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ABSTRACT 

Water dams are an important infrastructure component for energy generation, water supply and flood 
control. Regular inspections of the structures for damage and deformation are necessary for safe operation and 
to ensure stability. In addition to the traditional concepts of geodetic network measurement, laser scan data can 
be used to deliver areal information on deformation. Within this topic, we aim at developing a method that 
identifies individual rocks of dam walls within the laser scans to introduce them as identical feature points for a 
rigorous deformation analysis. For this purpose, it is necessary to identify the solid stone surfaces on the water 
dams from scan data, and separated them from vegetation and joints. In this paper, we investigate method for 
identification of individual stones on gravity dams made of rubble stones. For the segmentation, the intensity 
values, RGB color information and local geometric structure from textured point clouds acquired with Terrestrial 
Laser Scanners are investigated. The classification should be robust against outer measurement conditions and 
provide sharp object boundaries. Our results show that – although many different methods are available – a 
reliable classification of single rubble stones is still a challenge task. 

 
I. INTRODUCTION 

In today's society, dams and barrages have become 
indispensable infrastructure components with a wide 
range of benefits. Among other things, they make an 
important contribution to the generation of electrical 
energy, ensure the water supply for the population 
(both as drinking water and as water for agriculture) 
and enable waterways to be made navigable. They are 
also an important component of flood protection and 
flood management. Finally yet importantly, they also 
play an important role in the field of leisure and tourism 
(BMU / UBA, 2017). 

According to the international dam register of 
International Commission On Large Dams (ICOLD), 
there are 371 large dams in Germany alone (Deutsches 
Talsperren Komitee e. V., 2013). The category of "large 
dams" includes dams if either the height of the dam 
structure from the lowest point of the foundation to the 
top of the structure is 15 m or more, or in the case of 
smaller dam structures (height between 5 m and 15 m), 
the dam capacity is more than 3 million cubic meters of 
water. In addition to those large dams, there are a very 
large number of smaller structures such as dams and 
reservoirs, retention basin basins. 

In order to guarantee the safe operation and stability 
of these structures, these dams and reservoirs must 
undergo regular inspections and monitoring 
measurements. In addition to permanent sensors such 
as plumb bobs, inclinometers, extensometers, joint gap 
measurements, strain gauges, pressure gauges, 
seepage water measuring points, etc., which are 
permanently installed in the dam, these also include 

geodetic measuring methods. Here, traditionally, 
levelling, tacheometric measurements and GNSS 
networks are used to build up a geodetic measurement 
network (Möser et al., 2013). Even if those networks are 
highly accurate and allow a rigorous deformation 
analysis with statistical determined statements on 
significance of changes between the epochs, they have 
one big disadvantage: the low number of control point. 
Thus, a deformation of the structure is only be 
detectable if on measurement point is representative 
for the deformation (generalization problem). 
Deformations that occur between the individual points 
of the monitoring network cannot be detected and 
might be overlooked or can only be detected 
proportionally (Pelzer, 1985). 

To overcome those gaps in the monitoring networks, 
different measuring procedures and methods for an 
aerial deformation monitoring are investigated and 
under development for several years. In addition to 
remote sensing methods (e.g., Milillo et al., 2016; or Di 
Martire et al., 2014), ground-based SAR (e.g. Scaioni et 
al., 2018; or Huang et al., 2017), and purely 
photogrammetric approaches (e.g. Buffi et al., 2017), 
3D terrestrial laser scanning (TLS) have become 
established in engineering geodesy for areal detection 
of deformations on dams (see Section I A). The 
advanced technology of 3D scanners hardware allows 
nowadays – even objects in the size of a dam wall - to 
be captured very accurately and in a short time. Beside 
a dense point cloud, image information (RGB) and the 
intensity of the reflected laser point can be acquired. 
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The obtained 3D point clouds can then be examined for 
deformations. 

The following Section I A provides a brief overview of 
common deformation analysis methods, and in 
Section I B, the targeted approach for a feature-based 
method for shallow deformation analysis of dams with 
rubble stone surface. 

