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Abstract: Reinforced concrete structures’ (RCSs) ageing and early deterioration are some of the main
challenges faced by the building sector today, and steel bar corrosion is one of the main problems.
In this phenomenon, water and concrete’s electric resistivity play a fundamental role. Therefore,
developing sensor systems capable of estimating any variations in these parameters in real time
and remotely would represent considerable progress in sustainably maintaining RCSs. Many types
of sensors capable of estimating humidity variation and electrical resistivity in concrete currently
exist, but the variability of these sensors’ sensitivity can be extreme depending on several factors;
for example, temperature or presence of ions and their incorporation into smart monitoring systems,
which is difficult. As an alternative to today’s sensors, this study centered on developing two
estimation models by means of the response of a novel voltammetric stainless steel (SS) sensor.
The estimation models were one of humidity variation and another of concrete’s electric resistivity.
These models were calibrated, fitted and validated. In the validation, both these models explained a
percentage of variance over 80%.

Keywords: voltammetric sensors; monitoring structures; humidity estimation; electrical resistivity;
corrosion

1. Introduction

Given today’s socio-economic context, the sustainable development of cities is very
important [1]. Therefore, one of the main challenges presently faced by the building sector
is the ageing and early deterioration of structures. This is because structures’ service lives
play a significant role in saving resources and reducing not only the carbon footprint,
but also building and demolition waste [1]. Indirectly, the rise in structures’ service lives
reduces energy use and heat emissions, which are some of main objectives in Horizon 2030
for driving societies to achieve smart and resilient structures for smart cities.

In order to improve the durability of structures, it is necessary to identify and un-
derstand their main deterioration precursors. Wide-ranging studies demonstrate how
reinforced concrete structures’ (RCSs) service lives are considerably shortened because of
corrosion processes [2–4]. This is why being able to control the processes that trigger and
promote corrosion processes is fundamental. RCS steel corrosion occurs in two stages: the
first is the initiation period and the second is the propagation period (according to the
model defined by Tutti, K.) [5]. The initiation period entails the diffusion of aggressive
agents inside cementitious matrix, which are depassivation precursors. The propagation
period implies active rebar corrosion onset. Water plays a fundamental role during both
the aforementioned periods: during the initiation period, the water content in the capillary
network influences the diffusion capacity of aggressive ions such as chlorides and gases (O2,
CO2, etc.) [6]. It also affects the kinetics of adverse reactions to durability, such as concrete
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carbonation [7]. During the propagation period, water is directly involved in iron corrosion
reactions [8]. It also plays a fundamental role in concrete’s electric resistivity value, which
is directly related to the intensity of macrocell phenomena, in which rebar corrosion rates
are known to suddenly rise [9–11]. Concrete’s electric resistivity is a specific parameter
that indicates concrete’s resistance when electric currents pass through its porous network.
Its value depends on water availability, the saline content in the porous network of the
cementing matrix and the network’s morphology [12,13]. This is an extremely important
parameter when defining which zones are susceptible to suffering accelerated corrosion
phenomena. It also allows the estimation of the probability of the intense macrocell effects
that may occur, which seriously increase the corrosion rate [12,14].

Therefore, it would be interesting to estimate and monitor over time humidity variation
and electric resistivity in hardened concrete to identify critical zones in structures before
active corrosion phenomena occur in them.

Many types of sensors can detect humidity variation. Currently, the most widespread
conventional methods for measuring humidity are amperometric, voltammetric, potentio-
metric, capacitive, quartz crystal microbalance (QCM), fiber-optic, surface acoustic wave
(SAW) or resonance sensing [15]. The most widely used sensors are the capacitive type,
whose estimated share of the whole market is close to 75% [15]. However, the variability
of these sensors’ sensitivity can be extremely wide depending on the measured humidity
levels [15]. In the literature, we find the very interesting Wireless Humidity Sensor System
proposed by Zhou S. et al. [16]. This method appears to be effective and easy to place in
real structures. However, it is based on Ultrahigh Frequency (UHF) and Radio Frequency
Identification (RFID). Recently researchers have proposed synthetic aperture radar imag-
ing to monitor the humidity level of concrete, such as the approaches of Alzeyadi A and
Yu T. [17,18]. Both these techniques are more complex than that based on electrochemical
technology and operators should have specific knowledge [19].

