allows to get rid of the central server of the centralized architec-
ture. This centralized server consumes a lot of energy, and has to constantly by ready
to receive a lot of data and to manipulate it. This proposed decentralized architecture
therefore allows not only to be more efficient in certain cases, but also to reduce energy
consumption, which aligns with the SDG 12 (Responsible Consumption and Production),
and the SDG 13 (Climate Action).

The presented architecture also has the advantage that all participating devices do
not need to be identical, which presents practical advantages in some cases. For exam-
ple, devices such as drones could capture pictures or videos in real time in order to train
their local model. In the case of drones, AI could be used to analyze life on land, or even
life below water for underwater drones. This unlocks a lot of possibilities in terms of
applying AI, and therefore aligns with SDG 14 (Life Below Water) and SDG 15 (Life on
Land).

Asynchronous Decentralized Federated Learning has already been put into use in
practise in order to detects the faults present in Photovoltaic Stations [41]. This algorithm
really suited this solution as the power stations could communicate between them with-
out a central server, and the amount of sent messages per unit of time was quite low so
an asynchronous architecture allowed to avoid long waiting times. FL is therefore an
asset in order to achieve the SDG 7 (Affordable and Clean Energy) as well as the SDG 13
(Climate Action). Further more, ADFL has been used to predict the production of wind
farms in Australia [12]. Every wind farm represents an agent, and communicate between
themselves in an asynchronous way in order to predict the electricity production. This
project also relates with SDG 7 (Affordable and Clean Energy) as well as with SDG 13
(Climate Action).

B.2.3. Dangers of AI

It is important also to note the possible negative aspects of AI, and how they also might
go against SDGs. Indeed, Artificial Intelligence is also widely used as an economic asset,
as a tool to improve a company’s revenues or profit. Note that this makes AI contribute
in some sense to the SDG 9 : Industry, Innovation and Infrastructure. This sometimes
leads to big questions regarding the way to treat employees, and the trade-ff to be made
between the increase in revenues and the well-being of the employees. The progresses
made in the fields of robotics and automation in parallel to AI have also made a signif-
icant impact on the industry. Indeed, some employees are slowly replaced by machines
driven by an AI core. For example, Goldman Sachs, a massive investment bank, em-

B.2 Relating this study to SGDs 107

ployed 600 traders in their New York City headquarters in 2000 [10]. Today, they employ
only 2 traders, the rest of the operations being conducted by machines running auto-
mated trading programs making use of various AI techniques [10]. This example directly
impacts the following SDGs :

• SDG 1. No Poverty : the unemployment of a large number of workers gives place
to more poverty

• SDG 8. Decent Work and Economic Growth : the unemployment of a large number
of workers goes against the principle of providing a decent work for all

• SDG 10. Reduced Inequality : the use of AI increases inequalities in this case as
the owners make a lot of profit out of it whereas a large amount of workers are left
without a salary

It is important to be conscious about these risks when making use of AI, and many
experts warn about this. For example, In January 2015, Stephen Hawking, Elon Musk and
dozens of other artificial intelligence experts published an open letter calling for research
on the societal impacts and the possible negative consequences of AI [48].

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Desired Impact
	Structure

	State of the art
	Multi-Agent Systems
	Agents
	Environments
	Inter-Agent Communication
	SPADE

	Federated Learning
	Background on Artificial Intelligence and Machine Learning
	Basic principles of Federated Learning
	Centralized and Decentralized Federated Learning
	Asynchronous Centralized Federated Learning

	Consensus-Based Learning
	Theory of Consensus

	Proposition
	Starting point of the implementation
	Preliminary analysis
	Definition of requirements
	Risk analysis

	Elaboration of the solution
	Work Plan
	Creating the Asynchronous Decentralized Federated Learning algorithm
	Asynchronous Decentralized Federated Learning scheme
	Asynchronous consensus
	Algorithm

	Datasets
	MNIST
	Fashion MNIST

	Models
	Multilayer Perceptrons
	Convolutional Neural Networks

	Model Training
	Consensus
	Agents
	Agent architecture
	Agent Web Interface
	Launcher Agent

	Logging
	Code structure
	Containerizing the solution
	Docker
	Creating a Docker image of the program

	Experimental results
	Evaluation of the solution
	Comparison with a single training agent
	Comparison with Synchronous Decentralized Federated Learning
	Influence of the number of agents

	Limitations and bottlenecks
	Length of the messages
	Number of agents running on the same machine
	XMPP server

	Methodology
	Tools
	Notion
	PyCharm
	Git
	Zotero
	Overleaf

	Project Management

	Further improvements
	Improving the current solution
	Limiting the length of the messages
	Launch all agents at once

	Future works

	Conclusion
	Synthesis
	Relation with the pursued studies

	Bibliography
	Log files
	Message log file
	Training log file
	Weight log file
	Epsilon log file
	Training time log file

	Link with Sustainable Development Goals (SDG)
	Sustainable Development Goals
	Relating this study to SGDs
	Artificial Intelligence and Sustainable Development Goals
	Federated Learning and Sustainable Development Goals
	Dangers of AI