 
A. Deformation monitoring with TLS point clouds 

For the derivation of areal deformations from TLS 
point clouds, different methods have been developed 
in recent years and have been verify on dam structures. 
The methods can be divided in five classes (Ohlmann-
Lauber and Schäfer, 2011): “point based strategies” 
(e.g. Schäfer et al., 2004), “point cloud based methods”, 
“surface based methods” (e.g. Alba et al., 2006), 
“geometry based methods” (e.g. Grimm-Pitzinger and 
Rudig, 2005) or González-Aguilera et al. (2008), and 
“parameter based procedures” (e.g. Eling, 2009). 

For natural objects whose exact target geometry is 
unknown, mostly point cloud-based methods or surface 
based methods are used, i.e. cloud-to-cloud, cloud-to-
mash or model-to-model computation methods are 
used to derive the distances between two point clouds. 
Some of these methods have already been performed 
on dams (compare Holst et al., 2017a & Holst et al., 
2017b). 

The results of that deformation analysis are usually 
color-coded point clouds or vector fields, which are 
supposed to illustrate the deformation. However, these 
methods of calculating and illustrating deformations 
are challenging to interpret and have the disadvantage, 
that no statistical analysis of the results for significance 
can be performed precisely because a lack of identical 
points and unknown stochastic accuracy models of the 
laser scanners (Wunderlich et al., 2016). Due to the 
system, slightly different object points are appropriate 
at each epoch in TLS, so that no direct point-to-point 
assignment between individual scans is possible, as in 
classical network measurements. Additionally, due to 
the lack of identical points, those methods are not 
sensitive to in-plain-movements and are most sensitive 
to movements in line of site of the laser scanner. 

Likewise, iterative closest point (ICP) based 
approaches can be used for deformation monitoring 
(Chmelina et al., 2012; Wujanz et al., 2014). Here, small 
patches of the point clouds are matched between the 
individual temporal epochs. The determined 
transformation parameters can then be used to infer 
any deformations. Due to the low sensitivity for in-
plane movements and the danger of snapping into local 
minimums, the ICP method is not suitable for all 
objects, depending on their shape and the expected 
class of deformations (rigid body movement or shape 
change). 

Another point cloud based method for deformation 
monitoring is identifying identical (artificially) points, 
described with a feature vector derived from the point 

clouds (for example 3D-SIFT, Scovanner et al., 2007; 
FPFH, Rusu et al. ,2009; or learned features, Deng et al., 
2018; Gojcic et al., 2019). That feature descriptors can 
be matched between different monitoring epochs and 
a deformation vector can be directly calculated by the 
differences of the feature key points. 

 
B. Aim of this work 

Because dams have to undergo regular monitoring 
measurements to ensure their stability, it is worthwhile 
to look for automatable solutions for an areal 
deformation analysis. In order not to miss t movements 
perpendicular to the surface of the structure, a feature-
based deformation analysis method should be 
developed. As revealed in our previous research on 
feature-based deformation monitoring (Wiedemann et 
al., 2017), the extraction and matching of feature 
descripts proves to be difficult on a global level. Thus, 
we aim to reduce the search space for identical points 
on the object. 

In our case study with two water dams clad with 
rubble stones (see Section II), we plan to generate a 
stone cadaster as proposed in Holst (2019), clustering a 
bounded subset of points for every single stone, as a 
first step towards a feature-based deformation 
monitoring. The regions of the different stones should 
be segmented automatically from the RGB-colored TLS 
point clouds. This pre-segmentation of solid stone 
faces, as regions where a pure rigid body motion and no 
shape change is expected, helps to reduce the search 
space and lead to more stable feature descriptors. It is 
also intended to avoid incorrect assignments during the 
feature matching and time-consuming filtering of those 
outliers. Depending on which feature type is selected 
for the subsequent deformation analysis - here, for 
example, the center of gravity of the object, the point 
of the strongest curvature, etc. could be used - the 
segmentation must be carried out reliably and with 
clear object boundaries. In order to achieve this, the 
first step is to label the individual points of the point 
cloud according to their object type. Subsequently, in a 
second step, the classified points need to be merged 
into groups of points of individual stones. 