Studies about using piezoelectric and smart aggregates embedded in concrete struc-
tures to detect their deterioration are currently increasing [19]. However, these methods
significantly increase the cost of the concrete, and the smart aggregates’ response may be
affected by their interference with other substances contained in the concrete pore solution.

To obtain in situ electric resistivity, the most widespread standardized technique today
is the so-called four-point method or Wenner’s method (portable Wenner device) [20]. This
method is widely used due to its advantages, i.e., it is simple, easy to apply and relatively
inexpensive. However, it is a sporadic measuring system that is not designed to be incor-
porated into a monitoring system. Moreover, its repeatability and reproducibility are low
compared to other methods that employ embedded elements; for instance, that presented
by Priou J. et al. [12], whose system is efficient, but whose information is limited to resis-
tivity. Most recently, the embedded sensor system presented by Ramon Zamora et al. [21]
allows the concrete resistivity and corrosion rate of RCSs to be measured.

It is necessary to bear in mind that most of the aforementioned sensors and systems are
not designed to be placed inside monitoring systems formed by a network of smart sensors.
It is envisioned that distributed multiparameter sensors have the advantage of reducing
the resources used in the system by decreasing the material and economic cost, which can
also greatly improve structure control because the number of monitored variables is bigger
and, therefore, allows more robust prediction and estimation models to be developed.
This agrees with the vision of smart structures for smart cities based on the use of smart
sensor networks.

In order to obtain a suitable smart monitoring system of structures, the following
system commitment points can be defined:

(1) detecting and verifying if any damage is, or aggressive agents are, present in the structure;
(2) locating any risk zones;
(3) estimating/quantifying harm or the presence of aggressive agents;
(4) making a prognosis of, or predicting, the structure’s service life under these conditions.
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In order to develop a network of smart sensors, setting up stainless steel (SS) voltam-
metric sensors in such a network is very interesting, as demonstrated in former stud-
ies [22–25]. Moreover, SS is an economic and resistant material that allows sensors to be
manufactured with bigger effective surface areas and at a lower cost than with other noble
metals such as Au and Pt, which have been traditionally used to manufacture voltammetric
sensors [26,27].

The present study focused on developing two estimation models by means of a SS
sensor system’s response. The estimation models were an estimation model of humidity
variation and an estimation model of concrete’s electric resistivity. To develop both, a
system in concrete samples submitted to different humidity conditions was calibrated. Next,
the system was fitted to four different mathematical models, and the most significantly
reproduced reality was selected. Finally, models were validated. During validation, both
models explained over 80% of variance.

2. Experimental
2.1. Sensor System

The employed voltammetric sensors systems were the SS type, whose response has
already been studied by the researcher group in previously published studies [22,23].

2.1.1. Electro-Analytical Techniques

The followed electro-analytical technique was impedance spectroscopy (EIS), and
the wand was applied using Autolab PGSTAT10 equipment. Data were collected by the
Nova 1.11. software.

EIS was applied using the two-electrode configuration, where the sensor acted as the
working electrode (WE) and the SS meshing as the pseudo-reference/counter electrode (CE).

This configuration was selected to develop a more sustainable monitoring system
because it reduces not only the system’s maintenance tasks (by eliminating the reference
electrode), but also the energy used by the system. This is because the energy that must
be compensated is that directly required to establish the setting potential between the WE
and the CE (∆V2electrodes). However, when working with three electrodes, the required
energy is that needed to establish a difference in potential between the WE and the CE that
allows the difference in the setting potential between the WE and the reference electrode
(∆V3electrodes) to remain. This will give ∆V3electrodes > ∆V2electrodes. This means that the
required three-electrode electric work will be greater and, therefore, more energy will be
used. The studies conducted by the researcher team demonstrated that the two-electrode
technique was reliable as long as the employed CE surface area was 40-fold bigger than
that of the WE [19].

The range of sweeping frequencies in EIS went from 100,000 to 1000 Hz. High-
frequency sweeping was justified by simplifying the system similarly to the simple equiva-
lent Randles electric circuit (Rs-Rp/Cdl) (Figure 1a) [24,25]. The applied efficacious stress
value was 10 mV. The Rs value was obtained with this test, which was the value of resis-
tance to the ionic circulation at the heart of the electromagnetic field produced between the
WE and the pseudo-reference/CE [25].

Figure 1b provides an example of the results obtained with the sensors embedded in
concrete by means of EIS. The average phase of the equivalent circuit impedance obtained
with sensors was 4.5 ± 3◦; therefore, the resistant part of impedance prevails over the
reactance part (due to capacitance). In addition to understanding that the capacitor’s
impedance is nearly zero at high frequencies (Equation (1)), and is parallel to Rp, all the
current flows through the branch of Cdl. Therefore, under these conditions, the Z equivalent
of the circuit equals Rs (Figure 1a).

XC =
1

2πfC
(1)

where f is the capacitor’s frequency (Hz) and C is its capacitance.
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Figure 1. (a) Randles electric circuit (Rs-Rp/Cdl). (b) Example of the results obtained in the EIS test
with the sensors. Z impedance, ϕ phase of impedance.

2.1.2. Electrodes

The employed SS working electrode consisted of a U-shaped SS wire (0.8 mm diameter).
The effective working area was limited by covering ends with waterproof polyurethane
paint. The average sensor effective surface area was 2.99± 0.05 cm2 (Figure 2). The sensor’s
design effectiveness has been evaluated in former works [23,26].
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The pseudo-reference/CE employed to apply electro-analytical techniques was L-
shaped SS wire meshing (0.5 mm diameter). Its effective surface area was 132 ± 11 cm2.

2.2. Methodology

The performed experimental study consisted in developing the following estimation models:

• The estimation model of humidity variation: this was obtained with the correlation of
the electric resistance (Rs) data obtained with the weight variation of samples after
submitting them to different humidity conditions.

• The estimation model of concrete’s electric resistivity: this was obtained with the
correlation of the empirical electric resistivity (ρ) and electric resistance (Rs) data
obtained with the sensor system.

To develop both these models, it was necessary to submit them to calibration, fitting
and validation processes.

2.3. Samples and Materials

In order to develop the estimation models, prismatic concrete samples (4× 4× 16 cm3)
were made with six conventional concrete types without additions, which are specified in
Table 1.
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Table 1. Composition of the used concretes.

Materials
kg/m3

concrete

w/c = 0.9 w/c = 0.8 w/c = 0.6 w/c = 0.5 w/c = 0.4 w/c = 0.3

I 42.5 R-SR5 cement 225 250 315 385 490 650
Water 203 200 189 193 196 195

Superplasticizer 1.6 1.8 2.2 2.7 3.4 4.6
Silica sand 1433 1431 1212 1179 1115 1108

Gravel 478 477 653 635 601 475

w/c: water/cement ratio; kg/m3: kg of materials per m3 of concrete.

To ensure that the study would be statistically reliable, three concrete mixings per
concrete type, and four samples per concrete mix, were prepared. The sensor system was
embedded in two, but not in the other two. This gave six samples with sensors (CSNS) and
six without sensors (SSNS) per concrete, which totaled 72 samples for this study.

For both the CSNS and SSNS samples, four samples per concrete were used to calibrate
models, with two samples for concrete validation purposes.

Sensors were placed in the position indicated in Figure 2 to ensure:

• the humidity variations in the environment would quickly affect the zone where
sensors were;

• sensors were not affected by any uncontrolled defects on concrete surfaces (hollows, etc.).

2.4. Preparing Samples

After concreting, samples were left for 48 days inside a curing chamber under condi-
tions with relative humidity (RH close to 100%). After this time, they were taken out of the
chamber and immersed in water to maintain the saturation conditions. Tests were carried
out under these conditions on 3 consecutive days.

When tests finished, the samples with sensors (CSNS) and without sensors (SSNS)
were left inside an oven at T ≈ 50 ◦C for 48 h to be dried. After this 48 h period, all the
samples were allowed to cool and were equilibrated in a drier with humidity-controlling
salt to avoid samples absorbing water vapor while cooling. After 24 h, tests were run under
these conditions.