In the following, different possibilities and 
approaches for the classification and point labeling 
process for 3D point clouds are discussed and evaluated 
for their suitability based on the collected 
measurement data. 

 

II. OBJECT OF INVESTIGATION & MEASUREMENT DATA 

For our analysis, the point clouds of two water dams 
- the Brucher dam and the Jubach dam, both in the state 
of North Rhine-Westphalia, Germany - were scanned. 
The investigated structures are gravity dams, which are 
clad with rubble stones (greywacke stones) on the air 
side (see. Figure 1). The crown length is about 200 m for 
the Brucher dam and 140 m for the Jubach dam, with a 
maximum height of approximately 25 m both. 
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Figure 1. Impression of the Jubach dam, showing the 

challenging weather conditions. 
 

The two investigated objects are a widely spread 
construction form of gravity dams in Germany. Many of 
these walls go back to the civil engineer Prof. Otto Intze, 
who built more than 40 dams of the same or similar 
design at the turn of the 20th century, of which most 
are still in operation today. 

The walls have a ~2 m high vertical part under the 
dams crown, and then spread to its base in a slight 
curve, leading to a inclination of ~55° - 65° at the food 
of the wall. These quite flat lower parts, are strongly 
exposed to rain and favors the growth of vegetation in 
the form of moss, grass and even small bushes. 

The rubble stones, which are mostly only roughly 
hewn, show almost natural structures on their surface 
and are connected with grout joints. The stones vary in 
size, shape and color over the scenes. The masonry wall 
also does not have a clear topology. The bricks can both 
protrude from the mortar joints, and come to lie behind 
them (see Figure 2). The joint width also varies in size 
structure and color. 

The point cloud of the dams are taken under ordinary 
realistic conditions (foggy weather and drizzling rain) 
using a Leica ScanStation P50 with high spatial 
resolution (1.6 mm@10 m) from one station 
approximately in the center of each the wall. Thus, the 
resolution of the point cloud on the dam surface is 

approximately 3.5 mm in the center of the wall (closest 
range to the scanner) and approximately 14 mm in the 
outer areas. During data acquisition, panoramic images 
are captured with the scanner’s integrated camera 
system to texture the point clouds with RGB color (see 
Figure 3). 

 

 
Figure 2. Challenging structure for geometric features as 

stone and joins have very similar surface characteristics and 
no clear topology. 

 

III. INVESTIGATION OF DIFFERENT CLASSIFICATION 

METHODS 

As mentioned above, the aim of this work is to 
separate as much solid rock areas on the wall as 
possible from the disturbing background, such as joints, 
vegetation or other attachments. For the segmentation 
procedure, there are essentially two different types of 
information available in the point clouds: 

A. Radiometric information. 
B. Geometric information. 

These two types of information will now be examined 
in more detail and analyzed how they can contribute to 
robust segmentation of single stone surfaces in the 3D 
point clouds. 

 

 
 

 
Figure 3. RGB-colored point cloud of Burcher dam (top), point cloud colored by raw intensities of Jubach dam (bottom). 
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A.  Radiometric information 

Laser scanners provide not only the 3D coordinates of 
the point cloud, but also radiometric information to the 
user. In general, the intensity of each reflected laser 
spot is recorded during the measurement. As the used 
scanner is equipped with an internal camera, also color 
information from panoramic images can be projected 
to the point cloud without shadowing or parallax 
effects. Therefore, every point has additional RGB color 
information. 

1)  Intensity-Information: As stated above, modern 
laser scanners store an intensity value in addition to the 
measured coordinates for every point. The intensity 
indicates how much of the emitted laser light is 
reflected from the object back to the laser scanner and 
detected. The raw intensities depend on the material 
properties, the color and the surface structure of the 
object, as well as the angle of incidence of the laser 
beam, the measuring distance and the laser wavelength 
used (Wujanz et al., 2018). 

A previous work as shown, that in certain parts of the 
wall, with a distinct joint pattern, regular structure and 
a dry wall condition, stones can be segmented using 
intensity values. For that in Steffens (2020), the k-mean 
algorithm (Lloyd, 1982) is used to divide the point cloud 
into two classes based on their intensity. In a further 
step, the DBSCAN algorithm (Ester et al., 1996) is used 
to cluster the points labeled as stone to groups of 
individual stones segments. 