Next, all the samples were placed inside closed containers with saturated salt solution
to maintain constant RH conditions with RH values of around 100% [27]. The temperature
conditions were those of the laboratory (T = 22 ± 2 ◦C). Samples were left under these
conditions before tests began, and until the variation in their weight between two weighing
sessions on 2 consecutive days equaled or went below 2%. This preparation allowed
samples’ reference weight to be determined to establish the variation in humidity of the
correlations (m0). Tests began after samples’ weight stabilized.

Finally, samples were left under laboratory conditions for 72 h (RH≈ 60%, T = 23 ± 2 ◦C)
and the last lot of tests was performed.

2.5. Tests

In each state, three measurements were repeated 3 times per sample to ensure the
statistical reliability of the results. Samples were weighed after each test.

2.5.1. Electric Resistivity Measurement

The direct method (UNE 83988-1:2008) was applied to obtain samples’ electric resistiv-
ity. The measurement was taken by a Knick Portavo 902 conductimeter. This device was
connected to two metal plates placed aside samples. The electrical contact between plates
and concrete was ensured using a damp cloth. Figure 3 shows the assembly.
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Samples’ electrical conductance was obtained using the conductimeter. The inverse
of this value was concrete’s electric resistance (R), given by the relation established for
a uniform electric field between two rectangular parallel plates (Equation (2)) to obtain
concrete’s electric resistivity [28]:

ρ = R ∗ S
l

. (2)

where ρ is electrical resistivity (Ωm); S is the transversal area of the electric field (m2); l is
the distances between electrodes (m).

2.5.2. Concrete Characterization Tests

To define the quality of the manufactured concretes, the following concrete characteri-
zation tests were conducted:

• Hardened concrete tests. To determine resistance to compression (UNE 12390-3:2009).
Resistance to compression was determined at 28 days (fc). Two cylindrical samples
were prepared (10 cm diameter, 20 cm high) for each mass at each dose. Total number
of samples: 36.

• Determining water absorption, density and accessible porosity for water (UNE 83980:2014).
Testing was conducted at 28 days. Two cylindrical samples were prepared (10 cm
diameter, 5 cm high) for each mass at each dose. Total number of samples: 36.

• Determining air permeability (UNE 83981:2008). Testing was conducted at 28 days.
Two cylindrical samples were prepared (15 cm diameter, 5 cm high) for each mass
at each dose. To run the test, sample sides were covered with sealing paint. The air
permeability coefficient (k) was obtained. Total number of samples: 36.

• Determining electrical resistivity (ρ): direct (reference) method (UNE 83988-1:2008).
Progression over time. Two prismatic samples were prepared (4 × 4 × 16 cm3) for
each mass at each dose. Total number of samples: 36.

• Determining the water cover depth under pressure (UNE 83-309-90). A test was
conducted at 28 days. For this test, two samples were prepared (15 cm diameter and
30 cm high for each mass at each dose. Total number of samples: 36.

• Accelerated chloride diffusion test according to Standard NT-BUILD 492. A test was
run at 28 days. Two samples were manufactured (5 cm diameter, 10 cm high) for each
mass at each dose. Total number of samples: 36.
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3. Results and Discussion
3.1. Concrete Characterization Tests

Table 2 shows the average values obtained per dose with the characterization tests.
The average coefficient of variation is also provided (Avrg Coef.V), where Coef.V is defined
as the quotient between the standard deviation and the average value.

Table 2. Average values of the standardized test results.

fc,28days (MPa) % Abs. Water % P.A.W P.W.P (mm) k (×10−18 m2) ρ (Ωm) Dnssm
(×10−12 m2/s)

w/c = 0.9 15.46 8.65% 18.38% 150 996.44 135.87 72.71
w/c = 0.8 18.98 8.38% 18.24% 103 432.15 170.36 50.04
w/c = 0.6 30.74 7.82% 17.00% 18 258.84 178.89 45.22
w/c = 0.5 40.50 7.49% 16.42% 18 50.37 195.69 25.35
w/c = 0.4 60.94 6.58% 14.63% 8 5.68 213.22 9.70
w/c = 0.3 73.52 5.65% 12.80% 0 0.00 281.69 3.73

Avrg Coef V. 4.24% 4.45% 3.86% 6.99% 17.33% 7.87% 4.24%

Resistance to compression at 28 days (fc,28days) (UNE 12390-3:2009), % absorbed water (Abs.Water) and % porosity
accessible to water (P.A.W) (UNE 83980), penetration depth of water under pressure (P.W.P) (UNE 83-309-90),
air permeability coefficient (k) (UNE 83981) and electric resistivity (ρ) (UNE 83988-1:2008), Non-steady-state
migration coefficient (Dnssm) (NT BUILD 492).

After taking into account the results of the characterization tests and the durability
indicators set by the French Civil Engineering Association (AFGC) [29], the concretes
employed in this work can be classified as follows:

• Very low-durability concretes: w/c = 0.9 and w/c = 0.8. These concretes are not
covered by Spanish Standard EHE-08 for their structural use. Their use is justified
when the sensor needs to be characterized within a wide range of porosities.

• Low-durability concrete: w/c = 0.6.
• Medium-durability concrete: w/c = 0.5.
• High-durability concrete: w/c = 0.4 and w/c = 0.3.

In line with this, different conventional concrete qualities were included in this study
to obtain more reliable results.

3.2. Humidity and Electric Resistivity Models

To first establish correlations, the variation in samples’ weight in relation to m0 was
estimated. This variation was established according to the definition in Equation (3):

∆m
m0

=
mi −m0

m0
(3)

where:
m0 is sample weight under these conditions: RH ≈ 100%, T = 22 ± 2 ◦C. Weight under

these conditions was taken as a reference because in a real case, it is believed that the
continuous measurement of the humidity state in structures would begin under similar
conditions by taking into account the mean year-long temperature in Spain (kg).

mi is the sample weight in a given measurement number (kg).
This variation in the concrete sample’s weight is directly associated with the loss or

gain of the water inside it because there are neither salts that can diffuse to a sample nor
variations in the temperature that can affect its weight.

3.2.1. Estimation Model of Humidity Variation

Figure 4 depicts the humidity variation data for the Rs value obtained by the EIS
test by means of SS sensors. We can see an inverse correlation. When humidity variation
increases (∆m/m0), Rs decreases.
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Figure 4. Graphical representation of the humidity variation values vs. the Rs value obtained with
the sensor for all the studied concretes.

Taking into account the morphology of the correlation and its functions found in the
bibliography, three models were used in the calibrating and fitting phases. The first of these
was the “modified Stam model” (Equation (4)). This function derives from the equation
proposed by Stam, A.J. [30], which was defined for wood by Norberg P. [28]. Its use has
been extended to porous building materials. In our case, the equation was modified by
adding the sum of a constant, thus improving the fit.

Another fitting function proposed for calibration was the linear correlation between hu-
midity variation and the electric resistance natural logarithm, the “natural logarithm model”
(Equation (5)). Different authors resorted to this correlation in previous studies [31,32].
Finally, what we call the “modified common logarithm model” was employed by adding
the term “modified” (Equation (6)). We called it a modified model because a constant was
added to an already existing model referenced in Machado, J.E. [33].

Modified Stam model→ ∆m
m0

= 10−q ∗ Rsk + p (4)

Natural logarithm model→ ∆m
m0

= z ∗ ln(Rs) + s (5)

Common logarithm model → ∆m
m0

=
h

log(Rs)
+ d (6)

where q, k, p, z, s, h and d are the unknown constant factors.
The proposed models were solved by the SOLVE tool and making iterations converge

until the minimum root-mean-squared deviation (RMSE) value was obtained, as defined
according to Equation (7):

RMSE =

√√√√∑
(

∆m
m0 calculate

− ∆m
m0 real

)2

n
(7)

where n is the number of samples.
Figure 5a shows the experimental values and the fits of function ∆m/m0 = f(Rs) for

the different models. The Stam model seems to have best represented reality.



Sensors 2022, 22, 7279 9 of 15

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15 
 

 

where n is the number of samples. 

Figure 5a shows the experimental values and the fits of function Δm/m0 = f(Rs) for 

the different models. The Stam model seems to have best represented reality. 