With this method, precision values of ~80-95 % can 
be achieved (percentage of points classified as stone, 
which are also stones in reality). However, only recall 
values (number of real stones which are identified by 
the algorithm) of ~49-70 % are achieved (compare 
Steffens, 2020). 

 
Similar approaches performed by us show that the 

accuracy of the segmentation based on the intensity 
values decreases rapidly if the wall is not scanned under 
optimal conditions. In particular, moisture on the wall 
will worsens the result. This is mainly attributed due to 
the wavelength of the laser scanner used. The Leica 
ScanStation P50 – like most other TLS systems – uses a 
laser source in the near infrared spectrum (often 
1550 nm) as they are usually eye-safe. However, laser 
light in the near infrared spectrum is highly absorbed by 
water, so that the intensity is strongly reduced by 
humidity or accumulating wetness on the wall 
(Wojtanowski et al., 2014). As a result, objects that 
show differences in intensity in dry state, have an 
almost identical, very low intensity value when they are 
wet (see Figure 4). 

As a result, in this case study dataset, a segmentation 
by intensity is only possible in a small dry part of the 
dam. On the wet parts, an assignment of the categories 
"stone" or "joint" by the k-mean algorithm is no longer 
possible, even if the class boundaries are adjusted to 
the local environment. The variation in intensity 

between is too small to distinguish the two object 
classes precisely (see Figure 5). Small-scale changes in 
intensity are more likely to be linked to differences in 
the incident angle of the laser beam or the humidity, 
and cannot be attributed to the structural 
characteristics of the wall. 

 
Figure 4. Distribution of intensity values: dry upper part 

and lower wet part of the wall. 
 

 
Figure 5. Results of the k-mean classification based on the 
intensity: acceptable results in try areas (upper part) and  

Insufficient results wet parts (lower part) of the dam. 
 

2)  RGB-Information: For a classification with 
respect to the RGB colors, or gray scale images derived 
from them, a wide range of functions from the image 
processing domain can be used (Gauch and Hsia, 1992; 
Valero et al., 2018; Wang et al., 2014) for 2D images. 
These images can be obtained from the raw camera 
data of the scanner, or by projecting the RGB values of 
point cloud onto an artificial image plane. After a 
classification, the derived classes must then be 
projected back into the point clouds to generate labels 
for the individual points. For a segmentation directly in 
the 3D point cloud, color-based region-growing 
algorithms can be applied (Zhana et al., 2009). 

In general, RGB segmentation is a promising method 
for scenes wherein the object’s color differs 
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significantly from the background. For our outdoor 
scenes, this does not apply. A closer look to the color 
information reveals the following: Firstly, the colors of 
the stone surface and the joints are very similar, so that 
no general color value can be assigned to the different 
object classes. Secondly, local color changes are often 
not lined up with the structural characteristic, but are 
more related to the current illumination conditions, 
shadowing effects and the state (dry/wet) of the local 
surface. Also, mineral efflorescence disturb the color 
pattern In summary, it cannot be assumed that the 
color information can contribute to a reliable 
segmentation (see Figure 6). 

 

 
Figure 6. Typical section of the RGB textured point cloud. 

Only slight differences between joint and stones are visible, 
mineral efflorescence disturbs the joint pattern. 

 

In addition, several general disadvantages must be 
taken into account for this kind of information. As a 
passive sensor captures the RGB information, the color 
impression and brightness is highly depending on 
current external illumination condition.  

 
B. Geometric information 

Geometric statements about the local structure of 
the point cloud can calculated by observing the 
neighborhoods of a core point. Such derived geometric 
features can be for example the linearity, planarity, 
curvature, point density, roughness, normal direction, 
omnivariance, spherically, eigenentropy, etc. and are 
well described in the literature (e.g. Weinmann et al., 
2014; or Hackel et al., 2016). Such features can serve as 
input for a subsequent classification if the object classes 
can be separated in the feature space. 