Figure 5b depicts the correlation of the estimated humidity variation values versus 

the real ones. For purposes of interpreting the graph, the slope of the fit lines was used 

(which indicates the grade of coincidence between the measurement and estimate data), 

as was the R2 value (which explains the percentage of variation in the estimated data vs. 

the measured data). The different models’ fit was good because the fitted lines came very 

close to the 1:1 line with little scattering for the dots (slope values close to 0.9 (real vs. 

estimated line slope) (Table 3)). R2 was over 0.8 in all cases (Table 3). This means that the 

percentage of variance accounted for by the models was at least 80%. 

  

(a) (b) 

Figure 5. Model of humidity variation according to Rs. (a) Graphical representation of the real data 

vs. those obtained with models. Real data: green squares. Stam model: dashed blue line. Natural 

logarithm model: dashed yellow line. Common logarithm model: dashed pink line; (b) Graphical 

representation of real data vs. estimated ones. Stam model: blue dots. Natural logarithm model: 

yellow dots. Common logarithm model: pink dots. 

Table 3. Statistical parameters for evaluating the goodness of the model used in the fit of Δm/m0 = 

f(Rs). 

 RMSE 
Line Slope 

Real vs. Estimated 
R2 

Stam mod. 0.0046 0.906 0.889 

Ln mod. 0.0057 0.855 0.826 

Log mod. 0.0050 0.891 0.870 

The model with the lowest RMSE value was selected, and the highest slope and R2 

value was chosen. This corresponded to the Stam model (Equation (8)): 

∆m

m0
= 10−0.403 ∗ Rs−0.727 − 0.028 (8) 

Model Validation 

After selecting the model to which the experimental data best fitted, validation was 

undertaken using the data of the samples not utilized for the model’s calibration fit. In the 

sample group for validation, there were two samples per concrete, which were exposed 

to the same states as the samples used in fitting and calibrating. 

Figure 6a shows the real values employed in the validation (green circles) and the 

values estimated with the model (blue line). To obtain the estimated Δm/m0 data, the Rs 

values obtained in the validation group of samples were substituted in Equation (7). 

Figure 5. Model of humidity variation according to Rs. (a) Graphical representation of the real data
vs. those obtained with models. Real data: green squares. Stam model: dashed blue line. Natural
logarithm model: dashed yellow line. Common logarithm model: dashed pink line; (b) Graphical
representation of real data vs. estimated ones. Stam model: blue dots. Natural logarithm model:
yellow dots. Common logarithm model: pink dots.

Figure 5b depicts the correlation of the estimated humidity variation values versus
the real ones. For purposes of interpreting the graph, the slope of the fit lines was used
(which indicates the grade of coincidence between the measurement and estimate data), as
was the R2 value (which explains the percentage of variation in the estimated data vs. the
measured data). The different models’ fit was good because the fitted lines came very close
to the 1:1 line with little scattering for the dots (slope values close to 0.9 (real vs. estimated
line slope) (Table 3)). R2 was over 0.8 in all cases (Table 3). This means that the percentage
of variance accounted for by the models was at least 80%.

Table 3. Statistical parameters for evaluating the goodness of the model used in the fit of
∆m/m0 = f(Rs).

RMSE Line Slope
Real vs. Estimated R2

Stam mod. 0.0046 0.906 0.889
Ln mod. 0.0057 0.855 0.826

Log mod. 0.0050 0.891 0.870

The model with the lowest RMSE value was selected, and the highest slope and R2

value was chosen. This corresponded to the Stam model (Equation (8)):

∆m
m0

= 10−0.403 ∗ Rs−0.727 − 0.028 (8)

Model Validation

After selecting the model to which the experimental data best fitted, validation was
undertaken using the data of the samples not utilized for the model’s calibration fit. In the
sample group for validation, there were two samples per concrete, which were exposed to
the same states as the samples used in fitting and calibrating.

Figure 6a shows the real values employed in the validation (green circles) and the
values estimated with the model (blue line). To obtain the estimated ∆m/m0 data, the Rs
values obtained in the validation group of samples were substituted in Equation (7).
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Figure 6b depicts the scatter plot of the real vs. estimated values. The fit line of these
values has a slope of 0.818, which comes quite close to line having a slope of 1. R2 indicates
that the model represents 83.5% of the data variance (Figure 6; Table 4).

Table 4. Statistical parameters to evaluate the validation of the estimation model of humidity variation
in hardened concrete.

RMSE Line Slope
Real vs. Estimated R2

Stam mod. 0.0053 0.818 0.835

As work was undertaken with heterogeneous material, the values obtained in the RMSE
validation on the real line slope vs. the estimated one and R2 were considered acceptable.

3.2.2. Estimation Model of Concrete’s Electric Resistivity

The developed sensor system yielded the Rs value for resistance, which opposed the
system’s electrolyte (concrete in this case) when electrical charges passed through it. This
parameter was neither specific nor standardized, and depended on the cell constant of the
electric field generated between the WE and the pseudo-reference CE. Thus, it could not be
compared among different systems.

Given the sensor system’s electrodes configuration, the applied field was not uniform
and, thus, the expression defined in Equation (1) could not be used, which corresponded to
a uniform electric field between two parallel plates.

Therefore, to obtain a specific value that would allow us to compare different zones and
configurations, a decision was made to empirically seek the existing correlation between ρ
and Rs.

To do so, first the graphical representation of the real ∆m/m0 vs. ρREAL and the
graphic ∆m/m0 vs. the Rs obtained with the sensor were compared (Figure 7). The
morphology of the curves defining the scatter dots was similar. A correlation was estab-
lished between ρ and Rs by the functions that defined its relation to humidity variation
[∆m/m0 = f(ρ) α ∆m/m0 = f(Rs)].

Thus, to obtain the equation with the best fit ∆m/m0 = f(ρ), the similarity seen in
Figure 7 was taken into account and the same fitting models were used as for model
∆m/m0 = f(Rs).
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Table 5. Statistical parameters to evaluate the model’s goodness of fit of Δm/m0 = f(ρ). 

 RMSE 
Line Slope  

Real vs. Estimated 
R2 

Stam mod. 0.0045 0.944 0.941 

Ln mod. 0.0075 0.842 0.832 

Log mod. 0.0059 0.932 0.939 

Bearing in mind the parameters selected to analyze the statistical goodness of fit 

(RMSE, real line slope vs. the estimated one, and R2), the modified Stam model was se-

lected (Equation (9)). 

Figure 7. Graphical representation of the Rs values obtained with the sensors vs. real humidity
variation in the corresponding samples (lilac circles) and a graph of the measured ρ values in the
samples vs. real humidity variation in the corresponding samples (green squares).

Figure 8a includes the values of function ∆m/m0 = f(ρ), the real values and those
obtained with the models. The Stam model appears to better represent reality, as does
model ∆m/m0 = f(Rs).
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Figure 8. Model of humidity variation according to electric resistivity. (a) Graphical representation of
the real data and those obtained with the models. Real data: green squares. Stam model: dashed
blue line. Natural logarithm model: dashed yellow line. Decimal logarithm model: dashed pink line.
(b) Graphical representation of the real data vs. the estimated ones. Stam model: blue dots. Natural
logarithm model: yellow dots. Decimal logarithm model: pink dots.

Figure 8b shows the correlation of the estimated humidity variation values versus
the real ones. The different models’ fit is good. The fitted lines come very close to the 1:1
line and the dots are barely scattered. The values of the slopes are around 0.94, except that
of the Ln model, which is about 0.84 (Table 5). This indicates a correlation close to 94%
between the real and estimated values for all the models, and a slightly lower correlation
of 84% for the Ln model. The R2 values (Table 5) are around 0.94, except that of the Ln
model, which is around 0.83. This indicates that the models account for at least 94% of data
variance, except the Ln model, which accounts for 83%.

Table 5. Statistical parameters to evaluate the model’s goodness of fit of ∆m/m0 = f(ρ).

RMSE Line Slope
Real vs. Estimated R2

Stam mod. 0.0045 0.944 0.941
Ln mod. 0.0075 0.842 0.832

Log mod. 0.0059 0.932 0.939
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Bearing in mind the parameters selected to analyze the statistical goodness of fit
(RMSE, real line slope vs. the estimated one, and R2), the modified Stam model was
selected (Equation (9)).