Methods proposed in the literature (specifically 
Brodu and Lague, 2012, CANUPO-algorithm and 
Weinmann et al., 2017) for a proper selection of 
neighborhood size, for feature calculation and the 
assessment of relevant features, haven not provided 
meaningful results in this case study. Other supervised 
classification methods like SVM, nearest neighbor, and 
design trees – which can be trained with the Matlab 
classification toolbox by manual labeled data – do not 
provide clear class assignment to the precisely 

calculated geometrical features. A closer look to 
distribution of the calculated geometrical features 
show, that they are very similar for both object classes 
‘stone’ and ‘joint’ (see Figure 7). 

 

 
Figure 7. Three exemplary geometrical features (linearity, 
planarity, spherically (left to right)) showing very similar 

distributions for both object classes (stone/joint). 
 

The unfavorable combination of the low resolution of 
the point cloud relative to a very little surface change, 
the unclear topology between joints and stones (see 
Figure 3) cause that the determined geometric 
descriptors cannot be reliably assigned to the object 
classes. 

A different approach based on the use of local 
geometry can be applied, if the objects to be 
segmented are distinct clearly from the background. 
Then, the computed distance of the point cloud to a 
previously estimated control geometry can be used for 
segmentation (see Figure 8). In this case study, this 
procedure is suitable in the upper part of the dam, 
which is very evenly masoned and has clearly separated 
of individual stones by joints (see Figure 8). 

 

 
Figure 8. Depth map for segmentation- top: depth map, 
bottom: segmentation result with threshold method. 

 
Using a best-fit plane as a reference geometry, a 

depth map can be obtained by calculating the 
perpendicular distance between the point cloud and 
the plane. For the segmentation of the stones in this 
area, a simple threshold method for the reliable 
segmentation is sufficient. Since the dam is curved 
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along its longitudinal axis, only the estimation of the 
plane must be continuously adjusted. 

However, in regions where the stones do not stick out 
above the joints, this method fails completely. Likewise, 
vegetation, which protrudes above the wall, is added to 
the class stone. 

For fixed geometries, e.g. planes, also region growing 
methods can be used (Ötsch, 2021). In this case, the 
adjacent points are added to a seed point until a 
threshold value for a local geometric descriptor is 
exceeded. Due to the irregular stone shapes and the 
uneven surfaces, this method cannot be used 
successfully at the investigated dams. 

 

IV. CONCLUSION 

As a pre-segmentation of a follow-up feature-based 
deformation analysis, the surfaces of individual stones 
should be identified in the point clouds of rubble stone 
water dams. This should simplify the calculation of the 
final features and stabilize the matching. In this case 
study, different segmentation methods were 
investigated on the TLS point clouds of two water dams 
built of rubble stones, which were scanned under 
challenging weather conditions. In this point clouds, all 
included information types – RGB colors, intensity and 
the intrinsic geometry of the point cloud – were 
examined for their suitability for a segmentation 
approach. 

We found, that under challenging, but ordinary 
weather conditions with wet object surfaces, 
radiometric information can only contribute to the 
segmentation to a limited extent. On the mostly wet 
surface, differences in RGB color and intensity are too 
low to distinguish between solid stone faces from other 
objects reliable. In dry areas, a classification based on 
intensity values seems a promising strategy but is often 
interfered by efflorescence of the joint material leading 
misclassification in these areas. 

The two investigated classification methods based on 
the point clouds geometries show different results at 
our test sides. The feature-based approach fails 
because the complicated, unstructured wall offers too 
few distinguishable geometrical characteristics 
between stones and joints. This is mainly due to the 
distance-related poor resolution of the point clouds in 
comparison with the little surface undulations. Thus, 
the distribution of the feature values are practically 
identical in the hole point cloud. However, 
segmentation results from locally computed depth 
maps with respect to best fitting geometries are 
suitable for well-structured parts of the scanned wall, 
even if in large part the complicated structural shape of 
the walls surface also prevents this classification 
approach. 

In summary, the data we have collected show that 
the investigated segmentation procedures described in 
the literature are not sufficient to perform a reliable 

segmentation in all areas of the investigated rubble 
stone dames. 
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