∆m
m0

= 10−0.745 ∗ ρ−0.942 − 0.026 (9)

Finally, to obtain the estimation model of concrete’s electric resistivity using the electric
resistance obtained with the sensor’s Rs, Equations (8) and (9) were derived. This equality
was simplified by finding ρ according to Rs and solving. This was how Equation (10)
was obtained. It defines the correlation between ρ and Rs. This correlation demonstrates
that the field generated in the sensor system case was not a uniform field. Therefore, the
simplifications related to this condition could not be applied.

ρ = 2.305 Rs
0.772 (10)

Model Validation

For validation, no samples in which concrete’s electric resistivity was measured by the
direct method, and in which electric resistivity was measured with sensors, were available
because the presence of the sensor system would have disturbed the measurement taken by
the direct method. This is why the average resistivity value obtained in the SSNS samples
(not used in the calibration or fitting stages) was employed for the validation per concrete
and per state (Figure 9). In the sample group for validation, there were two samples per
concrete, which were submitted to the same states used in fitting and calibrating.
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R2 

Stam mod.  36.444 0.905 0.940 

Figure 9. Average electric resistivity values obtained in the validation samples without sensors.
(a) ATM: laboratory humidity and temperature conditions. HR ≈ 100%: reference condition for
weights. SAT: samples immersed under the water condition. (b) Drier: condition of the samples dried
at 50 ◦C and left in the drier to cool with salt.

Figure 10 represents the scatter plot of the real vs. estimated value. The ρ estimated
data were obtained by replacing the experimental values of Rs in Equation (10). The fitted
line of these values has a slope of 0.905 (Table 6), and this value means 90.5% coincidence
between the data. R2 indicates that the model represents 94% of the data variance (Table 6).

Table 6. Statistical parameters to evaluate the validation of the estimation model of concrete’s
electric resistivity.

RMSE Line Slope
Real vs. Estimated R2

Stam mod. 36.444 0.905 0.940
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Figure 10. Graphic representation of the real vs. estimated data. Real data 1:1 line: green line.
ρ = f(Rs): blue dots.

As work was undertaken with heterogeneous material, the values obtained in the
RMSE validation, the real vs. the estimated line slope, and R2 could be considered accept-
able. The model precisely reproduced reality.

4. Conclusions

This paper reviewed research on developing models with an SS sensor system for
hardened concrete’s humidity variations and concrete’s electric resistivity. These parame-
ters play a key role in RCS durability. Based on the above review, the following conclusions
can be drawn:

• The developed sensor system allows a reliable estimation model of concrete’s humidity
variation to be established. It accounts for 88.9% of data variance.

• As ∆m/m0 = f(ρ) and ∆m/m0 = f(Rs) functions have the same curve morphology,
their empirical data fit the same function typology.

• This study demonstrates how the electric field generated in the sensor system cannot
be considered uniform because no uniform linear correlation exists between electric
resistivity and electric resistance. This means that uniform field simplifications cannot
be used to achieve electric resistivity by means of the sensor system.

• With the correlation between functions ∆m/m0 = f(ρ) and ∆m/m0 = f(Rs), the es-
timation model of electric resistivity by the parameter is obtained with the sensor
system’s Rs. This model offers good reproducibility of reality by accounting for 94%
of data variance.

• Working with two electrodes implies there are no limitations to the developed models’
reliability and reduces the energy needed for the system.

Based on the above review, the following opportunities for future research into this
sensor to monitor the RCS state can be identified:

• The sensor system presented with the developed models can be coupled to a multi-
sensor system, developed according to the smart sensor network concept. Depending
on data requirements about the state, this sensor network is capable of collecting
interesting data at the necessary points to optimize the system’s data resources, and
its economic and energy uses.

• It is possible to collect further information from the electric resistivity estimation to
characterize the degree of corrosion with these relations:

� The correlation between the electric resistivity value and the presence of chlorides.
Initial tests can be conducted to check if the model slightly varies when chloride
anions are present in the concrete’s porous solution.

� The correlation between concrete’s electric resistivity and the corrosion electric current,
which are correlated by Ampère’s Law.
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